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Abstract 

Sea horse optimizer (SHO) is a note worth y metaheuristic algorithm that emulates various intelligent behaviors exhibited by sea 
horses, encompassing feeding patterns, male r e pr oducti v e str ate gies, and intricate movement patterns. To mimic the nuanced loco- 
motion of sea horses, SHO inte gr ates the logarithmic helical equation and Levy flight, effecti v el y incorporating both random move- 
ments with substantial step sizes and refined local exploitation. Additionally, the utilization of Brownian motion facilitates a more 
compr ehensi v e exploration of the search space. This study introduces a robust and high-performance variant of the SHO algorithm 

named modified sea horse optimizer (mSHO). The enhancement primarily focuses on bolstering SHO’s exploitation capabilities by 
r e placing its original method with an innov ati v e local sear c h str ate gy encompassing thr ee distinct ste ps: a neighborhood-based local 
sear c h, a global non-neighbor-based sear c h, and a method involving circumnavigation of the existing sear c h re gion. These tec hniques 
impr ov e mSHO algorithm’s sear c h capabilities, allowing it to navigate the sear c h space and converge toward optimal solutions effi- 
cientl y. To ev aluate the efficacy of the mSHO algorithm, compr ehensi v e assessments ar e conducted acr oss both the CEC2020 bench- 
mark functions and nine distinct engineering pr ob lems. A meticulous comparison is drawn against nine metaheuristic algorithms 
to validate the achieved outcomes. Statistical tests, including Wilcoxon’s rank-sum and Friedman’s tests, ar e aptl y applied to discern 

note worth y differences among the compared algorithms. Empirical findings consistently underscore the exceptional performance 
of mSHO across diverse benchmark functions, reinforcing its prowess in solving complex optimization problems. Furthermore, the 
robustness of mSHO endures even as the dimensions of optimization challenges expand, signifying its unwavering efficacy in navi- 
gating complex sear c h spaces. The compr ehensi v e r esults distinctl y esta b lish the supr emac y and efficienc y of the mSHO method as 
an exemplary tool for tackling an array of optimization quandaries. The results show that the proposed mSHO algorithm has a total 
rank of 1 for CEC2020 test functions. In contrast, the mSHO achieved the best value for the engineering problems, recording a value 
of 0.012 665, 2993.634, 0.01 266, 1.724 967, 263.8915, 0.032 255, 58 507.14, 1.339 956, and 0.23 524 for the pr essur e v essel design, speed 

r educer design, tension/compr ession spring, welded beam design, three-bar truss engineering design, industrial refrigeration system, 
m ulti-pr oduct batch plant, cantilever beam problem, and multiple disc clutch brake pr ob lems, r especti v el y. Source codes of mSHO are 
pub licl y av aila b le at https://www.mathworks.com/matla bcentral/fileexchange/135882-impr ov ed-sea-horse-algorithm . 

Ke yw ords: engineering pr ob lem, global optimization, metaheuristics, sea horse optimizer 
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1. Introduction 

Optimization is the process of reaching the minimum or maxi- 
m um v alue of some r eal function under a limited r ange of v alues.
Using mathematical notations, the optimization function can be 
expressed as f : D → R from some set D to the real numbers R .
In a minimization optimization problem, a member x 0 ∈ D , f ( x 0 ) ≤
f ( x ) ∀ x ∈ A whereas in a maximization optimization problem, f ( x 0 ) 
≥ f ( x ) ∀ x ∈ A (Pierr e, 1986 ; Smith, 1978 ). Tr aditional gr adient-based 

optimization methods r el y on finding the deriv ativ e of functions,
but they have limitations, particularly when dealing with complex 
optimization problems that lack deri vati ves or involve many local 
minima in the search space surface (Sun et al., 2019 ). 
Recei v ed: April 22, 2023. Re vised: No vember 13, 2023. Accepted: November 13, 2023
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess on behalf of the Society
distributed under the terms of the Cr eati v e Commons Attribution-NonCommercia
non-commer cial re-use , distribution, and r e pr oduction in any medium, pr ovided th
journals.permissions@oup.com 
The scientific community has progressively adopted computa- 
ional intelligence algorithms, such as metaheuristics, to optimize 
oth discrete and continuous problems (Khurma et al., 2020c ).
etaheuristic algorithms offer adv anta ges ov er tr aditional math-

matical algorithms owing to their gr adient-fr ee natur e, whic h
akes them well-suited for tackling undifferentiated problems 

nd yielding promising near-optimal solutions. Although these so- 
utions may not be optimal, they pr ovide v aluable a ppr oximations
Hussien et al., 2022 ). Furthermore, metaheuristics demonstrate 
ol ynomial time complexity, r endering them mor e efficient than
onventional methods with exponential time complexity (Osaba 
t al., 2021 ). 
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Metaheuristic algorithms have gained prominence in opti-
izing various problems, primarily due to their deri vati ve-free

ature , satisfactory performance metrics , simplicity , efficiency ,
nd r obustness (Mor ales-Castañeda et al., 2020 ). In the r ealm
f combinatorial optimization, there has been a proliferation of
nov el” metaheuristic tec hniques, man y of which draw inspira-
ion from artificial or natural processes. Metaheuristics can be
ategorized into four main gr oups, eac h based on distinct con-
epts and sources of inspir ation: e volutionary algorithms (EAs),
hysics-based algorithms (PhAs), swarm-based algorithms (SAs),
nd human-based algorithms (HAs). These categories encompass
 wide range of optimization a ppr oac hes, eac h with its unique
rinciples and techniques: 

(i) EAs, like genetic algorithms (GA, Katoch et al., 2021 ), draw
inspir ation fr om biological e volution and natur al selection.
These algorithms emulate genetic variation, selection, and
r epr oduction pr ocesses . GA, for instance , employs a pop-
ulation of potential solutions that e volv e ov er gener ations
using selection, cr ossov er, and m utation oper ations . T his it-
er ativ e pr ocess gr aduall y impr ov es the population’s fitness,
guiding the optimization pr ocedur e by exploring the search
space. 

(ii) PhAs ar e inspir ed by fundamental principles and natu-
ral phenomena, using simulations of physical processes
to optimize solutions. Simulated annealing (SimAnn) is a
w ell-kno wn example, mimicking the annealing process in
metallurgy. SimAnn begins with high “temperature” to en-
cour a ge explor ation and then gr aduall y r educes it to guide
optimization to w ar d better solutions. Other PhAs include
the weIghted meaN oF vectOrs (Ahmadianfar et al., 2022 ),
rime optimization algorithm (Su et al., 2023 ), Runge-Kutta
method (RUN, Ahmadianfar et al., 2021 ), and Fick’s law al-
gorithm (FLA, Hashim et al., 2023 ). These algorithms draw
insights from physics to improve optimization strategies. 

(iii) SAs, inspired by the collective behaviors of natural swarms
like bird flocks and ant colonies, prioritize communication,
cooper ation, and decentr alized decision-making among
s warm individuals . A notable example is particle swarm
optimization (PSO, Kennedy & Eberhart, 1995 ), which simu-
lates particle movement and information sharing within a
swarm to guide the search process. PSO maintains a bal-
ance between exploration and exploitation by adjusting
particle velocities based on individual and global best posi-
tions, harnessing the collective intelligence of the swarm to
explore and exploit the search space for optimal solutions
effectiv el y. Other SAs, suc h as snake optimizers (Hashim &
Hussien, 2022 ), spotted hyena optimizer (Dhiman & Kumar,
2017 ), slime mould algorithm (Li et al., 2020 ), and colony
predation algorithm (Tu et al., 2021 ), similarl y dr aw inspi-
r ation fr om natur al s warming beha viors to enhance opti-
mization techniques. 

(iv) HAs belong to the category of metaheuristic algorithms
that draw inspiration from human intelligence and
problem-solving methods . T hese algorithms simulate or
replicate human decision-making processes and learning
mechanisms. A w ell-kno wn example is teaching–learning-
based optimization (TLBO, Rao et al., 2011 ), which models
the interaction between a teacher and students to facili-
tate knowledge transfer and solution improvement. By har-
nessing human-inspired approaches, these algorithms aim
to enhance optimization and discov er effectiv e solutions
for complex problems. Other HAs include the mother op-
timization algorithm (Matoušová et al., 2023 ) and human
mental search (Mousavirad & Ebrahimpour-Komleh ( 2017 ),
each seeking to improve optimization using principles in-
spired by human behavior and cognition. 

SAs are mathematical methodologies inspired by the collabo-
 ativ e behaviors observed in natural animal groups . T hese algo-
ithms translate the survival and foraging behaviors of swarm
embers into mathematical equations. In response to the no-

r ee lunc h (NFL) theor em, r esearc hers hav e de v eloped and r e-
ned numerous SAs by drawing inspiration from different aspects
f nature or introducing new variants to address their limita-
ions . T hese variants involve proposing novel operators or tech-
iques that are integrated with the original algorithm. Some
nhancement a ppr oac hes for SAs include incor por ating c haotic
aps (Khurma et al., 2020a ), introducing local search (Ahmed

t al., 2023 ), a ppl ying opposition-based learning (OBL, Khurma
t al., 2022 ; Mostafa et al., 2023 ), utilizing EA selection operators
Khurma et al., 2021 ), enhancing EA cr ossov er and m utation op-
r ators (Al w eshah et al., 2022 ; Aw adallah et al., 2022 ), le v er a ging
evy flight behavior (Ewees et al., 2022 ; Mostafa et al., 2022 ), using
aussian operators (Zhang et al., 2020 ), and applying rank-based
ethods (Khurma et al., 2020b ). These efforts contribute to the

ngoing evolution and advancement of SAs for optimization. 
Various original and enhanced SAs have found applications in

iverse fields . For instance , the mCOO T (modified coot optimiza-
ion algorithm, COOT) algorithm was impr ov ed and emplo y ed
n estimating unmeasured battery parameters, resulting in en-
anced accuracy and reduced error rates (Houssein et al., 2022a ).
imilarl y, the electr ostaticall y c har ged particles algorithm was
mpr ov ed and tested on IEEE CEC2017 test functions, demonstrat-
ng its effectiveness in estimating parameters for photovoltaic

odels (Kamel et al., 2022 ). In the context of electrical distri-
ution networks, a modified robust optimization method was
roposed to optimize the distribution of distributed generators

DGs), leading to reduced energy losses (Tolba et al., 2022 ). In
nother study, an impr ov ed v ersion of the artificial ecosystem op-
imization algorithm, i.e., “artificial ecosystem optimization with
pposition-based learning” was de v eloped to determine the opti-
al distribution of DGs in radial distribution networks (Khasanov

t al., 2023 ). This a ppr oac h considers the stoc hastic natur e of
 ene wable ener gy sources , like wind turbines and photo voltaic
o w er generation, using appropriate probability models . T he loss
ensitivity index is utilized to identify suitable buses for inte-
rating DG modules into the network. Additionally, an improved
lgorithm called “Lévy flight distribution with opposition-based
earning” was proposed to address the limitations of the original
évy flight distribution algorithm. This improved version was
pplied to optimize the parameters of a three-diode photovoltaic
odel and demonstrated superior performance (Houssein et al.,

022b ). These studies highlight the effectiveness and versatility
f enhanced SAs in addressing complex optimization problems
cr oss differ ent domains. 

Metaheuristics hav e emer ged as po w erful tools in medical
pplications , offering inno vative solutions in diverse areas. In
he context of feature selection, metaheuristic approaches have
een harnessed to efficiently identify relevant features from com-
lex medical datasets, aiding in disease dia gnosis, pr ognosis, and
reatment planning. These algorithms navigate through high-
imensional data spaces to extract essential information, en-
ancing the accuracy of predictive models and reducing compu-
ational overhead. For example, Piri and Moha patr a ( 2021 ) intr o-
uced a novel approach called “multi-objective quadratic binary
arris hawks optimization”, which utilizes the K -nearest neigh-
or method as a wr a pper classifier. This technique aims to extract
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optimal feature subsets from medical data for enhanced perfor- 
mance . T ha wkar et al. ( 2021 ) introduced a hybrid feature selec- 
tion a ppr oac h by combining the butterfly optimization algorithm 

(BOA) and the ant lion optimizer to create the hybrid BOAALO 

method. This method effectiv el y selects an optimal subset of fea- 
tur es, whic h is then emplo y ed to predict the benign or malignant 
status of breast tissue. 

