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ON THE CONSTANT OF LIPSCHITZ APPROXIMABILITY

RUBÉN MEDINA

Abstract. In this note we find λ > 1 and give an explicit construction of a
separable Banach space X such that there is no λ-Lipschitz retraction from X
onto any compact convex subset of X whose closed linear span is X. This is
closely related to a well-known open problem raised by Godefroy and Ozawa
in 2014 and represents the first known example of a Banach space with such a
property.
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1. Introduction

1.1. Motivation and background. This paper is motivated by a natural ques-
tion asked by Godefroy and Ozawa in [GO14], and then subsequently in [God15b],
[God15a], [GMZ16], [GLP19] and [God20]. They wonder whether for every sepa-
rable Banach space there is a Lipschitz retraction onto a compact convex subset
whose closed linear span is the whole space. Recall that this question only makes
sense for separable spaces since any space with such a property must be generated
by a compact set. In [HM23a, Theorem 3.3], the latter question is solved in the
positive for Banach spaces with a finite dimensional decomposition. In fact, for
every ε > 0 the retraction can be constructed to be (1 + ε)-Lipschitz whenever the
space has a monotone Schauder basis. However, the general problem is still open
although a Hölder version of the problem was solved positively in [Med23, Theorem
2.1].

We prove that there exists a separable Banach space X such that there is no
λ-Lipschitz retraction onto any compact convex subset of X whose closed linear
span is the whole space for some λ > 1. However, our example does have such a
retraction with larger Lipschitz constant (see Corollary 2.11).

The Godefroy-Ozawa question is closely related to the theory of nonlinear ap-
proximation properties. Indeed, if there is a λ-Lipschitz retraction R from a Banach
space X onto a generating compact convex subset K of X then there is a sequence
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2926 R. MEDINA

of λ-Lipschitz retractions Rn : X → X with compact range and pointwise converg-
ing to the identity on X. Specifically, if we fix k0 ∈ K, the mapping Rn may be
defined as Rn(x) = nR

(
x
n +k0

)
−nk0 which is a translation of R (so that 0 is in the

image) composed with an expansion. Notice that Rn(x) → x for all x ∈ X since⋃
n Rn(X) =

⋃
n n(K − k0) = X. Therefore, Godefroy-Ozawa question is strongly

related to Kalton’s Problem 1 in [Kal12, page 1260], namely, whether in every sep-
arable Banach space X there is a sequence of equi-uniformly continuous mappings
with compact range pointwise converging to the indentity on X. It is worth men-
tioning that a counterexample to Kalton’s problem would provide a renorming of
�1 without the metric approximation property, solving a classical open problem in
the theory of approximation properties.

Nonlinear approximation properties are intimately connected to the linear ones
(for instance, see [GK03, Theorem 5.3], [HM23a, Corollary 4.8] and [HM23b, Corol-
lary 2.9]). For this exact reason, in our desire of solving Godefroy-Ozawa question,
we have decided to follow the path traced by Enflo to construct a separable Banach
space without a basis ([Enf73b]). He first tackled the problem of finding a Banach
space with basis constant greater than 1 (see [Enf73a]) and so have we done in our
analogous nonlinear setting. Moreover, Enflo himself mentions in [Enf73a, Second
paragraph of page 309] that the approach developed in [Enf73b] is similar to that
of [Enf73a], which we find highly encouraging.

Section 2 is divided into two subsections. In order to prevent the reader from
losing the intuition among the computations developed in our proof, we have added
a short subsection explaining the general ideas behind the construction. In the last
subsection, both the construction and the proof of our main result Theorem 2.1 are
carried out.

1.2. Definitions and notation. Let (M,dM ) and (N, dN ) be two metric spaces
and let f : M → N be an arbitrary mapping. We will say that f is Lipschitz
if there is λ ≥ 0 such that dN (f(x), f(y)) ≤ λdM (x, y) for every x, y ∈ M . We
may specify that some constant λ ≥ 0 satisfy the latter inequality saying that f
is λ-Lipschitz. The infimum over all λ > 0 such that f is λ-Lipschitz is called the
Lipschitz constant of f .

A retraction from a metric space (M,d) onto a subset N ⊂ M is a map R : M →
N satisfying that R(x) = x for every x ∈ N . The image of a retraction is called
a retract. We say that R is a Lipschitz retraction or equivalently that R(M) is a
Lipschitz retract whenever the retraction R is Lipschitz.

If X is a Banach space, we say that a subset S of X is a generating subset
whenever the closed linear span of S is X. We denote the closed linear span of S
as span(S).

Given some countable set Γ, we denote �∞(Γ) the space of bounded functions
x : Γ → R endowed with the supremum norm ‖x‖∞ = sup

γ∈Γ
|x(γ)|. Whenever we are

working with an element x belonging to some �∞(Γ) we will denote the supremum
norm of x simply by ‖x‖. We also denote �1(Γ) the space of summable functions
x : Γ → R endowed with the norm ‖x‖1 =

∑
γ∈Γ

|x(γ)|. For N ∈ N we will refer as

�N∞ and �N1 to the space �∞(Γ) and �1(Γ) respectively for Γ = {1, . . . , N}. We say
that a sequence (en)n∈N of normalised vectors from a Banach space E is equivalent
to the �1(N) basis if for every sequence (λn)n∈N ⊂ R with finitely many nonzero
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LIPSCHITZ APPROXIMABILITY 2927

elements it holds that ∥∥∥∥∑
n∈N

λnen

∥∥∥∥ =
∑
n∈N

|λn|.

It is worth mentioning that the given definition is not the usual concept of basic
sequences being equivalent.

Given a Banach space E, two nonempty subsets S1 and S2 of E and an element
v ∈ E, we say that v is a midpoint of S1 and S2 whenever for every z ∈ S1 ∪ S2,
‖v − z‖ = d(S1,S2)/2.

Throughout the entire note, we will consider N the natural numbers starting
from 1 and N0 = N ∪ {0}.

Throughout the entire note we will follow the terminology and notation used in
[FHH+11]. For the background on Lipschitz and uniformly continuous retractions
we refer the reader to the first two chapters of the authoritative monograph [BL00].

2. Main result

2.1. Sketch of the proof. Let us begin with a somehow imprecise but useful
formulation of the approach used in subsection 2.2. We will try to construct X
such that if R is a (1+ ε)-Lipschitz retraction with convex image K (where 0 ∈ K)
for some small enough ε > 0 almost preserving some fixed vectors ±U1,±U2,±V1,1,
±V2,1 ∈ X then there must be a sequence in K without any Cauchy subsequence.
The reasoning is going to follow an iterative argument. More precisely, out of the
eight vectors ±U1,±U2,±V1,1,±V2,1 we will be able to find another four vectors
±V1,2,±V2,2 distant from the rest which are also almost preserved by R. Then,
using the fact that ±U1,±U2,±V1,2,±V2,2 are almost preserved by R we will find
another four vectors ±V1,3,±V2,3 distant from the rest which are again almost
preserved by R and so on. The sought sequence without Cauchy subsequences is
going to be (R(V1,n))n∈N. The unique problem being how to produce the new four
almost preserved vectors ±V1,n+1,±V2,n+1 out of the previous almost preserved
vectors ±U1,±U2, (±V1,m)nm=1, (±V2,m)nm=1:

For technical reasons, the argument depends on whether n is even or odd. As-
sume first that n is odd and ±U1,±U2,±V1,n,±V2,n are almost preserved by R.
We need to consider two subsets of vectors S+

n ,S−
n ⊂ X such that

S±
n ⊂ co{R(±U1), R(±U2), R(±V1,n), R(±V2,n)} ⊂ K.

