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Joint Direction-of-Arrival and Time-of-Arrival
Estimation with Ultra-wideband Elliptical Arrays
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Abstract—This paper presents a general technique for the joint
Direction-of-Arrival (DoA) and Time-of-Arrival (ToA) estima-
tion in multipath environments. The proposed ultra-wideband
technique is based on phase-mode expansions and the use of
nearly frequency-invariant elliptical arrays. New possibilities
open with the present approach, as not only elliptical, but also
circular and linear (highly flattened) arrays can be considered
with the same implementation. Systematic selection/rejection of
signals-of-interest/signals-not-of-interest in smart wireless envi-
ronments is possible, unlike with previous approaches based
on circular arrays. Concentric elliptical arrays of many sizes
and eccentricities can be jointly considered, with the subsequent
improvement that entails in DoA and ToA detection. This leads
to the realization of pseudo-random array patterns; namely,
quasi-arbitrary geometries created from the superposition of
multiple elliptical arrays. Some simulation and experimental tests
(measurements in an anechoic chamber) are carried out for
several frequency bands to check the correct performance of
the method. The method is proven to give accurate estimations
in all tested scenarios, and to be robust against noise and position
uncertainty in sensor placement.

Index Terms—Direction-of-arrival (DoA), time-of-arrival
(ToA), elliptical arrays, propagation, wireless channels, broad-
band communications.

I. INTRODUCTION

D IRECTION-of-arrival (DoA) estimation has been one of
the main lines of research in the field of wireless com-

munications in the last decades [1]–[6]. Knowing the position
(and time) at which a wave arrives is essential in mobile
networks [7], [8], vehicular networks [9], [10], MIMO systems
[11], tracking and navigation systems such as GPS [12]–[14],
radar [15], [16], sonar [17], and many other wireless systems.
Even more exotic applications such as failure detection in
electronic components are starting to use DoA techniques as
a novel alternative [18], [19]. In fact, new communication
environments are materializing these days; namely, vehicle-
to-everything (V2X), ship-to-ship (S2S), high speed train-to-
train or UAV-to-UAV [20]–[24]. Thus, a great deal of effort is
being put into characterizing their most important parameters
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and key performance indicators, direction of arrival (DoA)
and time of arrival (ToA) among them, with the aim of
improving bandwidth, latency, data rate, power consumption
and reliability in present and future communication systems
[25]–[31].

Conventional DoA and ToA estimation methods, i.e., delay-
and-sum beamforming [32] or the more classical implemen-
tations of MUSIC [1], ESPRIT [33] and maximum-likehood
[34] algorithms, were originally developed to work under a
narrowband assumption. Naturally, their use is not adequate
for today’s broadband communication channels such as the
high-frequency millimeter-wave links (26, 38, and 60 GHz)
dedicated to 5G wireless networks. Thus, many broadband
DoA methods have emerged in recent years to overcome
the limitations of narrowband approaches [35]. Among the
well-established broadband methods, we can find narrowband
decomposition (a wideband channel is decomposed into small
bins that are treated independently with narrowband tech-
niques) [36] or the use of tapped-delay filters with adaptive
coefficients [37]. Although they are simple solutions, both
demand high computational resources since the number of
required filters increases as the considered bandwidth does.

Alternatively, frequency-independent beamformers (FIB)
[38], [39] were formulated to reduce the number of required
filters in a fixed bandwidth, and thus the computational
demands. Originally, FIB focused on the use of linear ar-
rays. Then, FIB-based algorithms were smartly combined
with the omnidirectional characteristics that uniform circular
arrays offer to develop efficient methods for DoA and ToA
estimation [40]. The outcomes of this original work were
promising, as the spatial response of the filter was equalized
with a remarkably reduced number of weight coefficients.
Nonetheless, some important aspects of the method were later
clarified in [41]. Subsequently, [40] was rapidly extended in
different ways. For instance, in [42], it was demonstrated that
the bandwidth of FIB circular arrays can be broadened and
the precision on the DoA estimation improved by employing
multiple concentric arrays instead of a single one. In [43],
[44], multipath components and spherical 3-D propagation
were also considered. Moreover, the approach was directly
applied to the millimeter-wave frequency range.

In this document, we propose a generalization of the method
successfully developed in [40]–[44] for the joint estimation
of the direction-of-arrival and time-of-arrival in multipath
environments. Those previous works were based on the use
of wideband circular arrays. Here, we demonstrate that wide-
band elliptical arrays can extent the capabilities of the joint
estimation in many forms:
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(i) Circular geometries are subcases contained by more gen-
eral elliptical shapes. Thus, we present one of the few
methods reported in the literature that is able to deal with
circular and elliptical arrays in a single stroke. Moreover,
linear arrays can be approximated and analyzed as highly-
flattened elliptical arrays.

(ii) Elliptical arrays present new degrees of freedom com-
pared to circular arrays. Particularly, the ellipse radius
is not fixed, which provides many configurations for
several arrangements based on different eccentricities and
rotation angles.

(iii) Highly flattened elliptical arrays (and so, linear arrays)
show an excellent directivity along the direction of its
semi-major axis, as well as remarkable estimation per-
formance for many elevation angles in this direction.
Thus, the present methodology allows for the efficient
and systematic selection of signals-of-interest (SOI) and
rejection of signals-not-of-interest (SNOI) in smart radio
environments, unlike conventional FIB-DoA methods im-
plemented with circular arrays.

(iv) Concentric elliptical arrays (CEAs) can be analyzed with
the present formulation. As reported by previous works,
the use of concentric arrays is expected to significantly
improve the accuracy in the joint estimation as well as
the bandwidth [42]. Furthermore, the use of concentric
elliptical arrays can lead to the implementation of pseudo-
random grids, a fact that will be exploited in Section III.D
for DoA and ToA estimation. These pseudorandom grids
have the advantage of not being limited to a certain
number of sensor arrangements.

(v) The method is proven to be robust to noise and position
uncertainty in DoA and ToA detection. In addition, its
computational demands are comparable to state-of-art
approaches.

The document is organized as follows. Section II presents
the theoretical framework for the joint DoA and ToA es-
timation with ultra-wideband elliptical arrays. Furthermore,
we discuss on the advantages and limitations of the method.
Section III presents some numerical simulation results in order
to validate the present approach. Section IV presents some
experimental results extracted from the measurement facilities
at the University of Granada. Finally, conclusions are drawn
in Section V.

II. THEORETICAL FRAMEWORK

Let us consider the situation illustrated in Fig. 1. An incident
spherical wave l, described by the unknown azimuth and eleva-
tion angles φl and θl, respectively, impinges on the P sensors
(p = 0, 1, ..., P − 1) that conform the elliptical array. The
elliptical array is defined by its eccentricity ξ =

√
1− b2/a2,

which relates the semi-major (a) and semi-minor (b) axes,
respectively. The frequency response at the center of the
elliptical array is given by

Hl(f) = κl e
j2πfτl , (1)

where κl is the attenuation for path/wave l for any given path
loss exponent, and τl stands for the propagation delay for
path/wave l. Both parameters are to be determined.