Additionally, metaheuristics find utility in multi-level thresh- 
old segmentation of medical images, facilitating the precise de- 
lineation of anatomical structures or patholog ical reg ions. By 
optimizing thr eshold v alues, these algorithms enable accur ate 
segmentation, which is vital for quantitative analysis, disease 
quantification, and treatment evaluation. The versatility of meta- 
heuristics in handling intricate and often noisy medical data 
underscores their potential to drive advancements in medical 
ima ging, dia gnosis, and patient car e. For example, Chakr aborty 
et al., ( 2021a ) focuses on de v eloping a computational tool to 
quic kl y and accur atel y assess illness se v erity using COVID-19 
c hest X-r ay ima ges. It intr oduces a modified whale optimization 

algorithm (W O A), named modified whale optimization algorithm 

with population reduction (mW O APR), that enhances diagnostic 
pr ecision by integr ating r andom population initialization during 
global search and optimizing parameter settings for improved 

exploration–exploitation balance. Xing et al., ( 2023 ) introduced 

an enhanced W O A, termed quasi-opposition-based W O A (QGB- 
W O A), tailored for CO VID-19 applications. QGBW O A integrates 
quasi-opposition-based learning for impr ov ed solution searc h and 

a Gaussian bar ebone mec hanism to enhance solution space di- 
v ersity. This r efinement holds pr omise for pr ecise featur e se- 
lection and m ulti-thr eshold ima ge segmentation in COVID-19- 
related tasks. 

In late 2022, a team of r esearc hers intr oduced the sea horse 
optimizer (SHO), drawing inspiration from sea horses’ locomo- 
tion, pr edation, and r epr oductiv e behaviors (Zhao et al., 2022b ).
Sea horses exhibit distinctiv e locomotion, suc h as jumping and 

wr a pping their tails around algae or lea ves , often influenced by 
marine eddies, leading to spiral movement. They can also exhibit 
Bro wnian motion b y turning upside do wn. Mor eov er, sea horses 
employ their uniquel y sha ped heads to stealthil y a ppr oac h and 

ca ptur e pr ey, ac hie ving a r emarkable success r ate of up to 90%.
Additionall y, the r andom mating of male and female sea horses 
contributes to a ne w gener ation inheriting adv anta geous tr aits 
from their parents. 

The observed sea horse behaviors have endo w ed the SHO algo- 
rithm with the capacity to effectively manage the exploration and 

exploitation phases when seeking optimal solutions . T his ability 
enables SHO to strike a balance between thorough exploration 

of the solution space and efficient exploitation of promising ar- 
eas . Furthermore , the incorporation of these behaviors promotes 
incr eased div ersity among solutions within the SHO community.
Consequently, SHO exhibits enhanced performance by mitigat- 
ing pr ematur e conv er gence and avoiding getting tr a pped in local 
minima. SHO’s adv anta geous attributes have been demonstrated 

thr ough successful a pplications in div erse domains. Notabl y, it 
has pr ov en effectiv e in tasks suc h as fine-tuning po w er system 

stability and optimizing parameters (Aribo w o, 2023 ). Additionally,
SHO has been applied to reduce exhaust pollutants from diesel 
engines, showcasing its versatility and practical utility (Alahmer 
et al., 2023 ). 

The unique c har acteristics and accomplishments of the SHO 

algorithm hav e motiv ated us to extend its a pplication to addr ess 
a div erse arr ay of engineering c hallenges. Ne v ertheless, a no- 
table dr awbac k of SHO lies in its exploitation str ategy, whic h de- 
ends on selecting a neighboring individual at random during lo-
al searches within the search space. Recognizing this limitation,
e have undertaken the task of enhancing the local search pro-

edure of SHO. To rectify this deficienc y, w e propose novel meth-
ds aimed at optimizing the local search process within the al-
orithm. These methods are designed to enhance SHO’s perfor- 
ance by effectiv el y circumv enting the risk of becoming tr a pped

n local minima and facilitating the conv er gence to w ar d optimal
olutions. Our study’s primary contributions encompass the fol- 
owing k e y points: 

(i) Proposing a robust, high-performance variant of SHO,
named the modified sea horse optimizer (mSHO) method,
enhances the SHO exploitation strategy. This is done by re-
placing the original method with a new local search strat-
egy, which is done in three steps: 
(a) Neighborhood-based local search strategy, 
(b) A global non-neighbor-based search strategy, and 

(c) Walk around the existing search strategy. 
(ii) The mSHO method is compared with the original SHO and

eight different optimizers in ten CEC2020 test positions. 
(iii) mSHO is used to solve nine real-world engineering prob- 

lems, namely: welded beam design problem, three-bar 
truss design pr oblem, tension/compr ession spring design,
speed reducer design, industrial refrigeration system, pres- 
sur e v essel design, cantile v er beam design, m ulti-disc
clutc h br ake, and m ulti-pr oduct batc h plant. 

(iv) Results of mSHO outperformed other algorithms in both 

constrained and unconstrained problems. 

The rest of the paper is structured as follows. Section 2 presents
ome r ecent liter atur e in whic h r esearc hers pr oposed impr ov e-
ents to SAs for solving complicated engineering problems. Sec- 

ion 3 describes the SHO algorithm’s inspiration and mathemati- 
al methodology in detail. Section 4 discusses the proposed mSHO 

n detail. Section 5 provides the results and in-depth discussion of
SHO and other competitive algorithms on CEC2020 test func- 

ions . T he mSHO’s performance on various engineering problems
s presented in Section 6 . Section 7 summarizes the results and
iscusses the limitations of the work. Section 8 concludes the pa-
er and offers some potential r esearc h dir ections that can help

mpr ov e SHO performance as well. 

. Related Works 

his section provides an ov ervie w of recent studies that have
roposed methods to enhance the performance of specific meta- 
euristic algorithms for solving global and engineering problems 
ver the past 3 year. Table 1 provides a summary of the studies
entioned, considering four k e y criteria: the publication year, the
etaheuristic algorithm emplo y ed, the enhancement a ppr oac h

aken, whether the IEEE CEC suite was used, the number of bench-
ark test functions examined, and the quantity and nature of the

ngineering problems used for evaluation. 
Hongwei et al., ( 2019 ) utilized chaos theory to introduce an en-

anced variant of moth flame optimization (MFO) called CMFO.
haotic functions were employed for initializing individuals, man- 
 ging ov errides, and adjusting the distance parameter. CMFO
nderwent testing on three standard function groups and two 
eal-world engineering problems . T he statistical findings demon- 
trated that incorporating an appropriate chaotic map (Singer’s 
ap) into the relevant component of MFO significantly improved 

ts performance. Ne v ertheless, the study did not explore the ap-
lication of other c haotic ma ps to the MFO algorithm. Sheikhi
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Azqandi et al. introduced an enhanced variant of temporal evo- 
lutionary optimization (TEO) called ETEO in their study (Sheikhi 
Azqandi et al., 2020 ). This enhancement strategy incorporated 

a temporal evolution factor and population clustering. A mem- 
ory was utilized to store some of the best designs. ETEO under- 
went e v aluation acr oss a r ange of constr ained and unconstr ained 

problems, as well as engineering design problems. ETEO aimed 

to impr ov e TEO’s performance, addr ess its weaknesses, and en- 
hance searc h ca pabilities during both explor ation and exploita- 
tion phases. By employing population clustering, enhancing the 
environmental factor, and incorporating a memory to preserve 
some of the best design v ariables, ETEO demonstr ated competi- 
tiveness with other metaheuristic algorithms in terms of statisti- 
cal outcomes, particularly concerning the best objective function 

and the number of function e v aluations performed during opti- 
mization. 

Chen et al., ( 2020 ) introduced chaos mechanism based on quasi- 
opposition W O A (OBCW O A), an enhanced variant of the W O A,
whic h incor por ated c haos and quasi-opposition str ategies for 
global optimization problems. OBCW O A demonstrated robust- 
ness in solving global optimization problems, excelling in conver- 
gence accuracy, speed, high-dimensional searc h ca pability, and 

stability. It was also effective in addressing real engineering de- 
sign problems. Ho w ever, OBCW O A had some dra wbacks , includ- 
ing the need for adjusting more parameters than the original 
W O A, longer running times compared with some metaheuristic 
algorithms , and limited impro vement in the correctness of cer- 
tain test functions . Nonetheless , OBCW O A r emained a v aluable 
tool for complex practical problems and remained competitive 
among state-of-the-art algorithms. In Fan et al., ( 2020 ), Enhanced 

Whale Optimization Algorithm integrated with Salp Swarm Algo- 
rithm (ESSAW O A) was de v eloped by integr ating W O A with Salp 

Swarm Algorithm (SSA) and a lens OBL (Lens Opposition-based 

Learning, LOBL) strategy for global optimization. The exploitative 
po w er of the SSA leader’s strategy was used to update person- 
nel attitudes before W O A operations were implemented. Subse- 
quentl y, the non-linear par ameter of SSA in the pr ey encircling 
and attacking phases was incorporated into W O A to enhance the 
conv er gence behavior. The LOBL str ategy was adopted to increase 
population diversity. ESSAW O A was evaluated using 23 standard 

functions and three classical engineering design problems . T he 
findings show that ESSAW O A can swiftly and efficiently find a 
promising solution to these optimization issues. ESSAW O A per- 
forms m uc h better than the fundamental W O A, SSA, and other 
metaheuristic algorithms. 

Nadimi-Shahraki et al., ( 2021 ), proposed an improved gray wolf 
(IGWO) optimizer for engineering problems. IGWO adopted a new 

mov ement str ategy called learning-based hunting (DLH) inspir ed 

b y w olv es’ natur al hunting behavior . DLH implemented a differ - 
ent method of neighborhood identification for each individual so 
that neighborhood information could be shared between individ- 
uals . T he performance of the IGWO algorithm was e v aluated on a 
set of CEC2018 standards and four engineering problems. IGWO is 
compar ed acr oss all tests to six mor e cutting-edge metaheuristics.
Friedman and mean absolute error (MAE) statistical tests are also 
used to assess the results. In comparison with the algorithms em- 
plo y ed in the studies, the IGWO algorithm is v ery competitiv e and 

fr equentl y superior, as shown by the experimental findings and 

statistical testing. The suggested algorithm’s performance and ap- 
plicability on engineering design c hallenges ar e shown by the find- 
ings. 

Wang et al., ( 2021 ) proposed a new variant of the BOA called but- 
terfly optimization algorithm and flo w er pollination base (MBFPA) 
y hybridizing it with the flo w er pollination and symbiosis mech-
nism of global optimization problems. Flo w er pollination and
ymbiotic organisms support exploration and exploitation ca- 
acity, r espectiv el y. Mor eov er, the possibility of alternating ex-
loration and adaptive exploitation improves the balance be- 
w een these tw o phases . T he MFPPA is tested on 49 standard-
zed test functions and five classic engineering problems . T he
ndings demonstrate the viability of the suggested method and 

emonstr ate its competitiv eness and high a pplication pr ospects.
hakraborty et al., ( 2021b ) proposed enhanced W O A (W O AmM) us-

ng the mutualism phase from symbiotic organisms search (SOS).
he proposed W O AmM method was tested on 36 benchmark
unctions and IEEE CEC2019 function suite. In addition, six real-
orld engineering optimization problems wer e solv ed by the pro-
osed method. In comparison with other competing a ppr oac hes,
he results show that the suggested SSC algorithm (security ser-
ice chain) is resilient, effective, efficient, and conv er gence anal y-
is. 

Zhang et al., ( 2021 ) impr ov ed the global searc h phase of J ay a al-
orithm (JA Y A) and implemented the enhanced JA Y A (EJA Y A) for
lobal optimization. EJA Y A had many distinguished featur es suc h
s local exploitation, which defined upper and lo w er local attrac-
ors . Furthermore , the global exploration was guided by histori-
al population, and it did not make any adjustments for initial
arameters . T he EJA Y A w as verified b y testing it on 45 test func-
ions from IEEE CEC2014 and IEEE CEC2015 test suites. Further-

ore, EJA Y A was implemented to solve seven real-world engineer-
ng design optimization problems . T he effectiveness of the newly
r oposed impr ov ed tec hniques to JA Y A and the strong ability of
JA Y A to escape from the local optimum for tackling difficult op-
imization issues are supported by experimental results. In Yıldız 
t al., ( 2022 ), Yildiz proposed a chaotic R UN (CR UN). In this study,
0 differ ent c haotic ma ps wer e integr ated into the RUN algorithm
o boost its performance, and it was tested on some design en-
ineering problems . T he results sho w ed that CRUN w as the best
ompared with the most recent algorithms in the liter atur e . T he
roposed CRUN method can also uncov er adv anta geous featur es

n a variety of managerial implications, including supply chain 

anagement, business models, fuzzy circuits, and management 
odels. 
Sharma et al., ( 2022 ) proposed a new variant of BOA, namely

odified butterfly optimization algorithm (mLBOA). He integrated 

he self-ada ptiv e par ameter setting, La gr ange inter polation for-
 ula, a ne w local searc h str ategy, and le vy flight oper ators with

OA. The IEEE CEC2017 benchmark suite and three real-world 

ngineering design problems were used to e v aluate the mLBOA.
he outcomes were contrasted with six cutting-edge algorithms 
nd fiv e BOA v ariations. Additionall y, a number of statistical tests
ave been carried out to support the rank, significance, and com-
lexity of the proposed mLBOA, including the Friedman rank test,
ilcoxon’s r ank test, conv er gence anal ysis, and complexity anal-

sis . T he mLBOA has also been used to r esolv e thr ee actual engi-
eering design issues. According to all of the analyses, the sug-
ested mLBOA algorithm is competitive with other w ell-kno wn 

tate-of-the-art algorithms and BOA variants. 
Saha ( 2022 ) introduced an enhanced version of the sine co-

ine algorithm (SCA) called multi-population-based adaptive sine 
osine algorithm (MAMSC A). T he enhancement in volved dividing
he SCA’s population into two halves and a ppl ying either a sine or
osine method to update each half. Furthermore, a modified mu-
ualism phase was incor por ated into the algorithm. MAMSCA was
pplied to standard benchmark functions, IEEE CEC2019 func- 
ions, and five engineering design problems . T he results demon-
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trated significant improvements in addressing real-world prob-
ems. A compr ehensiv e assessment of the algorithm, including a
tatistical anal ysis, e v aluation of time complexity, and solution
ener ation speed, underscor ed its enhanced performance and
uitability for practical applications. Chakraborty et al., ( 2023 ) in-
r oduced a nov el v ariant of W O A called m-SDW O A, which inte-
rates W O A with the modified mutualism phase of SOS, the mu-
ation strategy of differential evolution (DE), and the commen-
alism phase of SOS. The algorithm incor por ates a new param-
ter, denoted as Y , to determine whether to a ppl y the global or lo-
al phases . T he efficienc y of the algorithm w as assessed using 42
enchmark functions, an IEEE CEC2019 test suite, and four engi-
eering design problems . T hese evaluations consistently demon-
trated the superior performance of the proposed algorithm com-
ared with the methods it was benchmarked against. 

