Finding the effective dynamics to make rare events typical in chaotic maps
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Dynamical fluctuations or rare events associated with atypical trajectories in chaotic maps due to
specific initial conditions can crucially determine their fate, as the may lead to stability islands or
regions in phase space otherwise displaying unusual behavior. Yet, finding such initial conditions is
a daunting task precisely because of the chaotic nature of the system. In this work, we circumvent
this problem by proposing a framework for finding an effective topologically-conjugate map whose
typical trajectories correspond to atypical ones of the original map. This is illustrated by means
of examples which focus on counterbalancing the instability of fixed points and periodic orbits, as
well as on the characterization of a dynamical phase transition involving the finite-time Lyapunov
exponent. The procedure parallels that of the application of the generalized Doob transform in
the stochastic dynamics of Markov chains, diffusive processes and open quantum systems, which in
each case results in a new process having the prescribed statistics in its stationary state. This work
thus brings chaotic maps into the growing family of systems whose rare fluctuations —sustaining
prescribed statistics of dynamical observables— can be characterized and controlled by means of a
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large-deviation formalism.

Introduction— The study of dynamical large devia-
tions deals with fluctuations of time-averaged observables
whose probabilities are exponentially suppressed in time
[1H3]. This field has been enriched in recent years by the
possibility of constructing effective processes where those
rare fluctuations are made typical, i.e. are transformed
into high-probability events. This allows for controlling
on demand the statistics of trajectory observables, which
is especially relevant in the context of dynamical phase
transitions, allowing, e.g., for the selection of certain dy-
namical phases that are otherwise extremely unlikely to
be observed [4, 5]. The methodology combines biased en-
sembles of time-averaged observables [0l [7] with the gen-
eralized Doob transform [8HI2], and has been recently
applied in stochastic systems, including lattice gas mod-
els [4, I3HI5], continuum diffusive systems [I1, (12}, 16} [17],
and many-body systems, both classical [I§] and quantum
[19-211.

Deterministic dynamical systems are of a different na-
ture, yet they also require a probabilistic description
when their evolution is considered from a distribution
of initial conditions, which is particularly relevant in the
study of chaotic systems [22]. In that respect, the fo-
cus of the literature on large deviations of chaotic sys-
tems from the last decades of the past century revolves
around observables arising in the context of information
theory and fractal geometry [23]. A large-deviation ap-
proach to chaotic systems based on observables as gen-
eral as those considered in stochastic systems, however,
seems to have become available only relatively recently.
Among those contributions, we highlight the Lyapunov
weighted dynamics [24H26], a computational adaptation
of the cloning algorithm [27) 28] to Hamiltonian systems
for selecting trajectories with unusual chaoticity, and the
recent extension of the large-deviation formalism to gen-
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FIG. 1. Rare trajectories due to the repulsive ef-
fect of an unstable fixed point are made typical.
Fluctuations of the time-averaged indicator function, A =
N1t Zi\]:_ol iz +0.05](@n), of the tent map around the unsta-
ble fixed point z* = 2/3. (a) Cobweb plot for N = 100
iterations. The support of the indicator function is high-
lighted in light blue. (b) Trajectory illustrated in (a). (c)
Histogram, P(A = a), based on 10° trajectories, with mean
(A) = a1 = 0.1. (d) Cobweb plot for N = 100 iterations
of the Doob effective map with sp = —1, making typical the
rare fluctuation highlighted in (c). (e) Trajectory illustrated
in (d). (f) Histogram, Ps,(A = a), based on 10° trajectories
of the map in (d), with mean (A) = az = 0.78.

eral time-averaged observables in chaotic maps [29]. De-
spite these advances, the adaptation of the generalized
Doob transform, whereby the dynamics creating those
rare trajectories is unveiled —thus giving a powerful han-
dle on the analysis and control of large fluctuations—,
has not yet been accomplished for chaotic maps. This
is a conspicuous gap in the literature that we aim to fill
with the present work.



In this Letter, we propose a framework for constructing
effective maps whose natural invariant measures are tai-
lored to the statistics of general trajectory observables of
a given original map. The study of rare events of chaotic
maps is thus brought to a level of development that is
comparable to that found in recent studies on various
types of stochastic systems [4 [13] 14}, 18] 20]. The goal
is illustrated in Fig. I} which shows an application of our
framework to the tent map [23], xp41 = 1 — |1 — 2z,
[displayed in Fig. a); see Fig. b) for a representa-
tive trajectory corresponding to the cobweb plot]. Rare
events given by trajectories with an unusually large time
spent in a narrow interval centered around the unsta-
ble fixed point z* = 2/3 [see Fig. |1fc)], become typical
in a new effective map [see Fig. )], as illustrated in
the histogram [Fig. [I{f)] obtained from its trajectories [a
representative one is displayed in Fig. [[[(e)].