Fig. 1. Scheme illustrating the different parameters involved in the joint
estimation of DoA and ToA with a single elliptical array.

The frequency response at the p-th sensor, Hp,l(f), will
include a phase shift with respect to the frequency response
estimated at the center of the array, Hl(f). By applying
trigonometric relations, we arrive to

Hp,l(f) =

(√
d`
dp,`

) γ

H`(f) ej2πf∆dp,`/c , (2)

where c is the speed of light, the term
(√

d`/dp,`

) γ
accounts

for amplitude attenuation given a path loss exponent γ between
the center of the array and the p-th sensor, and

∆dp,l = dl − dp,l , (3)

with

dp,l = ||dl − rp|| =
√
d2
l + r2

p − 2dlrp sin(θl) cos(φl − φp) .
(4)

In the former expression, dl is the distance from the center of
the elliptical array to the source point, rp is the distance from
the center of the array to sensor p, φp is the azimuth angle
associated to sensor p (see Fig. 1), both given by

rp =
√
x2
p + y2

p , (5)

φp = arctan

(
yp
xp

)
. (6)

Additionally, the Taylor series for ∆dp,l allows to expand this
term as [44]

∆dp,l ≈ rp sin(θl) cos(φl − φp) . (7)

Thus, (2) can be expressed as

Hp,l(f) =

(√
d`
dp,`

) γ

Hl(f) ej2πfrp sin(θl) cos(φl−φp)/c .

(8)
Considering that the source l is located far from the elliptical
array, the term dl/dp,l ≈ 1, so (8) can be simplified to

Hp,l(f) = Hl(f) ej2πfrp sin(θl) cos(φl−φp)/c . (9)

Now, we particularize the study to the case θl = 90o; namely,
where the incident plane coincides with the plane where the
elliptical array is located. Thus, (9) reduces to

Hp,l(f) = Hl(f) ej2πfrp cos(φl−φp)/c . (10)

This approximation is fundamental in order to develop further
steps of the method. Although it may seem prohibitive, this
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approach was demonstrated to work over a wide range of
elevation angles different from θl = 90o [44].

The Jacobi-Anger identity [45] allows us to expand the
former expression and decouple the frequency-dependent and
phase-dependent components in two different terms as

Hp,l(f) = Hl(f)

∞∑
n=−∞

jnJn,p

(
2πfrp
c

)
ejn(φl−φp) , (11)

where Jn,p(·) is the Bessel function of the first kind of order
n associated to sensor p. At a first glance, some differences
can be observed with respect to the cases shown in [41], [42],
[44] for circular arrays. When considering elliptical arrays,
the frequency-dependent component [Jn,p(·)] varies for each
sensor p. This is due to the fact that the distance between
the center of the array and the position of sensor p is not
constant [rp = rp(φp) 6= r], unlike in circular arrays where
this distance is the same for all sensors (rp = r).

The azimuth angle φl can be estimated by applying a
phase-mode expansion, Hm,l(f), [41], [42], [44] to the for-
mer expression that includes basis functions of the form
ejmφp (m being the integer order of the phase-mode) and a
frequency-dependent filter Wm,p(f), leading to

Hm,l(f) =
1

P

P−1∑
p=0

Hp,`(f) ejmφpWm,p(f)

=
1

P
H`(f)

P−1∑
p=0

+∞∑
n=−∞

jnJn,p

(
2πf

rp
c

)
Wm,p(f)

× ejnφ` ej(m−n)φp .
(12)

The infinite sum in n can be split in two different addends:
the term n = m and a series for all n 6= m. This allows to
rewrite (12) as

Hm,l(f) =
1

P
H`(f)

P−1∑
p=0

Wm,p(f)

×
[
jmJm,p

(
2πf

rp
c

)
ejmφ`

+

+∞∑
n=−∞
n 6=m

jnJn,p

(
2πf

rp
c

)
ejnφ` ej(m−n)φp

]
. (13)

Previous works [41], [42], [44] focused on circular arrays
took advantage of the independence of the Bessel functions
with respect to p [Jn,p(·) = Jn(·)] and the orthogonality
relations of the sum

∑P−1
p=0 ej(m−n)φp/P to cancel out the

infinite series (∀n 6= m) in eq. (13). However, this is not
exactly the situation for elliptical arrays. Thus, some approxi-
mations have to be considered in order to proceed. Under the
assumption of low eccentricity ξ levels (ellipses that are not
too flattened, ξ � 1), the former discussion still applies since
rp ≈ r (constant radius in average) and the sensors in the
elliptical array are quasi-uniformly distributed (φp ≈ 2πp/P ).
As a consequence, Jn,p(2πfrp/c) ≈ Jn(2πfr/c) can be
cleared out from the sum in p and the orthogonality relation∑P−1
p=0 ej(m−n)φp/P = 0 ,∀n 6= m, remains valid. Thus, the

last double sum in eq. (13) is approximately zero under low-
eccentricity assumption; namely,

1

P

P−1∑
p=0

Wm,p(f)

+∞∑
n=−∞
n 6=m

jnJn,p

(
2πf

rp
c

)
ejnφ` ej(m−n)φp

ξ�1
≈ Wm(f)

+∞∑
n=−∞
n 6=m

jnJn

(
2πf

r

c

)
ejnφ`

P−1∑
p=0

ej(m−n)φp

P
= 0 .

(14)

Thus, eq. (13) is simplified to

Hm,l(f) ≈ jm

P
H`(f) ejmφ`

P−1∑
p=0

Jm,p

(
2πf

rp
c

)
Wm,p(f).

(15)
The approximation taken above, although originally derived
for low eccentricities, will be demonstrated in Sections III
and IV to be applicable to a wide range of elliptical arrays,
even those that reach eccentricity values of ξ = 0.99, as long
as the number of considered sensors is large. The reason is
that, even for high eccentricities, the main contribution of the
transformation is given by the phase mode n = m, while the
rest of the contributions (sum ∀n 6= m) is normally negligible
[see eq.(13)]. Nonetheless, an increment of the artifact levels
is expected as the eccentricity increases, thus degrading the
joint DoA and ToA estimation in some angular regions. In
practice, P should be selected so the sensor separation is less
than λ/2, where λ stands for the wavelength.

Then, we can reduce (13) to

Hm,l(f) ≈ H`(f) ejmφ` , (16)

if we consider the filter Wm,p(f) to be

Wm,p(f) =
1

jm Jm,p
(
2πf

rp
c

) . (17)

Alternatively, we can choose Wm,p(f) as

Wm,p(f) =
2

jm
[
Jm,p(2πfrp/c)− j J ′m,p(2πfrp/c)

] , (18)

since it was proven in [44] to give more accurate results
in realistic scenarios where elevation angles different from
θl = 90o were involved. Additionally, eq. (17) involves deep
nulls for some frequencies f , a fact that limits the channel
bandwidth. The situation is different for the filter depicted
in eq. (18), whose performance is similar to that in eq. (17)
but operates over a noticeably larger bandwidth. A detailed
discussion on the filter choice can be found in [43]. In eq. (18),
J ′m,p(·) is the first derivative of the Bessel function of order n
related to sensor p.