In the aforementioned studies, researchers introduced various
perators and techniques to address limitations commonly as-
ociated with metaheuristic algorithms, including early conver-
ence, bias to w ar d local minima, and imbalances in exploration
nd exploitation. These innovations have the potential to enhance
he optimizer’s performance, stability, and robustness, leading to

ore dependable and effective results. Building upon the founda-
ions of the NFL theory, this paper extends this research trajectory
y harnessing the r ecentl y de v eloped SHO algorithm. Additionall y,
he pa per integr ates specific local searc h str ategies into SHO to
urther enhance its effectiveness in tackling global optimization
nd engineering problems. 

. Bac kgr ound 

HO dr aws inspir ation fr om the pr edation, mov ement, and br eed-
ng behaviors of sea horses, which enable them to adapt to their
nvir onment and surviv e. Sea horses, small fish found in warm
aters , ha ve a head resembling that of a horse. In terms of move-
ent, sea horses exhibit a spiral motion when wr a pping their tails

round a stem (or leaf) of algae . T heir unique head shape aids
n stealthy pr edation. Furthermor e, sea horses enga ge in r andom

ating between females and males to produce offspring in their
reeding beha vior. T he algorithm encompasses four phases: ini-
ialization, mo vement beha vior, predation beha vior, and breeding
ehavior. 

In the initialization phase, the algorithm generates the initial
opulation of sea horses, as r epr esented by equation ( 1 ), where
im r epr esents the dimension and pop is the population size (Zhao
t al., 2022b ): 

Sea horses = 

⎡ 

⎢ ⎣ 

x 1 1 ... x Dim 

1 

... ... ... 

x 1 pop ... x Dim 

pop 

⎤ 

⎥ ⎦ 

. (1) 

Each individual is represented by equation ( 2 ), with each value
n the list calculated using equation ( 3 ), where rand is a random
alue in the range of [0, 1]. Here, x j i represents the j th dimension
f the i th individual, and LB j and UB j denote the lo w er and upper
ounds of the j th dimension: 

X i = [ x 1 i , x 
2 
i ...x 

Dim 

i ] (2) 

x j i = rand × (UB j − LB j ) + LB j . (3) 

he individual with the lo w est fitness function value is r eferr ed to
s the elite individual X elite , which is calculated using equation ( 4 )
Zhao et al., 2022b ): 

X elite = argmin ( f itness ( X i )) . (4) 
n the movement behavior phase, sea horses exhibit two types of
ov ements: the spir al motion and the Brownian motion. When

nga ged in spir al motion, the ne w position of a sea horse is de-
ermined using equation ( 5 ), where the values of x , y , and z are
omputed as shown in equations ( 6 ), ( 7 ), and ( 8 ). Here, ρ = u × e θv

 epr esents the length of the stems defined by the logarithmic spi-
al constants u and v , whic h ar e set to 0.05. θ is a random value
ithin the range [0, 2 π ]. The Levy distribution function, Levy ( λ), is

alculated using equation ( 9 ), where λ is a random number in the
ange [0, 2], and s is fixed at 0.01. The variables w and k ar e r andom
umbers in the range [0, 1], and σ is determined by equation ( 10 )

Zhao et al., 2022b ): 

 

1 
new (t + 1) = X i (t) + Levy (λ)((X elite (t) − X i (t)) × x × y × z + X elite (t)) 

(5)

x = ρ × cos (θ ) (6)

y = ρ × sin (θ ) (7)

z = ρ × θ (8)

Levy (λ) = s × w × σ

| k | 1 λ
(9)

σ = 

( 

�(1 + λ) × sin ( πλ
2 ) 

�( 1+ λ
2 ) × λ × 2 

λ−1 
2 

) 

. (10)

onv ersel y, in the case of Brownian motion, the new position of a
ea horse is determined using equation ( 11 ), where l is a constant
oefficient. The value of βt is calculated according to equation ( 12 )
Zhao et al., 2022b ): 

X 

1 
new (t + 1) = X i (t) + rand ∗ l ∗ βt ∗ (X i (t) − βt ∗ X elite ) (11)

βt = 

1 √ 

2 π
exp 

(
− x 2 

2 

)
. (12)

To summarize the calculations, equation ( 13 ) encompasses the
alculations of the new positions, with r 1 denoting a random num-
er (Zhao et al., 2022b ): 

X 

1 
new (t + 1) = {
X i (t) + Levy (λ)((X elite (t) − X i (t)) × x × y × z + X elite (t)) r 1 > 0 
X i (t) + rand ∗ l ∗ βt ∗ (X i (t) − βt ∗ X elite ) r 1 ≤ 0 . 

(13)

T he predation beha vior is calculated using equation ( 14 ),
here α is determined as shown in equation ( 15 ), and r 2 rep-
 esents a r andom number within the r ange [0, 1] (Zhao et al.,
022b ): 

X 

2 
new (t + 1) = 

{
α ∗ ( X elite − rand ∗ X 

1 
new ( t)) + ( 1 − α) ∗ X elite r 2 > 0 . 1 

( 1 − α) ∗ ( X 

1 
new ( t) − rand ∗ X elite ) + α ∗ X 

1 
new ( t) r 2 ≤ 0 . 1 

(14)

α = 

(
1 − t 

T 

) 2 t 
T 

. (15)

T he breeding beha vior is determined by assigning roles to
other and father sea horses, as depicted in equations ( 16 ) and

 17 ), where X 

2 
sort signifies all X 

2 
new sorted in ascending order of

heir fitness values (Zhao et al., 2022b ). The actual mating pro-
ess to produce new offspring is described in equation ( 18 ), where
 3 is a random number within the range [0, 1], i is a positive in-
eger within the range [1, pop /2], and X 

father 
i and X 

mother 
i r epr e-

ent r andoml y selected father and mother individuals (Zhao et al.,
022b ): 

fathers = X 

2 
sort (1 : p op / 2) (16)
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mothers = X 

2 
sort (p op / 2 + 1 : p op ) (17) 

X 

offspring 
i = r 3 X 

father 
i + (1 − r 3 ) X 

mother 
i . (18) 

4. Proposed Method 

The original SHO algorithm exhibits certain shortcomings, partic- 
ularl y in ac hie ving a harmonious balance between global and lo- 
cal search behaviors during the movement phase. This issue arises 
fr om the r andom selection of the searc h str ategy, whether it is spi- 
r al or Br ownian motion, based solel y on a r andom number r 1 . Fur- 
thermore, the fixed values assigned to parameters u and v , which 

dictate the length of the stems, remain constants throughout the 
optimization pr ocess, potentiall y impeding the algorithm’s ability 
to guide solutions effectiv el y to ne w positions. To addr ess these 
limitations, this paper introduces an improved version of SHO,
named mSHO, aimed at enhancing the algorithm’s performance 
and addressing its main limitations. 

In this section, we delve into the proposed mSHO method,
which brings about significant changes in the mo vement beha v- 
ior phase. Instead of the traditional approach, the mSHO method 

incor por ates the following three distinct steps: 

(i) Neighborhood-based local search strategy, 
(ii) Non-neighborhood-based global search strategy, and 

(iii) Wandering around-based search strategy. 

Neighborhood-based local search strategy leverages an individ- 
ual’s conscious neighborhood to enhance the quality of exploita- 
tion within that neighborhood. Specifically, a random neighbor, 
denoted as c local , is c hosen fr om within the individual’s local 
neighborhood, and another neighbor, termed c global , is selected 

from outside the local neighborhood but possessing the lo w est 
fitness function v alue. Subsequentl y, if the fitness value of c local 

is found to be lo w er than that of c global , the individual adjusts its 
position to w ar d that of c local , as calculated by equation ( 19 ) (Za- 
mani et al., 2019 ): 

X i (t + 1) = X i (t) + r i × f l i (t) × (m local (t) − X i (t)) (19) 
where fli ( t ) is the flight length of the individual in iteration t , r i is 
a random number in the range of [0, 1], and m local ( t ) is the hiding 
position of c local for iteration t . 

In contrast, the non-neighborhood-based global search strat- 
egy is activated when the fitness value of c local exceeds or equals 
the fitness value of c global . In this situation, the individual moves 
to w ar d the position of c global , r epr esented as X ij ( t + 1), and this re-
location is determined using equation ( 20 ) (Zamani et al., 2019 ): 

X i j (t + 1) = r i × f l i ( t) × ( m global j ( t) − X i j ( t)) (20) 
where j is the dimension value, m global j ( t ) is the hiding position of 
c global for iteration t and dimension j . 

The neighborhood-based local search strategy and the non- 
neighborhood-based global search strategy both include a valida- 
tion step to ensure that the new position falls within the problem 

space’s defined range. If it does not, the strategy randomly adjusts 
the dimensions that have exceeded this range, bringing them back 
into the problem space’s boundaries. 

On the other hand, the wandering around-based search strat- 
egy is emplo y ed when the pr e vious two str ategies fail to impr ov e 
an individual’s fitness value. It operates by analyzing the sur- 
r ounding envir onment and maneuv ering the individual to a po- 
tentiall y mor e favor able position with a lo w er fitness value. Equa- 
tion ( 21 ) calculates this new position, where m gbest j ( t ) represents 
the best hiding position in the entire population for dimension j ,
and X rj ( t ) corresponds to a r andoml y selected individual in the j th 
imension (Zamani et al., 2019 ): 
X i j (t + 1) = m gbest j (t) + r i × f l i (t) × (X r j (t) − X i j (t)) . (21) 

Figur e 1 illustr ates the ste p-by-ste p pr ocess of the pr oposed
SHO algorithm. The algorithm commences by generating the 

nitial population of sea horses, following the principles outlined 

n equations ( 1 ), ( 2 ), and ( 3 ). In each iteration, the algorithm pro-
eeds to e v aluate the fitness of eac h individual and updates the
lite individual using equation ( 4 ). Subsequently, for each indi-
idual, two neighboring sea horses, denoted as c local and c global ,
re selected. Their fitness values are then compared, and the in-
ividual adopts the position of the sea horse with the lo w er fit-
ess value . T his position update is determined by equations ( 19 )
nd ( 20 ). Following this, another fitness comparison is conducted,
his time between the individual’s fitness at the new position and
ts fitness at the pr e vious position. If the fitness at the new posi-
ion is not lo w er than the pr e vious one, the individual’s position
s modified using equation ( 21 ). The predation and breeding be-
aviors are calculated according to equations ( 14 ). This flowchart
rovides a comprehensive overview of the mSHO algorithm’s 
peration. 

. Assessment of mSHO on CEC2020 Test 
unctions 

o pr ov e the efficiency of mSHO, se v er al tests and experiments
a ve been conducted. T his study co vers two major tests: global
ptimization problems using 10 functions from CEC2020 and nine 
ngineering problems. All experiments were run using MATLAB 

022b on an Intel ® Core TM i7 (3.40 GHz) CPU with RAM 16GB run-
ing Microsoft Windows 11. 