The structure is as follows. We first show how, by ex-

tending the generalized Doob transform to the context of
Frobenius-Perron operators of chaotic maps, one can gen-
erate topologically-conjugate effective maps where rare
fluctuations of the original dynamics become typical.
Then we illustrate our framework by applying it to mit-
igate the repulsive effect of unstable periodic orbits. Fi-
nally, we employ it to characterize dynamical phases in-
volved in a dynamical phase transition associated with
the finite-time Lyapunov exponent in the logistic map.
Concluding remarks and ideas for future work are pre-
sented at the end.
Large-deviation formalism— We consider a chaotic
discrete-time dynamical system z,1 = f(x,), where
f:I — I is a smooth map and [ is some compact inter-
val of the real line. Starting from a probability density
of initial values ao(w), the evolution ay,41(2) = Lo, (2)]
for n = 0, 1, 2 . is given by the Frobenius-Perron op-
erator L|a = [; o — f(y))dy, where 6(z) is a
Dirac delta [23] We assume that the map f is ergodic
with respect to an invariant measure p(xz) = L[p(x)].
The adjoint Frobenius-Perron operator LT is defined by
the equality (3, L[a]) = (L'[B],a), where the angular
brackets denote the standard inner product, yielding
Li[a(z)] = a(f(x)); see the Supplemental Material (SM)
for details [30]. Taking B(z) = 1(z) = 1 above it is
clear that probability conservation, i.e. [ L{a(z)]dx =
[ a(z)dz = 1, implies that LT[1(z)] = 1.

Under quite general conditions, the probabilit, Ay density
of the time-averaged observable A = N=1Y "~/ Y g(z)
acquires the asymptotic large-deviation form P(A = a) ~

NI(a) for long times N > 1 [31, 32]. This prob-
ability concentrates around its average value, (4) =
[ g(z)p(x)dz, at a rate given by I(a) —the so-called
rate functlon—, which is nonnegative and has a sin-
gle zero located at (A) [2]. Thus fluctuations different
from (A) become exponentially unlikely in time, and
the expansion up to second order of I(a) around the
mean displays Gaussian fluctuations with variance o2 =

[NI"((A))]~1. This is illustrated in Fig. [1] (c), where
the probability of the time-averaged indicator function
A= NN Mei0.05(2n), with In(z) = 1if 2 € Q
and zero otherwise, concentrates around (A) = a;.

The conventional method for biasing these proba-
bilities towards specific values of A is to introduce
an ensemble of trajectories —known as the s-ensemble
[[]— such that P(a) = e *NoP(a)/Z(s) with Z(s) =
JesNeP(a)da. Here s is a biasing field which favors
(for s < 0) or suppresses (for s > 0) the probability of
having values larger than (A). Thus in Fig. [1] a suit-
able choice of s = sy = —1 transforms the probability
P(a) with average a; = 0.1 [Fig. [1| (¢)], into the proba-
bility Ps,(a) with average as ~ 0.78 [Fig. [1] (f)], which
is an unusually large value in the case of the tent map.
Indeed, P(as) ~ e~ N1(92) is on the order of 1078 for
N = 100 [see its position far into the right tail of P(a)
in Fig. [Ic)].

In this biased ensemble, the complete statistics of the
time-averaged observable A for long times is given by
the scaled cumulant-generating function (SCGF) 0(s) =
limy 0o N~'log Z(s) [7]. The latter is related to the
rate function I(a) by a Legendre transform, 6(s) =
—ming[I(a) + sa] [2], highlighting the analogy with the
(minus) free-energy and the entropy density in equilib-
rium statistical mechanics, with the biasing field s play-
ing a role akin to that of the inverse temperature [7].
Since the derivatives of the SCGF provide the cumulants
of the observable A in the tilted distribution Ps(a), the
(minus) first derivative gives the average —0'(s) = (A),.
Thus the value of choice for s is the one matching the fluc-
tuation a, such that —6’(s) = a, or equivalently I'(a) = s.
In Fig. |1} —6'(s¢) = a2 and I’(ag) = sg, while in the ab-
sence of a bias —6'(0) = a; and I'(ay) = 0.