The array response for the m-th phase mode is calculated
by taking into account the contribution of the L incident waves
as

Hm(f) =

L∑
l=1

Hm,`(f) ≈
L∑
l=1

H`(f) ejmφ` , (19)
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which admits a matrix-form representation H(m, f). Finally,
the joint DoA and ToA estimation is extracted by computing
the 2-D fast Fourier transform (FFT) of H(m, f),

H̃(φ, τ) = FFT{H(m, f)}, (20)

which includes a general representation of the wireless channel
properties for all considered angular and time steps. Note
that DoA and ToA resolution of H̃(φ, τ) is given by the
number of phase modes and frequency samples in H(m, f).
Concretely, DoA resolution is calculated as 360°/M , where M
is the number of considered phase modes. Thus, higher DoA
resolution requires of a larger number of phase modes. ToA
resolution is calculated as 1/B, where B is the bandwidth of
the channel. The maximum observable time in the estimation
is (K − 1)/B, which is determined by B and the number of
frequency samples K. Therefore, channel bandwidths belong-
ing to the range of ultra-wideband technologies are required
to achieve good spatial resolution in the estimation since there
exists a trade-off between the spatial resolution and B.

The maximum number of considered phase modes M
[eq. (15)] is restricted by the denominator in Wm,p(f)
[eq. (18)]. This denominator may introduce numerical errors
as it approaches zero. In order to avoid numerical instabilities,
M must be chosen such that

jm
[
Jm,p(2πfrp/c)− j J ′m,p(2πfrp/c)

]
6≈ 0 ∀m. (21)

To fulfill the previous condition, we know that there is a
number of phase modes, namely |Mlim|, above which the
Bessel function Jm,p(·) and its derivative tend to zero [41].
Therefore, stability can be guaranteed if M is chosen below
|Mlim| [43]. This limit value is dependent on the argument
of Jm,p(·) and J ′m,p(·). The larger the argument (2πfrp/c),
the larger |Mlim|. Consequently, i) high frequencies provide
higher resolution in DoA estimation, and ii) |Mlim| is defined
by the sensor p whose distance rp is the smallest for a given
frequency f . This distance turns out to be the semi-minor axis
in elliptical arrays. Throughout Sections III and IV, it is shown
that eccentricity values up to 0.99 allow the method to work
properly even when |Mlim| is reduced.

A. Improving the Efficiency of the Method

It can be noted from eqs. (17), (18) that each sensor p that
conforms the elliptical array has a different filter Wm,p(f).
Considering M phase modes in the computation, elliptical
arrays will require of M × P filters for the DoA and ToA
estimation. This situation is different in circular arrays, where
all the sensors share the same filter for the m-th phase mode.
Thus, only M ×1 filters are needed in the case of considering
circular arrays. This causes that the joint estimation with ultra-
wideband elliptical arrays is less computationally efficient than
with ultra-wideband circular arrays, despite the multiple ben-
efits that elliptical arrays offer (generality, selectivity, pseudo-
random grids, etc.) compared to circular ones. Nonetheless, we
can exploit the symmetries of elliptical geometries and Bessel
functions to improve the efficiency of the proposed method.

Let us name as αp an azimuth angle that is contained in
the first quadrant of the elliptical array. Angles of the form

180o−αp (second quadrant) , 180o +αp (third quadrant), and
360o − αp (fourth quadrant) have associated the same value
of rp. Therefore, the number of required filters in the joint
estimation can be reduced to M × [P/4 + 1] by exploiting the
symmetries of the ellipse. Thus, when P is large, the required
number of filters is approximately reduced by a factor of 4
compared to the raw processing.

We can further reduce the complexity of the problem by
considering the symmetry of Bessel functions. Concretely, we
can take advantage of the following expression

J−m,p(χp) = (−1)mJm,p(χp) , (22)

that relates negative and positive integer orders m. Thus, the
number of filters would reduce to [M/2 + 1]× [P/4 + 1]. For
large values of M and P , the number of required filters is
asymptotically reduced from M × P to M/2 × P/4, that is,
by a factor of 8.

Additionally, the use of a single average filter Wm(f)
can provide good DoA and ToA estimations when low- and
medium-eccentricity elliptical arrays are involved. The average
filter is given by replacing all rp values in eqs. (17)-(18)
by r, computed as the average between the semi-major and
semi-minor axes of the ellipse. Note that in the case of
considering a single average filter, the number of required
filters is reduced to M × 1, as in the case of circular arrays.
Therefore, a good approximation for elliptical arrays with low
and medium eccentricities can be obtained, notably reducing
the computational complexity of the problem. The single-
average-filter approach is expected to give accurate results as
long as the elliptical array is not highly flattened. In practice,
this approach has been found to be valid up to ξ . 0.7.
Finally, note that the time required in the total propagation
channel characterization process is limited by the measurement
acquisition. The previous fact is true for setups based on
virtual arrays. Due to the high number of sensors required
to fulfill the spatial Nyquist theorem, phase-mode expansion
for DoA and ToA characterization makes use of these virtual
arrays [41], [43], [44]. Therefore, the measurement process
takes orders of magnitude longer than the time required to
apply the estimation method. Thus, the global time for taking
measurements and applying the method ends up being similar
in both circular and elliptical arrays.

B. Rotated Elliptical Arrays

A simple modification can be applied to the present formu-
lation for the convenient use of rotated elliptical arrays in DoA
and ToA estimation. Actually, this will serve as the basis for
the analysis of advanced scenarios (concentric arrays, pseudo-
random grids) in next sections. Considering that the elliptical
array is azimuthally rotated counterclockwise by an angle α
[see Fig. 2(a)], the values of xp and yp in eq. (5) should be
simply replaced by

xp → xp cosα+ yp sinα

yp → xp sinα− yp cosα
. (23)

Alternatively, it could be convenient to work with the elliptic
coordinate system, formed by the radial coordinate ρ ∈ [0,∞)
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(a) (b)

Fig. 2. Representation of a (a) single rotated elliptical array and (b) three
concentric elliptical arrays. All the arrays are lying in the XY plane.

and the angular coordinate η ∈ [0, 2π), when positioning the
sensors that conform the rotated elliptical array. In that case,
the p-th sensor will be located at

xp = a cos ηp cosα− b sin ηp sinα

yp = a cos ηp sinα+ b sin ηp cosα
, (24)

where a and b are the semi-major and semi-minor axes of
the elliptical array, respectively. Both parameters are related
through the eccentricity value ξ. Note that a uniform angular
placement for the sensors in elliptical coordinates, η, does
not necessarily imply a uniform angular placement in polar
coordinates, φp.

