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Abstract

Sea horse optimizer (SHO) is a noteworthy metaheuristic algorithm that emulates various intelligent behaviors exhibited by sea
horses, encompassing feeding patterns, male reproductive strategies, and intricate movement patterns. To mimic the nuanced loco-
motion of sea horses, SHO integrates the logarithmic helical equation and Levy flight, effectively incorporating both random move-
ments with substantial step sizes and refined local exploitation. Additionally, the utilization of Brownian motion facilitates a more
comprehensive exploration of the search space. This study introduces a robust and high-performance variant of the SHO algorithm
named modified sea horse optimizer (mSHO). The enhancement primarily focuses on bolstering SHO’s exploitation capabilities by
replacing its original method with an innovative local search strategy encompassing three distinct steps: a neighborhood-based local
search, a global non-neighbor-based search, and a method involving circumnavigation of the existing search region. These techniques
improve mSHO algorithm’s search capabilities, allowing it to navigate the search space and converge toward optimal solutions effi-
ciently. To evaluate the efficacy of the mSHO algorithm, comprehensive assessments are conducted across both the CEC2020 bench-
mark functions and nine distinct engineering problems. A meticulous comparison is drawn against nine metaheuristic algorithms
to validate the achieved outcomes. Statistical tests, including Wilcoxon’s rank-sum and Friedman’s tests, are aptly applied to discern
noteworthy differences among the compared algorithms. Empirical findings consistently underscore the exceptional performance
of mSHO across diverse benchmark functions, reinforcing its prowess in solving complex optimization problems. Furthermore, the
robustness of mSHO endures even as the dimensions of optimization challenges expand, signifying its unwavering efficacy in navi-
gating complex search spaces. The comprehensive results distinctly establish the supremacy and efficiency of the mSHO method as
an exemplary tool for tackling an array of optimization quandaries. The results show that the proposed mSHO algorithm has a total
rank of 1 for CEC2020 test functions. In contrast, the mSHO achieved the best value for the engineering problems, recording a value
of 0.012665, 2993.634, 0.01266, 1.724 967, 263.8915, 0.032255, 58 507.14, 1.339 956, and 0.23 524 for the pressure vessel design, speed
reducer design, tension/compression spring, welded beam design, three-bar truss engineering design, industrial refrigeration system,
multi-product batch plant, cantilever beam problem, and multiple disc clutch brake problems, respectively. Source codes of mSHO are
publicly available at https://www.mathworks.com/matlabcentral/fileexchange/135882-improved-sea-horse-algorithm.
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1. Introduction The scientific community has progressively adopted computa-
tional intelligence algorithms, such as metaheuristics, to optimize
both discrete and continuous problems (Khurma et al.,, 2020c).
Metaheuristic algorithms offer advantages over traditional math-
ematical algorithms owing to their gradient-free nature, which
makes them well-suited for tackling undifferentiated problems
and yielding promising near-optimal solutions. Although these so-
lutions may not be optimal, they provide valuable approximations
(Hussien et al.,, 2022). Furthermore, metaheuristics demonstrate
polynomial time complexity, rendering them more efficient than
conventional methods with exponential time complexity (Osaba
et al., 2021).

Optimization is the process of reaching the minimum or maxi-
mum value of some real function under a limited range of values.
Using mathematical notations, the optimization function can be
expressed as f:D — R from some set D to the real numbers R.
In a minimization optimization problem, a member xq € D, f(xg) <
f(x)Vx € A whereas in a maximization optimization problem, f(xo)
> f(x)Vx € A (Pierre, 1986; Smith, 1978). Traditional gradient-based
optimization methods rely on finding the derivative of functions,
but they have limitations, particularly when dealing with complex
optimization problems that lack derivatives or involve many local
minima in the search space surface (Sun et al., 2019).
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Metaheuristic algorithms have gained prominence in opti-
mizing various problems, primarily due to their derivative-free
nature, satisfactory performance metrics, simplicity, efficiency,
and robustness (Morales-Castafieda et al., 2020). In the realm
of combinatorial optimization, there has been a proliferation of
“novel” metaheuristic techniques, many of which draw inspira-
tion from artificial or natural processes. Metaheuristics can be
categorized into four main groups, each based on distinct con-
cepts and sources of inspiration: evolutionary algorithms (EAs),
physics-based algorithms (PhAs), swarm-based algorithms (SAs),
and human-based algorithms (HAs). These categories encompass
a wide range of optimization approaches, each with its unique
principles and techniques:

(i) EAs, like genetic algorithms (GA, Katoch et al., 2021), draw
inspiration from biological evolution and natural selection.
These algorithms emulate genetic variation, selection, and
reproduction processes. GA, for instance, employs a pop-
ulation of potential solutions that evolve over generations
using selection, crossover, and mutation operations. This it-
erative process gradually improves the population’s fitness,
guiding the optimization procedure by exploring the search
space.

(ii) PhAs are inspired by fundamental principles and natu-

ral phenomena, using simulations of physical processes

to optimize solutions. Simulated annealing (SimAnn) is a

well-known example, mimicking the annealing process in

metallurgy. SimAnn begins with high “temperature” to en-
courage exploration and then gradually reduces it to guide
optimization toward better solutions. Other PhAs include

the welghted meaN oF vectOrs (Ahmadianfar et al., 2022),

rime optimization algorithm (Su et al., 2023), Runge-Kutta

method (RUN, Ahmadianfar et al.,, 2021), and Fick’s law al-
gorithm (FLA, Hashim et al., 2023). These algorithms draw
insights from physics to improve optimization strategies.

SAs, inspired by the collective behaviors of natural swarms

like bird flocks and ant colonies, prioritize communication,

cooperation, and decentralized decision-making among
swarm individuals. A notable example is particle swarm
optimization (PSO, Kennedy & Eberhart, 1995), which simu-

lates particle movement and information sharing within a

swarm to guide the search process. PSO maintains a bal-

ance between exploration and exploitation by adjusting
particle velocities based on individual and global best posi-
tions, harnessing the collective intelligence of the swarm to
explore and exploit the search space for optimal solutions
effectively. Other SAs, such as snake optimizers (Hashim &

Hussien, 2022), spotted hyena optimizer (Dhiman & Kumar,

2017), slime mould algorithm (Li et al.,, 2020), and colony

predation algorithm (Tu et al., 2021), similarly draw inspi-

ration from natural swarming behaviors to enhance opti-
mization techniques.

(iv) HAs belong to the category of metaheuristic algorithms
that draw inspiration from human intelligence and
problem-solving methods. These algorithms simulate or
replicate human decision-making processes and learning
mechanisms. A well-known example is teaching-learning-
based optimization (TLBO, Rao et al., 2011), which models
the interaction between a teacher and students to facili-
tate knowledge transfer and solution improvement. By har-
nessing human-inspired approaches, these algorithms aim
to enhance optimization and discover effective solutions
for complex problems. Other HAs include the mother op-
timization algorithm (MatouSova et al, 2023) and human

(i

=

mental search (Mousavirad & Ebrahimpour-Komleh (2017),
each seeking to improve optimization using principles in-
spired by human behavior and cognition.

SAs are mathematical methodologies inspired by the collabo-
rative behaviors observed in natural animal groups. These algo-
rithms translate the survival and foraging behaviors of swarm
members into mathematical equations. In response to the no-
free lunch (NFL) theorem, researchers have developed and re-
fined numerous SAs by drawing inspiration from different aspects
of nature or introducing new variants to address their limita-
tions. These variants involve proposing novel operators or tech-
niques that are integrated with the original algorithm. Some
enhancement approaches for SAs include incorporating chaotic
maps (Khurma et al., 2020a), introducing local search (Ahmed
et al., 2023), applying opposition-based learning (OBL, Khurma
et al., 2022; Mostafa et al.,, 2023), utilizing EA selection operators
(Khurma et al., 2021), enhancing EA crossover and mutation op-
erators (Alweshah et al., 2022; Awadallah et al., 2022), leveraging
Levy flight behavior (Ewees et al.,, 2022; Mostafa et al., 2022), using
Gaussian operators (Zhang et al.,, 2020), and applying rank-based
methods (Khurma et al., 2020b). These efforts contribute to the
ongoing evolution and advancement of SAs for optimization.

Various original and enhanced SAs have found applications in
diverse fields. For instance, the mCOOT (modified coot optimiza-
tion algorithm, COOT) algorithm was improved and employed
in estimating unmeasured battery parameters, resulting in en-
hanced accuracy and reduced error rates (Houssein et al., 2022a).
Similarly, the electrostatically charged particles algorithm was
improved and tested on IEEE CEC2017 test functions, demonstrat-
ing its effectiveness in estimating parameters for photovoltaic
models (Kamel et al., 2022). In the context of electrical distri-
bution networks, a modified robust optimization method was
proposed to optimize the distribution of distributed generators
(DGs), leading to reduced energy losses (Tolba et al, 2022). In
another study, an improved version of the artificial ecosystem op-
timization algorithm, i.e., “artificial ecosystem optimization with
opposition-based learning” was developed to determine the opti-
mal distribution of DGs in radial distribution networks (Khasanov
et al., 2023). This approach considers the stochastic nature of
renewable energy sources, like wind turbines and photovoltaic
power generation, using appropriate probability models. The loss
sensitivity index is utilized to identify suitable buses for inte-
grating DG modules into the network. Additionally, an improved
algorithm called “Lévy flight distribution with opposition-based
learning” was proposed to address the limitations of the original
Lévy flight distribution algorithm. This improved version was
applied to optimize the parameters of a three-diode photovoltaic
model and demonstrated superior performance (Houssein et al.,
2022b). These studies highlight the effectiveness and versatility
of enhanced SAs in addressing complex optimization problems
across different domains.

Metaheuristics have emerged as powerful tools in medical
applications, offering innovative solutions in diverse areas. In
the context of feature selection, metaheuristic approaches have
been harnessed to efficiently identify relevant features from com-
plex medical datasets, aiding in disease diagnosis, prognosis, and
treatment planning. These algorithms navigate through high-
dimensional data spaces to extract essential information, en-
hancing the accuracy of predictive models and reducing compu-
tational overhead. For example, Piri and Mohapatra (2021) intro-
duced a novel approach called “multi-objective quadratic binary
Harris hawks optimization”, which utilizes the K-nearest neigh-
bor method as a wrapper classifier. This technique aims to extract
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optimal feature subsets from medical data for enhanced perfor-
mance. Thawkar et al. (2021) introduced a hybrid feature selec-
tion approach by combining the butterfly optimization algorithm
(BOA) and the ant lion optimizer to create the hybrid BOAALO
method. This method effectively selects an optimal subset of fea-
tures, which is then employed to predict the benign or malignant
status of breast tissue.

Additionally, metaheuristics find utility in multi-level thresh-
old segmentation of medical images, facilitating the precise de-
lineation of anatomical structures or pathological regions. By
optimizing threshold values, these algorithms enable accurate
segmentation, which is vital for quantitative analysis, disease
quantification, and treatment evaluation. The versatility of meta-
heuristics in handling intricate and often noisy medical data
underscores their potential to drive advancements in medical
imaging, diagnosis, and patient care. For example, Chakraborty
et al, (2021a) focuses on developing a computational tool to
quickly and accurately assess illness severity using COVID-19
chest X-ray images. It introduces a modified whale optimization
algorithm (WOA), named modified whale optimization algorithm
with population reduction (nWOAPR), that enhances diagnostic
precision by integrating random population initialization during
global search and optimizing parameter settings for improved
exploration-exploitation balance. Xing et al., (2023) introduced
an enhanced WOA, termed quasi-opposition-based WOA (QGB-
WOA), tailored for COVID-19 applications. QGBWOA integrates
quasi-opposition-based learning for improved solution search and
a Gaussian barebone mechanism to enhance solution space di-
versity. This refinement holds promise for precise feature se-
lection and multi-threshold image segmentation in COVID-19-
related tasks.

In late 2022, a team of researchers introduced the sea horse
optimizer (SHO), drawing inspiration from sea horses’ locomo-
tion, predation, and reproductive behaviors (Zhao et al., 2022b).
Sea horses exhibit distinctive locomotion, such as jumping and
wrapping their tails around algae or leaves, often influenced by
marine eddies, leading to spiral movement. They can also exhibit
Brownian motion by turning upside down. Moreover, sea horses
employ their uniquely shaped heads to stealthily approach and
capture prey, achieving a remarkable success rate of up to 90%.
Additionally, the random mating of male and female sea horses
contributes to a new generation inheriting advantageous traits
from their parents.