Se v er al metaheuristics wer e e v aluated and compar ed with
he proposed mSHO in this experiment to ensure a fair assess-

ent. The selected metaheuristics include dandelion optimizer 
DO, Zhao et al., 2022a ), cov ariance matrix ada ptation e volution
trategy (CMA-ES, Hansen & Ostermeier, 2001 ), hunger games 
earch (HGS, Yang et al., 2021 ), smell agent optimization (SAO,
alawudeen et al., 2021 ), Harris hawks optimization (HHO, Heidari
t al., 2019 ), PSO (Kennedy & Eberhart, 1995 ), and stochastic paint
ptimizer (SPO, Kaveh et al., 2020 ). All algorithms were evaluated
nder the same conditions with 30 search agents and a maximum
f 1000 iterations. To eliminate the impact of random initializa-
ion, 30 independent runs were performed, and the algorithms’ 
erformance was e v aluated using the av er a ge fitness and stan-
ard deviation metrics . T he parameters of the other algorithms
re mentioned in Table 2 . 

.1. Experimental series 1: CEC2020 

n this section, we analyze the outcomes of our experiments on
he CEC2020 functions, categorizing our findings into four dis- 
inct segments: statistical analysis, boxplot representation, con- 
 er gence assessment, and the Wilcoxon’s rank test. The CEC2020
ataset encompasses 10 distinct functions, as outlined in Table 3 .
hese functions are classified into four categories: uni-modal,
ulti-modal shifted and rotated functions, hybrid, and compo- 

ition functions. Each function, denoted as Fi , is associated with
n optimal value that serves as our objective. For instance, F 1’s
ptimal value is set at 100, with the optimizer striving to identify
 solution that closely approximates this value. 

.1.1. Statistical analysis on CEC2020 test suite 
he fitness function values for the different CEC2020 functions 
ith different competitive algorithms are displayed in Table 4 .
ach function’s mean, standard deviation, and rank are calculated 
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F igure 1: Flo wc hart of the pr oposed mSHO. 

Table 2: P ar ameter settings. 

Parameter Value 

Population size ( N ) CEC2020 problem 30 
Engineering problem 30 

Maxim um iter ations CEC2020 1000 
Engineering problem 1000 

Problem dimensions ( D ) CEC2020 problem 10 
Engineering problem Dimension of 

problem 

PSO Cognitive component (c1) 2 
Social component (c2) 2 
Inertia weight 0.2–0.9 

DO Ada ptiv e par ameters ( α, k ) [0,1], [0,1] 
HGS k 0.3 

r 1 , r 2 , r 3 , r 4 , r 5 , r 6 rand [0, 1] 
SAO olf 0.75 

SL 0.9 
HHO β 1.5 
A O A μ 0.499 

α 5 

a  

i  

t  

v  

t  

v
 

c  

t  

Table 3: CEC2020 test suite description. 

No. Function specification Fi ∗

Uni-modal function 
F 1 Shifted and Rotated Bent Cigar Function 100 

Multi-modal shifted and rotated functions 
F 2 Shifted and Rotated Schwefel’s Function 1100 
F 3 Shifted and Rotated Lunacek bi-Rastrigin 

Function 
700 

F 4 Expanded Rosenbr oc k’s plus Grie wangk’s 
Function 

1900 

Hybrid functions 
F 5 N = 3 1700 
F 6 N = 4 1600 
F 7 N = 5 2100 

Composition functions 
F 8 N = 3 2200 
F 9 N = 4 2400 
F 10 N = 5 2500 
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cross the different optimization algorithms . T he mean value
s useful because it provides a comparative estimate of the to-
al of many runs. Standard deviation, on the other hand, pro-
ides variability of the different runs . T he rank is given based on
he mean v alue, wher e the rank of 1 is provided to the lo w est
alue. 

It is observ ed fr om the table that the proposed mSHO has very
ompetitive fitness values with the rank of 1 for all of the func-
ions except the F 6 and F 10. The HGS and CMA-ES algorithms have
etter values for F 6 and F 10, respectively. In addition, the HGS al-
orithm has an ov er all competitiv e r ank of 2 for many functions,
hile the proposed mSHO algorithm has a total rank of 1. On the
ther hand, the Friedman test shows that the proposed mSHO dis-
lays the lo w est value of 1.3, follo w ed b y HGS and PSO, whereas
AO has the worst value. 

.1.2. Boxplot behavior analysis 
he boxplots of the 30 runs over the different algorithms are pre-
ented in Fig. 2 . The boxplot shows the maxim um, minim um,
edian, and interquartile range (Qaddoura et al., 2021 ). The pro-
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Figur e 2: T he boxplot curv es of the pr oposed mSHO and the other a ppr oac hes obtained ov er CEC2020 test suite with Dim = 10. 
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posed mSHO shows compacted box distribution compared with 

the other algorithms, indicating a stable algorithm. 
The proposed mSHO also has the lo w est minimum and maxi- 

m um v alues for all the functions except for F 6. Ov er all, the pr o- 
posed mSHO confirms the consistency of the algorithm. Some 
other observations can be concluded from the figure. SHO has 
a high standard de viation compar ed with the other algorithms 
for F 1, while SAO has a high standard deviation for F 10 as well 
as DO for F 6 and SOA for F 5. F 8 shows an interesting pat- 
tern since all the algorithms show large values for the standard 

deviation except for the mSHO, which indicates a very stable 
algorithm. 

5.1.3. Convergence performance analysis 
T he con v er gence curv e r epr esents the v alues of the fitness func- 
tion across the different iterations . T his is presented in Fig. 3 for 
the experimented results . T he con v er gence curv e is important 
since it shows that the value of the fitness function decreases 
when pr ogr essing thr ough the iter ations. It also shows that af- 
ter some iterations, the value of the fitness function stays as is,
indicating that the algorithm cannot explore better solutions and 

that the best solution resulting from the algorithm is the closest 
solution to the correct one. 

T he con v er gence curv es show adv anced v alues for most func- 
tions across all the iterations except for F 1 and F 6, while F 1 ob- 
tained the lo w est fitness value at the final iterations . T his pro ves 
the effectiveness of the optimization task for the proposed mSHO 

algorithm by conv er ging toward minim um v alues. On the other 
hand, F 2, F 5, F 7, and F 8 show that mSHO is finding better solu- 
tions than the other algorithms, but it has similar behavior to the 
other algorithms for F 3, F 6, and F 10. 

5.1.4. Wilcoxon’s rank test analysis 
The P -values of the Wilcoxon’s rank-sum test for each com- 
petitive algorithm with the proposed mSHO are represented in 

Table 5 . Wilcoxon’s rank-sum test is a non-parametric test to 
find the significance of the results. It is proposed by Wilcoxon 

( 1992 ) with a 5% significant le v el. It is observ ed fr om the ta- 
ble that the proposed mSHO wins in all comparisons except 
when compared with DO for F 6, HGS for F 10, PSO for F 8/ F 10, and 

SPO for F 5. 

6. Performance of mSHO on Engineering 

Design Problems 

This section e v aluates the mSHO algorithm’s performance in real- 
world engineering applications such as: 

(i) Pr essur e v essel design pr oblem, 
(ii) Speed beam design problem, 
(iii) Tension/compression spring design, 
(iv) Welded beam design problem, 
(v) Three-bar truss engineering design problem, 
(vi) Industrial r efriger ation system pr oblem, 
(vii) Multi-pr oduct batc h plant pr oblem, 
(viii) Cantile v er beam problem, and 

(ix) Multi-disc clutch brake problem. 

T hose problems ha ve been addressed using mSHO and com- 
paring r esults a gainst those of other competing algorithms . T he 
SHO and competing algorithms were run 30 separate times with
otal 1000 iterations to arrive at a fair comparison. 

.1. Pressure vessel design problem 

ne of the most common engineering design problems is pres-
ur e v essel design pr oblem, with the aim of finding cost of the
r essur e v essel. This pr oblem has four differ ent types of v ari-
bles: head thickness ( T h ), shell thickness ( T s ), length of cylin-
rical unit ( L ), and the inner radius ( R ). The mathematical struc-
ure of the pressure vessel design problem and the four types of
onstr aints a pplied to the pr oblem design is pr esented in equa-
ion ( 22 ). This engineering problem (tensile design/compressed 

pring) is solved using the proposed mSHO and other competitive
lgorithms as shown in Table 6 . The obtained statistical results
r e pr esented in T able 7 . T able 7 shows that the optimal value of
he function is 0.012 665, which was ac hie v ed using the mSHO al-
orithm. Results r e v eal that FLA is superior to all other competing
lgorithms. 

In addition, as shown in Fig. 4 , the conv er gence curv es and
oxplot for the mSHO algorithm and other compared meth- 
ds for the pr essur e v essel design pr oblem ar e pr esented. The
onv er gence curv e plots the av er a ge best v alues a gainst the
umber of iterations for the mSHO algorithm and other com-
ared algorithms after running 1000 times . T he results indicate
hat the mSHO algorithm conv er ges faster than the other al-
orithms and can typicall y r eac h a near-optimal solution more
uic kl y. While the other algorithms demonstr ate competitiv e per-
ormance, the SAO and CMA-ES exhibit the lo w est performance.
urthermor e, the boxplot r esults illustr ate the stability of the pro-
osed mSHO algorithm, follo w ed b y the A O A and PSO algorithms.
hese findings demonstrate the effectiveness and stability of the 
roposed mSHO algorithm in tackling the pressure vessel design 

roblem. 

Consider � x = 

[ 
x 1 x 2 x 3 x 4 

] 
= 

[ 
T s T h R L 

] 
, 

Minimize 0 . 6224 x 1 x 3 x 4 + 1 . 7781 x 2 x 2 3 + 3 . 1661 x 2 1 x 4 + 19 . 84 x 2 1 x 3 , 

Subject to g 1 ( � x ) = −x 1 + 0 . 0193 x 3 � 0 , 
g 2 ( � x ) = −x 2 + 0 . 00 954 x 3 � 0 

g 3 ( � x ) = −πx 2 3 x 4 −
4 
3 

πx 3 3 + 1296 000 � 0 , 

g 4 ( � x ) = x 4 − 240 � 0 

Variables range 0 � x 1 � 99 , 
0 � x 2 � 99 
10 � x 3 � 200 
10 � x 4 � 200 . 

(22) 

.2. Speed reducer design problem 

ne of the most significant engineering design problems is the
peed reducer, as described in the study by Sadollah et al., ( 2013 ).
he primary goal of this problem is to minimize the weight of the
peed reducer by optimizing se v en v ariables while also account-
ng for limitations on the curv atur e str ess of gear teeth, trans-
erse deflections of the shafts, stresses in the shafts, and sur-
ace stress . T he mathematical model for this problem is presented
elow: 

Minimize f ( � x ) = 0 . 7854 x 1 x 2 2 

(
3 . 3333 x 2 3 + 14 . 9334 x 3 − 43 . 0934 

)
− 1 . 508 x 1 

(
x 2 6 + x 2 7 

) + 7 . 4777 
(
x 3 6 + x 3 7 

)
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Subject to g 1 ( � x ) = 

27 
x 1 x 2 2 x 3 

− 1 � 0 

g 2 ( � x ) = 

397 . 5 
x 1 x 2 2 x 

2 
3 

− 1 � 0 

g 3 ( � x ) = 

1 . 93 x 3 4 

x 2 x 3 x 4 6 

− 1 � 0 

g 4 ( � x ) = 

1 . 93 x 3 5 

x 2 x 3 x 4 7 

− 1 � 0 

g 5 ( � x ) = 

√ (
745 x 4 
x 2 x 3 

)2 
+ 16 . 9 × 10 6 

110 . 0 x 3 6 

− 1 � 0 

g 6 ( � x ) = 

√ (
745 x 4 
x 2 x 3 

)2 
+ 157 . 5 × 10 6 

85 . 0 x 3 6 

− 1 � 0 

g 7 ( � x ) = 

x 2 x 3 
40 

− 1 � 0 

g 8 ( � x ) = 

5 x 2 
x 1 

− 1 � 0 

g 9 ( � x ) = 

x 1 
12 x 2 

− 1 � 0 

g 10 ( � x ) = 

1 . 5 x 6 + 1 . 9 
x 4 

− 1 � 0 

g 11 ( � x ) = 

1 . 1 x 7 + 1 . 9 
x 5 

− 1 � 0 

Variables range 2 . 6 � x 1 � 3 . 6 
0 . 7 � x 2 � 0 . 8 
17 � x 3 � 28 
7 . 3 � x 4 � 8 . 3 
7 . 8 � x 5 � 8 . 3 
2 . 9 � x 6 � 3 . 9 
5 . 0 � x 7 � 5 . 5 . 

(23) 

The speed reducer engineering problem was tackled using the 
roposed mSHO algorithm and other competitive algorithms, as 
epicted in Table 8 . The obtained statistical r esults ar e pr esented

n Table 9 . As demonstrated in Table 9 , the optimal value of the
unction is 2993.634, which was achieved using the mSHO, HGS,
 O A, and PSO algorithms . T he r esults r e v eal that the mSHO al-
orithm pr oduces pr omising outcomes compar ed with the other
lgorithms and has the potential to ac hie v e minimal total weight
or the speed reducer in this problem. 