C. Concentric Elliptical Arrays

As an additional step, the joint estimation of the direction-
of-arrival and time of arrival can be generalized to the case
where multiple concentric elliptical arrays are considered [see
Fig. 2(b)]. As pointed out in previous works [42], the fact of
including several concentric arrays is expected to increase the
accuracy in the estimation, as well as the frequency response
of the entire array if the geometry of the concentric elliptical
array is appropriately selected. This is because the response
of the entire array is a combination of the individual arrays
that compose it [42]. Additionally, the use of ultra-wideband
concentric elliptical arrays will lead to advanced functionalities
in DoA and ToA detection. These advanced functionalities
will be deeply explored in Sections III and IV of the present
manuscript.

Let us consider Ψ concentric elliptical arrays (ψ =
0, 1, ...,Ψ − 1) lying in the same plane (XY plane), each of
them constituted by P sensors. The phase-mode expansion for
the ψ-th elliptical array will be now

Hm,l,ψ(f) =
1

P

P−1∑
p=0

Hp,l,ψ(f) ejmφp,ψ Wm,p,ψ(f)

=
1

P
H`(f)

P−1∑
p=0

+∞∑
n=−∞

jnJm,p,ψ

(
2πf

rp,ψ
c

)
× Wm,p,ψ(f) ejnφ` ej(m−n)φp,ψ .

(25)

Thus, the phase-mode expansion of the whole system,
Hm,l(f), will be of the form

Hm,l(f) =
1

Ψ

Ψ−1∑
ψ=0

Hm,l,ψ(f) ≈ H`(f) ejmφ` , (26)

Fig. 3. DoA and ToA estimation example for a single incident wave at
φl = 90° and τl = 30 ns. A 2D representation of the angular-temporal
domain is shown in the upper left corner.

which is simply the average of the individual phase-mode
contributions of each elliptical array. In fact, notice that the
resulting expression for Hm,l(f) in eq. (26) is identical to
eq. (16), despite the computation of the filters Wm,p,ψ(f) is
different in this case for each elliptical array.

Naturally, the computational complexity increases when
considering concentric arrays. Now, the system is formed by
P × Ψ sensors, so the number of required filters for DoA
and ToA estimation increases to M ×P ×Ψ. Nonetheless, by
following the recommendations given in Sec. II.A, the number
of filters can be similarly reduced by a factor of 8.

III. SIMULATIONS

This Section shows and discusses some results obtained
through the formulation derived in Sec. II for DoA and ToA
estimation in ultra-wideband elliptical arrays. Regarding the
organization, Sec. III.A analyzes the accuracy of the method
for single elliptical arrays and the influence of eccentricity ξ
and rotation angle α in the estimation. Sec. III.B introduces
concentric elliptical arrays and their benefits compared to
single elliptical arrays. Sec. III.C presents the performance
of the joint estimation for elevation angles different than 90°.
Finally, Sec. III.D explores the use of pseudorandom grids
based on concentric elliptical arrays.

In order to validate the estimation for elliptical arrays, it
must be ensured that DoA and ToA estimation matches φl
and τl for the incident wave, as well as the artifacts (non-
desired values expected to be several orders of magnitude
below the real path of the incident wave) do not disguise the
correct angles and delays. As an example, Fig. 3 shows the
joint angular and delay domain of a particular H̃(φ, τ), with
a single incident wave at φl = 90° and τl = 30 ns. Both
parameters are correctly estimated. However, some artifacts
can be observed. If they were large compared to the real
incident wave, they could misled the real path. Thus, we
define ∆ as the ratio between the correct estimation and the
largest artifact in the azimuth and delay domain. The larger
the ∆, the better the estimation. Throughout this document,
this ratio will be considered as a metric.

A. Single Elliptical Arrays
The main benefits of elliptical arrays compared to circular

arrays are the new degrees of freedom related to the sensor
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position. While in circular arrays we only have the control
of the radius r, three different independent parameters can be
modified in elliptical arrays: i) semi-major axis a, ii) eccen-
tricity ξ, and iii) rotation angle α. This fact allows for a wide
variety of sensor arrangements.

The first simulation aims to determine the influence of the
eccentricity on the joint DoA and ToA estimation. For this
purpose, four ellipses with ξ = 0, 0.7, 0.95 and 0.99 are
simulated for an incident azimuth range φl = [−90°, 90°] and
τl = 30 ns. The frequency band is chosen to be from 28 GHz
to 30 GHz (B = 2 GHz) for K = 100 frequency samples.
These frequencies are part of the band n257 defined by the 3rd
Generation Partnership Project (3GPP) and are expected to be
fundamental in the deployment of 5G New Radio (5G NR)
[46]. In order to ensure a proper DoA and ToA estimation,
spatial Nyquist theorem must be fulfilled. This implies that
the separation between adjacent sensors must be less than half
wavelength. In the present work, we have typically assumed
a distribution of P = 720 sensors per array (angular spacing
of 0.5°), ensuring that spatial Nyquist theorem is fulfilled for
all sensors. Naturally, the number of sensors could be further
reduced from 720, normally at the expense of degrading the
performance in the estimation. The considered semi-major axis
a = 0.5 m and the ellipse is placed with its semi-major
axis oriented along the horizontal direction (α = 0°). Given
the highest frequency f = 30 GHz, we can ensure that the
largest separation between sensors is 0.437λ for any value of
eccentricity. Finally, the elevation incident angle is θl = 90°,
i.e., matching the plane of the elliptical array sensors.

Fig. 4(a) shows the metric ∆ for several azimuth angles φl
and eccentricity values ξ. ∆ is constant for the circular array
(ξ = 0) through the whole azimuth range due to the constant
directivity at any given azimuth angle. When the eccentricity
increases, the ellipse tends to flatten on the semi-minor axis.
Therefore, the directivity of the estimation increases in the
direction of the semi-major axis. For ξ = 0.7, the estimation
is correct in the whole range. For ξ = 0.95, ∆ > 0 for
azimuth values up to ±50°, where the largest artifact begins
to mislead the correct incident angle. The same behavior can
be found for ξ = 0.99, where the estimation is valid up
to ±15°. The reasoning behind these results is that for very
high eccentricities, the angular response of an elliptical array
closely resembles that of a linear array in the direction of
the semi-major axis. Therefore, when the incident wave is
perpendicular to the semi-major axis of the elliptical array,
ambiguity affects the estimation and, consequently, an artifact
appears at φl + 180°, since the near-zero curvature of the
array only exploits half of the angular domain, i.e., 180°.
This evolution can be seen as the eccentricity increases and
the array flattens out in Fig. 4(a). As previously explained in
Fig. 3, ∆ value is calculated by taking into account the highest
artifact found in the DoA and ToA estimation since φl can take
any value on the entire range, i.e., φl ∈ [0°, 360°). However,
if there were information on a bounded φl range, it would be
possible to discard artifacts outside that range, thus improving
the estimation of ∆ value if the highest artifact is not part
of the considered interval. Note that the formulation derived
in Sec. II is valid for circular, elliptical and linear arrays.