The SCGF is obtained from the spectral problem
Lirs(z)] = e?®r (z) |2, 29], where ri(z) is the right
eigenfunction associated with the eigenvalue with largest
real part, which is e?(*), of the so-called tilted Frobenius-
Perron operator [30]

e_sg(z)a(z)
|f(2)]|
(1)

This is analogous to the definition of tilted operator for
Markov chains [7] and open quantum systems [19], and
has been recently studied for chaotic maps [29] On the
other hand, the left eigenfunction of ( ., ls(x), satis-
fies Li[ls(x )] = G (2), with LI being the tllted ad-
joint operator, Lija(z)] = 6*59(“’) (f(x)), see SM [30].
The elgenfunctrons are normalized such that f rs(x)dx =
Jis( dx = 1. The tilted operator however,
does not represent a proper physical evolution, since it
does not conserve probability, Li[1(z)] # 1. Therefore
it is not obvious how to derive a map, associated with
L, generating the trajectories sustaining the fluctuation
a, though such trajectories have been computationally
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FIG. 2. Rare trajectories due to the repulsive ef-

fect of unstable period-2 orbits are made typical.
Fluctuations of the time-averaged indicator function, A =
N7t 22];01 (Ijz* +0.025) (Tn) + ]I[;erio,ogg)] (zn)), of the logistic
map around the period-2 orbit formed by zi = (5 + v/5)/8.
(a) SCGF 0(s) and biased average (A)s = —0’(s). The three
points highlighted correspond to s = —1 (square), s = 0 (cir-
cle), s = 1 (triangle). (b) Rate function I(a), and Gaussian
fluctuations around its average (A). (c) Cobweb plot of the
Doob effective map for s9 = —1. The support of the in-
dicator function is highlighted in light blue. (d) Trajectory
corresponding to the cobweb in (¢). (e, f) Cobweb plot and
trajectory of the (unbiased) logistic map (so = 0). (g, h) Cob-
web plot and trajectory of the Doob effective map for so = 1.

obtained through the Lyapunov weighted dynamics [24].
Our contribution is to show below how to obtain the
effective chaotic map [as displayed in Fig. [[[d)] gener-
ating those rare trajectories with s # 0 [see Fig. e)],
which follow the biased distribution Ps(a) for long times
[Fig. [I(f)]. Such effective dynamics obtained via the
Doob transform is in general difficult to construct since
one needs to solve the full large-deviation problem. Var-
ious numerical schemes, such as the cloning algorithm
and transition path sampling complemented with trajec-
tory umbrella sampling [33H35], variational tensor net-
works [36H38], or machine learning techniques [39} [40],
have been recently shown to converge to the effective dy-
namics, but always in the context of stochastic systems.
Doob operator and Doob effective map— By analogy with
the auxiliary Doob process of discrete-time stochastic
systems [41], [42], we define the Doob operator for a given
s = Sp, based on the tilted operator , its left eigen-

function I, («) and the SCGF 6(so), as

L )] = €O, (2) Ly (1o (2) " al@)]. (2)

The right eigenfunction associated with the largest eigen-
value of LD [a(x)], which is 1, is p2 (x) = ls,(x)rs, (2),
and corresponds to the stationary distribution of LSDO.
Indeed, the Doob operator has the two crucial prop-
erties we sought: (i) conservation of probability, i.e.
(LP)1[1(x)] = 1, and (ii) generation of the ensemble of
trajectories giving rise to the biased probability Pj,(a)
for long times, see SM [30] for details. The atypical fluc-
tuations of the natural dynamics (s = 0), associated with
some sg # 0 in Eq. , thus become typical in the Doob-
transformed dynamics .

In summary, the Doob operator has a station-
ary state pg () that naturally yields the statistics for
A corresponding to rare fluctuations of the original dy-
namics, which are exponentially suppressed in p(z), i.e.
the invariant measure of f. Yet we still need the Doob
effective map, f£ , generating the atypical trajectories
Yn+1 = fL(yn), which requires finding a chaotic map
with a prescribed invariant measure [43], in this case
pE (y). While other maps may have the same invari-
ant measure, the Doob effective map f£ is uniquely de-
fined by the following procedure. Assuming that p(z)
and pg (y) are strictly positive and integrable (as in all
the examples considered below), so that their cumula-
tive distributions F(z) = [ p(u)du and FP(y) =
J?_ pP (u)du are continuous and increasing (hence in-
vertible) functions, the transformation that is required
is y = 75 (2) = (FE)™1(F(2)), as it is easy to verify,
see SM [30]. Applying this transformation it is straight-
forward to find the Doob effective map taking into ac-
count that ypp1 = f2(yn) = f2(7s(xn)) and that
Yn+1 = Vso (Tn+1) = Vso(f(zn)). From these equations
we obtain f2 (v, (2n)) = 7s,(f(2n)), so that the Doob
effective map, which is topologically conjugate to f, takes
the form