More precisely, the sets S±
n contain 8 vectors S±

n = {Z±
1,n, . . . , Z

±
8,n} chosen such

that the elements Z+
1,n, . . . , Z

+
8,n are close to

U1+
V1,n+V2,n

2

2 and the elements

Z−
1,n, . . . , Z

−
8,n are close to −U1+

V1,n+V2,n
2

2 . The space X is constructed so that

V1,n+1 is the unique midpoint of {0} and S+
n \ {Z+

2,n} and the vector V2,n+1 is the

unique midpoint of {0} and S−
n \ {Z−

3,n}. Since all the latter sets are in K their
elements are preserved by R and since there are no other midpoints of those sets
and {0} rather than V1,n+1, V2,n+1, these vectors must also be almost preserved by
the (1 + ε)-Lipschitz retraction R.

We may define U1, U2, V1,n, V2,n satisfying ‖U1‖, ‖U2‖ = 1, ‖V1,n‖, ‖V2,n‖ ≈ 1/3
and

d({0},S±
n ) ≈

‖U1‖+ ‖V1,n‖+‖V2,n‖
2

2
≈ 2/3 for i = 2, 3.
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2928 R. MEDINA

Hence, the vectors V1,n+1, V2,n+1 must satisfy that

‖V1,n+1‖, ‖V2,n+1‖ = d({0},S±
n )/2 ≈ 1/3 ≈ ‖V1,n‖, ‖V2,n‖.

This is the key ingredient which prevents the sequence (V1,n)n∈N from converging
to 0. Therefore, it is possible to define the vectors distant from each other. If, on
the contrary, n is even, we proceed analogously but using U2 instead of U1.

Let us now introduce the purpose that our main lemmas below serve. Lemma
2.6 shows that ±Vi,n+1 is the midpoint of {0} and its respective set S described
above whereas Lemma 2.7 proves that ±Vi,n+1 is the unique element with such a
property. Moreover, since the argument must work up to ε > 0, we show in Lemma
2.7 that if a vector B is almost the midpoint (up to ε) of {0} and S then B is
almost ±Vi,n+1 (up to a constant C > 0 times ε). Finally, Lemmas 2.6 and 2.7 are
used in the proof of Theorem 2.8 (a more precise formulation of Theorem 2.1) to
finish the section.

2.2. Final construction. We will give an explicit definition of a separable Banach
space X and a proof of the fact that there is no λ-Lipschitz retraction onto any
generating compact and convex subset of X for some λ > 1. That is, we will be
proving the following result.

Theorem 2.1. There is λ > 1 and a separable Banach space X such that no
retraction onto any generating compact and convex subset of X is λ-Lipschitz.

The space X will arise as the closed linear span of countably many carefully
chosen vectors from �∞(N2).

Let us then proceed with the definition of X. The construction will depend on
some constants δ,M,Δ > 0 which will be specified later. We set for every 1 ≤ k ≤ 8
the following quantities,

xk =
1
2 + k

M

1− 2k
M

, t(k) =
1

2
− k

M

α = 1− x8 , β = 1 + x2
1.

We now start defining functions f, g : R → R given by

f(x) = α+ x and g(x) = β − x2 (x ∈ R).

We also define three vectors u, v, c ∈ R
8 given by u(k) = f(xk), v(k) = g(xk) and

c(k) = 1 for k = 1, . . . , 8.

Fact 2.2. The vector (xk)
8
k=1 is strictly increasing in k = 1, . . . , 8. Moreover, if

M > 16 and we set δM := x2
8 − x2

1 then δM > x8 − x1 > 0, δM
M→∞−−−−→ 0 and

max
k=1,...,8

u(k) = u(8) = 1 , min
k=1,...,8

u(k) = u(1) = 1− (x8 − x1),

max
k=1,...,8

v(k) = v(1) = 1 , min
k=1,...,8

v(k) = v(8) = 1− (x2
8 − x2

1).

Proof. M > 16 implies xk > 1
2 for every 1 ≤ k ≤ 8. Then, x8 + x1 > 1 and hence

δM = (x8 + x1)(x8 − x1) > x8 − x1.

The rest of the proof is straightforward. �
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BLOCKS

VECTOR
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GRAPHIC
BLOCKS

BLOCK 0 BLOCK 1 BLOCK 2

Figure 1

From now on, we will consider a sequence (en) ⊂ S�∞(N) equivalent to the �1(N)
basis in �∞(N). This is possible since �∞(N) is isometrically universal for separable
spaces. Also, let us consider δi ∈ R

8 for i = 1, . . . , 8 given by δi(k) = 0 if i 
= k and
δi(i) = Δ.

We are finally ready to present the vectors from �∞(N2) that will span our space.
All the vectors will be defined following the same approach, namely, each vector
will be defined in {m}×N in a specific way for each m ∈ N. In the case m = 1, the
definition will be splitted into blocks of 8 elements in a row, that is, the first block
will be formed by (1, 1), . . . , (1, 8), the second will be formed by (1, 8+1), . . . , (1, 2·8)
and the nth block will be formed by (1, (n− 1)8+1), . . . , (1, n8) (see Figure 1). We
denote as BLOCK m the elements (1,m8 + 1), . . . , (1, (m+ 1)8) for every m ∈ N0.

Consider now the elements U1, U2 ∈ �∞(N2) given by

Ui(x) =

⎧⎪⎨⎪⎩
u(k) if x = (1, 8(2m+ j − 1) + k) for m ∈ N0, k = 1, . . . , 8,

δ8(k) if x = (1, 8(2m− j) + k) for m ∈ N, k = 1, . . . , 8,
1
10e1(k) if x = (p, k) for p, k ∈ N, p ≥ 2.

Then, we define for every n ∈ N the elements V1,n, V2,n ∈ �∞(N2) as

Vi,n(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)i−1( 1−δ
3 − δi+1(k)) if x=(1, n8+k), k = 1, . . . , 8

v(k)− 2+2δ
3 +(−1)iδ7(k) if x=(1, (n+ 1)8+k), k=1, . . . , 8

(−1)i−1( 1−2δ
3 − δ6(k)) if x=(1,m8+k), k=1, . . . ,8,m∈2N0+

1−(−1)n

2 \{n},
(−1)i−1 1−δ

3 e1(k) if x=(2n+i− 1, k), k ∈ N,

1
10e2n+i−1(k) if x=(m, k),

∣∣∣∣m, k ∈ N,m≥2,
m 
=2n+i − 1, 2(n+1), 2(n+1)+1,

0 elsewhere.
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Figure 2

Our sought space is

X = span
(
{Vi,n}i=1,2

n∈N

∪ {U1, U2}
)
.