(a)

(b)

(c)

Fig. 4. Metric ∆ (dB) for several incident azimuth angles φl and several
eccentricities ξ. a) Single ellipse with α = 0°, b) single ellipse with α = 90°,
and c) two concentric ellipses with α = 0° and α = 90°. These geometries
show angular selectivity for φl = 0° and φl = 90°.

Although it is not explicitly shown, due to the array symmetry,
the estimation is similar in the range φl = [90°, 270°]. Also
notice that the larger the eccentricity, the lower the number
of considered phase modes M , as detailed in Sec. II. The
computation time, as shown in the complexity analysis (see
Section II.A), is expected to be higher for elliptical arrays. In
the circular array case, the DoA and ToA computation time
is 7.39 s. For the elliptical arrays with eccentricities 0.7, 0.95
and 0.99, computation times are 98.11 s, 54.06 s and 13.62
s, respectively. These times are obtained as the average for
10 iterations of the method in a laptop with an i7-10750H
processor and 16 GB RAM. Table I summarizes the main
features of the different geometries. tB stands for the required
time to numerically compute the Bessel functions for the filters
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TABLE I
COMPUTATIONAL COMPLEXITY, COMPUTATION TIME, DEGREES OF FREEDOM AND ∆ FOR SEVERAL GEOMETRIES

Geometry Computational
complexity Parameters tB(s) tf (s) tt(s) ∆(dB)

Degrees
of freedom

Pseudorandom
patterns

Angular
selectivity

Circular O(M Ψ) r = 0.5 m 1.96 5.43 7.39 24.53 1 7 7

a = 0.5 m, α = 0°, ξ = 0.7 93.68 4.43 98.11 24.07

Elliptical O(PM Ψ) a = 0.5 m, α = 0°, ξ = 0.95 52.58 1.48 54.06 22.81 3 3 3

a = 0.5 m, α = 0°, ξ = 0.99 13.04 0.58 13.62 21.70

Wm,p(f) and tf is the required time to apply Wm,p(f) to
Hp,l(f) and compute the 2-D FFT. tt is the sum of the two
previous times. Despite the longer required time, elliptical
arrays provide three degrees of freedom that generalize the
circular case and allow the creation of pseudorandom patterns
discussed in depth in Section III.D.

At the beginning of this Section, three degrees of freedom
related to ellipses were discussed: semi-major axis, eccentric-
ity and rotation angle. As Fig. 4(a) has shown, highly flattened
ellipses are angularly selective along direction of the semi-
major axis. In order to tune the angular response, Fig. 4(b)
analyses the effect of a rotation angle α in the ellipse geometry.
Particularly, it includes a rotation angle α = 90° compared
to the geometry of Fig. 4(a). The direct consequence is the
90° shift on the azimuth angle estimation. Now, the semi-
major axis is located in the vertical axis, providing excellent
estimation for very flattened ellipses when the incident angle is
nearby ±90°. However, incident angles in the horizontal axis
(0° and 180°) get poor estimations if eccentricities are large,
contrary to what is observed in Fig. 4(a). Additionally, as it
is previously stated, the number of sensors can be reduced at
the expense of degrading the estimation performance. In order
to show the effect of this reduction, Fig. 5 shows the joint
DoA and ToA estimation for an incident wave at τl = 15 ns
(dl = 450 cm) and φl = 180° in an elliptical array with
a = 0.5 m, α = 135° and ξ = 0.7. Three different numbers
of sensors P = 720, 300 and 100 are considered. While for
P = 720, the maximum spacing between sensors remains
below λ/2, for P = 300 and 100, these distances becomes
1.048λ and 3.143λ. This causes the artifacts to move from
19.34 dB below the estimation to 13.73 dB and 5.99 dB
respectively. Thus, although it is possible to perform the
estimation even for adjacent sensor distances larger than λ/2,
it is advisable to comply with the spatial Nyquist theorem to
minimize the appearance of artifacts.

In summary, the proposed formulation performs proper
estimation of DoA and ToA for the whole azimuth range for
eccentricity values up to 0.7. Above this value, the estimation
shows a directional behavior in the direction where the semi-
major axis is located. By rotating the ellipses, the angular
response can be tuned. This can be easily achieved in virtual
arrays. Logically, mechanical or electrical reconfiguration in
a real-world implementation always adds an extra level of
technical complexity that is beyond the features of the method
and the scope of the present work. Thus, the angular selectivity
of the elliptical geometries could be of potential application

Fig. 5. DoA and ToA estimation for an incident wave at φl = 180° and
τl = 15 ns (dl = 450 cm) when varying the number of sensors P . Non-
compliance with the spatial Nyquist theorem (cases P = 300, 100) leads to
the appearance of new artifacts and an undesired increase in their contribution
to the joint DoA and ToA estimation.

for the selection (suppression) of signals-of-interest (signals-
not-of-interest) in smart wireless environments.

B. Concentric Elliptical Arrays

Sec. II.C introduced the analysis of concentric elliptical
arrays. Since previous subsection has shown the eccentricity
effect on the estimation, we can take advantage of the concen-
tric arrays in order to improve the estimation. By combining
Hm,l(f) from the ellipses shown in Figs. 4(a) and 4(b) [see
eq. (26)], a new ellipse arrangement can be formed. Fig. 4(c)
presents the metric ∆ for the joint DoA and ToA estimation
when two concentric elliptical arrays are considered. For high
eccentricities, an interesting behavior can be found. ∆ is
maximized for all those DoA coinciding with the semi-major
axes of the concentric ellipses (i.e., φl = 0° and φl = 90°).
A clear example can be seen for ξ = 0.95. In Figs. 4(a) and
4(b), ∆ indicates good estimations for approximately an 80°
azimuth range. However, in Fig. 4(c), ∆ > 8 dB in the whole
range. Therefore, concentric ellipses with different rotation
angles can provide different ∆ patterns. This fact opens up
the possibility of implementing pseudorandom grids contained
within elliptical geometries, which will be discussed in later
sections.