Figure 5 depicts the convergence curves and boxplot for the
SHO algorithm and other compared methods for the speed re-

ucer design problem. As shown in the figure, the mSHO algo-
ithm conv er ges faster than the other algorithms and can usu-
lly obtain the near-optimal solution more rapidly. Although the 
ther algorithms also sho w ed competitive performance, the HHO
nd SAO had the lo w est performance. On the other hand, the
oxplot results illustrate the stability of the proposed mSHO al-
orithm, follo w ed b y the HGS and PSO algorithms. Ov er all, the
xperiment’s findings r e v eal the efficacy and stability of the pro-
osed mSHO algorithm in tackling the speed reducer design 

roblem. 

.3. Tension/compression spring problem 

he tension/compression spring design optimization problem is 
 mechanical engineering problem that aims to minimize the 
eight of the spring while ensuring that certain constraints are

atisfied (Bhadoria & Kamboj, 2019 ). The pr oblem involv es select-
ng the optimal values for parameters such as wire diameter ( d ),
umber of active coils ( N ), and mean coil diameter ( D ). Constraints
re placed on the surge frequency, minimum deflection, and shear
tress . T he goal is to find the optimal combination of parameters
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Table 6: Best solution obtained from the comparative algorithms for solving the pressure vessel design problem. 

Algorithm x1 x2 x3 x4 Cost 

mSHO 0.774 555 0.383 203 40.31 962 200 5870.12 409 
SHO 0.783 011 0.395 825 40.70 835 194.6584 5908.30 062 
DO 0.774 533 0.383 229 40.31 962 200 5870.12 562 
CMA-ES 0.859 051 0.473 962 43.62 445 180.7057 6879.70 268 
HGS 0.774 549 0.383 204 40.31 962 200 5870.12 398 
A O A 0.774 549 0.383 204 40.31 962 200 5870.12 398 
SAO 2.527 902 5.801 292 1.559 886 5.133 647 7710.96 822 
HHO 0.835 827 0.430 123 43.61 014 158.7634 6046.19 065 
PSO 0.778 476 0.385 079 40.52 191 197.203 5876.94 102 
SPO 0.774 574 0.383 204 40.31 962 200 5870.1246 

Table 7: Results obtained from competitor algorithms for pressure vessel design problem. 

Mea. mSHO SHO DO CMA-ES HGS A O A SAO HHO PSO SPO 

Min 5870.1241 5908.3006 5870.1256 6879.703 5870.124 5870.124 7710.968 6046.191 5876.941 5870.125 
Max 5870.1342 7271.3656 7156.128 8758.232 7301.196 6666.339 23 390.18 7464.369 6898.222 21 829.09 
Mean 5870.1266 6196.8232 6199.5342 6942.32 6353.867 6145.893 13 266.08 6530.491 6242.955 7035.835 
Std 0.0029 181 368.8253 418.47 407 342.971 563.4305 219.693 3334.069 399.0299 248.7349 2850.707 
Rank 1 3 4 9 6 2 10 7 5 8 
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hat satisfies all constraints while minimizing the weight of the
pring. The following equations present the mathematical model
or this particular engineering design problem: 

Consider � x = 

[
x 1 x 2 x 3 

] = 

[
d D N 

]
Minimize f ( � x ) = ( x 3 + 2 ) x 2 x 2 1 

Subject to g 1 ( � x ) = 1 − x 3 2 x 3 
71 785 x 4 1 

� 0 

g 2 ( � x ) = 

4 x 2 2 −x 1 x 2 
12 566 ( x 2 x 3 1 −x 4 1 ) 

+ 

1 
5108 x 2 1 

� 0 

g 3 ( � x ) = 1 − 140 . 45 x 1 
x 2 2 x 3 

� 0 

g 4 ( � x ) = 

x 1 + x 2 
1 . 5 − 1 � 0 

Variables range 0 . 05 � x 1 � 2 
0 . 25 � x 2 � 1 . 30 
2 . 00 � x 3 � 15 . 

(24)

The proposed mSHO algorithm and other competitive algo-
ithms were employed to solve this engineering problem as pre-
ented in Table 10 . The statistical results obtained from the ex-
eriments ar e pr ovided in Table 11 . It is e vident fr om Table 11
hat the mSHO algorithm ac hie v ed the optimal value of the func-
ion, which was 0.012 665. The results indicate that the mSHO al-
orithm performed significantly better than the other algorithms
n ac hie ving a minimal weight of the tension spring in this prob-
em. 

Figure 6 presents the convergence curves and boxplot for
he tension/compression spring design problem solved using the

SHO algorithm and other competitive methods . T he results
how that the proposed mSHO algorithm outperforms the other
lgorithms, ac hie ving the near-optimal solution faster. The SAO
nd HGS algorithms exhibit the lo w est performance, while the
 O A and SHO algorithms perform competitiv el y. The boxplot
nalysis further confirms the stability of the mSHO algorithm,
ollo w ed b y A O A and SHO. These r esults demonstr ate the effi-
iency and stability of the mSHO algorithm in solving the ten-
ion/compression spring design problem. 

.4. Welded beam design problem 

he welded beam design problem is another important engineer-
ng design problem that has been considered in pr e vious r esearc h
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Table 8: Best solution obtained from the comparative algorithms for solving speed reducer design problem. 

Algorithm x1 x2 x3 x4 x5 x6 x7 Cost 

mSHO 3.497 599 0.7 17 7.3 7.713 535 3.350 056 5.285 631 2993.634 
SHO 3.498 576 0.7 17 7.3 7.70 853 3.349 319 5.28 455 2994.77 
DO 3.497 563 0.7 17 7.300 001 7.713 536 3.350 059 5.285 605 2993.635 
CMA-ES 3.6 0.7 17 7.3 8.072 148 3.402 879 5.312 241 3071.526 
HGS 3.497 599 0.7 17 7.3 7.713 535 3.350 056 5.285 631 2993.634 
A O A 3.497 599 0.7 17 7.3 7.713 535 3.350 056 5.285 631 2993.634 
SAO 3.6 2.6 3.565 453 2.84 373 2.951 027 3.314 187 2.715 053 3230.902 
HHO 3.49 797 0.7 17 7.3 7.732 423 3.350 521 5.285 312 2994.197 
PSO 3.497 599 0.7 17 7.3 7.713 535 3.350 056 5.285 631 2993.634 
SPO 3.497 613 0.7 17 7.3 7.713 331 3.350 886 5.285 453 2993.836 

Table 9: Results obtained from competitor algorithms for speed reducer engineering problem. 

Mea. mSHO SHO DO CMA-ES HGS A O A SAO HHO PSO SPO 

Min 2993.6343 2994.7697 2993.63 462 3071.526 2993.634 2993.634 3230.902 2994.197 2993.634 2993.836 
Max 2993.6343 3821.162 3001.20 628 3072.334 2993.717 3006.627 8071.254 4307.676 2993.634 3359.51 
Mean 2993.6343 3139.9316 2994.73 651 3072.307 2993.637 2994.509 4153.676 3146.587 2993.634 3118.58 
Std 2.67E −13 200.19 962 1.80 047 494 0.147 413 0.015 028 2.925 884 956.0172 259.7566 2.67E −13 107.8919 
Rank 1 8 5 7 3 4 10 9 2 6 
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(Sadollah et al., 2013 ). The main objective of this problem is to min- 
imize the cost of fabricating a welded beam by optimizing four 
v ariables: bar thic kness ( b ), bar length including attached parts 
( l ), weld thickness ( h ), and bar height ( h ). The problem is subject 
to four constraints, including buckling constraints of the bar ( P c ),
side constraints, end deflection of the beam ( d ), bending stress of 
the beam ( h ), and shear stress . T he mathematical model for this 
problem is given as follows: 

Consider � x = [ x 1 x 2 x 3 x 4 ] = [ hlttbb ] 
Minimize f ( � x ) = 1 . 10 471 x 2 1 x 2 + 0 . 04 811 x 3 x 4 ( 14 . 0 + x 2 ) 
Subject to g 1 ( � x ) = τ ( � x ) − τmax � 0 

g 2 ( � x ) = σ ( � x ) − σmax � 0 
g 3 ( � x ) = δ( � x ) − δmax � 0 
g 4 ( � x ) = x 1 − x 4 � 0 
g 5 ( � x ) = P − P c ( � x ) � 0 
g 6 ( � x ) = 0 . 125 − x 1 � 0 
g 7 ( � x ) = 1 . 10 471 x 2 1 + 0 . 04 811 x 3 x 4 ( 14 . 0 + x 2 ) − 5 . 0 � 0 

Variables range 0 . 1 � x 1 � 2 
0 . 1 � x 2 � 10 
0 . 1 � x 3 � 10 
0 . 1 � x 4 � 2 

where τ ( � x ) = 

√ 

( τ ′ ) 2 + 2 τ ′ τ ′′ x 2 
2 R + ( τ ′′ ) 2 , 

τ ′ = 

p √ 

2 x 1 x 2 
, τ ′′ = 

MR 
J 

M = P 
(
L + 

x 2 
2 

)
R = 

√ 

x 2 2 
4 + 

(
x 1 + x 3 

2 

)2 

J = 2 
{√ 

2 x 1 x 2 

[
x 2 2 
4 + 

(
x 1 + x 3 

2 

)2 
]}

σ ( � x ) = 

6 PL 
x 4 x 

2 
3 
, δ( � x ) = 

6 PL 3 

Ex 2 3 x 4 

P c ( � x ) = 

4 . 013 E √ 
x 2 3 x 

6 
4 

36 

(
1 − x 3 

2 L 

√ 
E 

4 G 

)
L 2 

( 
P = 6000 lb , L = 14 in ., δmax = 0 . 25 in. 
E = 30 × 1 6 psi , G = 12 × 10 6 psi 
τmax = 13 600 psi , σmax = 30 000 psi . 

(25) 

This engineering problem is solved using the proposed mSHO 

and other competitive algorithms as shown in Table 12 . The ob- 
tained statistical r esults ar e pr esented in T able 13 . T able 13 shows 
that the optimal value of the function is 1.724 967, which was 
ac hie v ed using the mSHO algorithm. As the results show, mSHO 

pr oduces pr omising r esults in comparison with the other algo- 
rithms and has a good ability for ac hie ving minimal fabrication’s 
cost in this problem. 
Figur e 5: Con v er gence curv e and boxplot for mSHO a gainst other 
competitors – speed reducer engineering problem. 
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Table 10: Best solution obtained from the comparative algorithms 
for solving tension/compression spring problem. 

Algorithm x1 x2 x3 Cost 

mSHO 0.051 687 0.356 672 11.29 167 0.012 665 
SHO 0.050 987 0.340 068 12.33 627 0.012 674 
DO 0.051 983 0.363 837 10.88 351 0.012667 
CMA-ES 0.05 0.311 342 15 0.013 232 
HGS 0.05 251 0.376 782 10.20 369 0.012 678 
A O A 0.051 803 0.359 477 11.12 903 0.012 665 
SAO 1.227 483 1.068 724 0.631 804 0.013 213 
HHO 0.052 513 0.376 854 10.19 919 0.012 677 
PSO 0.051 671 0.356 288 11.31 423 0.012 665 
SPO 0.051 436 0.350 646 11.65 453 0.012 667 
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The performance of the mSHO algorithm and other competi-
ive algorithms in solving the welded beam design problem is de-
icted in Fig. 7 . The results show that the mSHO algorithm con-
 er ges faster than the other algorithms and ac hie v es near-optimal
olutions quicker. Although the other algorithms also perform
ompetitiv el y, the SAO and CMA-ES algorithms show the lowest
erformance . Furthermore , the boxplot results demonstrate the
tability of the mSHO algorithm, follo w ed b y the DO and A O A al-
orithms . T hese results indicate the efficiency and stability of the
SHO algorithm in solving the welded beam design problem. 

.5. Three-bar truss engineering design problem 

he aim of this engineering design problem is to minimize the
eight of a truss by optimizing two parameters that r epr esent

he cross-sectional areas ( x 1 and x 2 ), subject to the bounds con-
traints of 0 ≤ x 1 , x 2 ≤ 1. Additionally, three inequality constraints
r e r elated to buc kling, deflection, and str ess . T he mathematical
 epr esentation of this problem is as follows: 

Consider � x = 

[ 
x 1 x 2 

] 
= 

[ 
A 1 A 2 

] 

Minimize f ( � x ) = 

(
2 
√ 

2 x 1 + x 2 
)

∗ l , 

Subject to g 1 ( � x ) = 

√ 

2 x 1 + x 2 √ 

2 x 2 1 + 2 x 1 x 2 
P − σ � 0 

g 2 ( � x ) = 

x 2 √ 

2 x 2 1 + 2 x 1 x 2 
P − σ � 0 

g 3 ( � x ) = 

1 √ 

2 x 2 + x 1 
P − σ � 0 

Variables range 0 � x 1 , x 2 � 1 

where l = 100 cm , P = 

2 KN 
cm 

2 , σ = 

2 KN 
cm 

2 . 