The observed sea horse behaviors have endowed the SHO algo-
rithm with the capacity to effectively manage the exploration and
exploitation phases when seeking optimal solutions. This ability
enables SHO to strike a balance between thorough exploration
of the solution space and efficient exploitation of promising ar-
eas. Furthermore, the incorporation of these behaviors promotes
increased diversity among solutions within the SHO community.
Consequently, SHO exhibits enhanced performance by mitigat-
ing premature convergence and avoiding getting trapped in local
minima. SHO'’s advantageous attributes have been demonstrated
through successful applications in diverse domains. Notably, it
has proven effective in tasks such as fine-tuning power system
stability and optimizing parameters (Aribowo, 2023). Additionally,
SHO has been applied to reduce exhaust pollutants from diesel
engines, showcasing its versatility and practical utility (Alahmer
etal, 2023).

The unique characteristics and accomplishments of the SHO
algorithm have motivated us to extend its application to address
a diverse array of engineering challenges. Nevertheless, a no-
table drawback of SHO lies in its exploitation strategy, which de-

pends on selecting a neighboring individual at random during lo-
cal searches within the search space. Recognizing this limitation,
we have undertaken the task of enhancing the local search pro-
cedure of SHO. To rectify this deficiency, we propose novel meth-
ods aimed at optimizing the local search process within the al-
gorithm. These methods are designed to enhance SHO'’s perfor-
mance by effectively circumventing the risk of becoming trapped
in local minima and facilitating the convergence toward optimal
solutions. Our study’s primary contributions encompass the fol-
lowing key points:

(i) Proposing a robust, high-performance variant of SHO,
named the modified sea horse optimizer (mSHO) method,
enhances the SHO exploitation strategy. This is done by re-
placing the original method with a new local search strat-
egy, which is done in three steps:

(a) Neighborhood-based local search strategy,
(b) A global non-neighbor-based search strategy, and
(c) Walk around the existing search strategy.

(i) The mSHO method is compared with the original SHO and
eight different optimizers in ten CEC2020 test positions.

(iif) mSHO 1is used to solve nine real-world engineering prob-
lems, namely: welded beam design problem, three-bar
truss design problem, tension/compression spring design,
speed reducer design, industrial refrigeration system, pres-
sure vessel design, cantilever beam design, multi-disc
clutch brake, and multi-product batch plant.

(iv) Results of mSHO outperformed other algorithms in both
constrained and unconstrained problems.

Therest of the paperis structured as follows. Section 2 presents
some recent literature in which researchers proposed improve-
ments to SAs for solving complicated engineering problems. Sec-
tion 3 describes the SHO algorithm’s inspiration and mathemati-
cal methodology in detail. Section 4 discusses the proposed mSHO
in detail. Section 5 provides the results and in-depth discussion of
mSHO and other competitive algorithms on CEC2020 test func-
tions. The mSHO's performance on various engineering problems
is presented in Section 6. Section 7 summarizes the results and
discusses the limitations of the work. Section 8 concludes the pa-
per and offers some potential research directions that can help
improve SHO performance as well.

2. Related Works

This section provides an overview of recent studies that have
proposed methods to enhance the performance of specific meta-
heuristic algorithms for solving global and engineering problems
over the past 3 year. Table 1 provides a summary of the studies
mentioned, considering four key criteria: the publication year, the
metaheuristic algorithm employed, the enhancement approach
taken, whether the IEEE CEC suite was used, the number of bench-
mark test functions examined, and the quantity and nature of the
engineering problems used for evaluation.

Hongwei et al., (2019) utilized chaos theory to introduce an en-
hanced variant of moth flame optimization (MFO) called CMFO.
Chaotic functions were employed for initializing individuals, man-
aging overrides, and adjusting the distance parameter. CMFO
underwent testing on three standard function groups and two
real-world engineering problems. The statistical findings demon-
strated that incorporating an appropriate chaotic map (Singer’s
map) into the relevant component of MFO significantly improved
its performance. Nevertheless, the study did not explore the ap-
plication of other chaotic maps to the MFO algorithm. Sheikhi
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Azgandi et al. introduced an enhanced variant of temporal evo-
lutionary optimization (TEO) called ETEO in their study (Sheikhi
Azgandi et al, 2020). This enhancement strategy incorporated
a temporal evolution factor and population clustering. A mem-
ory was utilized to store some of the best designs. ETEO under-
went evaluation across a range of constrained and unconstrained
problems, as well as engineering design problems. ETEO aimed
to improve TEO’s performance, address its weaknesses, and en-
hance search capabilities during both exploration and exploita-
tion phases. By employing population clustering, enhancing the
environmental factor, and incorporating a memory to preserve
some of the best design variables, ETEO demonstrated competi-
tiveness with other metaheuristic algorithms in terms of statisti-
cal outcomes, particularly concerning the best objective function
and the number of function evaluations performed during opti-
mization.

Chenetal,, (2020) introduced chaos mechanism based on quasi-
opposition WOA (OBCWOA), an enhanced variant of the WOA,
which incorporated chaos and quasi-opposition strategies for
global optimization problems. OBCWOA demonstrated robust-
ness in solving global optimization problems, excelling in conver-
gence accuracy, speed, high-dimensional search capability, and
stability. It was also effective in addressing real engineering de-
sign problems. However, OBCWOA had some drawbacks, includ-
ing the need for adjusting more parameters than the original
WOA, longer running times compared with some metaheuristic
algorithms, and limited improvement in the correctness of cer-
tain test functions. Nonetheless, OBCWOA remained a valuable
tool for complex practical problems and remained competitive
among state-of-the-art algorithms. In Fan et al., (2020), Enhanced
Whale Optimization Algorithm integrated with Salp Swarm Algo-
rithm (ESSAWOA) was developed by integrating WOA with Salp
Swarm Algorithm (SSA) and a lens OBL (Lens Opposition-based
Learning, LOBL) strategy for global optimization. The exploitative
power of the SSA leader’s strategy was used to update person-
nel attitudes before WOA operations were implemented. Subse-
quently, the non-linear parameter of SSA in the prey encircling
and attacking phases was incorporated into WOA to enhance the
convergence behavior. The LOBL strategy was adopted to increase
population diversity. ESSAWOA was evaluated using 23 standard
functions and three classical engineering design problems. The
findings show that ESSAWOA can swiftly and efficiently find a
promising solution to these optimization issues. ESSAWOA per-
forms much better than the fundamental WOA, SSA, and other
metaheuristic algorithms.

Nadimi-Shahraki et al., (2021), proposed an improved gray wolf
(IGWO) optimizer for engineering problems. IGWO adopted a new
movement strategy called learning-based hunting (DLH) inspired
by wolves’ natural hunting behavior. DLH implemented a differ-
ent method of neighborhood identification for each individual so
that neighborhood information could be shared between individ-
uals. The performance of the IGWO algorithm was evaluated on a
set of CEC2018 standards and four engineering problems. IGWO is
compared across all tests to six more cutting-edge metaheuristics.
Friedman and mean absolute error (MAE) statistical tests are also
used to assess the results. In comparison with the algorithms em-
ployed in the studies, the IGWO algorithm is very competitive and
frequently superior, as shown by the experimental findings and
statistical testing. The suggested algorithm’s performance and ap-
plicability on engineering design challenges are shown by the find-
ings.

Wangetal., (2021) proposed a new variant of the BOA called but-
terfly optimization algorithm and flower pollination base (MBFPA)

by hybridizing it with the flower pollination and symbiosis mech-
anism of global optimization problems. Flower pollination and
symbiotic organisms support exploration and exploitation ca-
pacity, respectively. Moreover, the possibility of alternating ex-
ploration and adaptive exploitation improves the balance be-
tween these two phases. The MFPPA is tested on 49 standard-
ized test functions and five classic engineering problems. The
findings demonstrate the viability of the suggested method and
demonstrate its competitiveness and high application prospects.
Chakrabortyetal., (2021b) proposed enhanced WOA (WOAMM) us-
ing the mutualism phase from symbiotic organisms search (SOS).
The proposed WOAmMM method was tested on 36 benchmark
functions and IEEE CEC2019 function suite. In addition, six real-
world engineering optimization problems were solved by the pro-
posed method. In comparison with other competing approaches,
the results show that the suggested SSC algorithm (security ser-
vice chain) is resilient, effective, efficient, and convergence analy-
sis.

Zhangetal,, (2021) improved the global search phase of Jaya al-
gorithm (JAYA) and implemented the enhanced JAYA (EJAYA) for
global optimization. EJAYA had many distinguished features such
as local exploitation, which defined upper and lower local attrac-
tors. Furthermore, the global exploration was guided by histori-
cal population, and it did not make any adjustments for initial
parameters. The EJAYA was verified by testing it on 45 test func-
tions from IEEE CEC2014 and IEEE CEC2015 test suites. Further-
more, EJAYA was implemented to solve seven real-world engineer-
ing design optimization problems. The effectiveness of the newly
proposed improved techniques to JAYA and the strong ability of
EJAYA to escape from the local optimum for tackling difficult op-
timization issues are supported by experimental results. In Yildiz
et al., (2022), Yildiz proposed a chaotic RUN (CRUN). In this study,
10 different chaotic maps were integrated into the RUN algorithm
to boost its performance, and it was tested on some design en-
gineering problems. The results showed that CRUN was the best
compared with the most recent algorithms in the literature. The
proposed CRUN method can also uncover advantageous features
in a variety of managerial implications, including supply chain
management, business models, fuzzy circuits, and management
models.

Sharma et al.,, (2022) proposed a new variant of BOA, namely
modified butterfly optimization algorithm (mLBOA). He integrated
the self-adaptive parameter setting, Lagrange interpolation for-
mula, a new local search strategy, and levy flight operators with
BOA. The IEEE CEC2017 benchmark suite and three real-world
engineering design problems were used to evaluate the mLBOA.
The outcomes were contrasted with six cutting-edge algorithms
and five BOA variations. Additionally, a number of statistical tests
have been carried out to support the rank, significance, and com-
plexity of the proposed mLBOA, including the Friedman rank test,
Wilcoxon's rank test, convergence analysis, and complexity anal-
ysis. The mLBOA has also been used to resolve three actual engi-
neering design issues. According to all of the analyses, the sug-
gested mLBOA algorithm is competitive with other well-known
state-of-the-art algorithms and BOA variants.

Saha (2022) introduced an enhanced version of the sine co-
sine algorithm (SCA) called multi-population-based adaptive sine
cosine algorithm (MAMSCA). The enhancement involved dividing
the SCA’s population into two halves and applying either a sine or
cosine method to update each half. Furthermore, a modified mu-
tualism phase was incorporated into the algorithm. MAMSCA was
applied to standard benchmark functions, IEEE CEC2019 func-
tions, and five engineering design problems. The results demon-
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strated significant improvements in addressing real-world prob-
lems. A comprehensive assessment of the algorithm, including a
statistical analysis, evaluation of time complexity, and solution
generation speed, underscored its enhanced performance and
suitability for practical applications. Chakraborty et al., (2023) in-
troduced a novel variant of WOA called m-SDWOA, which inte-
grates WOA with the modified mutualism phase of SOS, the mu-
tation strategy of differential evolution (DE), and the commen-
salism phase of SOS. The algorithm incorporates a new param-
eter, denoted as Y, to determine whether to apply the global or lo-
cal phases. The efficiency of the algorithm was assessed using 42
benchmark functions, an IEEE CEC2019 test suite, and four engi-
neering design problems. These evaluations consistently demon-
strated the superior performance of the proposed algorithm com-
pared with the methods it was benchmarked against.

In the aforementioned studies, researchers introduced various
operators and techniques to address limitations commonly as-
sociated with metaheuristic algorithms, including early conver-
gence, bias toward local minima, and imbalances in exploration
and exploitation. These innovations have the potential to enhance
the optimizer’s performance, stability, and robustness, leading to
more dependable and effective results. Building upon the founda-
tions of the NFL theory, this paper extends this research trajectory
by harnessing the recently developed SHO algorithm. Additionally,
the paper integrates specific local search strategies into SHO to
further enhance its effectiveness in tackling global optimization
and engineering problems.

3. Background

SHO draws inspiration from the predation, movement, and breed-
ing behaviors of sea horses, which enable them to adapt to their
environment and survive. Sea horses, small fish found in warm
waters, have a head resembling that of a horse. In terms of move-
ment, sea horses exhibit a spiral motion when wrapping their tails
around a stem (or leaf) of algae. Their unique head shape aids
in stealthy predation. Furthermore, sea horses engage in random
mating between females and males to produce offspring in their
breeding behavior. The algorithm encompasses four phases: ini-
tialization, movement behavior, predation behavior, and breeding
behavior.