C. Technique performance for θl 6= 90o

Up to this point, simulations have been carried out for a
fixed elevation angle of θl = 90°. In [43], it was demonstrated
that the filter from eq. (18) provides accurate estimations for
θl 6= 90°. With the purpose of validating the estimation for



This work has been accepted for publication in IEEE Transactions on Wireless Communications. DOI: 10.1109/TWC.2023.3268949

Fig. 6. Metric ∆ (dB) for several elevation angles θl when φl = 0° (solid
line) and φl = 30° (dashed line).

different elevation angles, Fig. 6 shows the metric ∆ for
different values of θl for two different incident azimuth angles,
φl = 0° and φl = 30°. The configuration parameters are the
same as those shown in Sec. III.A. For the case φl = 0°,
although the analytical framework discussed in Sec. II was
originally derived under the assumption of θl = 90°, it can
be observed in Fig. 6 that the accuracy in DoA estimation
is still satisfactory in a wide range of elevation angles. This
is a remarkable feature, as elevation/tilt angles typically vary
between 90 and 75 degrees in real deployments [47], [48]. In
this range, ∆ > 13 dB for all the considered eccentricities.
Concerning ToA, it is estimated as 30 ns for θl = 90°,
matching τl. When θl moves toward 30°, ToA estimation
suffers a slight variation of +0.5 ns. This effect was also
noticed for circular arrays in [44]. Finally, it is worth noting
that elliptical arrays outperform DoA and ToA estimation
compared to circular arrays for several elevation angles when
φl = 0°. This is due to the fact that when the angle of
incidence φl coincides with the semi-major axis, the elliptical
shape of the array preserves the directivity of the array better
for θl 6= 90° compared to the circular shape. For the case
φl = 30°, ∆ with θl = 90° for high eccentricities is lower as
previously depicted in Fig. 4(a) due to the directivity attribute.
Similar to the case φl = 0°, ∆ decreases as the wave incident
plane separates from the plane where the elliptical array lies.

D. Pseudorandom Grids

Previous subsections have shown that elliptical arrays
present directive behaviour for DoA estimation. Fig. 7 shows
some examples of generic geometries formed through the su-
perposition of concentric ellipses. In contrast to concentric cir-
cular arrays where only concentric ring shapes can be obtained
[42], concentric ellipses provide a wide range of possible
sensor arrangements. Hence, some of these geometries may
be approximated as pseudorandom grids and the joint DoA
and ToA estimation could be performed with sensors located
in pseudorandom positions. In real deployments, the use of
circular arrays may not be feasible due to space limitations.
Conversely, elliptical arrays take up a smaller area and can
adapt better to the geometry of any structure. Additionally, we
can take advantage of the directivity property in the direction
of the semi-major axis to steer the elliptical arrays in a specific
range of angles.

Fig. 7. Generic geometries generated from the superposition of concentric
ellipses. Each ellipse is characterized by semi-major axis a, eccentricity
ξ and angle of rotation α. The combination of several ellipses results in
pseudorandom grids.

Fig. 8. (a) Superposition of nine concentric elliptical arrays. DoA and ToA
estimation when the incident wave is located at (b) φl = 45° and τl = 20 ns,
and (c) φl = 250° and τl = 40 ns.

As a study case, Fig. 8(a) shows a superposition of con-
centric ellipses to form a pseudorandom grid. Throughout
this subsection, it will be studied in depth to analyze its
performance compared to single and concentric circular arrays.
This geometry consists of 8 ellipses with semi-major axis
a = 34.5 cm, eccentricity ξ = 0.9 and rotation angle
α = 22.5° for consecutive ellipses, plus an outer circle
of a = 34.5 cm and ξ = 0. In this case, the frequency
band goes from 39.5 GHz to 43.5 GHz (n259 band and
B = 4 GHz) [46]. 720 sensors are considered per ellipse, which
gives a maximum separation between consecutive sensors of
3 mm (0.437λ at f = 43.5 GHz). The number of considered
frequency samples is K = 200 and the number of phase modes
is fixed to M = 250.

By applying the formulation for concentric elliptical arrays,
Figs. 8(b) and 8(c) present two cases of joint estimation for
this geometry. Particularly, Fig. 8(b) shows the estimation of
the angular-delay domain for an incident wave at φl = 45°
and τl = 20 ns. Fig. 8(c) illustrates the same domain for
φl = 250° and τl = 40 ns. In both cases, the estimation
is clearly maximized around ToA and DoA. In addition to
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(a)

(b)

(c)

Fig. 9. DoA and ToA estimation for an incident wave at φl = 55° and
τl = 20 ns for different geometries: (a) Uniform Circular Array, (b) Uniform
Concentric Circular Array, and (c) Concentric Elliptical Array.

these cases, the geometry has been tested for incident waves
in the entire range of φl and τl, showing excellent results with
artifacts below 20 dB in the worst case.

In order to compare the performance of concentric elliptical
arrays with other array arrangements, Fig. 9 shows the angular-
delay estimation for three different arrangements. Fig. 9(a)
is obtained from a uniform circular array (UCA) with radius
r = 34.5 cm and P = 720. Fig. 9(b) represents the estimation
for a nine ring uniform concentric circular array (UCCA)
whose outer circle is equal to the one shown in Fig. 9(a).
The inner circle has radius r = 15 cm and all nine rings
are equidistant. Finally, Fig. 9(c) uses the geometry presented
in Fig. 8(a), i.e., a concentric elliptical array (CEA). Some
conclusions can be extracted by looking at Fig. 9. First,
the figure illustrates that the proposed method works as a
generalization of former approaches, being able to deal with
circular and elliptical geometries at the same time. This leads

(a)

(b)

(c)

(d)

Fig. 10. DoA and ToA estimation when the incident wave reaches the CEA at
φl = 45° and τl = 20 ns. Uncertainty in sensor placement is considered, with
respect to the center position {xp, yp}, by means of the standard deviation
σ. Cases: (a) σ = 0.5λ (3.45 mm), (b) σ = λ (6.89 mm), (c) σ = 2λ (13.78
mm) and (d) σ = 5λ (34.46 mm).

to the realization of elliptical-based pseudorandom mesh grids
that can be used to improve the joint DoA and ToA estimation.
In that sense, the level of artifacts (sidelobes) has been reduced
more than 10 dB when considering concentric arrays instead
of a single circular array, the UCCA and CEA outperforming
the UCA array due to a better mapping of the spatial region.
Naturally, the improvement in the estimation comes at a price.
Computational complexity increases when a greater number
of arrays is considered. Thus, there exists a trade-off between
performance and computational complexity. Scenarios where
the impact of the artifacts in the joint estimation should be
minimized benefit for the inclusion of a greater number of
concentric (elliptical) arrays. Conversely, scenarios where the
processing time should be minimized benefit from placing a
fewer number of arrays.

Previously, the degrees of freedom of the position of the
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sensors in an ellipse have been discussed. Actually, it is
possible to go one step further. The theoretical framework
developed in Sec. II has demonstrated that non constant rp
values are feasible for the joint estimation. In order to achieve
a real pseudorandom grid, an independent and uncorrelated bi-
variate normal distribution N2(0, σ2), with σx = σy = σ/

√
2,

is included in the sensor positions xp and yp [eq. (24)].
This distribution adds noise in the sensor position, which
randomizes the grid. Figs. 10(a)-(d) shows the angular-delay
domain estimation for arrangements with different σ values.
Simulation parameters are equal to those ones shown for Fig. 8
with incident wave at φl = 45° and τl = 20 ns. Standard
deviation σ is chosen in terms of wavelength and it ranges
from 0.5λ to 5λ. The maximum artifacts from Fig. 10(a) to
Fig. 10(d) are found to be 23.9 dB, 23.5 dB, 21.4 dB and
18.2 dB below the correct estimation, respectively. Although
artifacts increase as the position noise does, they are still low
enough to correctly detect the DoA and ToA. A remarkable
result is that shown in Fig. 10(d), where the elevated value
σ directly hides the elliptical shape of the CEA. Even in this
case, the joint estimation is remarkably good. For a dense
enough sensor arrangement, most of the sensors satisfy the
spatial Nyquist theorem. If, on average, the spatial Nyquist
theorem is fulfilled, a good estimation is expected. Therefore,
it can be concluded that, if a dense pseudorandom mesh
is approximated by a set of concentric ellipses, the joint
estimation of DoA and ToA can be properly performed.