(26) 

The engineering problem is tackled using the proposed mSHO
lgorithm and other competitive algorithms, as shown in Table 14 .
he statistical results obtained are presented in Table 15 , which

ndicates that the mSHO algorithm ac hie v ed the optimal value of
he function, 263.8915. The r esults demonstr ate that mSHO pro-
able 11: Results obtained from competitor algorithms for tension/com

Mea. mSHO SHO DO CMA-ES HGS 

Min 0.012 665 0.012 674 0.012 667 0.013 232 0.012 67
Max 0.012 738 0.014 513 0.014 664 0.013 278 1373.172
Mean 0.012 672 0.012 965 0.013 254 0.013 277 45.79 45
Std 1.44E-05 0.000 415 0.000 563 8.44E-06 250.7016
Rank 1 2 4 5 10 
uces better results than the other algorithms and has a strong
bility to minimize the weight of the truss in this problem. 

In addition, Fig. 8 displays the conv er gence curv es and boxplot
or the mSHO and other compared algorithms in solving the three-
ar truss design pr oblem. The figur e demonstr ates that the mSHO
lgorithm conv er ges faster than the other methods and can gen-
r all y ac hie v e near-optimal solutions mor e quic kl y. Although the
ther algorithms also exhibit competitive performance, the SAO
nd HGS show the lowest performance . Moreo ver, the boxplot re-
ults indicate the stability of the mSHO algorithm, follo w ed b y the
SO and A O A algorithms . T hese results suggest that the proposed
pression spring problem. 

A O A SAO HHO PSO SPO 

8 0.012 665 0.013 213 0.012 677 0.012 665 0.012 667 
 0.014 318 0.029 041 0.017 286 0.016 907 0.030 455 

3 0.013 044 0.020 018 0.013 592 0.013 508 0.014 547 
 0.000 507 0.003 995 0.000 955 0.001 161 0.004 475 

3 9 7 6 8 
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Table 12: Best solution obtained from the comparative algorithms for solving welded beam design problem. 

Algorithm x1 x2 x3 x4 Cost 

mSHO 0.20 573 3.470 471 9.036 627 0.20 573 1.724 852 
SHO 0.192 302 3.778 244 9.052 142 0.205 653 1.746 601 
DO 0.20 573 3.470 495 9.036 626 0.20 573 1.724 854 
CMA-ES 0.205 259 3.492 761 9.043 531 0.205 725 1.728 297 
HGS 0.205 736 3.470 414 9.036 457 0.205 737 1.724 881 
A O A 0.20 573 3.470 473 9.036 624 0.20 573 1.724 852 
SAO 2 0.932 642 1.496 869 0.644 415 1.792 207 
HHO 0.173 239 4.308 508 9.096 589 0.205 631 1.790 459 
PSO 0.20 573 3.470 475 9.036 624 0.20 573 1.724 852 
SPO 0.20 573 3.470 484 9.036 623 0.20 573 1.724 852 

Table 13: Results obtained from competitor algorithms for the welded beam problem. 

Mea. mSHO SHO DO CMA-ES HGS A O A SAO HHO PSO SPO 

Min 1.724 852 1.746 601 1.724 854 1.728 297 1.724 881 1.724 852 1.792 207 1.790 459 1.724 852 1.724 852 
Max 1.7256 4.306 289 1.744 596 2.266 116 4.341 756 1.836 955 4.036 102 2.682 967 2.175 585 3.03 395 
Mean 1.724 967 1.995 641 1.72 778 2.230 261 2.13 089 1.733 932 2.995 645 2.025 109 1.816 491 2.067 492 
Std 0.000 192 0.477 618 0.00 427 0.136 449 0.631 101 0.024 171 0.596 869 0.210 771 0.13 514 0.387 053 
Rank 1 5 2 9 8 3 10 6 4 7 
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Figur e 7: Con v er gence curv e and boxplot for mSHO a gainst other 
competitors – welded beam design problem. 
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SHO algorithm is efficient and stable in solving the three-bar 
russ design problem. 

.6. Industrial refriger a tion system problem 

he objective of the industrial refrigeration system problem is 
o minimize the cost of the r efriger ation system while optimiz-
ng the r efriger ants, temper atur e le v els, cycle configur ation, and
ompr ession tec hnology. This pr oblem is described mathemati- 
ally and has multiple variables and constraints . T he details of the
r oblem form ulation can be found in Mar ec hal and Kalitv entzeff
 2001 ). The problem can be mathematically formulated as fol-
ows: 

Minimize f (x ) = 63 098 . 88 x 2 x 4 x 12 + 5441 . 5 x 2 2 x 12 

+ 115 055 . 5 x 1 . 664 
2 x 6 + 6172 . 27 x 2 2 x 6 

+ 63 098 . 88 x 1 x 3 x 11 5441 . 5 x 2 1 x 11 

+ 115 055 . 5 x 1 . 664 
1 x 5 + 6172 . 27 x 2 1 x 5 

+ 140 . 53 x 1 x 11 + 281 . 29 x 3 x 111 

+ 70 . 26 x 2 1 + 281 . 29 + 281 . 29 x 2 3 
+ 14 437 x 1 . 8812 

8 x 0 . 3424 
12 x 10 x −1 

14 x 
2 
1 x 7 x 

−1 
9 

+ 20 470 . 2 x 2 . 893 
7 s 0 . 316 

11 x 2 1 x 1 x 3 

Subject to g 1 (x ) = 1 . 524 x −1 
7 ≤ 1 

g 2 (x ) = 1 . 524 x −1 
8 ≤ 1 

g 3 (x ) = 0 . 07 789 x 1 − 2 x −1 
7 x 9 − 1 ≤ 0 

g 4 (x ) = 7 . 05 305 x −1 
9 x 2 1 x 10 x −1 

8 x −1 
2 x −1 

14 − 1 ≤ 0 , 
g 5 (x ) = 0 . 0833 x −1 

13 x 14 − 1 ≤ 0 , 
g 6 (x ) = 47 . 136 x 0 . 333 

2 x −1 
10 x 12 − 1 . 333 x 8 x 2 . 1195 

13 
+ 62 . 08 x 2 . 1195 

13 x −1 
12 x 

0 . 2 
8 x −1 

10 − 1 ≤ 0 
g 7 (x ) = 0 . 04 771 x 10 x 1 . 8812 

8 x 0 . 3424 
12 − 1 ≤ 0 

g 8 (x ) = 0 . 0488 x 9 x 1 . 893 
7 x 0 . 316 

11 − 1 ≤ 0 
g 9 (x ) = 0 . 0099 x 1 x −1 

3 − 1 ≤ 0 , 
g 10 (x ) = 0 . 0193 x 2 x −1 

4 − 1 ≤ 0 
g 11 (x ) = 0 . 0298 x 1 x −1 

5 − 1 ≤ 0 , 
g 12 (x ) = 0 . 056 x 2 x −1 

6 − 1 ≤ 0 
g 13 (x ) = 2 x −1 

9 − 1 ≤ 0 , 
g 14 (x ) = 2 x −1 

10 − 1 ≤ 0 , 
g 15 (x ) = x 12 x −1 

11 − 1 ≤ 0 

Variables range 0 . 001 ≤ x i ≤ 5 , i = 1 , · · · , 14 . 

(27) 

The proposed mSHO algorithm and other competitive algo- 
ithms are used to solve this engineering problem, as shown in
able 16 . The statistical results obtained are presented in Ta-
le 17 , which indicates that the mSHO algorithm ac hie v ed the op-
imal value of the function at 0.032 255. The results demonstrate
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Table 14: Best solution obtained from the comparative algorithms 
for solving three-bar truss engineering design problem. 

Algorithm x1 x2 Cost 

mSHO 0.788 649 0.408 235 263.8915 
SHO 0.787 638 0.411 102 263.8922 
DO 0.788 649 0.408 234 263.8915 
CMA-ES 0.756 483 0.508 411 264.8067 
HGS 0.780 942 0.431 176 264.0014 
A O A 0.788 649 0.408 235 263.8915 
SAO 1 0.733 032 264.4989 
HHO 0.788 486 0.408 697 263.8915 
PSO 0.788 649 0.408 235 263.8915 
SPO 0.788 651 0.408 229 263.8915 
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hat mSHO yields promising outcomes compared with other al-
orithms and is proficient in ac hie ving the minim um cost of the
 efriger ation system in this problem. 

Figure 9 shows the convergence curves and boxplot for the in-
ustrial r efriger ation system optimization pr oblem using mSHO
nd the compared algorithms . T he results indicate that the mSHO
lgorithm ac hie v es faster conv er gence and usuall y obtains near-
ptimal solutions quicker than the other algorithms. Although
he other algorithms also demonstrate competitive performance,
he SAO and SPO algorithms show the lowest performance. Fur-
hermor e, the boxplot r esults show that the pr oposed mSHO algo-
ithm exhibits stability in comparison with the DO and SHO algo-
ithms . T hese findings demonstrate the effectiveness and stability
f the proposed mSHO algorithm in solving the industrial refrig-
ration system optimization problem. 

.7. Multi-product batch plant problem 

he objective of this model is to minimize the production cost
f a m ulti-pr oduct batc h pr ocess by optimizing the allocation of
esources . T he process consists of three stages that all products
ollow, and there are two different products being produced. The

odel has 10 decision variables: N 1 , N 2 , N 3 , V 1 , V 2 , V 3 , T 1 , T 2 , B 1 , and
 2 , r epr esented by the shorthand notations x 1 through x 10 . The
athematical formulation of the model, as presented in Kumar

t al., ( 2020 ), is as follows: 

Minimize f (x ) = 

M ∑ 

j=1 

a j N j V 
b j 
j 

Subject to g 1 (x ) = S i j B i − V j ≤ 0 

g 2 (x ) = −H + 

∑ N 
i =1 

Q i T i 
B i 

≤ 0 

g 3 (x ) = t i j − N j T i ≤ 0 

Variables range 1 ≤ N i ≤ 3 
250 ≤ V i ≤ 2500 

max 
(

t i j 
N u 

j 

)
≤ T i ≤ max 

(
t i j 

)
Q ∗i T i 

H ≤ B i ≤ min 
(

Q i , min 
(

V u 
j 

S i j 

))

(28) 

where N = 2, M = 3, a j = 250, H = 6000, b j = 0.6, S 11 = 2, S 12 =
, S 13 = 4, S 21 = 4, S 22 = 6, S 23 = 3, t 11 = 8, t 12 = 20, t 13 = 8, t 21 =
6, t 22 = 4, and t 23 = 4. i means the product, j means the stage of
able 15: Results obtained from competitor algorithms for three-bar t

Mea. mSHO SHO DO CMA-ES HGS 

Min 263.8915 263.8922 263.8915 264.8067 264.0014
Max 263.8915 264.2569 263.8919 265.1765 289.6074
Mean 263.8915 263.9661 263.8915 264.819 269.3437
Std 2.59E −11 0.086 065 8.03E −05 0.067 512 6.670 94
Rank 1 5 4 8 9 
r oduction, a j is v ariable cost coefficient of sta ge j pr ocess equip-
ent investment cost, N j is the number of equipment at stage j ,
 j is the size of equipment at stage j , T i means the cycle time of
roduct i , B i means the batch size of product i , b j is the fixed-cost
 har ges for the investment cost of process equipment at stage j . 

The m ulti-pr oduct batc h pr ocess model pr esented abov e aims
o reduce production costs by optimizing the allocation of re-
ources in product manufacturing. To solve this problem, the pro-
osed mSHO algorithm and se v er al other competitive algorithms
er e compar ed, and the r esults ar e pr esented in Table 18 . Fr om
russ engineering design problem. 

A O A SAO HHO PSO SPO 

 263.8915 264.4989 263.8915 263.8915 263.8915 
 263.8915 308.1042 264.4841 263.8915 269.4398 
 263.8915 274.0035 264.001 263.8915 264.0988 

3 7.45E −07 9.827 149 0.128 725 3.61E −07 1.011 145 
3 10 6 2 7 



Journal of Computational Design and Engineering, 2024, 11(1), 73–98 | 91 

Ta
b

le
 
16

: B
es

t 
so

lu
ti

on
 
ob

ta
in

ed
 
fr

om
 
th

e 
co

m
p

ar
at

iv
e 

al
go

ri
th

m
s 

fo
r 

so
lv

in
g 

in
d

u
st

ri
al

 
re

fr
ig

er
at

io
n
 
sy

st
em

 
p

ro
b

le
m

. 

A
lg

or
it

h
m

 
x

1 
x

2 
x

3 
x

4 
x

5 
x

6 
x

7 
x

8 
x

9 
x

10
 

x
11

 
x

12
 

x
13

 
x

14
 

C
os

t 

m
SH

O
 

0.
00

1 
0.

00
1 

0.
00

1 
0.

00
1 

0.
00

1 
0.

00
1 

1.
52

4 
1.

52
4 

4.
99

99
98

 
2 

0.
00

1 
0.