In the initialization phase, the algorithm generates the initial
population of sea horses, as represented by equation (1), where
Dim represents the dimension and pop is the population size (Zhao
et al., 2022b):

1 Dim
Xy . X5
Seahorses=| .. .. .. |. (1)
1 Dim
Xpop - Xpop

Each individual is represented by equation (2), with each value
in the list calculated using equation (3), where rand is a random
value in the range of [0, 1]. Here, xf represents the jth dimension
of the ith individual, and LB and UB denote the lower and upper
bounds of the jth dimension:

X; =[x}, x7..xP™M) (2)

x! =rand x (UB) — LB/) + LB/. (3)

The individual with the lowest fitness function value is referred to
as the elite individual Xy, which is calculated using equation (4)
(Zhao et al., 2022b):

Kelite = argmin(fitness(X;)). (4)

In the movement behavior phase, sea horses exhibit two types of
movements: the spiral motion and the Brownian motion. When
engaged in spiral motion, the new position of a sea horse is de-
termined using equation (5), where the values of x, y, and z are
computed as shown in equations (6), (7), and (8). Here, p = u x e?
represents the length of the stems defined by the logarithmic spi-
ral constants u and v, which are set to 0.05. 0 is a random value
within the range [0, 2x]. The Levy distribution function, Levy(), is
calculated using equation (9), where A is a random number in the
range [0, 2], and sis fixed at 0.01. The variables w and k are random
numbers in the range [0, 1], and o is determined by equation (10)
(zhao et al., 2022b):

Xaew(t +1) = Xi(t) + Levy(A) ((Xetie (t) — Xi (1)) x X x ¥ x Z + Xeire (t))

X =p x cos(0) (6)

y = p xsin(o) (7)
z=px0 8)
. W X o 9
Levy(h) =s e ©)

o (F(1+A)xsin(”;)). (10)

() XA x 27

Conversely, in the case of Brownian motion, the new position of a
sea horse is determined using equation (11), where I is a constant
coefficient. The value of B is calculated according to equation (12)
(Zhao et al., 2022b):

Xl 4+ 1) = Xi(t) +rand # 1x B # (Xi(t) — Bt * Xelite) (11)
1 2
B = Eexl’) (—%> . (12)

To summarize the calculations, equation (13) encompasses the
calculations of the new positions, with r1 denoting a random num-
ber (Zhao et al., 2022b):

X}Aew(t + 1) =

{Xi (t) + Leuy (M) (Keie (t) — Xi(1) x X x ¥ x 2+ Xepiee (1)) 11> 0 (13)
Xi(t) + rand « Lx B + (X (t) — Br * Xetire) 1 <0.

The predation behavior is calculated using equation (14),
where « is determined as shown in equation (15), and r, rep-
resents a random number within the range [0, 1] (Zhao et al,
2022b):

XZ (t + 1) — ok (Xehte —rand x Xéew(t)) + (1 - Ot) * Xelite rp > 0.1
new (1 - 0’) * (X%ew (t) —rand * Xelite) tok Xéew (t> 12 =0.1

(14)

2t

a=<17%>T. (15)

The breeding behavior is determined by assigning roles to
mother and father sea horses, as depicted in equations (16) and
(17), where X2, signifies all X2, sorted in ascending order of
their fitness values (Zhao et al., 2022b). The actual mating pro-
cess to produce new offspring is described in equation (18), where
13 i1s @ random number within the range [0, 1], i is a positive in-
teger within the range [1, pop/2], and X[aher and XPother repre-
sent randomly selected father and mother individuals (Zhao et al.,
2022b):

fathers = X2 (1 : pop/2) (16)
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mothers = X2, (pop/2 + 1 : pop) (17)

Xioffspn'ng — rgxifather + (1 _ Y3)Ximother' (18)

4. Proposed Method

The original SHO algorithm exhibits certain shortcomings, partic-
ularly in achieving a harmonious balance between global and lo-
cal search behaviors during the movement phase. Thisissue arises
from the random selection of the search strategy, whether it is spi-
ral or Brownian motion, based solely on a random number r;. Fur-
thermore, the fixed values assigned to parameters u and v, which
dictate the length of the stems, remain constants throughout the
optimization process, potentially impeding the algorithm’s ability
to guide solutions effectively to new positions. To address these
limitations, this paper introduces an improved version of SHO,
named mSHO, aimed at enhancing the algorithm’s performance
and addressing its main limitations.

In this section, we delve into the proposed mSHO method,
which brings about significant changes in the movement behav-
ior phase. Instead of the traditional approach, the mSHO method
incorporates the following three distinct steps:

(i) Neighborhood-based local search strategy,
(ii) Non-neighborhood-based global search strategy, and
(iii) Wandering around-based search strategy.

Neighborhood-based local search strategy leverages an individ-
ual’s conscious neighborhood to enhance the quality of exploita-
tion within that neighborhood. Specifically, a random neighbor,
denoted as Cjyea1, is chosen from within the individual’s local
neighborhood, and another neighbor, termed cgqpal, is selected
from outside the local neighborhood but possessing the lowest
fitness function value. Subsequently, if the fitness value of cjpcq
is found to be lower than that of cgopa1, the individual adjusts its
position toward that of .1, s calculated by equation (19) (Za-
mani et al., 2019):

Xi(t +1) = Xi(t) 71 ¢ FL(t) x (iocar (£) — X (1)) (19)
where fli(t) is the flight length of the individual in iteration t, r; is
a random number in the range of [0, 1], and Mg (t) is the hiding
position of cjocy for iteration t.

In contrast, the non-neighborhood-based global search strat-
egy is activated when the fitness value of ¢, exceeds or equals
the fitness value of cgopa1- In this situation, the individual moves
toward the position of cgqpa1, Tepresented as X;(t + 1), and this re-
location is determined using equation (20) (Zamani et al., 2019):

Xij(t+1) =11 x fli(t) x (Mgopar; (t) — Xy (t)) (20)
where j is the dimension value, mg|gyq)i(t) is the hiding position of
Cglobal fOT iteration t and dimension j.

The neighborhood-based local search strategy and the non-
neighborhood-based global search strategy both include a valida-
tion step to ensure that the new position falls within the problem
space’s defined range. If it does not, the strategy randomly adjusts
the dimensions that have exceeded this range, bringing them back
into the problem space’s boundaries.

On the other hand, the wandering around-based search strat-
egy is employed when the previous two strategies fail to improve
an individual’s fitness value. It operates by analyzing the sur-
rounding environment and maneuvering the individual to a po-
tentially more favorable position with a lower fitness value. Equa-
tion (21) calculates this new position, where mgpeq;i(t) represents
the best hiding position in the entire population for dimension j,
and X;(t) corresponds to a randomly selected individual in the jth

dimension (Zamani et al., 2019):
Xii (£ + 1) = Mgvestj (£) + 11 x FL() x (X (8) — Xi5(0))- (21)
Figure 1 illustrates the step-by-step process of the proposed
mSHO algorithm. The algorithm commences by generating the
initial population of sea horses, following the principles outlined
in equations (1), (2), and (3). In each iteration, the algorithm pro-
ceeds to evaluate the fitness of each individual and updates the
elite individual using equation (4). Subsequently, for each indi-
vidual, two neighboring sea horses, denoted as Cipca1 @and Cglopal,
are selected. Their fitness values are then compared, and the in-
dividual adopts the position of the sea horse with the lower fit-
ness value. This position update is determined by equations (19)
and (20). Following this, another fitness comparison is conducted,
this time between the individual’s fitness at the new position and
its fitness at the previous position. If the fitness at the new posi-
tion is not lower than the previous one, the individual’s position
is modified using equation (21). The predation and breeding be-
haviors are calculated according to equations (14). This flowchart
provides a comprehensive overview of the mSHO algorithm’s
operation.

5. Assessment of mSHO on CEC2020 Test
Functions

To prove the efficiency of mSHO, several tests and experiments
have been conducted. This study covers two major tests: global
optimization problems using 10 functions from CEC2020 and nine
engineering problems. All experiments were run using MATLAB
2022b on an Intel® Core™ i7 (3.40 GHz) CPU with RAM 16GB run-
ning Microsoft Windows 11.

Several metaheuristics were evaluated and compared with
the proposed mSHO in this experiment to ensure a fair assess-
ment. The selected metaheuristics include dandelion optimizer
(DO, Zhao et al., 2022a), covariance matrix adaptation evolution
strategy (CMA-ES, Hansen & Ostermeier, 2001), hunger games
search (HGS, Yang et al, 2021), smell agent optimization (SAO,
Salawudeen et al., 2021), Harris hawks optimization (HHO, Heidari
et al., 2019), PSO (Kennedy & Eberhart, 1995), and stochastic paint
optimizer (SPO, Kaveh et al., 2020). All algorithms were evaluated
under the same conditions with 30 search agents and a maximum
of 1000 iterations. To eliminate the impact of random initializa-
tion, 30 independent runs were performed, and the algorithms’
performance was evaluated using the average fitness and stan-
dard deviation metrics. The parameters of the other algorithms
are mentioned in Table 2.

5.1. Experimental series 1: CEC2020

In this section, we analyze the outcomes of our experiments on
the CEC2020 functions, categorizing our findings into four dis-
tinct segments: statistical analysis, boxplot representation, con-
vergence assessment, and the Wilcoxon'’s rank test. The CEC2020
dataset encompasses 10 distinct functions, as outlined in Table 3.
These functions are classified into four categories: uni-modal,
multi-modal shifted and rotated functions, hybrid, and compo-
sition functions. Each function, denoted as Fi, is associated with
an optimal value that serves as our objective. For instance, F1's
optimal value is set at 100, with the optimizer striving to identify
a solution that closely approximates this value.

5.1.1. Statistical analysis on CEC2020 test suite

The fitness function values for the different CEC2020 functions
with different competitive algorithms are displayed in Table 4.
Each function’s mean, standard deviation, and rank are calculated
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Set parameters: population size (N), maximum
number of iterations (tmax), SHO parameters

Generate initial population of sea horses
using Eq. 1,2, 3

Y

4

Y

fitness (c_local) . N°

fitness (c_global)

h 4

Evaluate the fitness and update the global

Individual approaches the position of
clocal by Equation 19 (Neighborhood)

Individual approaches the position of cglobal
by Equation 20 (Non-neighborhood)

best individual by Equation 4

Select a random individual neighbor (c_local)
and the best individual non-neighbor(c_lobal)

fitness xij(t+1) <
fitness xij(t)

No

!

Calculate predation behavior by
Equations 14 and 15 (predation)

Calculate the new position of an individual
by Equation 21 (Wandering)

Reach maximum
iteration?

Return best individual

A 4

End

Figure 1: Flowchart of the proposed mSHO.

Table 2: Parameter settings.

) L

!

Calculate the new position of an individual
by Equations 16, 17, and 18 (breeding)

Table 3: CEC2020 test suite description.

Parameter Value No. Function specification Fi*

Population size (N) CEC2020 problem 30 Uni-modal function

Engineering problem 30 F1 Shifted and Rotated Bent Cigar Function 100
Maximum iterations CEC2020 1000 Multi-modal shifted and rotated functions

Engineering problem 1000 F2 Shifted and Rotated Schwefel’s Function 1100
Problem dimensions (D) ~ CEC2020 problem 10 F3 Shifted and Rotated Lunacek bi-Rastrigin 700

Engineering problem Dimension of Function

problem F4 Expanded Rosenbrock’s plus Griewangk’s 1900

PSO Cognitive component (c1) 2 Function

Social component (c2) 2 Hybrid functions

Inertia weight 0.2-0.9 FS N=3 1700
DO Adaptive parameters («, k) [0,1], [0,1] F6 N=4 1600
HGS k 0.3 F7 N=5 2100

11,72, 73, T4, Ts, Te rand[0, 1] Composition functions
SAO olf 0.75 Fs8 N=3 2200

SL 0.9 F9 N=4 2400
HHO p L5 F10 N=5 2500
AOA M 0.499

o 5

across the different optimization algorithms. The mean value
is useful because it provides a comparative estimate of the to-
tal of many runs. Standard deviation, on the other hand, pro-
vides variability of the different runs. The rank is given based on
the mean value, where the rank of 1 is provided to the lowest
value.

It is observed from the table that the proposed mSHO has very
competitive fitness values with the rank of 1 for all of the func-
tions except the F6 and F10. The HGS and CMA-ES algorithms have

better values for F6 and F10, respectively. In addition, the HGS al-
gorithm has an overall competitive rank of 2 for many functions,
while the proposed mSHO algorithm has a total rank of 1. On the
other hand, the Friedman test shows that the proposed mSHO dis-
plays the lowest value of 1.3, followed by HGS and PSO, whereas
SAO has the worst value.