See Figure 2 and Figure 3 to have a conceptual idea of what the vectors Ui, Vi,n

look like when restricted to {1} ×N (we present the picture by giving the graph of
the blocks arranged like in the last step of Figure 1). Notice that, when restricted
to {m}×N for m 
= 1, the previous vectors are nothing but multiples of some vector

ej from the �1 basis. We have included in Figure 3 a description of
V1,n+V2,n

2

∣∣∣
{1}×N

because it is also going to be central in further discussions.
Now, we turn our attention to the proof of Theorem 2.1. For that purpose, we

first need to state and prove some technical auxiliary results. We start with the
following simple but handy lemma.

Lemma 2.3. Let N,n ∈ N with N > n, {v1, . . . , vn} ∈ �N∞\{0} and c = (1, . . . , 1) ∈
�N∞. If v1, . . . , vn, c are linearly independent then there exists K > 0 such that for

every a ∈ span{v1, . . . , vn, c} with a = λc+
n∑

i=1

λivi it follows that

|λ− 1|, |λi| ≤ K‖a− c‖ , i = 1, . . . , n.

Proof. It follows immediately from the fact that the sequence {v1, . . . , vn, c} is a
block basis but, for the convienence of the reader, we include here a complete proof.

Since v1, . . . , vn, c are linearly independent, we know that there exist f0, f1, . . . , fn

∈ (�N∞)∗ = �N1 such that z = f0(z)c +
n∑

i=1

fi(z)vi for every z ∈ �N∞. More-

over, we know that f0(c) = 1 and fi(c) = 0 for i = 1, . . . , n. Let us consider
K = max{‖f0‖, ‖f1‖, . . . , ‖fn‖} < ∞. It is clear that for every 1 ≤ i ≤ n,

|λi| = |fi(a)| = |fi(a− c)| ≤ ‖fi‖ · ‖a− c‖ ≤ K‖a− c‖.
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BLOCK 0 BLOCK n-1 BLOCK n BLOCK n+1 BLOCK n+2 BLOCK n+3

BLOCK 0 BLOCK n-1 BLOCK n BLOCK n+1 BLOCK n+2 BLOCK n+3

BLOCK 0 BLOCK n-1 BLOCK n BLOCK n+1 BLOCK n+2 BLOCK n+3

Figure 3

Finally, it is immediate that

|λ− 1| = ‖f0(a− c)‖ ≤ ‖f0‖‖a− c‖ ≤ K‖a− c‖.

�

We will make use of the following quantity which depends exclusively on M > 0,

(2.1) μM = min
j,k=1,...,8

j �=k

{(1− t(k))(u(k)− u(j)) + t(k)(v(k)− v(j))}.

Fact 2.4. For every M > 16 it holds that μM > 0 and μM
M→∞−−−−→ 0.
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BLOCK n-2 BLOCK n-1 BLOCK n BLOCK n+1 BLOCK n+2 BLOCK n+3 BLOCK n+4 BLOCK n+5

Figure 4

Proof. Let us consider for 1 ≤ k ≤ 8 the function hk : R → R given by

hk(x) = (1− t(k))f(x) + t(k)g(x) (x ∈ R).

It is immediate that

μM = min
j,k=1,...,8

j �=k

{hk(xk)− hk(xj)}.

For every choice of M > 16, the function hk is a quadratic polynomial attaining a
unique maximum at xk. Therefore, if j 
= k then hk(xk) > hk(xj) and thus μM > 0.

Now, since hk is contiuous and xk, xj
M→∞−−−−→ 1/2, we clearly have

hk(xk)− hk(xj)
M→∞−−−−→ hk

(1
2

)
− hk

(1
2

)
= 0

and we are done. �
Let us finally pick appropriate δ,M,Δ > 0 for which X will satisfy the statement

of Theorem 2.1 for some λ > 1.
Choice of δ,M and Δ:
We take some δ > 0 satisfying

(2.2) δ <
1

10
,

and find M large enough so that the following inequalities hold,

(2.3)
8

M
+ δM + μM <

1− 8δ

6
, (2.4) δM <

δ

3
.

Finally, we pick Δ > 0 so that

(2.5) Δ <
μM

2
,
δ

6
,
1− 2δ

3
− δM , δM ,

1− δM
2

.

We denote now for n ∈ N and 1 ≤ k ≤ 8 the element Sk,n ∈ X given by

Sk,n = (1− t(k))U 3+(−1)n

2
+ t(k)

V1,n + V2,n

2
.

The element Sk,n ∈ X will be very relevant for the proof of Theorem 2.1. See
Figure 4 to have a rough idea of what it looks like when restricted to {1} × N.

For the latter choices of δ,M and Δ, we have Proposition 2.5.

Proposition 2.5. The following properties are satisfied for every n ∈ N,

(1) ‖Vi,n‖ = 1−δ
3 and ‖Ui‖ = 1 for i = 1, 2.

(2) |(V1,n+V2,n)(1,m)| ≤ Δ for every m ∈ N \ {(n+1)8+1, . . . , (n+1)8+8}.
(3) For every k = 1, . . . , 8,

Sk,n(1, (n+ 1)8 + k) >
2− δ

3
− δM +

Δ

2
.
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(4) For every x ∈ N
2 \ {(1, (n+ 1)8 + k)},

|Sk,n(x)| ≤ Sk,n(1, (n+ 1)8 + k)− μM .

Proof. (1) It is clear that ‖Ui‖ = u(8) = 1. Now, taking into account the constraints
of δ,M and Δ, a straightforward case by case check yields that ‖Vi,n‖ = 1−δ

3 .
(2) The proof is straightforward from the definition.
(3) By Fact 2.2,

(2.6) u(1) + v(1) = 2− (x8 − x1) > 2− δM .

We also deduce that

(2.7) u(1) = 1− (x8 − x1)
Fact 2.2

> 1− δM
(2.4)
>

1− 2δ

3
= v(1)− 2 + 2δ

3
.

This, in addition to the fact that t(k) < 1/2, yields

0
(2.7)
<

(1
2
− t(k)

)(
u(1)−

(
v(1)− 2 + 2δ

3

))
=(1− t(k))u(1) + t(k)

(
v(1)− 2 + 2δ

3

)
−

u(1) + v(1)− 2+2δ
3

2
.

Equivalently,

(2.8) (1− t(k))u(1) + t(k)
(
v(1)− 2 + 2δ

3

)
>

u(1) + v(1)− 2+2δ
3

2
.