£=7300fo'75_01~ (3)

The evolution is given by f after a change of coordinates,
Y ="so (1')7 such that Yn+1 = fs[;(yn) = Yso (f('V;()l(yn)))
The Doob effective map sustaining the rare event corre-
sponding to sg = —1 in the example based on the tent
map is illustrated in Fig. d); see the SM for the nu-
merical method employed to obtain the eigenfunctions
on which its construction is based, where it is illustrated
for the doubling map, and compared with analytical and
cloning-algorithm results [30]. While ay is practically
impossible to sample with the original dynamics f, by
contrast, in the dynamics given by the effective map £
it is the average value. Thus the fraction of time spent in
the interval x* + 0.05 is much higher, 78%, as illustrated
in Fig. [[fe), and in the histogram of Fig. [If).



Remarkably, while * = 2/3 is an unstable fixed point
of the tent map f, y* = v5,(z*) (which is close to, yet
different from, 2/3) is also an unstable fixed point of
the Doob map f£ . This is true in general and is im-
posed by the conjugacy: F2(y") = (7o, 0 f 0 7 )(y") =
Pyso(f(x*)) = s (z*) = y*, and ( s[()))l(y*) = (Vs ©
P @) ) ) = 1, @) F (@7 (v, (27) 7 = f(a%).
Despite this, the peculiar shape of ffg makes the trajec-
tory spend most of the time around z* [see Fig. [[(d)].
One can similarly show that a fixed point of f* =
fofo---of maps into a fixed point of (f£)™ with the
same stability. Those fixed points lie in periodic orbits
of f (with period n or integers factors thereof), which is
the topic we turn to next.

Counterbalancing the instabilities of periodic orbits—
Unstable periodic orbits are very relevant, as many prop-
erties of chaotic systems are analyzed on such orbits em-
bedded within chaotic attractors (see, e.g., Refs. [23]44]).
Fig. [2| shows how to use our methodology to counter-
balance the repulsive effect of unstable periodic orbits.
We focus on the logistic map f(zx) = rz(l — x) with
r = 4 (sometimes called the Ulam map), see the black
line in Fig. e). It has a period-2 orbit comprising z% =
(5++/5)/8, which is unstable, as (f2)(z%.) = —4. Due to
this instability, the average value of the indicator func-
tion A= N—1 Zﬁf;ol (T2 +0.025) (%n) + Iz £0.025] (Tn)) is
only (4) ~ 0.09. See Fig. [J[a), which shows the SCGF
0(s), as well as its (minus) first derivative (A);, as well as
Fig. e) and Fig. f), displaying the cobweb plot and a
typical trajectory of the unbiased dynamics respectively
(s =0). As sis moved towards negative (positive) values,
the time average becomes larger (smaller). We will focus
on so = —1, which yields (4)s, =~ 0.79, associated with a
much longer time spent in the vicinity of the period-2 or-
bit, and sg = 1, corresponding to (A),, ~ 0.02, for which
the vicinity of the orbit is seldom visited, as displayed by
Fig. 2(d) and Fig. k), respectively. Those values of sg
correspond to large deviations of a, well beyond the range
of the Gaussian approximation, as shown in Fig. b).

The Doob map for sg = —1, see Fig. c), is remarkably
different from the logistic map, represented in Fig. (e).
In the case of so = 1 [Fig. 2fg)] the difference is more
subtle, yet sufficient for avoiding mapping values of x,,
into values of x,,41 in the support of the indicator func-
tion. The trajectories shown in each case [Fig. 2d), ()
and (h)] correspond to the cobweb plots in the panels
immediately above, and confirm all expectations.