5.1.2. Boxplot behavior analysis

The boxplots of the 30 runs over the different algorithms are pre-
sented in Fig. 2. The boxplot shows the maximum, minimum,
median, and interquartile range (Qaddoura et al., 2021). The pro-
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Figure 2: The boxplot curves of the proposed mSHO and the other approaches obtained over CEC2020 test suite with Dim = 10.
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posed mSHO shows compacted box distribution compared with
the other algorithms, indicating a stable algorithm.

The proposed mSHO also has the lowest minimum and maxi-
mum values for all the functions except for F6. Overall, the pro-
posed mSHO confirms the consistency of the algorithm. Some
other observations can be concluded from the figure. SHO has
a high standard deviation compared with the other algorithms
for F1, while SAO has a high standard deviation for F10 as well
as DO for F6 and SOA for FS5. F8 shows an interesting pat-
tern since all the algorithms show large values for the standard
deviation except for the mSHO, which indicates a very stable
algorithm.

5.1.3. Convergence performance analysis

The convergence curve represents the values of the fitness func-
tion across the different iterations. This is presented in Fig. 3 for
the experimented results. The convergence curve is important
since it shows that the value of the fitness function decreases
when progressing through the iterations. It also shows that af-
ter some iterations, the value of the fitness function stays as is,
indicating that the algorithm cannot explore better solutions and
that the best solution resulting from the algorithm is the closest
solution to the correct one.

The convergence curves show advanced values for most func-
tions across all the iterations except for F1 and F6, while F1 ob-
tained the lowest fitness value at the final iterations. This proves
the effectiveness of the optimization task for the proposed mSHO
algorithm by converging toward minimum values. On the other
hand, F2, F5, F7, and F8 show that mSHO is finding better solu-
tions than the other algorithms, but it has similar behavior to the
other algorithms for F3, F6, and F10.

5.1.4. Wilcoxon’s rank test analysis

The P-values of the Wilcoxon’s rank-sum test for each com-
petitive algorithm with the proposed mSHO are represented in
Table 5. Wilcoxon'’s rank-sum test is a non-parametric test to
find the significance of the results. It is proposed by Wilcoxon
(1992) with a 5% significant level. It is observed from the ta-
ble that the proposed mSHO wins in all comparisons except
when compared with DO for F6, HGS for F10, PSO for F8/F10, and
SPO for F5.

6. Performance of mSHO on Engineering
Design Problems

This section evaluates the mSHO algorithm’s performance in real-
world engineering applications such as:

i)  Pressure vessel design problem,

i) Speed beam design problem,

i) Tension/compression spring design,

iv) Welded beam design problem,

(v)  Three-bar truss engineering design problem,
vi) Industrial refrigeration system problem,

vii) Multi-product batch plant problem,

viil) Cantilever beam problem, and

ix) Multi-disc clutch brake problem.

Those problems have been addressed using mSHO and com-
paring results against those of other competing algorithms. The

mSHO and competing algorithms were run 30 separate times with
total 1000 iterations to arrive at a fair comparison.

6.1. Pressure vessel design problem

One of the most common engineering design problems is pres-
sure vessel design problem, with the aim of finding cost of the
pressure vessel. This problem has four different types of vari-
ables: head thickness (Ty), shell thickness (Ts), length of cylin-
drical unit (L), and the inner radius (R). The mathematical struc-
ture of the pressure vessel design problem and the four types of
constraints applied to the problem design is presented in equa-
tion (22). This engineering problem (tensile design/compressed
spring) is solved using the proposed mSHO and other competitive
algorithms as shown in Table 6. The obtained statistical results
are presented in Table 7. Table 7 shows that the optimal value of
the function is 0.012 665, which was achieved using the mSHO al-
gorithm. Results reveal that FLA is superior to all other competing
algorithms.

In addition, as shown in Fig. 4, the convergence curves and
boxplot for the mSHO algorithm and other compared meth-
ods for the pressure vessel design problem are presented. The
convergence curve plots the average best values against the
number of iterations for the mSHO algorithm and other com-
pared algorithms after running 1000 times. The results indicate
that the mSHO algorithm converges faster than the other al-
gorithms and can typically reach a near-optimal solution more
quickly. While the other algorithms demonstrate competitive per-
formance, the SAO and CMA-ES exhibit the lowest performance.
Furthermore, the boxplot results illustrate the stability of the pro-
posed mSHO algorithm, followed by the AOA and PSO algorithms.
These findings demonstrate the effectiveness and stability of the
proposed mSHO algorithm in tackling the pressure vessel design
problem.

Consider X = [x1 Xy X3 x4] = [Ts Ty R L],

Minimize 0.6224x1X3X4 + 1.7781X2x§ + 3.1661)(%)(4 + 19.84X%X3,

Subject to ¢1(X) = —x1 + 0.0193x3 < 0,
92(%) = —x, + 0.00954x3 < 0
4
95(%) = —mx3xs — zm3 + 1296000 <O, (22)
(

94(X) =x4 —240 <0

Variables range 0 < x1 < 99,
0<% <99
10 < x5 < 200
10 < x4 < 200.

6.2. Speed reducer design problem

One of the most significant engineering design problems is the
speed reducer, as described in the study by Sadollah et al., (2013).
The primary goal of this problem is to minimize the weight of the
speed reducer by optimizing seven variables while also account-
ing for limitations on the curvature stress of gear teeth, trans-
verse deflections of the shafts, stresses in the shafts, and sur-
face stress. The mathematical model for this problem is presented
below:
Minimize f (%) = 0.7854x:1x3 (3.3333x3 + 14.9334x; — 43.0934)

—1.508x1 (x2 +x3) + 7.4777 (x3 +x3)
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Figure 3: The convergence curves of the proposed mSHO and the competitor algorithms obtained on CEC2020 test suite with Dim = 10.
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10) in terms of P-values of the Wilcoxon's rank-sum test.

Table 5: mSHO versus other metaheuristics algorithms for CEC2020 (D

mSHO
versus

DO CMA-ES HGS AOA SAO HHO PSO SPO

SHO

0.007 959
45E-11

0.007 959
3.02E-11

0.007 959
3.02E-11
3.02E-11
3.02E-11
3.5E-09

0.0079312 0.007 958 996 3.01986E-11 5.53286E-08

0.007 959
1.09E-10
3.02E-11

3.02E-11
3.02E-11
3.02E-11
3.02E-11
3.02E-11
3.02E-11
3.02E-11
3.02E-11
3.02E-11
3.69E-11

F1

1.3111E-08 3.01986E-11 3.01986E-11

4.57257E—-09

3.02E-11
3.02E-11
4.077E-11

F2

4.5E-11

9.92E-11

3.01986E—11

3.01986E-11

F3

3.02E-11
0.982307
3.02E-11
0.002 755
6.07E-11
5.57E-10
0.000125

3.01986E-11 3.01986E-11 3.65E-08
0.00073

3.15889E-10

3.02E-11

F4
F5

4.50432E-11 1.32885E-10 3.01986E—11

3.02E-11
3.02E-11
3.02E-11
3.02E-11
0.0292 054

1.53E-05
0.379036
1.61E-06
9.26E—-09
3.02E-11

3.02E-11
0.000132
0.137 241
2.32E-06
0.122353

3.01986E-11 3.02E-11
3.02E-11
3.02E-11
3.02E-11
0.000318

3.01986E-11

3.01986E-11

F6

3.01986E-11 3.01986E—11

7.59915E-07

F7

3.01986E-11 3.01986E-11

0.000117 472

F8

3.01986E-11 3.01986E—11

6.69552E-11

F9

6.715E-05 0.673 495053 1.95678E-10 3.01986E-11

0.030317

F10
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27
Subject t =——-1<0
ubject to g1(X) X33 <
397.5
9>(x) X1X3%3 =
1.93%
93(i) XngXé X
1.93x
= -1<0
9+(%) Xox3x4 =
2
\/(7;‘5“) +16.9 x 106
2X3
9 () = 110.0x2 —1s0
2
\/(7;‘5%4) +157.5 x 10
2X3
XoX3
B S
5
950 = 22 ~1<0
X1
X1
= —-1<0
9s(%) = o5,
1.5x¢+ 1.9
gro(®) = 2= -1<0
X4
1.1x7 + 1.9
9u(X) = ;75 -1<0

Variables range 2.6 < x1 < 3.6
0.7 <x2<0.8
17 < x3 < 28
73 <x4<83
7.8<x5<83
29 < x6<3.9
5.0 < x7 < 5.5.

The speed reducer engineering problem was tackled using the
proposed mSHO algorithm and other competitive algorithms, as
depicted in Table 8. The obtained statistical results are presented
in Table 9. As demonstrated in Table 9, the optimal value of the
function is 2993.634, which was achieved using the mSHO, HGS,
AQA, and PSO algorithms. The results reveal that the mSHO al-
gorithm produces promising outcomes compared with the other
algorithms and has the potential to achieve minimal total weight
for the speed reducer in this problem.

Figure 5 depicts the convergence curves and boxplot for the
mSHO algorithm and other compared methods for the speed re-
ducer design problem. As shown in the figure, the mSHO algo-
rithm converges faster than the other algorithms and can usu-
ally obtain the near-optimal solution more rapidly. Although the
other algorithms also showed competitive performance, the HHO
and SAO had the lowest performance. On the other hand, the
boxplot results illustrate the stability of the proposed mSHO al-
gorithm, followed by the HGS and PSO algorithms. Overall, the
experiment’s findings reveal the efficacy and stability of the pro-
posed mSHO algorithm in tackling the speed reducer design
problem.

6.3. Tension/compression spring problem

The tension/compression spring design optimization problem is
a mechanical engineering problem that aims to minimize the
weight of the spring while ensuring that certain constraints are
satisfied (Bhadoria & Kamboj, 2019). The problem involves select-
ing the optimal values for parameters such as wire diameter (d),
number of active coils (N), and mean coil diameter (D). Constraints
are placed on the surge frequency, minimum deflection, and shear
stress. The goal is to find the optimal combination of parameters
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Table 6: Best solution obtained from the comparative algorithms for solving the pressure vessel design problem.

Algorithm x1 x2 x3 x4 Cost
mSHO 0.774555 0.383203 40.31962 200 5870.12409
SHO 0.783011 0.395 825 40.70835 194.6584 5908.30062
DO 0.774533 0.383229 40.31962 200 5870.12562
CMA-ES 0.859051 0.473962 43.62 445 180.7057 6879.70268
HGS 0.774549 0.383204 40.31962 200 5870.12398
AOA 0.774 549 0.383204 40.31962 200 5870.12398
SAO 2.527902 5.801292 1.559 886 5.133647 7710.96 822
HHO 0.835827 0.430123 43.61014 158.7634 6046.19 065
PSO 0.778476 0.385079 40.52191 197.203 5876.94 102
SPO 0.774574 0.383204 40.31962 200 5870.1246
Table 7: Results obtained from competitor algorithms for pressure vessel design problem.
Mea. mSHO SHO DO CMA-ES HGS AOA SAO HHO PSO SPO
Min 5870.1241 5908.3006 5870.1256 6879.703 5870.124 5870.124 7710.968 6046.191 5876.941 5870.125
Max 5870.1342 7271.3656 7156.128 8758.232 7301.196 6666.339 23390.18 7464.369 6898.222 21829.09
Mean 5870.1266 6196.8232 6199.5342 6942.32 6353.867 6145.893 13266.08 6530.491 6242.955 7035.835
Std 0.0029 181 368.8253 418.47 407 342.971 563.4305 219.693 3334.069 399.0299 248.7349 2850.707
Rank 1 3 4 9 6 2 10 7 5 8
105 Pressure vessel design that satisfies all constraints while minimizing the weight of the
! ' ! ‘ ‘ ! ' m;HO spring. The following equations present the mathematical model
—+—sHo for this particular engineering design problem:
—&—DO0 Consider X = [x1 X2 x3] = [d D N]
—%— CMAES
=S HGS Minimize f(X) = (x3 4 2)xox?
) Jstics ) = (¢ +2) %03
8 E —fp—sA0 . X3X3
& —é—:gg Subjectto g1(X)=1— Taa S 0
? 4 % _ 4X3—X1%) 1
% SPO 92(X) = 12566(x2—x1) + 557 S 0 (24)
140.45
g 93(®) =1- =522 <0
Z g4(X) = %52 -1<0
—
Variables range 0.05 < x; < 2
0.25 < x2 < 1.30
2.00 < x3 < 15.
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Figure 4: Convergence curve and boxplot for mSHO against other

competitors — pressure vessel design problem.

The proposed mSHO algorithm and other competitive algo-
rithms were employed to solve this engineering problem as pre-
sented in Table 10. The statistical results obtained from the ex-
periments are provided in Table 11. It is evident from Table 11
that the mSHO algorithm achieved the optimal value of the func-
tion, which was 0.012 665. The results indicate that the mSHO al-
gorithm performed significantly better than the other algorithms
in achieving a minimal weight of the tension spring in this prob-
lem.