Finally, since μM > 0 we know that (1− t(k))u(k) + t(k)(v(k)) ≥ (1− t(k))u(1) +
t(k)v(1) and therefore

Sk,n(1, (n+ 1)8 + k) = (1− t(k))u(k) + t(k)
(
v(k)− 2 + 2δ

3

)
≥ (1− t(k))u(1) + t(k)

(
v(1)− 2 + 2δ

3

)
(2.8)
>

u(1) + v(1)− 2+2δ
3

2
(2.6)
>

2− δM − 2+2δ
3

2

=
2− δ

3
− δM

2

δM>Δ
>

2− δ

3
− δM +

Δ

2
.

(4) We distinguish here between different cases depending on the element x ∈
N

2 \ {(1, (n+ 1)8 + k)}:

Case 1 (x = (1, (n+ 1)8 + j) for j = 1, . . . , 8 and j 
= k). In this case we have

|Sk,n(x)| =(1− t(k))u(j) + t(k)
(
v(j)− 2 + 2δ

3

)
=(1− t(k))u(k) + t(k)

(
v(k)− 2 + 2δ

3

)
−
(
(1− t(k))(u(k)− u(j)) + t(k)(v(k)− v(j))

)
(2.1)

≤ Sk,n(1, (n+ 1)8 + k)− μM .
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Case 2 (x = (1, q) with q 
= (n + 1)8 + j for j = 1, . . . , 8). From property (2) we

know that
∣∣V1,n+V2,n

2 (x)
∣∣ ≤ Δ/2 and thus

|Sk,n(x)| ≤(1− t(k))
∣∣U 3+(−1)n

2

(x)
∣∣+Δ/2

(1)

≤1− t(k) + Δ/2
(2.3)

≤ 2− δ

3
− δM − μM +Δ/2

(3)
<Sk,n(1, (n+ 1)8 + k)− μM .

Case 3 (x = (p, q) for some p, q ∈ N with p ≥ 2). In this case

|U 3+(−1)n

2

(x)| ≤ 1

10
and

1

3

(2.3)

≤ 2− δ

3
− δM − μM

(3)
< Sk,n(1, (n+1)8+ k)− μM ,

so then

|Sk,n(x)| ≤(1− t(k))
∣∣U 3+(−1)n

2
(x)

∣∣+ t(k)
|V1,n(x)|+ |V2,n(x)|

2
(1)

≤ (1− t(k))
1

10
+ t(k)

1− δ

3
<

1

3
< Sk,n(1, (n+ 1)8 + k)− μM .

�

Lemma 2.6 is crucial for our later purposes. Despite being large and seemingly
involved, its proof is elementary and the computations needed are not so hard. How-
ever, we are forced to work distinguishing cases due to the nature of the definition
of the vectors Ui, Vi,n ∈ X.

Lemma 2.6. There exists ε0 > 0 such that if E1, E2,W1,W2 ∈ X satisfy ‖Wi −
Vi,n‖, ‖Ei − Ui‖ ≤ ε0 for i = 1, 2 and some n ∈ N then for k = 1, . . . , 8 we have

that ‖Zk,n‖ ≥ 2−2δ
3 and

(2.9) ‖Vi,n+1‖,
∥∥∥(−1)i+1Vi,n+1 −

2− 2δ

3‖Zk,n‖
Zk,n

∥∥∥ =
1− δ

3
∀k 
= i+ 1,

where Zk,n = (1− t(k))E 3+(−1)n

2
+ t(k)W1+W2

2 .

Proof. We first choose ε0 satisfying some inequalities which will be used throughout
the proof. Let us take ε0 > 0 such that

(2.10) ε0 <
μM − 2Δ

2
,

1

40
,
δ

3
− δM ,

δ

3
− 2Δ,

1− 8δ

6
− 8

M
,
1− 10δ

60
.

Notice that thanks to the appropriate choice of δ,M and Δ, the quantities in the
right-hand side are strictly positive and hence such an ε0 exists. Let us show
that this ε0 satisfies the statement of Lemma 2.6. From Properties (3) and (4) of
Proposition 2.5 we get that for k = 1, . . . , 8,

(2.11) ‖Sk,n‖ = Sk,n(1, (n+ 1)8 + k) >
2− δ

3
− δM .

Hence, for every k = 1, . . . , 8 we have that

(2.12)
‖Zk,n‖ ≥‖Sk,n‖ − ε0

(2.11)
>

2− δ

3
− δM − ε0

=
2− 2δ

3
+ (δ/3− δM − ε0)

(2.10)
>

2− 2δ

3
.
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We turn our attention to the proof of (2.9). We already know from Proposition 2.5
that ‖Vi,n+1‖ = 1−δ

3 so that we only need to prove the second equality of (2.9). It
is immediate that∥∥∥(−1)i+1Vi,n+1 −

2− 2δ

3‖Zk,n‖
Zk,n

∥∥∥ ≥
∥∥∥ 2− 2δ

3‖Zk,n‖
Zk,n

∥∥∥− ‖Vi,n+1‖
(1)
=

1− δ

3
.

Therefore, it is enough to show that for every x ∈ N
2 and k 
= i+ 1,

(2.13)
∣∣∣((−1)i+1Vi,n+1 −

2− 2δ

3‖Zk,n‖
Zk,n

)
(x)

∣∣∣ ≤ 1− δ

3
.

We proceed by splitting the proof of inequality (2.13) into different cases.

Case 1 (x = (1, (n+ 1)8 + k)). In this case

Vi,n+1(x) = (−1)i−1
(1− δ

3
− δi+1(k)

)
k �=i+1
= (−1)i−1 1− δ

3
,

and since by (2.10) we know that 2ε0 < μM then for every z ∈ N
2 \ {x},

|Zk,n(z)| ≤ |Sk,n(z)|+ ε0
(4)

≤ Sk,n(x)− μM + ε0

≤ Zk,n(x)− μM + 2ε0

< Zk,n(x).

This shows that

(2.14) ‖Zk,n‖ = Zk,n(1, (n+ 1)8 + k).

Therefore,∣∣∣((−1)i+1Vi,n+1 −
2− 2δ

3‖Zk,n‖
Zk,n

)
(x)

∣∣∣ (2.14)
=

∣∣∣1− δ

3
− 2− 2δ

3

∣∣∣ = 1− δ

3
.

Case 2 (x = (1, (n+ 1)8 + j) for j ∈ {1, . . . , 8} \ {k}). In this case,

(2.15) Vi,n+1(x) = (−1)i−1
(1− δ

3
− δi+1(j)

)
,

(2.16) Sk,n(x) = (1− t(k))u(j) + t(k)
(
v(j)− 2 + 2δ

3

)
.

Now, since δM
(2.4)
< δ

3

(2.2)
< 1

30 it holds that

(2.17) v(j)− 2 + 2δ

3

Fact 2.2
≥ 1− δM − 2 + 2δ

3
> 0.