00
1 

0.
00

7 
27

9 
0.

08
7 

37
9 

0.
03

2 
25

5 
SH

O
 

0.
00

1 
0.

00
1 

0.
00

1 
0.

00
1 

0.
00

1 
0.

00
1 

1.
52

7 
54

9 
1.

52
3 

77
7 

4.
83

51
44

 
2.

04
68

 
0.

00
1 

0.
00

1 
0.

00
2 

69
2 

0.
03

0 
83

6 
0.

09
5 

67
6 

D
O
 

0.
00

1 
0.

00
1 

00
1 

0.
00

1 
03

8 
0.

00
1 

01
5 

0.
00

1 
00

1 
0.

00
1 

00
1 

1.
52

4 
1.

52
4 

00
2 

4.
99

99
52

 
2.

00
0 

01
1 

0.
00

1 
0.

00
1 

0.
00

7 
29

1 
0.

08
7 

52
9 

0.
03

2 
27

2 
C

M
A

-E
S 

0.
00

1 
0.

00
1 

3.
89

6 
11

7 
5 

0.
00

1 
0.

00
1 

2.
62

2 
88

5 
5 

5 
2.

65
2 

28
1 

0.
00

1 
0.

00
1 

0.
00

1 
0.

00
1 

43
11

.6
59

 

H
G

S 
0.

00
1 

0.
00

1 
0.

00
1 

0.
00

1 
0.

00
1 

0.
00

1 
1.

52
4 

1.
52

4 
5 

2 
0.

00
1 

0.
00

1 
0.

00
7 

29
3 

0.
08

7 
55

6 
0.

03
2 

21
3 

A
 O
 A
 

0.
00

1 
00

5 
0.

00
1 

0.
00

1 
08

6 
0.

00
1 

14
6 

0.
00

1 
03

5 
0.

00
1 

1.
52

4 
1.

52
4 

03
9 

4.
99

84
29

 
2 

0.
00

1 
0.

00
1 

0.
00

 
72

8 
0.

08
7 

39
9 

0.
03

2 
71

1 
SA

O
 

4.
05

6 
26

1 
3.

89
7 

61
5 

3.
83

 
31

8 
0.

34
1 

57
3 

0.
15

9 
48

3 
4.

16
2 

31
8 

3.
26

3 
21

3 
3.

98
4 

31
2 

0.
91

46
73

 
5 

0.
72

9 
44

3 
4.

06
0 

66
9 

4.
24

0 
33

8 
5 

14
 
24

6 
04

4 
H

H
O
 

0.
00

1 
0.

00
1 

0.
00

5 
30

9 
0.

24
2 

90
3 

0.
01

0 
03

1 
0.

00
4 

43
5 

2.
86

 
16

5 
2.

51
3 

47
7 

2.
02

41
21

 
2.

00
0 

02
1 

0.
00

1 
0.

00
1 

0.
00

6 
78

7 
0.

07
9 

80
4 

0.
36

4 
21

9 
PS

O
 

0.
00

1 
0.

00
1 

0.
00

1 
0.

00
1 

0.
00

1 
0.

00
1 

1.
52

4 
1.

52
4 

5 
2.

00
0 

02
2 

0.
00

1 
0.

00
1 

0.
00

7 
29

3 
0.

08
7 

55
7 

0.
03

2 
21

3 
SP

O
 

0.
00

1 
0.

00
1 

0.
00

1 
17

6 
0.

00
2 

80
6 

0.
00

1 
0.

00
1 

1.
52

4 
08

7 
1.

52
4 

00
1 

5 
5 

0.
00

1 
13

6 
0.

00
1 

11
7 

0.
00

8 
45

7 
0.

10
1 

52
9 

0.
05

8 
81

5 

Ta
b

le
 
17

: R
es

u
lt

s 
ob

ta
in

ed
 
fr

om
 
co

m
p

et
it

or
 
al

go
ri

th
m

s 
fo

r 
in

d
u

st
ri

al
 
re

fr
ig

er
at

io
n
 
sy

st
em

 
p

ro
b

le
m

. 

M
ea

. 
m

S
H

O
 

S
H

O
 

D
O
 

C
M

A
-E

S
 

H
G

S
 

A
 O
 A
 

S
A

O
 

H
H

O
 

PS
O
 

S
PO

 

M
in
 

0.
03

2 
25

5 
0.

09
5 

67
6 

0.
03

2 
27

2 
43

11
.6

59
 

0.
03

2 
21

3 
0.

03
2 

71
1 

14
 
24

6 
04

4 
0.

36
4 

21
9 

0.
03

2 
21

3 
0.

05
8 

81
5 

M
ax

 
0.

05
2 

87
5 

0.
32

4 
59

2 
0.

13
 
29

8 
26

60
 
16

3 
93

6 
18

9.
4 

93
6 

18
9.

4 
4.

76
E +

 09
 

98
4 

16
5.

9 
93

6 
18

9.
4 

2.
44

E +
 08

 

M
ea

n
 

0.
03

8 
30

5 
0.

18
9 

57
5 

0.
05

6 
88

8 
92

 
84

0.
04

 
31

2 
06

3.
2 

31
 
20

6.
37

 
7.

88
E +

 08
 

34
9 

83
3.

5 
93

 
61

9 
62

 
38

8 
45

1 
St

d
 

0.
00

5 
23

3 
0.

04
1 

01
5 

0.
02

3 
44

7 
48

4 
88

9.
9 

44
8 

86
8.

4 
17

0 
92

4 
9.

26
E +

 08
 

46
6 

96
4.

4 
28

5 
65

8.
1 

74
 
64

9 
81

1 
R

an
k 

1 
3 

2 
8 

6 
4 

10
 

7 
5 

9 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/11/1/73/7505773 by U

niversidad de G
ranada - Biblioteca user on 30 April 2024



92 | Approach for solving global optimization and engineering problems 

x2.893 0.316 2
7 s11 x1 x1x3

A
ve

ra
ge

B
es

tS
o-

fa
r

10

Optimal Design of Industrial refrigeration System
1012

10

mSHO
SHODO

CMA-ES
HGS

108

AOA
SAO
HHO610 PSO
SPO

104

102

0
10

10-2

100  200 300 400 500 600 700 800  900  1000
(a)

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Itration

(b)

109 Optimal Design of Industrial refrigeration System

A
ve

ra
ge

f it
ne

s s

mSHO
SHO DO

CMA-ES
HGS

AOA
SAO

HHO PSO SPO

Figur e 9: Con v er gence curv e and boxplot for mSHO a gainst other 
competitors – industrial r efriger ation system problem. 

1012 Multi-product batch plant

mSHO
SHO

1010

DO
CMA-ES
HGS
AOA
SAO
HHO
PSO

108 SPO

106

104

100  200 300 400 500 600 700 800  900  1000
Itration(a)

6

5

4

3

2

1

0

(b)

1010 Multi-product batch plant

A
ve

ra
ge

B
es

tS
o-

f a
r

A
ve

ra
ge

fi t
ne

ss

mSHO
SHO DO

CMA-ES
HGS

AOA
SAO

HHO PSO SPO
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Table 18: Best solution obtained from the comparative algorithms for solving multi-product batch plant problem. 

Algorithm x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Cost 

mSHO 1.525 762 1.508 002 0.674 961 479.9229 719.8871 660.2033 9.999 419 7.999 732 120.1043 59.92 858 58 507.14 
SHO 1.519 752 1.855 192 0.628 977 531.0469 822.9263 705.5837 9.992 353 8.515 774 120.4098 71.54 331 62 676.08 
DO 0.728 125 0.645 495 1.135 645 963.3442 1445.014 1309.242 19.99 983 15.9997 234.6931 123.4888 53 639.01 
CMA-ES 1.780 084 2.350 703 0.549 313 483.1708 735.9209 709.1498 10.06 453 8.004 826 128.8223 56.37 59 471.57 
HGS 0.51 0.730 582 0.771 096 980.4283 1470.642 1286.898 20 16 220.6308 134.7916 53 820.53 
A O A 1.4302 1.377 871 0.610 608 959.619 1439.429 1321.696 20 16 240.7911 119.5092 53 663.04 
SAO 2.324 455 2.900 101 1.435 999 2.209 186 1.393 715 0.792 087 3.341 121 1.503 093 3.419 913 2.639 791 80 120.89 
HHO 1.713 052 1.587 087 1.188 423 524.3093 743.4804 1127.821 9.999 611 8.001 561 150.0532 48.29 276 64 778.06 
PSO 1.847 141 1.97 878 0.697 938 479.3873 719.081 663.0222 9.999 897 7.999 933 121.3927 59.1505 58 506.03 
SPO 0.51 0.51 0.51 1021.185 2088.131 1597.147 20 16 332.5038 89.04 394 61 399.49 

Table 19: Results obtained from competitor algorithms for multi-product batch plant problem. 

Mea. mSHO SHO DO CMA-ES HGS A O A SAO HHO PSO SPO 

Min 58 507.14 62 676.08 53 639.01 59 471.57 53 820.53 53 663.04 80 120.89 64 778.06 58 506.03 61 399.49 
Max 66 592.15 2.12E + 08 66 651.86 163 121.8 73 667.78 66 772.51 6.28E + 10 90 866.09 71 888.26 156 962.1 
Mean 58 966.85 15 388 990 58 445.22 108 481.4 62 058.75 61358.21 5.12E + 09 74008.67 61 126.71 108 824.3 
Std 1564.308 38 309 104 4082.766 31 395.86 5715.205 2877.974 1.26E + 10 6004.125 4792.113 28 836.15 
Rank 2 9 1 7 5 4 10 6 3 8 
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Table 20: Best solution obtained from the comparative algorithms for solving cantilever beam problem. 

Algorithm x1 x2 x3 x4 x5 Cost 

mSHO 6.015 906 5.308 734 4.495 939 3.500 899 2.152 182 1.339 956 
SHO 6.06 771 5.389 926 4.417 899 3.450 059 2.155 511 1.340 484 
DO 6.014 985 5.305 781 4.490 804 3.509 239 2.152 893 1.339 959 
CMA-ES 6.018 345 5.329 495 4.474 012 3.518 808 2.133 878 1.340 011 
HGS 6.019 407 5.297 822 4.482 162 3.517 852 2.1567 1.339 974 
A O A 6.011 535 5.310 885 4.495 655 3.502 741 2.152 851 1.339 957 
SAO 22.51 819 66.97 232 48.25 931 7.342 964 15.97 925 1.558 312 
HHO 6.045 302 5.265 671 4.576 413 3.520 634 2.075 623 1.340 579 
PSO 6.015 424 5.30 515 4.496 319 3.504 543 2.152 239 1.339 957 
SPO 6.022 957 5.276 079 4.519 865 3.514 974 2.140 741 1.340 016 

Table 21: Results obtained from competitor algorithms for cantilever beam problem. 

Mea. mSHO SHO DO CMA-ES HGS A O A SAO HHO PSO SPO 

Min 1.339 956 1.340 484 1.339 959 1.340 011 1.339 974 1.339 957 1.558 312 1.340 579 1.339 957 1.340 016 
Max 1.339 967 1.351 724 1.340 016 1.340 075 1.34 073 1.340 113 10.84 034 1.346 869 1.340 026 3.082 532 
Mean 1.339 957 1.344 196 1.339 972 1.340 013 1.340 229 1.339 991 6.036 222 1.342 705 1.339 974 1.552 187 
Std 2.08E −06 0.003 087 1.39E −05 1.17E −05 0.000 202 4.44E −05 2.312 212 0.001 409 1.93E −05 0.319 524 
Rank 1 8 2 5 6 4 10 7 3 9 
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the statistical results in Table 19 , it can be seen that the mSHO 

algorithm ac hie v ed the optimal v alue of the function, whic h was 
58 507.14. The comparison of the algorithms shows that mSHO 

outperforms the others and can ac hie v e minimal pr oduction costs 
in this problem. 

Furthermore , Fig. 10 displa ys the con v er gence curv es and box- 
plot for the mSHO algorithm and other competitive methods in 

solving the m ulti-pr oduct batc h plant pr oblem. The gr a ph shows 
that the proposed mSHO algorithm converges faster than the 
other algorithms and can typically obtain near-optimal solutions 
mor e quic kl y. Although the other algorithms also perform com- 
petitiv el y, SAO and SPO demonstr ate the poor est performance.
Conv ersel y, the boxplot r esults indicate the stability of the mSHO 

algorithm, follo w ed b y the DO and PSO algorithms . T hese findings 
indicate that the proposed mSHO algorithm is effective and stable 
in addressing the multi-product batch plant problem. 