Figure 6 presents the convergence curves and boxplot for
the tension/compression spring design problem solved using the
mSHO algorithm and other competitive methods. The results
show that the proposed mSHO algorithm outperforms the other
algorithms, achieving the near-optimal solution faster. The SAO
and HGS algorithms exhibit the lowest performance, while the
AQOA and SHO algorithms perform competitively. The boxplot
analysis further confirms the stability of the mSHO algorithm,
followed by AOA and SHO. These results demonstrate the effi-
ciency and stability of the mSHO algorithm in solving the ten-
sion/compression spring design problem.

6.4. Welded beam design problem

The welded beam design problem is another important engineer-
ing design problem that has been considered in previous research
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Table 8: Best solution obtained from the comparative algorithms for solving speed reducer design problem.
Algorithm x1 x2 x3 x4 x5 x6 x7 Cost
mSHO 3.497 599 0.7 17 7.3 7.713535 3.350056 5.285631 2993.634
SHO 3.498576 0.7 17 7.3 7.70853 3.349319 5.28455 2994.77
DO 3.497 563 0.7 17 7.300001 7.713536 3.350059 5.285605 2993.635
CMA-ES 3.6 0.7 17 7.3 8.072148 3.402879 5.312241 3071.526
HGS 3.497599 0.7 17 7.3 7.713535 3.350056 5.285631 2993.634
AOCA 3.497 599 0.7 17 7.3 7.713535 3.350056 5.285631 2993.634
SAO 3.6 2.6 3.565453 2.84373 2.951027 3.314187 2.715053 3230.902
HHO 3.49797 0.7 17 7.3 7.732423 3.350521 5.285312 2994.197
PSO 3.497599 0.7 17 7.3 7.713535 3.350056 5.285631 2993.634
SPO 3.497613 0.7 17 7.3 7.713331 3.350 886 5.285453 2993.836
Table 9: Results obtained from competitor algorithms for speed reducer engineering problem.
Mea. mSHO SHO DO CMA-ES HGS AOA SAO HHO PSO SPO
Min 2993.6343  2994.7697 2993.63462 3071.526 2993.634 2993.634 3230.902 2994.197 2993.634 2993.836
Max 2993.6343  3821.162 3001.20628 3072.334 2993.717 3006.627 8071.254 4307.676 2993.634 3359.51
Mean 2993.6343  3139.9316 2994.73651 3072.307 2993.637 2994.509 4153.676 3146.587 2993.634 3118.58
Std 2.67E-13  200.19962 1.80047494 0.147413 0.015028 2.925 884 956.0172 259.7566 2.67E-13 107.8919
Rank 1 8 5 7 3 4 10 9 2 6
(Sadollah et al., 2013). The main objective of this problem is to min- x10* Speed reducer engineering problem
imize the cost of fabricating a welded beam by optimizing four 18F ‘ ! ‘ ‘ ! ‘ ; ‘ ]
variables: bar thickness (b), bar length including attached parts 16 F igﬁgo
(), weld thickness (h), and bar height (h). The problem is subject 0o
: : : : : 14 —°- ]
to four constraints, including buckling constraints of the bar (P.), o OMAES
side constraints, end deflection of the beam (d), bending stress of 12F a—Hes |4
the beam (h), and shear stress. The mathematical model for this . —6—A0A
problem is given as follows: 8 —p—sA0 |
Consider X = [x1XoX3X4] = [ hlttbb | 3 ﬂ] —<—HHO
Minimize f(®) = 1.10471x7x; + 0.04 811x3x4 (14.0 + x5) B 08 —#—PSO 1
Subject to 91(%) = 7(%) — Tmax < 0 i ——SPO
92(X) = 0/(X) — Omax < 0 S
93(X) = 8(X) = Smax < 0 3
94(X) =x1-x4 <0 z
95(X) =P —P(x) <O
96()?) =0.125 - x; < 0
97(X) = 1.10471x2 4 0.04 811x3x4 (14.0 + x2) — 5.0 < 0
Variables range 0.1 < x1 < 2
0.1<x <10
0.1<x <10
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This engineering problem is solved using the proposed mSHO 2 5000 - 1
and other competitive algorithms as shown in Table 12. The ob- < 4500 T |
tained statistical results are presented in Table 13. Table 13 shows +
that the optimal value of the function is 1.724 967, which was 4000 N 1
achieved using the mSHO algorithm. As the results show, mSHO 3500 | + } - i
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Figure 5: Convergence curve and boxplot for mSHO against other
competitors — speed reducer engineering problem.
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Table 10: Best solution obtained from the comparative algorithms
for solving tension/compression spring problem.

Algorithm x1 x2 x3 Cost

mSHO 0.051687 0.356672 11.29167 0.012 665
SHO 0.050987 0.340068 12.33627 0.012674
DO 0.051983 0.363 837 10.88351 0.012667
CMA-ES 0.05 0.311342 15 0.013232
HGS 0.05251 0.376782 10.20369 0.012678
AOA 0.051803 0.359477 11.12903 0.012 665
SAO 1.227 483 1.068724 0.631804 0.013213
HHO 0.052513 0.376 854 10.19919 0.012677
PSO 0.051671 0.356 288 11.31423 0.012 665
SPO 0.051436 0.350 646 11.65453 0.012667

The performance of the mSHO algorithm and other competi-
tive algorithms in solving the welded beam design problem is de-
picted in Fig. 7. The results show that the mSHO algorithm con-
verges faster than the other algorithms and achieves near-optimal
solutions quicker. Although the other algorithms also perform
competitively, the SAO and CMA-ES algorithms show the lowest
performance. Furthermore, the boxplot results demonstrate the
stability of the mSHO algorithm, followed by the DO and AOA al-
gorithms. These results indicate the efficiency and stability of the
mSHO algorithm in solving the welded beam design problem.

6.5. Three-bar truss engineering design problem
The aim of this engineering design problem is to minimize the
weight of a truss by optimizing two parameters that represent
the cross-sectional areas (x; and x,), subject to the bounds con-
straints of 0 < x4, X < 1. Additionally, three inequality constraints
are related to buckling, deflection, and stress. The mathematical
representation of this problem is as follows:
Consider X = [x1 xQ} = [A1 AQ]

Minimize f(%) = (2\/2><1 + xz) *1,

. V2
Subjectto g1(x) = vyt p_, <0
2X2 + 2X1X)
9o(¥) = ——2—P-0<0 (26)
V2X2 + 2x1%0
1
X)= —P—-0<0
93(4) 2% + X1 (LIS
Variables range 0 < x1,X2 < 1
where 1=100cm,P =& 5 = X

The engineering problem is tackled using the proposed mSHO
algorithm and other competitive algorithms, as shown in Table 14.
The statistical results obtained are presented in Table 15, which
indicates that the mSHO algorithm achieved the optimal value of
the function, 263.8915. The results demonstrate that mSHO pro-
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Figure 6: Convergence curve and boxplot for mSHO against other
competitors - tension/compression spring problem.

duces better results than the other algorithms and has a strong
ability to minimize the weight of the truss in this problem.

In addition, Fig. 8 displays the convergence curves and boxplot
for the mSHO and other compared algorithms in solving the three-
bar truss design problem. The figure demonstrates that the mSHO
algorithm converges faster than the other methods and can gen-
erally achieve near-optimal solutions more quickly. Although the
other algorithms also exhibit competitive performance, the SAO
and HGS show the lowest performance. Moreover, the boxplot re-
sults indicate the stability of the mSHO algorithm, followed by the
PSO and AOA algorithms. These results suggest that the proposed

Table 11: Results obtained from competitor algorithms for tension/compression spring problem.

Mea. mSHO SHO DO CMA-ES HGS AOA SAO HHO PSO SPO
Min 0.012 665 0.012674 0.012667 0.013232 0.012678 0.012665 0.013213 0.012677 0.012665 0.012667
Max 0.012738 0.014513 0.014 664 0.013278 1373.172 0.014318 0.029041 0.017 286 0.016 907 0.030455
Mean 0.012672 0.012 965 0.013 254 0.013277 45.79453 0.013 044 0.020018 0.013592 0.013508 0.014 547
Std 1.44E-05 0.000415 0.000563 8.44E-06 250.7016 0.000507 0.003995 0.000955 0.001161 0.004 475
Rank 1 2 4 5 3 9 7 6 8
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Table 12: Best solution obtained from the comparative algorithms for solving welded beam design problem.

Algorithm x1 x2 x3 x4 Cost

mSHO 0.20573 3.470471 9.036 627 0.20573 1.724852
SHO 0.192302 3.778244 9.052142 0.205653 1.746601
DO 0.20573 3.470495 9.036 626 0.20573 1.724854
CMA-ES 0.205 259 3.492761 9.043531 0.205725 1.728 297
HGS 0.205736 3.470414 9.036457 0.205737 1.724881
AOA 0.20573 3.470473 9.036 624 0.20573 1.724 852
SAO 2 0.932642 1.496 869 0.644415 1.792207
HHO 0.173239 4.308508 9.096 589 0.205631 1.790459
PSO 0.20573 3.470475 9.036 624 0.20573 1.724 852
SPO 0.20573 3.470484 9.036 623 0.20573 1.724852

Table 13: Results obtained from competitor algorithms for the welded beam problem.

Mea. mSHO SHO DO CMA-ES HGS AOA SAO HHO PSO SPO
Min 1.724 852 1.746 601 1.724 854 1.728297 1.724 881 1.724 852 1.792 207 1.790459 1.724 852 1.724 852
Max 1.7256 4.306289 1.744596 2.266116 4.341756 1.836955 4.036 102 2.682967 2.175585 3.03395
Mean 1.724967 1.995641 172778 2.230261 2.13089 1.733932 2.995 645 2.025109 1.816491 2.067 492
Std 0.000192 0.477 618 0.00427 0.136449 0.631101 0.024171 0.596 869 0.210771 0.13514 0.387053
Rank 1 5 2 9 8 3 10 6 4 7
o Welded beam design mSHO algorithm is efficient and stable in solving the three-bar
= truss design problem.
—+—SHO
—e—D0
—#— CMAES . . .
10%5 | o—rcs 6.6. Industrial refrigeration system problem
5 —&—AOA The objective of the industrial refrigeration system problem is
b £ o to minimize the cost of the refrigeration system while optimiz-
g PSO ing the refrigerants, temperature levels,icycle cqnﬁguration, an_d
& 110 ] sPo |4 compression technology. This problem is described mathemati-
Q cally and has multiple variables and constraints. The details of the
g problem formulation can be found in Marechal and Kalitventzeff
z (2001). The problem can be mathematically formulated as fol-
5 lows:
10 1 Minimize f(x) = 63 098.88xxaX1s + 5441.5x3x1,
+115055.5x3%%%x + 6172.27x3%¢6
+63098.88x1X3X11 5441.5)(%)(]1
+ 115 055.5x}%%%x5 + 6172.27x2x5
10° + 140.53x1x11 + 281.29%3X111
100 200 300 400 500 600 700 800 900 1000 4£70.2632 + 281.29 4 281.29%2
. -20X3 : 3
(a) Itration + 14 437x{8812x0.34%4 % 0x 7 X2 %7 %5
+20470. 2X2 893 0 $9216x2x1%3
‘ Welded beam design Subject to g (x) = 1.524x;* <1
n + go(x) = 1. 524x*1 <1
gs(x) = 0.07 789x1 2%7'x9 —1<0
4t T 1 ga(x) =7.05 305)(9 x2x10x81x21x14 -1<0,
i gs(x) = 0.0833x %14 — 1 <0, (27)
N | gg(x) 47.136x5°3x 7} x1p — 1.333x5x351%°
. 35t ‘ 1 + 62. ogx2 S x%x —1<0
8 . g7(x) = 0.04 771x10x1 8812303424 _ 1 <0
& gs(x) = 0.0488x9x%" 893x0 316" 1 <0
o 3t I go(x) = 0.0099x1x3" —150
& ! g10(x) = 0.0193%,x;1 —1 <0
£ ! * | g11(x) = 0.0298x1x; 1 — 1 < 0,
25) ¢ | - P g12(x) = 0. 056x2xg1 -1<0
_ - i i i ‘ g13(x) = 2%57 —=1<0,
2 3 ! Q ' 914(X) = 2 -1=0,
r | T 1 g15(x) = xlzxn -1<0
N & L. + L T Ok _ .
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Variables range 0.001 <x; <5,i=1,---,14.
6O 5O P E P O g0 WO & O The proposed mSHO algorithm and other competitive algo-
(b) « o rithms are used to solve this engineering problem, as shown in

Figure 7: Convergence curve and boxplot for mSHO against other
competitors — welded beam design problem.