Therefore, taking into account that 1− t(k) ≥ 1/2 we get that

(2.18)
Zk,n(x) ≥ Sk,n(x)− ε0

(2.16)
= (1− t(k))u(j) + t(k)

(
v(j)− 2 + 2δ

3

)
− ε0

(2.17)

≥ u(j)

2
− ε0

Fact 2.2
≥ 1− δM

2
− ε0 > 0.

The last inequality holds since δM < 1
30 and ε0

(2.10)
< 1

40 . Combining previous
inequalities we get

(2.19)
(
(−1)i+1Vi,n+1 −

2− 2δ

3‖Zk,n‖
Zk,n

)
(x)

(2.15)(2.18)
<

1− δ

3
.
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Since

(2.20) ‖Sk,n‖ ≤ (1− t(k))‖U 3+(−1)n

2
‖+ t(k)

‖V1,n‖+ ‖V2,n‖
2

(1)
< 1,

and ε0
(2.10)
< 1−4δ

3 we have that

(2.21) ‖Zk,n‖ ≤ ‖Sk,n‖+ ε0
(2.20)
< 1 +

1− 4δ

3
=

4− 4δ

3
.

Also,

(2.22) |Zk,n(x)| ≤ |Sk,n(x)|+ ε0
(4)

≤ ‖Sk,n‖ − μM + ε0 ≤ ‖Zk,n‖ − μM + 2ε0.

Using the above inequalities we deduce that

(2.23)

( 2− 2δ

3‖Zk,n‖
Zk,n − (−1)i+1Vi,n+1

)
(x)

(2.15)

≤ 2− 2δ

3‖Zk,n‖
|Zk,n(x)| − |Vi,n+1(x)|

(2.22)

≤
(2− 2δ

3
− 2− 2δ

3‖Zk,n‖
(μM − 2ε0)

)
−
(1− δ

3
−Δ

)
(2.21)
<

1− δ

3
− 1

2
(μM − 2ε0 − 2Δ)

(2.10)
<

1− δ

3
.

This case is hence done by combining (2.19) and (2.23).

Case 3 (x = (1, (n+ 2)8 + j) with 1 ≤ j ≤ 8). In this case we have

Vi,n+1(x) = v(j)− 2 + 2δ

3
+ (−1)iδ7(j),

which taking into account that v(j)
Fact 2.2

≤ 1 implies that

(2.24) |Vi,n+1(x)| ≤
1− 2δ

3
+ Δ.

We now compute |Sk,n(x)|. Since we have that |(V1,n+V2,n)(x)|
(2)

≤Δ and U 3+(−1)n

2
(x)

= δ8(j), it clearly follows that

(2.25) |Sk,n(x)| ≤ (1− t(k))|δ8(j)|+ t(k)Δ ≤ Δ.

Therefore,∣∣∣((−1)i+1Vi,n+1 −
2− 2δ

3‖Zk,n‖
Zk,n

)
(x)

∣∣∣ (2.12)

≤ |Vi,n+1(x)|+ |Zk,n(x)|

≤ |Vi,n+1(x)|+ |Sk,n(x)|+ ε0

(2.24)(2.25)

≤ 1− 2δ

3
+ 2Δ + ε0

=
1− δ

3
−
(δ
3
− 2Δ− ε0

) (2.10)
<

1− δ

3
.

Case 4 (x = (1,m8 + j) where m ∈ 2N0 +
1−(−1)n

2 \ {n + 2} and 1 ≤ j ≤ 8). In
this case by definition we get that

Vi,n+1(x) = 0 , |(V1,n + V2,n)(x)|
(2)

≤ Δ , U 3+(−1)n

2

(x) = δ8(j).
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Hence, |Sk,n(x)| ≤ (1− t(k))Δ + t(k)Δ = Δ and we conclude∣∣∣((−1)i+1Vi,n+1 −
2− 2δ

3‖Zk,n‖
Zk,n

)
(x)

∣∣∣ (2.12)

≤ |Zk,n(x)| ≤ |Sk,n(x)|+ ε0

≤ Δ+ ε0 ≤ 1− δ

3
.

The very last inequality follows from the constraints established for Δ and ε0 in
(2.5) and (2.10).

Case 5 (x = (1,m8 + j) with m distinct from the previous cases and 1 ≤ j ≤ 8,
that is, m is any number with the opposite parity to n except n+ 1:).

m ∈ 2N0 +
1− (−1)n+1

2
\ {n+ 1}.

In this case,

(2.26) Vi,n+1(x) = (−1)i−1
(1− 2δ

3
− δ6(j)

)
, U 3+(−1)n

2
(x) = u(j).

Then, since δM
(2.4)
< δ/3 < 1/30 and Δ

(2.5)
< δ/6

(2.2)
< 1/60 we have that

(2.27)

Sk,n(x)
(2.26)
= (1− t(k))u(j) + t(k)

(V1,n + V2,n)(x)

2
(2)

≥ (1− t(k))u(j)−Δ

Fact 2.2
≥ (1− t(k))(1− δM )−Δ

≥ 1− δM
2

−Δ > 0.

Then,

(2.28)

(
(−1)i+1Vi,n+1 −

2− 2δ

3‖Zk,n‖
Sk,n

)
(x)

(2.27)

≤ (−1)i+1Vi,n+1(x)

(2.26)
=

1− 2δ

3
− δ6(j)

ε0<δ/3
<

1− δ

3
− ε0.

Also, we have that

(2.29) Sk,n(x)
(2.26)
= (1− t(k))u(j) + t(k)

(V1,n + V2,n)(x)

2

(2)

≤ (1− t(k))u(j) + Δ,

and so,

(2.30)

( 2− 2δ

3‖Zk,n‖
Sk,n − (−1)i+1Vi,n+1

)
(x)

(2.12)

≤ Sk,n(x)− (−1)i+1Vi,n+1(x)

(2.26)(2.29)

≤ (1− t(k))u(j) + Δ− 1− 2δ

3
+ δ6(j)

u(j)≤1

≤ 1

2
+

k

M
− 1− 2δ

3
+ 2Δ

Δ<δ/6
<

1

6
+

8

M
+ δ ≤ 1− δ

3
− ε0.
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Notice that u(j) ≤ 1 follows from Fact 2.2 and Δ < δ/6 is one of the inequalities
in (2.5).

Inequalities (2.28) and (2.30) yield

(2.31)
∣∣∣((−1)i+1Vi,n+1 −

2− 2δ

3‖Zk,n‖
Sk,n

)
(x)

∣∣∣ < 1− δ

3
− ε0,

and therefore we finish this case using the triangle inequality∣∣∣((−1)i+1Vi,n+1 −
2− 2δ

3‖Zk,n‖
Zk,n

)
(x)

∣∣∣ ≤ ∣∣∣((−1)i+1Vi,n+1 −
2− 2δ

3‖Zk,n‖
Sk,n

)
(x)

∣∣∣
+

2− 2δ

3‖Zk,n‖
‖Sk,n(x)− Zk,n(x)‖

(2.12)(2.31)
<

1− δ

3
.