As a last proof of concept, the estimation of DoA and ToA
from a completely random sensor distribution approximated
by a set of concentric ellipses is proposed. For the sensor
distribution, 10000 sensors are placed in a square based on
a bivariate uniform distribution U2 (−0.345, 0.345). As an
example, this distribution expects to be approximated by three
concentric ellipses with P = 720, a = 34.5 cm, ξ = 0.9 and
α = [30°, 50°, 90°]. Frequency band goes from 39.5 GHz to
43.5 GHz, K = 200 and M = 250. For this approximation,
those sensors of the random distribution whose distance to the
theoretical sensor in the three ellipses is minimum are chosen.
Fig. 11 shows the random sensor distribution (gray dots) and
the sensors chosen to form the concentric elliptical array (black
dots). This figure also presents the DoA and ToA estimation
for an incident wave at φl = 230° and τl = 30 ns, with
the largest artifact appearing 13.45 dB below the real path.
Thus, the method is valid for elliptical arrays generated from
random distributions. Note that the random grid can be used
in order to generate any other geometry with several ellipses
and several semi-major axis, eccentricity and rotation angle
values. Finally, note that the pseudorandom and random grids
shown in Figs. 10 and 11 cannot be rigorously analyzed with
previous approaches [40]–[44], as sensors with different radius
rp must be considered.

IV. MEASUREMENTS

In order to validate the simulations and theoretical frame-
work, multiple measurements have been carried out at the
facilities of the University of Granada. These facilities consist
of a semi-anechoic and semi-reverberation chamber whose

Fig. 11. DoA and ToA estimation for an incident wave at φl = 230° and
τl = 30 ns for a sensor distribution based on a bivariate uniform random
distribution (gray dots). Three concentric elliptical arrays are approximated
from the randomly arranged sensors (black dots).

dimensions are 5 × 3.5 × 3.5 meters (61.25 m3). The mea-
surements are performed in the semi-anechoic part, where
multiple absorbers are found in the walls in order to avoid any
reflection. Therefore, the Line-of-Sight (LoS) can be analyzed
in the propagation channel between a transmitter (TX) and a
receiver (RX). To recreate the simulation setup, TX is placed
at a distance dl and azimuth angle φl with respect to the center
of a certain ellipse, which is formed by a virtual array at RX.
Fig. 12 shows the measurement setup in the semi-anechoic
chamber. The transmitter antenna is fixed, while the receiver
antenna, located in the measurement system, can move in
the XY plane positioned at the same height (z = 179 cm)
as the transmitter antenna. The measuring system allows a
maximum displacement of 1 m in both x and y axes. The
communication channel is acquired through a Vector Network
Analyzer (VNA Rohde & Schwarz ZVA67), which measures
the scattering parameters up to 67 GHz. In order to prevent
the effect of the coaxial cables in the communication channel,
a Through — Open — Short — Match (TOSM) calibration
is performed. Thus, Hp,l includes the contribution of the
propagation channel and the radiation pattern of the antennas
in TX and RX. Particularly, TX is a standardized gain horn fed
with a WR-15 waveguide-to-coaxial transition (Flann Kband
antenna Model: #25240-20). RX is a monopole antenna based
on a 1.85 mm coaxial transition to free space, centered at
60 GHz, with a matching bandwidth higher than 8 GHz below
−10 dB, and omnidirectional radiation pattern for θl = 90°
in the XY plane. The frequency range is chosen to be from
58 GHz to 62 GHz, for measurements and simulations, i.e.,
B = 4 GHz in the mmWave range. K = 200 frequency
samples are acquired, providing 20 MHz frequency step. Given
the bandwith B, the temporal and distance resolution are
0.25 ns and 7.5 cm respectively. Consequently, the maximum
observable time and distance are 49.75 ns and 14.925 m.

In the first experiment, TX is placed at distance dl = 120 cm
and angle φl = 330°. RX forms an ellipse with a = 24.2 cm,
ξ = 0.7 and α = 0°. P = 720 sensors are considered, for
a maximum separation of 2.1 mm between sensors (0.437λ
for f = 62 GHz). Finally, the number of phase modes M
is set to 250. Figs. 13(a) and 13(b) show the DoA and ToA
estimation for the simulated and measured cases, respectively.
As expected, the estimation is maximized for τl = 4 ns
(dl = 120 cm) and φl = 330°, with an artifact located at
φl ± 180°. In Fig. 13(b), the estimation of DoA and ToA is
slightly more spread due to measurement imperfections with
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Fig. 12. Photograph of the measurement setup. TX is fixed and RX forms
the elliptical array due to the movement of the measurement system located
at the bottom.

(a)

(b)

Fig. 13. DoA and ToA estimation for an incident wave at φl = 330° and
τl = 4 ns (dl = 120 cm). (a) Simulation and (b) measurement in the semi-
anechoic chamber.

respect to simulation. However, the maximum is still found at
τl = 4.25 ns (dl = 127.5 cm) and φl = 330°. The variation
of 7.5 cm is mainly due to the calibration process; namely,
horn length (7.6 cm) and monopole transition (2 cm) are not
initially considered. The distance resolution is 7.5 cm, thus
the estimated value of dl is within the expected error band
in measurement. Finally, note that two reflections due to back
propagation in the semi-reverberation chamber can be found
at 31.5 ns and 39.25 ns in Fig. 13(b).

Fig. 13 has shown a good agreement between the theoretical
framework and the simulations proposed for this estimation
method. As explained in Sec. II, this technique is based on
a correct modeling of the incident signal on the P sensors,

Fig. 14. Simulated and measured Hp,l(f) phase distribution when a single
wave impinges at φl = 330° and τl = 4 ns. Ellipse parameters are a = 24.2
cm, ξ = 0.7, α = 0° and P = 720.

Fig. 15. Normalized measured PDP for an incident wave at φl = 270°
and τl = 6.5 ns in two different setups: (left panel) rotated ellipse and (right
panel) non-rotated ellipse.

i.e., Hp,l. Thus, phase-mode expansion Hm,l and 2-D FFT
lead to the joint DoA and ToA estimation. A proper mod-
eling of the phase is fundamental in Hp,l. As an example,
Fig. 14 illustrates the Hp,l phase distribution for every sensor
and frequency in the setup previously shown in Fig. 13.
High similarity of the phase distribution in simulations and
measurements can be observed. This fact demonstrates the
proper modeling of the incident wave for elliptical cases in
real measurements, thus yielding good joint DoA and ToA
estimations.