6.8. Cantilever beam problem 

The cantile v er beam pr oblem belongs to the category of concrete 
engineering problems, as described in the study by Bhadoria and 

Kamboj ( 2019 ). The problem aims to minimize the ov er all weight 
of a cantile v er beam by optimizing the parameters of a hollow 

squar e cr oss-section. The mathematical form ulation of this pr ob- 
lem is presented as follows: 

Consider � x = [ x 1 x 2 x 3 x 4 x 5 ] 

Minimize f ( � x ) = 0 . 6224 ( x 1 + x 2 + x 3 + x 4 + x 5 ) 

Subject to g( � x ) = 

61 
x 3 1 

+ 

37 
x 3 2 

+ 

19 
x 3 3 

+ 

7 
x 3 4 

+ 

1 
x 3 5 

≤ 1 

Variable range 0 . 01 ≤ x 1 , x 2 , x 3 , x 4 , x 5 ≤ 100 . 

(29) 

The proposed mSHO algorithm and other competitive algo- 
rithms were employed to solve the cantilever beam problem, as 
shown in Table 20 . The statistical results obtained are presented 

in Table 21 ,which shows that the optimal value of the function is 
1.339 956, ac hie v ed by using the mSHO algorithm. These results 
demonstr ate that mSHO pr oduces pr omising outcomes in com- 
Figur e 11: Con v er gence curv e and boxplot for mSHO a gainst other 

competitors – cantile v er beam problem. 
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Table 22: Results obtained from competitor algorithms for multi-disc clutch brake problem. 

Algorithm x1 x2 x3 x4 x5 cost 

mSHO 70 90 1 213.5391 2 0.235 242 
SHO 69.99 874 90 1 66.50 295 2 0.235 255 
DO 70 90 1 999.9588 2 0.235 242 
CMA-ES 69.19 936 90 1 664.1618 2 0.243 435 
HGS 70 90 1 1000 2 0.235 242 
A O A 70 90 1 858.5333 2 0.235 242 
SAO 64.55 532 62.9971 60.45 108 61.2192 71.05524 0.257 118 
HHO 70 90 1 946.8728 2 0.235 242 
PSO 70 90 1 33.07 846 2 0.235 242 
SPO 70 90 1 1000 2 0.235 242 
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arison with the other algorithms, with a high ability to minimize
he weight of the cantile v er beam in this problem. 

Additionall y, Fig. 11 pr esents the conv er gence curv es and box-
lot of mSHO and other compared methods for the cantile v er
eam problem. The figure indicates that the proposed mSHO algo-
ithm exhibits faster conv er gence than the other algorithms and
an usually obtain near-optimal solutions more quickly. Although
he other algorithms also demonstrate competitive performance,
AO and SPO exhibit the lo w est performance . Furthermore , the
oxplot results reveal the stability of the proposed mSHO algo-
ithm, follo w ed b y the DO and PSO algorithms . T he results of this
xperiment demonstrate the efficiency and stability of the pro-
osed mSHO algorithm in solving the cantile v er beam problem. 

.9. Multiple disc clutch brake problem 

he multi-plate disc clutch brake is a w ell-kno wn optimization
roblem in mechanical engineering, which aims to minimize the
otal weight of a multiple-disc clutch brake by optimizing five vari-
bles: driving force ( F ), the number of friction surfaces ( Z ), the
hickness of discs ( A ), outer radius ( r 0), and inner radius ( r 1). These
 ariables ar e denoted by x 1, x 2, x 3, x 4, and x 5. The problem is sub-
ect to eight constraints based on the geometry and operating re-
uirements . T he mathematical formulation for this engineering
ptimization problem can be expressed as follows, as stated in
bderazek et al., ( 2017 ): 

Minimize f (x ) = π
(
r 2 0 − r 2 i 

)
(Z + 1) ρt 

Subject to g 1 (x ) = r 0 − r i − �r � 0 
g 2 (x ) = l max − (Z + 1)(t + δ) � 0 
g 3 (x ) = P max − P rz � 0 
g 4 (x ) = P max v vr max − P rz v sr � 0 
g 5 (x ) = v sr max − v sr � 0 
g 6 (x ) = T max − T � 0 
g 7 (x ) = M h − sM s � 0 
g 8 (x ) = T � 0 

Where M h = 

2 
3 

μF Z 
r 3 0 − r 3 i 

r 2 0 − r 2 i 

P rz = 

2 
3 

F 
π

(
r 2 0 − r 2 i 

)
v rz = 

2 πn 
(
r 3 0 − r 3 i 

)
90 

(
r 3 0 − r 3 i 

)
T = 

I z πn 
30 

(
M h − M f 

)
�r = 20 mm , I z = 55 kgm 

2 
, P max = 1 MPa 

F max = 1000 N , T max = 15 s , μ = 0 . 5 
s = 1 . 5 , M s = 40 Nm , M f = 3 Nm , N = 250 r/ min 
v sr max = 10 m / s , l max = 30 mm 

60 mm ≤ r i ≤ 80 mm , 90 mm ≤ r 0 ≤, 110 mm , 

1 . 5 mm ≤ t ≤ 3 mm , 600 N ≤ F ≤ 1000 N, 2 ≤ Z ≤ 9 . 

(30) 

The multi-plate disc clutch brake problem was solved by ap-
lying the mSHO algorithm and other competitive algorithms, as
resented in Table 22 . The statistical analysis of the results is
hown in Tables 23 and 24 , which indicates that the mSHO al-
orithm, along with the A O A algorithm, ac hie v ed the minim um
bjective function value of 0.235 242. These results demonstrate
hat the mSHO algorithm performs better than other algorithms
or minimizing the weight of the clutch brake in this engineering
roblem. 

Figure 12 shows the convergence curves and boxplot for mSHO
nd all other compared methods, revealing that the proposed
SHO algorithm conv er ged faster than the other algorithms and
as able to obtain near-optimal solutions more quickly. While

he other algorithms also sho w ed competitive performance, the
AO and SPO algorithms exhibited the lo w est performance. Addi-
ionall y, the r esults of the boxplot demonstrated the stability of
he proposed mSHO algorithm, follo w ed b y the DO and PSO algo-
ithms. Ov er all, these findings indicate the efficiency and stability
f the mSHO algorithm in handling the multi-plate disc clutch
r ake pr oblem. 

. Discussion 

he aforementioned results show that the proposed mSHO has
dv anced r esults compar ed with the other metaheuristic algo-
ithms, including SHO , DO , CMA-ES , HGS , A O A, SA O , HHO , PSO ,
nd SPO. In addition, as optimization issues get more challeng-
ng, mSHO’s effectiv eness r emains unc hanged, demonstr ating its
tability and aptitude for addressing challenging search domains.
his demonstrates that it is a po w erful tool for addressing chal-

enging optimization problems . T he results can be summarized as
ollows: 

(i) CEC2020 test function 

(a) mSHO demonstr ates highl y competitiv e fitness v alues,
ranking first for all functions except F 6 and F 10. 

(b) The proposed mSHO algorithm achieves an overall
ranking of 1. 

(c) According to the Friedman test, the proposed mSHO ex-
hibits the lo w est value of 1.3. 

(ii) Engineering problems 
(a) Pr essur e v essel design pr oblem: The optimal function

value is 0.012 665, attained using the mSHO algorithm. 
(b) Speed reducer design problem: The optimal function

value is 2993.634, achieved using the mSHO, HGS, A O A,
and PSO algorithms. 

(c) Tension/compr ession spring pr oblem: The mSHO algo-
rithm ac hie v es the optimal function v alue of 0.01 266. 

(d) Welded beam design problem: The optimal function
value is 1.724 967, obtained using the mSHO algorithm. 

(e) Three-bar truss engineering design problem: The
mSHO algorithm attains the optimal function value of
263.8915. 
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Table 23: Best solution obtained from the comparative algorithms for solving multi-disc clutch brake problem. 

Mea. mSHO SHO DO CMA-ES HGS A O A SAO HHO PSO SPO 

Min 0.235 242 0.235 255 0.235 242 0.243 435 0.235 242 0.235 242 0.257 118 0.235 242 0.235 242 0.235 242 
Max 0.235 242 0.237 529 0.235 243 0.24 762 0.250 273 0.235 242 0.568 008 0.235 243 0.235 243 0.264 648 
Mean 0.235 242 0.235 562 0.235 243 0.247 341 0.235 743 0.235 242 0.410 957 0.235 242 0.235 242 0.239 091 
Std 1.41E −16 0.000 445 6.97E −08 0.001 062 0.002 744 1.41E −16 0.081 127 5.97E −08 2.39E −08 0.008 781 
Rank 2 6 5 9 7 1 10 4 3 8 

Table 24: Wilcoxon’s signed rank test. 

mSHO versus SHO DO CMA-ES HGS A O A SAO HHO PSO SPO 

Pr essur e v essel design pr oblem 3.02E −11 1.41E −09 1.72E −12 0.001 936 1.07E −07 3.02E −11 3.02E −11 3.02E −11 3.16E −10 
Speed reducer problem 3.02E −11 6.72E −10 1.72E −12 1.14E −11 0.005 757 3.02E −11 3.02E −11 1.14E −11 3.02E −11 
Tension/compression spring problem 9.92E −11 1.07E −09 1.72E −12 5.49E −11 1.16E −07 3.02E −11 6.07E −11 3.01E −07 3.19E −09 
Welded beam design problem 3.02E −11 7.04E −07 2.36E −12 1.21E −10 0.035 137 3.02E −11 3.02E −11 0.016 955 8.87E −10 
Three-bar truss engineering design problem 3.02E −11 0.012 732 1.72E −12 3.01E −11 4.12E −11 3.02E −11 3.02E −11 1.18E −08 5.46E −09 
Industrial r efriger ation system pr oblem 3.02E −11 0.000 225 1.72E −12 9.2E −05 0.149 449 3.02E −11 3.02E −11 0.000 691 3.02E −11 
Multi-pr oduct batc h plant pr oblem 3.34E −11 0.994 102 3.69E −11 0.002 499 1.73E −06 3.02E −11 3.34E −11 0.001 518 4.08E −11 
Cantile v er beam design 3.02E −11 2.15E −10 1.72E −12 3.02E −11 4.62E −10 3.02E −11 3.02E −11 8.1E −10 3.02E −11 
Multi-disc clutch brake problem 3.02E −11 5.09E −08 2.36E −12 4.56E −11 1.21E −12 3.02E −11 2.93E −09 1.21E −12 0.063 525 
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(f) Industrial r efriger ation system pr oblem: The mSHO al-
gorithm r eac hes the optimal function value of 0.032 255.

(g) Multi-pr oduct batc h plant pr oblem: The mSHO algo- 
rithm yields the optimal function value of 58 507.14. 

(h) Cantile v er beam problem: The optimal function value is
1.339 956, ac hie v ed using the mSHO algorithm. 

(i) Multiple disc clutch brake problem: The mSHO algo- 
rithm, in conjunction with the A O A algorithm, ac hie v es
the minimum objective function value of 0.23 524. 

This study is limited to the selected pr oblems, whic h can be ex-
ended to experiment mSHO with mac hine-learning-r elated pr ob-
ems, such as feature engineering and selection, hyperparameter 
uning, ensemble learning, neur al arc hitectur e searc h, model se-
ection, and model compression. In addition, the study is limited
o single-objective optimization, which can be extended to solve 
 ulti-objectiv e optimization pr oblems to r epr esent tr ade-offs be-

ween conflicting objectives. 

. Conclusions and Future Research 

HO is a notable metaheuristic algorithm designed to emulate the
uanced behaviors of sea horses, encompassing their feeding pat- 
erns, male r epr oductiv e str ategies , and intricate mo vement dy-
amics . T his study introduces an evolved version of the SHO al-
orithm, r eferr ed to as mSHO, which uses a set of distinct mecha-
isms aimed at boosting its local search capabilities by substitut-

ng the original a ppr oac h with an innov ativ e local searc h str ategy
xecuted thr ough thr ee str ategic phases: a neighborhood-based
ocal search, a global non-neighbor-based search, and a circum- 
er ential explor ation str ategy, whic h helps mSHO to attain height-
ned performance in exploring the search spaces . T he proficiency
f the mSHO algorithm is rigor ousl y examined through evalua-
ions encompassing CEC2020 benchmark functions and a spec- 
rum of nine intricate engineering problems. A meticulous com- 
ar ativ e anal ysis with nine robust metaheuristic algorithms is
onducted to corr obor ate and v alidate the ac hie v ed outcomes.
tatistical techniques, including Wilcoxon’s rank-sum and Fried- 
an’s tests, are judiciously emplo y ed to unveil substantial dispar-
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ties among the examined algorithms . T he empirical findings un-
quivocally affirm mSHO’s supremacy, consistently demonstrat-
ng its superior performance across a diverse range of bench-

ark functions . Moreo ver, the effectiveness of mSHO persists un-
ffected as the difficulty of optimization problems increases, con-
rming its robustness and skill in handling complex search ar-
as . T his validates its strength as a highly valuable instrument
or tackling intricate optimization challenges. Looking ahead, the
r ospectiv e a pplications of mSHO a ppear pr omising, spanning do-
ains such as feature selection, cloud job scheduling, multi-level

hr eshold ima ge segmentation, and hyper par ameter optimization
or different machine learning models. 
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