Case 6 (x = (2(n+ 1) + i− 1, j) where j ∈ N). In this case,

(2.32)
Vi,n+1(x) = (−1)i−1 1− δ

3
e1(j) , V1,n(x) = V2,n(x) = 0,

U 3+(−1)n

2
(x) =

1

10
e1(j) , Sk,n(x) = (1− t(k))

1

10
e1(j).

First, we compute

(2.33)
2− 2δ

3‖Zk,n‖
· 1

10
(1− t(k))

(2.12)
<

1

10

(2.2)
<

1− δ

3
.

Now, taking into account that 1− t(k) ≥ 1
2 we have∣∣∣((−1)i+1Vi,n+1 −

2− 2δ

3‖Zk,n‖
Sk,n

)
(x)

∣∣∣ (2.32)
=

∣∣∣(1− δ

3
− 2− 2δ

3‖Zk,n‖
· 1

10
(1− t(k))

)
e1(j)

∣∣∣
(2.33)
=

(1− δ

3
− 2− 2δ

3‖Zk,n‖
· 1

10
(1− t(k))

)
|e1(j)|

(2.21)

≤ 1− δ

3
− 1

40

(2.10)
<

1− δ

3
− ε0.

Therefore, by the triangle inequality and the last shown equation we get∣∣∣((−1)i+1Vi,n+1 −
2− 2δ

3‖Zk,n‖
Zk,n

)
(x)

∣∣∣ ≤ ∣∣∣((−1)i+1Vi,n+1 −
2− 2δ

3‖Zk,n‖
Sk,n

)
(x)

∣∣∣+ ε0

<
1− δ

3
.

Case 7 (x = (p, j) ∈ N
2 different from the previous cases). In this case, p ≥ 2 and

hence we know that Vi,n(x) ∈
{
(−1)i−1 1−δ

3 e1(j),
1
10e2n+i−1(j), 0

}
where it cannot

happen that V1,n(x) = V2,n(x) = (−1)i−1 1−δ
3 e1(j). Then,

(2.34)
∣∣∣V1,n(x) + V2,n(x)

2

∣∣∣ ≤ 1−δ
3 + 1

10

2
=

13− 10δ

60
.

Also, since x is different from that of Case 6, necessarily p 
= 2(n + 1) + i − 1 so
that Vi,n+1(x) ∈

{
0, 1

10e2(n+1)+i−1(j)
}
. Hence,

(2.35) |Vi,n+1| ≤
1

10
and U 3+(−1)n

2
(x) =

1

10
e1(j).
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This together with the fact that 1
10

(2.2)
< 13−10δ

60 yields

(2.36)
|Sk,n(x)| ≤ (1− t(k))

∣∣U 3+(−1)n

2

(x)
∣∣+ t(k)

∣∣∣V1,n(x) + V2,n(x)

2

∣∣∣
(2.34)(2.35)

≤ (1− t(k))
1

10
+ t(k)

13− 10δ

60
<

13− 10δ

60
.

Therefore, taking into account that by (2.10), ε0 ≤ 1−10δ
60 we finally conclude∣∣∣((−1)i+1Vi,n+1 −

2− 2δ

3‖Zk,n‖
Zk,n

)
(x)

∣∣∣ (2.12)

≤ |Vi,n+1(x)|+ |Sk,n(x)|+ ε0

(2.35)(2.36)
<

1

10
+

13− 10δ

60
+ ε0 ≤ 1− δ

3
.

�
Our next objective is to prove that (−1)i+1V i

n+1 is the unique vector (up to
ε) satisfying the thesis of Lemma 2.6 (up to ε). The proof relies on the �1-like
behaviour of our previously defined vectors.

Lemma 2.7. There exists C > 0 such that if Z1,n, . . . , Z8,n are like in Lemma 2.6
for some n ∈ N then whenever there is B ∈ X satisfying

‖B‖,
∥∥∥B − 2− 2δ

3‖Zk,n‖
Zk,n

∥∥∥ ≤ 1− δ

3
+ ε, ∀k 
= i0 + 1,

for some i0 ∈ {1, 2} and ε > 0 it follows that

‖B − (−1)i0+1Vi0,n+1‖ ≤ Cε.

Proof. We may assume without loss of generality that

B ∈ span
(
{Vi,n}i=1,2

n∈N

∪ {U1, U2}
)
.

Let us consider yk = (1, (n+1)8+ k) for k ∈ {1, . . . , 8} and Γ = {yk}k=1,...,8
k �=i0+1

. Now,

we consider the vectors w, c, b, u1, u2, vi,m ∈ �∞(Γ) ≡ �7∞ for i = 1, 2 and m ∈ N

given by

w(yk) =
1− 2δ

3
− δ6(k) , c(yk) = 1 , b(yk) = B(yk),

u1(yk) = U1(yk) , u2(yk) = U2(yk) , vi,m(yk) = Vi,m(yk).

Claim. If i1 ∈ {1, 2}\{i0} then the vectors c, vi1,n+1, v1,n, v2,n, u1, u2, w are linearly
independent vectors from �∞(Γ).

Proof of the Claim. Let us first define the vectors p, q ∈ �∞(Γ) as

p(yk) = g(xk) , q(yk) = f(xk) ∀k ∈ {1, . . . , 8} \ {i0 + 1}.
Consider also es ∈ �∞(Γ) for s ∈ N as

es(yk) =

{
1 if k = s

0 if K 
= s.

If one takes into account the immediate fact that p, q and c are respectively the
evaluation in {xk}k=1,...,8

k �=i0+1
of a polynomial of degree exactly 2, a polynomial of

degree exactly 1 and a nonzero constant polynomial, it follows that the vectors
from β = {p, q, c, ei1+1, e6, e7, e8} are linearly independent. Hence, β is a basis for
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�∞(Γ) and we just need to compute the determinant of the matrix M whose rows
are the coordinates of the vectors c, vi1,n+1, v1,n, v2,n, u1, u2, w for the basis β. It is
easy to check that

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 0 (−1)i1−1 1−δ

3 (−1)i1Δ 0 0 0
1 0 − 2+2δ

3 0 0 −Δ 0
1 0 − 2+2δ

3 0 0 Δ 0
0 1 0 0 0 0 0
0 0 0 0 0 0 Δ
0 0 1−2δ

3 0 −Δ 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To show that det(M) 
= 0 it suffices to repeatedly use the Laplace expansion of the
determinant. �

Let us continue now the proof of Lemma 2.7. We consider i1 ∈ {1, 2} distinct
from i0. There must exist unique λ, λ1, . . . , λ5, ρi,m ∈ R for i = 1, 2 and m ∈
N \ {n, n+ 1} such that just finitely many of them are nonzero and satisfy that

B = λ(−1)i0+1Vi0,n+1 + λ1Vi1,n+1 + λ2V1,n + λ3V2,n + λ4U1(2.37)

+ λ5U2 +
∑
i=1,2

m∈N\{n,n+1}

ρi,mVi,m.