One of the features observed in the simulation is the high
angular selectivity offered by highly flattened elliptical arrays.
One way to explain this behavior is based on understanding
how the wave reaches the array. For this purpose, two different
setups have been measured. The first one has the TX posi-
tioned at a distance of dl = 195 cm and an angle φl = 270°.
The RX is a virtual array with parameters: a = 24.2 cm,
ξ = 0.99, α = 90° and P = 720. The second setup is
similar, except for the rotation angle α = 0°. Fig. 15 shows
the normalized Power Delay Profile (PDP) for every sensor p
in RX. This PDP is calculated as the square of the IFFT
of the channel frequency response Hp,l for each sensor. On
the left panel, it can be seen that the wave impinges in
the direction of the semi-major axis. Therefore, this wave
travels sensor by sensor through the entire array. This fact
generates the curvature observed in the PDP for the different
sensor positions. On the right panel, the wave impinges in
the direction of the semi-minor axis. In this case, for high
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Fig. 16. Simulated and measured DoA and ToA estimation for an incident
wave at φl = 270° and τl = 5.66 ns when the elevation angle is θl = 70°.

eccentricities, the wave simultaneously reaches all the sensors
of the array. This results in no curvature in the PDP, i.e, the
measured channel for the different sensors is similar. In the
first case, the curvature is unambiguous, since only this DoA
generates such curvature. In the second case, the practical
absence of curvature causes ambiguity in the estimation, since
φl = 90° would generate exactly the same PDP. Hence, it can
be concluded by the measurement study that this technique
takes advantage of the curvature of the elliptical array, thus
justifying the curves simulated in Fig. 4. As it was noted
in Sec. III.A, the selectivity is an attribute of the sensor
arrangement.

Sec. III.C presented the technique performance for elevation
angles θl 6= 90°. In order to validate previous simulations, a
setup with θl = 70° is measured. TX antenna is placed at
height z = 120 cm with φl = 270°, and the elliptical array is
kept at z = 179 cm. The distance in the XY plane between
TX and the center of the elliptical array is 160 cm. Therefore,
by applying basic trigonometry, dl = 170 cm (τl = 5.66 ns)
and θl turns out to be 70°. RX parameters are a = 24.2 cm,
ξ = 0.7, α = 90°, P = 720 and M = 250. Fig. 16 shows
the simulated and measured joint estimation of the DoA and
ToA for the previous scenario. The measured scenario matches
the simulation with 270° DoA and 6 ns ToA estimation. The
artifacts appear 16 dB below the estimation, showing a good
agreement with the simulation prediction (see ξ = 0.7 in
Fig. 6).

For the sake of completeness of the experimental study,
it will be shown that the use of this technique is valid for

Fig. 17. Simulated and measured DoA and ToA estimation for a multipath
component scenario and concentric elliptical arrays. The first ray reaches RX
for 330° DoA and 4 ns ToA, and the second ray for 300° DoA and 8 ns.
Two ellipses with ξ = 0.7 and different rotation angle are considered.

i) multipath environments, and ii) concentric elliptical arrays.
For that purpose, i) two measured rays are combined in the
semi-anechoic chamber as the sum of the frequency response
of each of the rays incident at the p-th sensor [see eq. (19)].
The first wave reaches the center of the array from 330° and
4 ns (120 cm) delay, while the second wave impinges the
ellipse from 300° azimuth angle and 8 ns (240 cm) delay.
ii) Two ellipses are combined to form a concentric elliptical
array. The phase-mode response from the sum of the two
previous waves is summed to create the new arrangement
[see eq. (26)]. The parameters for the first elliptical array are
a = 24.2 cm, ξ = 0.7, α = 0°, P = 720 and M = 250,
while the second array is characterized by the same parameters
except for α = 90°. Fig. 17 shows the joint estimation
for the multipath scenario and the superposition of ellipses.
Both waves can be clearly depicted in the simulations and
measurements for the correct values of DoA and ToA. A good
estimation is seen, which validates the proposed approach and
the experimental setup for usage in multipath environments in
wireless communication links.

In general, it should be stated that the level of the main
artifacts varies as multiple concentric arrays of different ge-
ometries are considered. Flattened elliptical arrays present
angular selectivity, normally in angular regions near the semi-
major axis (see Fig. 4). This fact provokes that the level
of artifacts either decreases or increases depending on the
location of the DoA. In the case that the semi-major axis
of the elliptical array is aligned with the DoAs, the level of
the artifacts decreases (the metric ∆ increases). On the other
hand, if the DoAs are not aligned with the semi-major axis,
the level of the artifacts is expected to increase (the metric ∆
decreases). More than a limitation of the proposed method, the
modification of ∆ as a consequence of the orientation of the
array should be considered an inherent property of flattened
elliptical and linear arrays.

V. CONCLUSIONS

This work proposes a technique for joint DoA and ToA
estimation based on ultra-wideband elliptical arrays. The the-
oretical framework introduces a generalization of frequency-
independent beamformers based on uniform circular arrays.
This new approach is a generalization not only valid for
elliptical arrays, but also feasible for circular and linear arrays.
The geometry of the elliptical array provides new degrees of
freedom compared to the circle, where only the radius can
be modified. The ellipses, besides tuning the semi-major axis,
also allow to adjust their eccentricity or rotation angle. These
degrees of freedom, together with the superposition of con-
centric ellipses, result in pseudo-random sensor geometries.
This novel concept avoids the problem of being limited to a
specific set of geometries, being able to adapt the array to
several arrangements in a real deployment.

The analysis of the technique through simulations has
shown good joint DoA and ToA estimations, with artifacts
appearing orders of magnitude below the main component.
The study has been performed for the whole range of azimuth
angles φl, as well as for multiple time-of-arrival τl, and
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three frequency bands within the mmWave range: 28-30 GHz,
39.5-43.5 GHz and 58-62 GHz. Additionally, the effect of
modifying the rotation angle α, eccentricity ξ and elevation
angles θl on the joint estimation has been analyzed. Through
these degrees of freedom, arrangements of nine geometries
with pseudo-random array distribution have been simulated.
One step further, an independent and uncorrelated bivariate
normal distribution is included in the sensor position in order
to recreate a random grid. The results show that even includ-
ing this random distribution, the estimation can be properly
performed.

Finally, the simulations have been validated through multi-
ple measurements in a semi-anechoic chamber at 58-62 GHz
frequency band. DoA and ToA estimation has been initially
carried out for single ellipses and single-path environments.
Then, this has been extended to multipath scenarios and
concentric elliptical arrays, simultaneously. Both the measured
frequency response, phase distributions and the joint estima-
tion of the DoA and ToA agree with those predicted by the
simulations. These experimental results validate the theoretical
framework, thus providing a method which gives accurate
estimations for a large number of sensor arrangements and
arbitrary geometries.
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