A dynamical phase transition for the Lyapunov
exponent— To conclude we focus on the timely topic
of dynamical phase transitions (DPTs) [7 [36, 45H50].
Specifically, we characterize the dynamical phases sus-
taining the fluctuations of the finite-time Lyapunov ex-
ponent, A = N~1 22]:_01 In|f'(x,)|, in the logistic map.
For long times, the average of this fluctuating observ-
able, which can be interpreted as a time-averaged infor-
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FIG. 3. Characterization of phases in a DPT for the

Lyapunov exponent of the logistic map. Main panel:
SCGF 6(s) and biased average (A); = —6'(s). The three
points highlighted correspond to s = —3 (square), s = —2
(star), s = 0 (circle). The latter corresponds to the logistic
map, shown in Fig. e) with a typical trajectory displayed in
Fig. f). Lower inset: Doob effective map and representative
trajectory for so = —3. Upper inset: Same as lower inset but
at the critical point so = —2, exhibiting coexistence between
both dynamical phases. In both insets the original (logistic)
map is also shown (see dashed lines)

mation loss [23], converges to the Lyapunov exponent.
The latter is (A) = In 2, as obtained from the topological
conjugacy of the logistic map and the tent map [23] [44].
As the tilting parameter s is varied, one finds that there
are just two possible values of the biased average (A)s,
namely In4 and In2 (including obviously s = 0). In-
deed the SCGF, which for this observable is closely re-
lated to the so-called topological pressure (see e.g. [23]),
is 0(s) = —2(s+ 1)In2 for s < —2 and 6(s) = —sln2
for s > —2, as discussed, with different conventions, in
Refs. [51,52] and others therein [53]. Both the SCGF 6(s)
and the average (A)s = —6€'(s) are displayed in Fig.
In this case the rate function is linear, I(a) = 2(a —In2),
for In2 < a < 1n4, and infinite anywhere else.

We next characterize the two dynamical phases, as well

as the critical point (s = sg = —2). For s < —2, the
Doob effective map, presented on the left of the lower
inset to Fig. [3| for sy = —3, generates trajectories that

localize in the vicinity of the point x = 0, as displayed
on the right of the same inset. There small intervals
expand with a rate In4 (instead of the common expansion
rate In2 to be found elsewhere in phase space [23] [51]),
leading to (A)s = In4. On the other side of the DPT, for
s > —2, (A)s = In2, as in the unbiased dynamics (s =
0), whose trajectories are displayed in Fig. f)7 where
the region around z = 0 is hardly ever visited. Finally,
the Doob effective map at the critical point sg = —2 is
shown in the upper inset to Fig. [3| This map generates
trajectories as the one presented on the right of the inset,



which exhibits a remarkable intermittency between the
behavior for sy = —3 and for sg = 0, illustrating the
coexistence between dynamical phases characteristic of
first-order DPTs [7, [17), 45 [48].

Concluding remarks— We have developed a theoretical
framework to find the effective dynamics realizing atypi-
cal trajectories in chaotic maps. Apart from its obvious
interest for dynamical control purposes, it allows for the
characterization of phases involved in DPT's occurring far
away from the unbiased dynamics. While our approach
has been developed for 1D systems, the formalism can
be extended to cover higher-dimension maps, and per-
haps also continuous-time flows. The adaptation of this
framework to fluctuations at finite times by means of
the finite-time Doob transform may also be feasible with
currently-available techniques [12] 20, 37, [54].
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SUPPLEMENTAL MATERIAL:

Finding the effective dynamics to make rare events typical in chaotic maps

THEORETICAL FRAMEWORK

Frobenius-Perron operator and its adjoint

We consider a chaotic discrete-time dynamical system whose evolution x,11 = f(z,) is given by a smooth map
f: I — I, where I is some compact interval of the real line. Considering a probability distribution of initial values
given by the density ao(x) ([, ao(x)dz = 1), the time evolution of this density is given by the Frobenius-Perron
operator [23],

Lia(a)) = [ aw)dte— ) dy = ) u?(()) (s1)
zef—1

in the sense that ay,11(z) = Loy, (x)] for n =0,1,2,... N. In Eq. (S1), d(x) is a Dirac delta, and f~!(x) is shorthand
for the set of pre-images of  under the (generally non-invertible) map f. We assume that the map f is ergodic with
respect to an invariant measure

@)= L) = Y L8 (s2)

z€f~1(z)

Considering the standard inner product between real functions a(x) and S(z), = [« o x) dx, one can
define the adjoint operator LT by the relation (3, L|a]) = (LT[3], a):

~ [ dle)tiatw)ds - / 8(x) [ [ atwita - f(y))dy] dx

/ [/ﬁ ))dx} dy = /a(y)LT[B(y)] dy = (LA, ), (S3)