If m ∈ N \ {n, n+ 1} and i = 1, 2 then

vi,m(yk) =

{
(−1)i−1

(
1−2δ

3 − δ6(k)
)
= (−1)i−1w(yk) if m 
= n mod 2,

0 if m = n mod 2.

Therefore, since 1−δ
3 c = (−1)i0−1vi0,n+1 we have that

(2.38) b = λ
1− δ

3
c+ λ1vi1,n+1 + λ2v1,n + λ3v2,n + λ4u1 + λ5u2 + λ6w,

where λ6 =
∑

m∈N\{n,n+1}
m �=n mod 2

ρ1,m − ρ2,m. Also, for i = 1, 2,

vi,n(yk) = v(k)− 2 + 2δ

3
+ (−1)iδ7(k) , vi,n+1(yk) = (−1)i−1

(1− δ

3
− δi+1(k)

)
,

u 3+(−1)n

2

(yk) = u(k) , u 3−(−1)n

2

(yk) = δ8(k).

From the previous Claim we know that the vectors c, vi1,n+1, v1,n, v2,n, u1, u2, w
are linearly independent vectors from �∞(Γ). Hence, we may use Lemma 2.3 with
a = 3

1−δ b which provides us with some K > 0 independent of ε and n such that

|λ− 1|,
∣∣λs

3
1−δ

∣∣ ≤ K‖a− c‖ for s = 1, . . . , 6. Thus,

(2.39) |λ− 1|, |λs| ≤ 4K
∥∥∥b− 1− δ

3
c
∥∥∥ for s = 1, . . . , 5.

From the hypothesis we deduce that for k 
= i0 + 1, B(yk) ≤ 1−δ
3 + ε and

2− 2δ

3
−B(yk)

(2.14)
=

2− 2δ

3‖Zk,n‖
Zk,n(yk)−B(yk) ≤

1− δ

3
+ ε.
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This implies that |B(yk)− 1−δ
3 | ≤ ε for k ∈ {1, . . . , 8} \ {i0 + 1} and hence

(2.40)
∥∥∥b− 1− δ

3
c
∥∥∥ ≤ ε.

Taking into account inequalities (2.39) and (2.40) we deduce that

(2.41) |λ− 1|, |λs| ≤ 4Kε for s = 1, . . . , 5.

Finally, we consider

b̃ = B|{2(n+1)+i0−1}×N
and d̃ = b̃−

∑
i=1,2

m∈N\{n,n+1}

ρi,m Vi,m|{2(n+1)+i0−1}×N
.

Notice that for every 1≤ i≤2 and m∈N\{n, n+1} it holds that Vi,m|{2(n+1)+i0−1}×N
= 1

10e2m+i−1. Also, by (2.37) and (2.41) we have that∥∥∥d̃− 1− δ

3
e1

∥∥∥ = ‖d̃− (−1)i0−1 Vi0,n+1|{2(n+1)+i0−1}×N
‖

≤ |λ− 1|+
5∑

s=1

|λs|
(2.41)

≤ 24Kε.

Hence, by the triangle inequality,

‖b̃‖ =

∥∥∥∥∥d̃+ ∑
i=1,2

m∈N\{n,n+1}

ρi,m
1

10
e2m+i−1

∥∥∥∥∥
=

∥∥∥∥∥(d̃− 1− δ

3
e1

)
+

(
1− δ

3
e1 +

1

10
·

∑
i=1,2

m∈N\{n,n+1}

ρi,me2m+i−1

)∥∥∥∥∥
≥

(
1− δ

3
+

1

10
·

∑
i=1,2

m∈N\{n,n+1}

|ρi,m|
)

− 24Kε.

On the other hand ‖b̃‖ ≤ ‖B‖ ≤ 1−δ
3 + ε. Therefore,

1

10
·

∑
i=1,2

m∈N\{n,n+1}

|ρi,m| ≤ (24K + 1)ε.

This finishes the proof since

‖B − (−1)i0+1Vi0,n+1‖

(2.37)
=

∥∥∥∥∥(λ− 1)(−1)i0+1Vi0,n+1 + λ1Vi1,n+1 + λ2V1,n

+ λ3V2,n + λ4U1 + λ5U2 +
∑
i=1,2

m∈N\{n,n+1}

ρi,mVi,m

∥∥∥∥∥
≤ |λ− 1|+

5∑
s=1

|λs|+
∑
i=1,2

m∈N\{n,n+1}

|ρi,m|
(2.41)

≤ (264K + 10)ε.

�
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We are finally ready to prove Theorem 2.1, which we state here in a more precise
way.

Theorem 2.8. There are ε0, C > 0 such that if D is a convex subset of X with
0 ∈ D and R : X → X is a (1 + ε0/C)-Lipschitz retraction onto D satisfying for
i, j = 1, 2,

‖R((−1)jVi,1)− (−1)jVi,1‖, ‖R((−1)jUi)− (−1)jUi‖ ≤ ε0,

then for every i, j = 1, 2 and n ∈ N,

‖R((−1)jVi,n)− (−1)jVi,n‖ ≤ ε0.

Proof. We will consider ε0, C > 0 given respectively by Lemma 2.6 and Lemma
2.7. Let us proceed by induction, showing that for every n ∈ N we have that
‖R((−1)jVi,n)− (−1)jVi,n‖ ≤ ε0. The case n = 1 follows directly from the assump-
tions above. Now, if we assume that ‖R((−1)jVi,n) − (−1)jVi,n‖ ≤ ε0 for some
n ∈ N, let us prove that

(2.42) ‖R((−1)jVi,n+1)− (−1)jVi,n+1‖ ≤ ε0.

We first denote for i, j = 1, 2 and k = 1, . . . , 8,

W j
i := (−1)jR((−1)jVi,n), Ej

i := (−1)jR((−1)jUi)

Bj
i = (−1)jR((−1)i+j+1Vi,n+1), Zj

k,n := (1− t(k))Ej
3+(−1)n

2

+ t(k)
W j

1 +W j
2

2
.

By property (1) from Proposition 2.5,

(2.43) ‖Bj
i ‖ = ‖R((−1)i+j+1Vi,n+1)−R(0)‖ ≤ (1 + ε0/C)

1− δ

3
.