Table 16. The statistical results obtained are presented in Ta-
ble 17, which indicates that the mSHO algorithm achieved the op-
timal value of the function at 0.032255. The results demonstrate
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Table 14: Best solution obtained from the comparative algorithms
for solving three-bar truss engineering design problem.

Algorithm x1 x2 Cost

mSHO 0.788 649 0.408 235 263.8915
SHO 0.787638 0.411102 263.8922
DO 0.788649 0.408234 263.8915
CMA-ES 0.756 483 0.508411 264.8067
HGS 0.780942 0.431176 264.0014
AOA 0.788 649 0.408 235 263.8915
SAO 1 0.733032 264.4989
HHO 0.788 486 0.408 697 263.8915
PSO 0.788649 0.408235 263.8915
SPO 0.788651 0.408 229 263.8915

that mSHO yields promising outcomes compared with other al-
gorithms and is proficient in achieving the minimum cost of the
refrigeration system in this problem.

Figure 9 shows the convergence curves and boxplot for the in-
dustrial refrigeration system optimization problem using mSHO
and the compared algorithms. The results indicate that the mSHO
algorithm achieves faster convergence and usually obtains near-
optimal solutions quicker than the other algorithms. Although
the other algorithms also demonstrate competitive performance,
the SAO and SPO algorithms show the lowest performance. Fur-
thermore, the boxplot results show that the proposed mSHO algo-
rithm exhibits stability in comparison with the DO and SHO algo-
rithms. These findings demonstrate the effectiveness and stability
of the proposed mSHO algorithm in solving the industrial refrig-
eration system optimization problem.

6.7. Multi-product batch plant problem

The objective of this model is to minimize the production cost
of a multi-product batch process by optimizing the allocation of
resources. The process consists of three stages that all products
follow, and there are two different products being produced. The
model has 10 decision variables: N1, Ny, N3, V1, V5, Vs, Tq,To, B1, and
B,, represented by the shorthand notations x; through x;0. The
mathematical formulation of the model, as presented in Kumar
et al,, (2020), is as follows:

M

b

Minimize f(x) = ZaijVJJ
=1

Subject to g1(x) =S;;B; —V; <0
g2(x) = -H+ XL, F =0
g3(x) =t;j —N;T; <0 (28)

Variables range 1 <Nj <3
250 <V; <2500

X vu
< B; <min (Q, min (%
WheI’Esz,M=3,a}':250,H=6000,b)'20.6,511 :2,512 =
3,513 =4,5)1 =4,50 =6,53 =3,t11 =8, t1p =20,t13 =8, tp; =
16, tyy = 4, and ty3 = 4. 1 means the product, j means the stage of

Three-bar truss design problem
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Figure 8: Convergence curve and boxplot for mSHO against other
competitors — three-bar truss engineering design problem.

production, g; is variable cost coefficient of stage j process equip-
ment investment cost, N; is the number of equipment at stage j,
V; is the size of equipment at stage j, T; means the cycle time of
product i, B; means the batch size of product i, b; is the fixed-cost
charges for the investment cost of process equipment at stage j.
The multi-product batch process model presented above aims
to reduce production costs by optimizing the allocation of re-
sources in product manufacturing. To solve this problem, the pro-
posed mSHO algorithm and several other competitive algorithms
were compared, and the results are presented in Table 18. From

Table 15: Results obtained from competitor algorithms for three-bar truss engineering design problem.

Mea. mSHO SHO DO CMA-ES HGS AOA SAO HHO PSO SPO
Min 263.8915 263.8922 263.8915 264.8067 264.0014 263.8915 264.4989 263.8915 263.8915 263.8915
Max 263.8915 264.2569 263.8919 265.1765 289.6074 263.8915 308.1042 264.4841 263.8915 269.4398
Mean 263.8915 263.9661 263.8915 264.819 269.3437 263.8915 274.0035 264.001 263.8915 264.0988
Std 2.59E-11 0.086 065 8.03E-05 0.067512 6.670943 7.45E-07 9.827149 0.128725 3.61E-07 1.011145
Rank 1 5 4 8 3 10 6 2 7
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Figure 9: Convergence curve and boxplot for mSHO against other
competitors — industrial refrigeration system problem.
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Figure 10: Convergence curve and boxplot for mSHO against other
competitors — multi-product batch plant problem.

Table 18: Best solution obtained from the comparative algorithms for solving multi-product batch plant problem.

Algorithm x1 x2 x3 x4 x5 X6 x7 x8 x9 x10 Cost
mSHO 1.525762 1.508 002 0.674961 479.9229 719.8871 660.2033 9.999419 7.999732 120.1043 59.92 858 58507.14
SHO 1.519752 1.855192 0.628977 531.0469 822.9263 705.5837 9.992 353 8.515774 120.4098 71.54331 62676.08
DO 0.728 125 0.645495 1.135645 963.3442 1445.014 1309.242 19.99 983 15.9997 2346931 123.4888 53639.01
CMA-ES 1.780084 2.350703 0.549313 483.1708 735.9209 709.1498 10.06 453 8.004 826 128.8223 56.37 59471.57
HGS 0.51 0.730582 0.771096 980.4283 1470.642 1286.898 20 16 220.6308 134.7916 53820.53
AOA 1.4302 1.377 871 0.610608 959.619 1439.429 1321.696 20 16 240.7911 119.5092 53663.04
SAO 2.324.455 2.900101 1.435999 2.209 186 1.393715 0.792087 3.341121 1.503093 3.419913 2.639791 80120.89
HHO 1.713052 1.587 087 1.188 423 524.3093 743.4804 1127.821 9.999611 8.001561 150.0532 48.29276 64778.06
PSO 1.847 141 1.97 878 0.697 938 479.3873 719.081 663.0222 9.999 897 7.999933 121.3927 59.1505 58506.03
SPO 0.51 0.51 0.51 1021.185 2088.131 1597.147 20 16 332.5038 89.04 394 61399.49
Table 19: Results obtained from competitor algorithms for multi-product batch plant problem.
Mea. mSHO SHO DO CMA-ES HGS AOA SAO HHO PSO SPO
Min 58507.14 62676.08 53639.01 59471.57 53820.53 53663.04 80120.89 64778.06 58506.03 61399.49
Max 66592.15 2.12E408 66651.86 163121.8 73667.78 66772.51 6.28E+10 90 866.09 71888.26 156962.1
Mean 58966.85 15388990 58445.22 108481.4 62058.75 61358.21 5.12E409 74008.67 61126.71 108824.3
Std 1564.308 38309104 4082.766 31395.86 5715.205 2877.974 1.26E4+10 6004.125 4792.113 28836.15
Rank 2 9 1 7 5 4 10 6 3 8
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Table 20: Best solution obtained from the comparative algorithms for solving cantilever beam problem.
Algorithm x1 x2 x3 x4 x5 Cost
mSHO 6.015906 5.308734 4.495939 3.500899 2.152182 1.339956
SHO 6.06771 5.389926 4.417 899 3.450059 2.155511 1.340484
DO 6.014 985 5.305781 4.490 804 3.509239 2.152893 1.339959
CMA-ES 6.018 345 5.329495 4.474012 3.518808 2.133878 1.340011
HGS 6.019407 5.297 822 4.482162 3.517852 2.1567 1.339974
AOA 6.011535 5.310885 4.495 655 3.502741 2.152851 1.339957
SAO 22.51819 66.97 232 48.25931 7.342 964 15.97 925 1.558312
HHO 6.045302 5.265671 4.576413 3.520634 2.075623 1.340579
PSO 6.015424 5.30515 4.496319 3.504 543 2.152239 1.339957
SPO 6.022 957 5.276 079 4.519 865 3.514974 2.140741 1.340016
Table 21: Results obtained from competitor algorithms for cantilever beam problem.

Mea. mSHO SHO DO CMA-ES HGS AOA SAO HHO PSO SPO

Min 1.339956 1.340484 1.339959 1.340011 1.339974 1.339957 1.558312 1.340579 1.339957 1.340016

Max 1.339967 1.351724 1.340016 1.340075 1.34073 1.340113 10.84 034 1.346 869 1.340026 3.082532

Mean 1.339957 1.344196 1.339972 1.340013 1.340229 1.339991 6.036222 1.342705 1.339974 1.552187

Std 2.08E-06 0.003 087 1.39E-05 1.17E-05 0.000202 4.44E-05 2.312212 0.001409 1.93E-05 0.319524

Rank 1 8 2 5 6 4 10 7 3 9
the statistical results in Table 19, it can be seen that the mSHO Cantilever Beam Design
algorithm achieved thg optimal value of the function, which was 10! e
58507.14. The comparison of the algorithms shows that mSHO —+—SHO

outperforms the others and can achieve minimal production costs
in this problem.

Furthermore, Fig. 10 displays the convergence curves and box-
plot for the mSHO algorithm and other competitive methods in
solving the multi-product batch plant problem. The graph shows
that the proposed mSHO algorithm converges faster than the
other algorithms and can typically obtain near-optimal solutions
more quickly. Although the other algorithms also perform com-
petitively, SAO and SPO demonstrate the poorest performance.
Conversely, the boxplot results indicate the stability of the mSHO
algorithm, followed by the DO and PSO algorithms. These findings
indicate that the proposed mSHO algorithm is effective and stable
in addressing the multi-product batch plant problem.

6.8. Cantilever beam problem

The cantilever beam problem belongs to the category of concrete
engineering problems, as described in the study by Bhadoria and
Kamboj (2019). The problem aims to minimize the overall weight
of a cantilever beam by optimizing the parameters of a hollow
square cross-section. The mathematical formulation of this prob-
lem is presented as follows:

Consider X = [X1XyX3X4Xs]

Minimize f(X) = 0.6224 (X1 + X2 4+ X3 + X4 + Xs)

. 61 37 19 7
SubjecttogX) = =+ =+ —= + —=
oK og X

1 (29)
+ == 1
X3

Variable range 0.01 < x4, X2, X3, X4, X5 < 100.

The proposed mSHO algorithm and other competitive algo-
rithms were employed to solve the cantilever beam problem, as
shown in Table 20. The statistical results obtained are presented
in Table 21,which shows that the optimal value of the function is
1.339956, achieved by using the mSHO algorithm. These results
demonstrate that mSHO produces promising outcomes in com-
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Figure 11: Convergence curve and boxplot for mSHO against other
competitors — cantilever beam problem.
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Table 22: Results obtained from competitor algorithms for multi-disc clutch brake problem.

Algorithm x1 x2 x3 x4 x5 cost

mSHO 70 90 1 213.5391 2 0.235242
SHO 69.99 874 90 1 66.50295 2 0.235255
DO 70 90 1 999.9588 2 0.235242
CMA-ES 69.19 936 90 1 664.1618 2 0.243 435
HGS 70 90 1 1000 2 0.235242
AOCA 70 90 1 858.5333 2 0.235242
SAO 64.55532 62.9971 60.45108 61.2192 71.05524 0.257118
HHO 70 90 1 946.8728 2 0.235242
PSO 70 90 1 33.07 846 2 0.235242
SPO 70 90 1 1000 2 0.235242

parison with the other algorithms, with a high ability to minimize
the weight of the cantilever beam in this problem.

Additionally, Fig. 11presents the convergence curves and box-
plot of mSHO and other compared methods for the cantilever
beam problem. The figure indicates that the proposed mSHO algo-
rithm exhibits faster convergence than the other algorithms and
can usually obtain near-optimal solutions more quickly. Although
the other algorithms also demonstrate competitive performance,
SAO and SPO exhibit the lowest performance. Furthermore, the
boxplot results reveal the stability of the proposed mSHO algo-
rithm, followed by the DO and PSO algorithms. The results of this
experiment demonstrate the efficiency and stability of the pro-
posed mSHO algorithm in solving the cantilever beam problem.