It is immediate that (−1)jEj
i , (−1)jW j

i ∈ D and hence 2−2δ
3‖Zj

k,n‖ (−1)jZj
k,n ∈ D for

j ∈ {1, 2} since 2−2δ
3‖Zj

k,n‖
≤ 1 by (2.12). Notice also that by the induction hypothesis

we know that Ej
1 , E

j
2,W

j
1 ,W

j
2 satisfy the requirements of Lemma 2.6. Therefore,

by Lemma 2.6, if k 
= i+ 1,

(2.44)

∥∥∥Bj
i −

2− 2δ

3‖Zj
k,n‖

Zj
k,n

∥∥∥ =
∥∥∥R((−1)i+j+1Vi,n+1)−R

( 2− 2δ

3‖Zj
k,n‖

(−1)jZj
k,n

)∥∥∥
≤(1 + ε0/C)

∥∥∥(−1)i+1Vi,n+1 −
2− 2δ

3‖Zj
k,n‖

Zj
k,n

∥∥∥
=(1 + ε0/C)

1− δ

3
.

Putting together inequalities (2.43) and (2.44) we have that whenever k 
= i+ 1,

‖Bj
i ‖,

∥∥∥Bj
i −

2− 2δ

3‖Zj
k,n‖

Zj
k,n

∥∥∥ ≤ 1− δ

3
+ ε0/C.

Clearly, from the induction hypothesis we have ‖W j
i −Vi,n‖ ≤ ε0 and ‖Ej

i −Ui‖ ≤ ε0
for i, j ∈ {1, 2}. Therefore, we are allowed to use Lemma 2.7 in this situation. Then,
for every 1 ≤ i, j ≤ 2,

‖Bj
i − (−1)i+1Vi,n+1‖ ≤ ε0.
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This proves (2.42) and hence finishes the induction since for every 1 ≤ i, j ≤ 2,

‖R((−1)i+j+1Vi,n+1)− (−1)i+j+1Vi,n+1‖
= ‖(−1)jR((−1)i+j+1Vi,n+1)− (−1)i+1Vi,n+1‖
= ‖Bj

i − (−1)i+1Vi,n+1‖ ≤ ε0.

�

Lemma 2.9 may be considered as part of the folklore of convex geometry but, as
it is related to generating convex subsets, we state and prove it here.

Lemma 2.9. Let Y be any Banach space. For every convex set K ⊂ Y with 0 ∈ K
there is x0 ∈ K such that

span(K) =
⋃
k∈N

k(K − x0).

Proof. We follow an idea developed in [HM23b, Corollary 2.8] but we add the proof
here for the sake of completeness.

Let us denote Z = span(K). If Z is finite dimensional then the result is imme-
diate by taking any x0 in the interior of K with respect to the norm topology of Z.
If, on the contrary, Z is a separable infinite dimesional Banach space, we consider
a sequence β = (en) ⊂ Z such that span{en}n∈N = Z and denote for every n ∈ N

the space En = span{e1, . . . , en}.
For every n ∈ N there are elements x1, . . . , xkn

∈ K such that

En ⊂ span(x1, . . . , xkn
).

We consider then

yn =
1

kn + 1

kn∑
i=1

xi,

which is again in K (since 0 ∈ K). Now, we claim that

(2.45) ∀n ∈ N ∃ε > 0 : yn + εBEn
⊂ K.

To show (2.45) it is enough to prove that for every z ∈ span(x1, . . . , xkn
) there is

ε > 0 such that yn + εz ∈ K. Let us take z =
kn∑
i=1

λixi ∈ span(x1, . . . , xkn
) and

ε > 0 satisfying that

1

kn + 1
+ ε min

i=1,...,kn

(λi) > 0 and
kn

kn + 1
+ ε

kn∑
i=1

λi ≤ 1.

The claim follows immediately since

yn + εz =

kn∑
i=1

( 1

kn + 1
+ ελi

)
xi ∈ K.

The statement (2.45) is now proven. Let us consider the element

x0 =
∑
k∈N

2−kyk.

We finish the proof by showing that

(2.46) ∀n ∈ N ∃ε > 0 : x0 + εBEn
⊂ K.
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Again, it is enough to see that for every z ∈ En there is ε > 0 such that x0+εz ∈ K.

Given n ∈ N we take z ∈ En and set zn =
∑
k �=n

2−k

1−2−n yk ∈ K so that x0 =

2−nyn+(1−2−n)zn. By (2.45) there is ε > 0 such that yn+εz ∈ K. Hence, letting
ε′ = 2−nε we are done since

x0 + ε′z = 2−n(yn + εz) + (1− 2−n)zn ∈ K.

�

Proof of Theorem 2.1. We take λ = 1 + ε0/C > 1. Assume that there is a λ-
Lipschitz retraction R from X onto a generating compact and convex subset K of
X. Then, for every k ∈ N we may shift R by an element x0 ∈ X and dilate it with
ratio k to obtain

Rk(x) = kR
(x
k
+ x0

)
− kx0.

Notice that Rk is a λ-Lipschitz retraction onto k(K − x0). Picking x0 ∈ K as

in Lemma 2.9 we get from the fact that K is generating that Rk(x)
‖·‖−−−−→

k→∞
x.

Therefore, for large enough k ∈ N, Rk meets the hypothesis of Theorem 2.8 and
hence

‖Rk(V1,n)− V1,n‖ ≤ ε0 ∀n ∈ N.

Clearly, ‖V1,m−V1,n‖ ≥ 1/5 for every n,m ∈ N distinct. Hence, for every m,n ∈ N

distinct, ‖Rk(V1,m)−Rk(V1,n)‖ ≥ 1/5−2ε0 > 0. Therefore we find the contradiction
since the compact set k(K − x0) contains the sequence

(
Rk(V1,n)

)
n∈N

which has
no Cauchy subsequence. �

It is worth mentioning that X does enjoy both linear and nonlinear approxima-
tion properties. In fact, we have the following straightforward result.

Proposition 2.10. The space

X = span
(
{Vi,n}i=1,2

n∈N

∪ {U1, U2}
)

is isomorphic to �1.

Proof. We know that X = span({V1,1, V2,1, U1, U2}) ⊕ span
(
{Vi,n}i=1,2

n≥2

)
. There-

fore, it is enough to show that Y = span
(
{Vi,n}i=1,2

n≥2

)
is isomorphic to �1. Clearly

Vi,n|{2}×N
= 1

10e2n+i−1 for every 1 ≤ i ≤ 2, n ≥ 2 and so for every sequence

(λi,n)i=1,2
n≥2

⊂ R with finitely many nonzero elements it holds that∥∥∥∥ ∑
i=1,2
n≥2

λi,nVi,n

∥∥∥∥ ≥
∥∥∥∥ ∑

i=1,2
n≥2

λi,n Vi,n|{2}×N

∥∥∥∥ =

∥∥∥∥ ∑
i=1,2
n≥2

λi,n
1

10
e2n+i−1

∥∥∥∥ =
1

10

∑
i=1,2
n≥2

|λi,n|.

�

Corollary 2.11. There is a Lipschitz retraction from X = span
(
{Vi,n}i=1,2

n∈N

∪

{U1, U2}
)
onto a generating compact and convex subset of X.

Proof. Since �1 has a Schauder basis, necessarily X has a basis, too. Then, the
statement follows from Theorem 3.3 in [HM23a]. �
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