6.9. Multiple disc clutch brake problem

The multi-plate disc clutch brake is a well-known optimization
problem in mechanical engineering, which aims to minimize the
total weight of a multiple-disc clutch brake by optimizing five vari-
ables: driving force (F), the number of friction surfaces (Z), the
thickness of discs (A), outer radius (r0), and inner radius (r1). These
variables are denoted by x1, x2, x3, x4, and x5. The problem is sub-
ject to eight constraints based on the geometry and operating re-
quirements. The mathematical formulation for this engineering
optimization problem can be expressed as follows, as stated in
Abderazek et al., (2017):
Minimize f(x) = (1§ —17) (Z+ 1)pt

Subjectto g1(x)=19—1;—Ar>0

X) =lmax — (Z+1)(t+8) =0
X Pmax =Pz 20
PmaxUyrmax — PrzUsr 2= 0
Usrmax - USV 2 O

>
Il

)
92(x)
93(x)
94(x)
95(x)
96 (x)
97(x)
9s(x)

X)=Tmnax —T >0
X) =My —sMg >0
X)=T>0

3

2 r-r
Where My, = - uFZ-3—1
3 To—T;

Py
wn (1~ 1))
90 (15— 17)
To__ 2™
30 (My, — My)
At =20 mm, I, = 55 kgm?, Prpayx = 1 MPa
Fmax = 1000 N, Tyax = 15 8, o = 0.5
s =1.5, Mg = 40 Nm, Mf =3 Nm, N = 250 r/min
Usrmax = 10 m/s, lmax = 30 mm
60 mm < r1; <80 mm, 90 mm <1y <,110 mm,
1.5mm <t<3mm,600 N<F<1000N,2<Z <09.
The multi-plate disc clutch brake problem was solved by ap-
plying the mSHO algorithm and other competitive algorithms, as
presented in Table 22. The statistical analysis of the results is

shown in Tables 23 and 24, which indicates that the mSHO al-

_2_F
T 3x(3-12)
2

Urz =

gorithm, along with the AOA algorithm, achieved the minimum
objective function value of 0.235242. These results demonstrate
that the mSHO algorithm performs better than other algorithms
for minimizing the weight of the clutch brake in this engineering
problem.

Figure 12 shows the convergence curves and boxplot for mSHO
and all other compared methods, revealing that the proposed
mSHO algorithm converged faster than the other algorithms and
was able to obtain near-optimal solutions more quickly. While
the other algorithms also showed competitive performance, the
SAO and SPO algorithms exhibited the lowest performance. Addi-
tionally, the results of the boxplot demonstrated the stability of
the proposed mSHO algorithm, followed by the DO and PSO algo-
rithms. Overall, these findings indicate the efficiency and stability
of the mSHO algorithm in handling the multi-plate disc clutch
brake problem.

7. Discussion

The aforementioned results show that the proposed mSHO has
advanced results compared with the other metaheuristic algo-
rithms, including SHO, DO, CMA-ES, HGS, AOA, SAO, HHO, PSO,
and SPO. In addition, as optimization issues get more challeng-
ing, mSHO's effectiveness remains unchanged, demonstrating its
stability and aptitude for addressing challenging search domains.
This demonstrates that it is a powerful tool for addressing chal-
lenging optimization problems. The results can be summarized as
follows:

(i) CEC2020 test function

(a) mSHO demonstrates highly competitive fitness values,
ranking first for all functions except F6 and F10.

(b) The proposed mSHO algorithm achieves an overall
ranking of 1.

(c) According to the Friedman test, the proposed mSHO ex-
hibits the lowest value of 1.3.

(ii) Engineering problems

(a) Pressure vessel design problem: The optimal function
value is 0.012 665, attained using the mSHO algorithm.

(b) Speed reducer design problem: The optimal function
value is 2993.634, achieved using the mSHO, HGS, AOA,
and PSO algorithms.

(c) Tension/compression spring problem: The mSHO algo-
rithm achieves the optimal function value of 0.01 266.

(d) Welded beam design problem: The optimal function
value is 1.724 967, obtained using the mSHO algorithm.

(e) Three-bar truss engineering design problem: The
mSHO algorithm attains the optimal function value of
263.8915.
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Table 23: Best solution obtained from the comparative algorithms for solving multi-disc clutch brake problem.

Mea. mSHO SHO DO CMA-ES HGS AOA SAO HHO PSO SPO
Min 0.235242 0.235255 0.235242 0.243435 0.235242 0.235242 0.257118 0.235242 0.235242 0.235242
Max 0.235242 0.237529 0.235243 0.24762 0.250273 0.235242 0.568 008 0.235243 0.235243 0.264 648
Mean 0.235242 0.235562 0.235243 0.247 341 0.235743 0.235242 0.410957 0.235242 0.235242 0.239091
Std 1.41E-16 0.000 445 6.97E—-08 0.001 062 0.002 744 1.41E-16 0.081127 5.97E-08 2.39E-08 0.008781
Rank 2 6 5 9 7 1 10 4 3 8
Table 24: Wilcoxon’s signed rank test.
mSHO versus SHO DO CMA-ES HGS AOA SAO HHO PSO SPO
Pressure vessel design problem 3.02E-11 141E-09 1.72E-12 0.001936 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.16E-10
Speed reducer problem 3.02E-11 6.72E-10 1.72E-12 1.14E-11 0.005757 3.02E-11 3.02E-11 1.14E-11 3.02E-11
Tension/compression spring problem 9.92E-11 1.07E-09 1.72E-12 549E-11 1.16E-07 3.02E-11 6.07E-11 3.01E-07 3.19E-09
Welded beam design problem 3.02E-11 7.04E-07 2.36E-12 1.21E-10 0.035137 3.02E-11 3.02E-11 0.016955 8.87E-10
Three-bar truss engineering design problem 3.02E-11 0.012732 1.72E-12 3.01E-11 4.12E-11 3.02E-11 3.02E-11 1.18E-08 5.46E—09
Industrial refrigeration system problem 3.02E-11 0.000225 1.72E-12 9.2E-05 0.149449 3.02E—-11 3.02E-11 0.000691 3.02E-11
Multi-product batch plant problem 3.34E-11 0.994102 3.69E-11 0.002499 1.73E-06 3.02E-11 3.34E-11 0.001518 4.08E-11
Cantilever beam design 3.02E-11 2.15E-10 1.72E-12 3.02E-11 4.62E-10 3.02E-11 3.02E-11 8.1E-10 3.02E-11
Multi-disc clutch brake problem 3.02E-11 5.09E-08 2.36E—-12 4.56E-11 1.21E-12 3.02E-11 2093E-09 1.21E-12 0.063525
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Figure 12: Convergence curve and boxplot for mSHO against other

competitors —

multi-disc clutch brake problem.

(f) Industrial refrigeration system problem: The mSHO al-
gorithm reaches the optimal function value of 0.032 255.

(g) Multi-product batch plant problem: The mSHO algo-
rithm yields the optimal function value of 58 507.14.

(h) Cantilever beam problem: The optimal function value is
1.339956, achieved using the mSHO algorithm.

(i) Multiple disc clutch brake problem: The mSHO algo-
rithm, in conjunction with the AOA algorithm, achieves
the minimum objective function value of 0.23 524.

This study is limited to the selected problems, which can be ex-
tended to experiment mSHO with machine-learning-related prob-
lems, such as feature engineering and selection, hyperparameter
tuning, ensemble learning, neural architecture search, model se-
lection, and model compression. In addition, the study is limited
to single-objective optimization, which can be extended to solve
multi-objective optimization problems to represent trade-offs be-
tween conflicting objectives.

8. Conclusions and Future Research

SHO is a notable metaheuristic algorithm designed to emulate the
nuanced behaviors of sea horses, encompassing their feeding pat-
terns, male reproductive strategies, and intricate movement dy-
namics. This study introduces an evolved version of the SHO al-
gorithm, referred to as mSHO, which uses a set of distinct mecha-
nisms aimed at boosting its local search capabilities by substitut-
ing the original approach with an innovative local search strategy
executed through three strategic phases: a neighborhood-based
local search, a global non-neighbor-based search, and a circum-
ferential exploration strategy, which helps mSHO to attain height-
ened performance in exploring the search spaces. The proficiency
of the mSHO algorithm is rigorously examined through evalua-
tions encompassing CEC2020 benchmark functions and a spec-
trum of nine intricate engineering problems. A meticulous com-
parative analysis with nine robust metaheuristic algorithms is
conducted to corroborate and validate the achieved outcomes.
Statistical techniques, including Wilcoxon'’s rank-sum and Fried-
man'’s tests, are judiciously employed to unveil substantial dispar-
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ities among the examined algorithms. The empirical findings un-
equivocally affirm mSHO’s supremacy, consistently demonstrat-
ing its superior performance across a diverse range of bench-
mark functions. Moreover, the effectiveness of mSHO persists un-
affected as the difficulty of optimization problems increases, con-
firming its robustness and skill in handling complex search ar-
eas. This validates its strength as a highly valuable instrument
for tackling intricate optimization challenges. Looking ahead, the
prospective applications of mSHO appear promising, spanning do-
mains such as feature selection, cloud job scheduling, multi-level
threshold image segmentation, and hyperparameter optimization
for different machine learning models.

Acknowledgments

This work was supported by the Ministerio de Ciencia e Inno-
vacién de Espafia under project number PID2020-115570GB-C22
MCIN/AEI/10.13039/501100011033 and by the Catedra de Empresa
Tecnologia para las Personas (UGR-Fujitsu).

Conflict of interest statement

The authors declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this arti-
cle.

References

Abderazek, H., Ferhat, D, & Ivana, A. (2017). Adaptive mixed differ-
ential evolution algorithm for bi-objective tooth profile spur gear
optimization. The International Journal of Advanced Manufacturing
Technology, 90(5), 2063-2073.

Ahmadianfar, 1., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H.
(2021). Run beyond the metaphor: An efficient optimization algo-
rithm based on Runge Kutta method. Expert Systems with Applica-
tions, 181, 115079.

Ahmadianfar, 1., Heidari, A. A., Noshadian, S., Chen, H., & Gandomi,
A. H. (2022). Info: An efficient optimization algorithm based on
weighted mean of vectors. Expert Systems with Applications, 195,
116516.

Ahmed, R., Rangaiah, G. P, Mahadzir, S, Mirjalili, S, Hassan, M.
H., & Kamel, S. (2023). Memory, evolutionary operator, and lo-
cal search based improved grey wolf optimizer with linear pop-
ulation size reduction technique. Knowledge-Based Systems, 264,
110297.

Alahmer, H., Alahmer, A, Alamayreh, M. L., Alrbai, M., Al-Rbaihat, R.,
Al-Manea, A., & Alkhazaleh, R. (2023). Optimal water addition in
emulsion diesel fuel using machine learning and sea-horse opti-
mizer to minimize exhaust pollutants from diesel engine. Atmo-
sphere, 14(3), 449.

Alweshah, M., Alkhalaileh, S., Al-Betar, M. A., & Bakar, A. A. (2022).
Coronavirus herd immunity optimizer with greedy crossover for
feature selection in medical diagnosis. Knowledge-Based Systems,
235, 107629.

Aribowo, W. (2023). A novel improved sea-horse optimizer for tuning
parameter power system stabilizer. Journal of Robotics and Control
(RC), 4(1), 12-22.

Awadallah, M. A., Hammouri, A. 1., Al-Betar, M. A., Braik, M. S., & Abd
Elaziz, M. (2022). Binary horse herd optimization algorithm with
crossover operators for feature selection. Computers in Biology and
Medicine, 141, 105152.

Bhadoria, A., & Kamboj, V. K. (2019). Optimal generation scheduling
and dispatch of thermal generating units considering impact of
wind penetration using HGWO-RES algorithm. Applied Intelligence,
49(4), 1517-1547.

Chakraborty, S, Saha, A. K., Nama, S., & Debnath, S. (2021a). COVID-
19 X-ray image segmentation by modified whale optimization
algorithm with population reduction. Computers in Biology and
Medicine, 139, 104984.

Chakraborty, S, Saha, A. K., Sharma, S., Chakraborty, R., & Debnath,
S. (2023). A hybrid whale optimization algorithm for global opti-
mization. Journal of Ambient Intelligence and Humanized Computing,
14(1), 431-467.

Chakraborty, S, Saha, A. K., Sharma, S, Mirjalili, S.,, & Chakraborty,
R. (2021b). A novel enhanced whale optimization algorithm
for global optimization. Computers & Industrial Engineering, 153,
107086.

Chen, H,, Li, W,, & Yang, X. (2020). A whale optimization algorithm
with chaos mechanism based on quasi-opposition for global op-
timization problems. Expert Systems with Applications, 158, 113612.

Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: A novel
bio-inspired based metaheuristic technique for engineering ap-
plications. Advances in Engineering Software, 114, 48-70.

Ewees, A. A, Mostafa, R. R,, Ghoniem, R. M., & Gaheen, M. A. (2022).
Improved seagull optimization algorithm using Lévy flight and
mutation operator for feature selection. Neural Computing and Ap-
plications, 34(10), 7437-7472.

Fan, Q. Chen, Z,, Zhang, W,, & Fang, X. (2020). ESSAWOA: Enhanced
whale optimization algorithm integrated with salp swarm al-
gorithm for global optimization. Engineering with Computers, 38,
1-18.

Hansen, N.,, & Ostermeier, A. (2001). Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation, 9(2),
159-195.

Hashim, F. A., & Hussien, A. G. (2022). Snake optimizer: A novel meta-
heuristic optimization algorithm. Knowledge-Based Systems, 242,
108320.

Hashim, F. A., Mostafa, R. R., Hussien, A. G., Mirjalili, S., & Sallam, K. M.
(2023). Fick’s law algorithm: A physical law-based algorithm for
numerical optimization. Knowledge-Based Systems, 260, 110146.

Heidari, A. A., Mirjalili, S, Faris, H., Aljarah, I, Mafarja, M., & Chen, H.
(2019). Harris hawks optimization: Algorithm and applications.
Future Generation Computer Systems, 97, 849-872.

Hongwei, L., Jianyong, L., Liang, C., Jingbo, B., Yangyang, S., & Kai, L.
(2019). Chaos-enhanced moth-flame optimization algorithm for
global optimization. Journal of Systems Engineering and Electronics,
30(6), 1144-1159.

Houssein, E. H.,, Hashim, F. A, Ferahtia, S., & Rezk, H. (2022a). Bat-
tery parameter identification strategy based on modified COOT
optimization algorithm. Journal of Energy Storage, 46, 103848.

Houssein, E. H, Rezk, H., Fathy, A, Mahdy, M. A., & Nassef, A. M.
(2022b). A modified adaptive guided differential evolution algo-
rithm applied to engineering applications. Engineering Applications
of Artificial Intelligence, 113, 104920.

Hussien, A. G, Hashim, F. A,, Qaddoura, R., Abualigah, L., & Pop, A.
(2022). An enhanced evaporation rate water-cycle algorithm for
global optimization. Processes, 10(11), 2254.

Kamel, S., Houssein, E. H., Hassan, M. H., Shouran, M., & Hashim, F.
A. (2022). An efficient electric charged particles optimization al-
gorithm for numerical optimization and optimal estimation of
photovoltaic models. Mathematics, 10(6), 913.

Katoch, S, Chauhan, S. S, & Kumar, V. (2021). A review on genetic
algorithm: Past, present, and future. Multimedia Tools and Applica-
tions, 80, 8091-8126.

202 I1dy 0E UO Jasn e03)0l|qig - BpeueID ap PepISioniun Aq €2250G2/€2/L/L L/aIo1E/Epoljwod dno-olwspeoe//:sdyy wous papeojumoq



Journal of Computational Design and Engineering, 2024, 11(1), 73-98 | 97

Kaveh, A, Talatahari, S., & Khodadadi, N. (2020). Stochastic paint op-
timizer: Theory and application in civil engineering. Engineering
with Computers, 38, 1-32.

Kennedy, ], & Eberhart, R. (1995). Particle swarm optimization. In Pro-
ceedings of ICNN’95-International Conference on Neural Networks(Vol.
4, pp. 1942-1948). IEEE.

Khasanov, M., Kamel, S., Houssein, E. H., Rahmann, C., & Hashim, F.
A. (2023). Optimal allocation strategy of photovoltaic-and wind
turbine-based distributed generation units in radial distribution
networks considering uncertainty. Neural Computing and Applica-
tions, 35(3), 2883-2908.

Khurma, R. A, Aljarah, 1., Castillo, P. A, & Sabri, K. E. (2022). An
enhanced opposition-based evolutionary feature selection ap-
proach. In Proceedings of the Applications of Evolutionary Computa-
tion: 25th European Conference, EvoApplications 2022, Held as Part of
EvoStar 2022(pp. 3-14). Springer.

Khurma, R. A, Aljarah, I, & Sharieh, A. (2020a). An efficient moth
flame optimization algorithm using chaotic maps for feature se-
lection in the medical applications. In Proceedings of the 9th Inter-
national Conference on Pattern Recognition Applications and Methods
(ICPRAM) (pp. 175-182).

Khurma, R. A, Aljarah, I,, & Sharieh, A. (2020b). Rank based moth
flame optimisation for feature selection in the medical applica-
tion. In Proceedings of the 2020 IEEE Congress on Evolutionary Com-
putation (CEC) (pp. 1-8). IEEE.

Khurma, R. A, Aljarah, I, & Sharieh, A. (2021). A simultaneous moth
flame optimizer feature selection approach based on levy flight
and selection operators for medical diagnosis. Arabian Journal for
Science and Engineering, 46, 8415-8440.

Khurma, R. A., Aljarah, I, Sharieh, A, & Mirjalili, S. (2020c).
EvoloPy-FS: An open-source nature-inspired optimization frame-
work in python for feature selection. In Evolutionary ma-
chine learning techniques: Algorithms and applications(pp. 131-173).
Springer.

Kumar, A., Wu, G, Ali, M. Z., Mallipeddi, R., Suganthan, P. N., & Das, S.
(2020). A test-suite of non-convex constrained optimization prob-
lems from the real-world and some baseline results. Swarm and
Evolutionary Computation, 56, 100693.

Li, S, Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime
mould algorithm: A new method for stochastic optimization. Fu-
ture Generation Computer Systems, 111, 300-323.

Marechal, F, & Kalitventzeff, B. (2001). A tool for optimal synthesis
of industrial refrigeration systems. In Computer aided chemical en-
gineering(Vol. 9, pp. 457-462). Elsevier.

Matousova, I, Trojovsky, P, Dehghani, M., Trojovskd, E., & Kostra,
J. (2023). Mother optimization algorithm: A new human-based
metaheuristic approach for solving engineering optimization. Sci-
entific Reports, 13(1), 10312.

Morales-Castaneda, B., Zaldivar, D.,, Cuevas, E., Fausto, F, & Ro-
driguez, A. (2020). A better balance in metaheuristic algo-
rithms: Does it exist?. Swarm and Evolutionary Computation, 54,
100671.

Mostafa, R. R, Ewees, A. A., Ghoniem, R. M., Abualigah, L., & Hashim,
F. A.(2022). Boosting chameleon swarm algorithm with consump-
tion AEO operator for global optimization and feature selection.
Knowledge-Based Systems, 246, 108743.

Mostafa, R. R., Gaheen, M. A., Abd ElAziz, M., Al-Betar, M. A., & Ewees,
A. A. (2023). An improved gorilla troops optimizer for global op-
timization problems and feature selection. Knowledge-Based Sys-
tems, 269, 110462.

Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2017). Human mental
search: A new population-based metaheuristic optimization al-
gorithm. Applied Intelligence, 47, 850-887.

Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved
grey wolf optimizer for solving engineering problems. Expert Sys-
tems with Applications, 166, 113917.

Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro, A. ], Molina, D, La-
Torre, A., Suganthan, P. N, Coello, C. A. C,, & Herrera, F. (2021). A
tutorial on the design, experimentation and application of meta-
heuristic algorithms to real-world optimization problems. Swarm
and Evolutionary Computation, 64, 100888.

Pierre, D. A. (1986). Optimization theory with applications. Courier Cor-
poration.

Piri, J., & Mohapatra, P. (2021). An analytical study of modified multi-
objective Harris hawk optimizer towards medical data feature se-
lection. Computers in Biology and Medicine, 135, 104558.

Qaddoura, R., Aljarah, I, Faris, H.,, & Mirjalili, S. (2021). A grey wolf-
based clustering algorithm for medical diagnosis problems. In
Evolutionary data clustering: Algorithms and applications(pp. 73-87).
Springer.

Rao, R. V, Savsani, V. ], & Vakharia, D. (2011). Teaching-learning-
based optimization: A novel method for constrained mechanical
design optimization problems. Computer-Aided Design, 43(3), 303-
315.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013).
Mine blast algorithm: A new population based algorithm for solv-
ing constrained engineering optimization problems. Applied Soft
Computing, 13(5), 2592-2612.

Saha, A. K. (2022). Multi-population-based adaptive sine cosine algo-
rithm with modified mutualism strategy for global optimization.
Knowledge-Based Systems, 251, 109326.

Salawudeen, A. T.,, Mu'azu, M. B, Yusuf, A., & Adedokun, A. E.
(2021). A novel smell agent optimization (SAO): An extensive CEC
study and engineering application. Knowledge-Based Systems, 232,
107486.

Sharma, S., Chakraborty, S, Saha, A. K, Nama, S., & Sahoo, S. K.
(2022). MLBOA: A modified butterfly optimization algorithm with
Lagrange interpolation for global optimization. Journal of Bionic En-
gineering, 19(4), 1161-1176.

Sheikhi Azqandi, M., Delavar, M., & Arjmand, M. (2020). An enhanced
time evolutionary optimization for solving engineering design
problems. Engineering with Computers, 36(2), 763-781.

Smith, J. M. (1978). Optimization theory in evolution. Annual Review
of Ecology and Systematics, 9(1), 31-56.

Su,H,, Zhao, D, Heidari, A. A, Liu, L., Zhang, X., Mafarja, M., & Chen, H.
(2023). RIME: A physics-based optimization. Neurocomputing, 532,
183-214.

Sun, S., Cao, Z., Zhu, H,, & Zhao, J. (2019). A survey of optimization
methods from a machine learning perspective. [EEE Transactions
on Cybernetics, 50(8), 3668-3681.

Thawkar, S, Sharma, S, Khanna, M., & Singh, L. K. (2021). Breast
cancer prediction using a hybrid method based on butterfly op-
timization algorithm and ant lion optimizer. Computers in Biology
and Medicine, 139, 104968.

Tolba, M. A., Houssein, E. H., Eisa, A. A., & Hashim, F. A. (2022). Opti-
mizing the distributed generators integration in electrical distri-
bution networks: Efficient modified forensic-based investigation.
Neural Computing and Applications, 35, 1-36.

Tu, J., Chen, H., Wang, M., & Gandomi, A. H. (2021). The colony preda-
tion algorithm. Journal of Bionic Engineering, 18, 674-710.

Wang, Z., Luo, Q., & Zhou, Y. (2021). Hybrid metaheuristic algorithm
using butterfly and flower pollination base on mutualism mech-
anism for global optimization problems. Engineering with Comput-
ers, 37, 3665-3698.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In
Breakthroughs in statistics(pp. 196-202). Springer.

202 I1dy 0E UO Jasn e03)0l|qig - BpeueID ap PepISioniun Aq €2250G2/€2/L/L L/aIo1E/Epoljwod dno-olwspeoe//:sdyy wous papeojumoq



98 | Approach for solving global optimization and engineering problems

Xing,J.,, Zhao, H.,, Chen, H., Deng, R., & Xiao, L. (2023). Boosting whale
optimizer with quasi-oppositional learning and Gaussian bare-
bone for feature selection and COVID-19 image segmentation.
Journal of Bionic Engineering, 20(2), 797-818.

Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger
games search: Visions, conception, implementation, deep analy-
sis, perspectives, and towards performance shifts. Expert Systems
with Applications, 177, 114864.

Yildiz, B. S., Mehta, P, Panagant, N, Mirjalili, S, & Yildiz, A. R. (2022).
A novel chaotic Runge Kutta optimization algorithm for solving
constrained engineering problems. Journal of Computational Design
and Engineering, 9(6), 2452-2465.

Zamani, H., Nadimi-Shahraki, M. H., & Gandomi, A. H. (2019). CCSA:
Conscious neighborhood-based crow search algorithm for solv-
ing global optimization problems. Applied Soft Computing, 85,
105583.

Zhang, Y., Chi, A., & Mirjalili, S. (2021). Enhanced JAYA algorithm:
A simple but efficient optimization method for constrained
engineering design problems. Knowledge-Based Systems, 233,
107555.

Zhang, X, Xu, Y, Yu, C, Heidari, A. A, Li, S, Chen, H, & Li,
C. (2020). Gaussian mutational chaotic fruit fly-built optimiza-
tion and feature selection. Expert Systems with Applications, 141,
112976.

Zhao, S, Zhang, T, Ma, S., & Chen, M. (2022a). Dandelion optimizer:
A nature-inspired metaheuristic algorithm for engineering ap-
plications. Engineering Applications of Artificial Intelligence, 114,
105075.

Zhao, S, Zhang, T, Ma, S., & Wang, M. (2022b). Sea-horse optimizer:
A novel nature-inspired meta-heuristic for global optimization
problems. Applied Intelligence, 53, 1-28.

Received: April 22, 2023. Revised: November 13, 2023. Accepted: November 13, 2023

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This is an Open Access article distributed
under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

202 I1dy 0E UO Jasn e03)0l|qig - BpeueID ap PepISioniun Aq €2250G2/€2/L/L L/aIo1E/Epoljwod dno-olwspeoe//:sdyy wous papeojumoq


https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

	1. Introduction
	2. Related Works
	3. Background
	4. Proposed Method
	5. Assessment of mSHO on CEC2020 Test Functions
	6. Performance of mSHO on Engineering Design Problems
	7. Discussion
	8. Conclusions and Future Research
	Acknowledgments
	Conflict of interest statement
	References