I

where we have used Fubini’s theorem. Thus the adjoint or dual operator is

Lia(z)] = / a()d(y — F(x)) dy = a(f(z)). (s4)

Statistics of trajectory observables and tilted operators

Under quite general conditions, the probability density of a time-averaged dynamical observable A =
Nt ZnN;Ol g(x,) for long times acquires the large-deviation form P(A = a) ~ e’NI(a), where I( ) is the so-called
rate function. The latter is non-negative and equal to zero at the mean value, = [g(z)p(z)dz, and has small
Gaussian fluctuations around it (given by the quadratic expansion of I(a) around 1ts average) and larger (generally)
non-Gaussian fluctuations corresponding to large fluctuations, i.e. rare events [2]. In order to obtain I(a), it is useful
to consider the so-called tilted operator, recently studied in the context of chaotic maps [29],

Lufo(z)] = / eI a(y)6(z — f(y)) dy (5)

since the statistics of A can be extracted from its largest eigenvalue, as explained below. Equation can be viewed
as a Frobenius-Perron operator that is biased towards atypical values of A by tilting with a conjugate parameter s.
For s > 0, it biases the dynamics towards values smaller than (A), and for s < 0, towards values larger than (A).
However, unlike the Frobenius-Perron operator, which is obtained for s = 0, this tilted operator (for s # 0) is not
probability-conserving (as shown below). Such operators have been recently studied in [29], and are closely related to
the ‘escort distributions’ discussed, e.g., in Ref. [23].



Following the steps of the derivation of LT given by —, the tilted adjoint or dual operator L{ must satisfy

= / B(2)Lila())dz = / B(z) [ / e~ 59Wa(y)3(x - f(y))dy] dz
= / [ o / Bl >>dx} dy = / o) LB dy = (L}[8], ). (56)

Thus the tilted adjoint operator is

Li[a(z)] = e7**) /a(y)5(y — f(2))dy = e~ Da(f(z)). (S7)

I

The form of the tilted operator can be derived by analogy with the reasoning provided for the case of jump
processes in Ref. [7]. We consider the probability density mn(z,a) of being in state x after N time steps, having

measured a value a of the observable A = N—! En 0 g(xn) This probability density can be related to the probability
density of the previous time step as follows:

(@, a) = / 1 (g0 — N-g(y) 6(z — f(y)) dy. (8)

I

Thus the probability of measuring a value a in a trajectory of N time steps is
P(a) = /IWN($, a)dx . (S9)
By an application of the Laplace transform
an(z,s) = /efSNaﬂ'N(x,a) da, (S10)
on both sides of Eq. , where the integral is assumed to converge, we obtain
() = [ ([ mymstna= N0 do) ate - 1) dy
= /Ie_sg(y) </ e N 1y, d) da’) 5z — fy)dy = /le_sg(y)ﬁN,l(x,s)d(x — f(y)) dy. (S11)

We then see that the tilted operator gives the time evolution of 7y (z,s), i.e. Tpi1(x,s) = Ls[Tn(z, s)].
The statistics of the fluctuating observable A can be retrieved from the moment generating function Z(s) =
[ e~sNeP(a)da, which by virtue of Egs. and (S10), can be written as Z(s) = [; ﬁN(x s)dx Thus by writing

Lg[p(x)] in terms of its right and left eigenfunctions, rJ(x) and IZ(z), as Ls[p(z)] = dois0 A x) ([, 1 dx)
with A;(s) being the corresponding eigenvalues (ordered in decreasing value of their real part, Re[)\o( )] > Re[)\l( )] >
=), we obtain Z(s) = [} LY [ao(z)ldz = 3,50 A (s)([; ri(z)dz)( [} li(x)ao(x)dz), when we start by an initial

probability denbity ao( ). Therefore in the long time limit N > 1, Z(s) follows a large deviation form Z(s) ~
eNe(S)(fI rs(x)dx)( [} Is(x)ao(z)dz), where ri(x) and [;(z) stand for the right and left eigenfunctions, respectively (we
have removed the 0 superscript for simplicity), associated with the eigenvalue with largest real part, A\o(s) = ef(s),

Ly[rs(z)] = ®@ry(z), (S12)

Li[ls(2)] = "Piy(2), (S13)

normalized such that [,7s(z)de = 1 and [, ls(z)rs(z)de = 1. Then 6(s) = limy_oc N"'InZ(s) is the scaled
cumulant generating function (SCGF), which is related to the rate function through a Legendre transform, I(a) =
— ming[0(s) + sa] [2].

For s = 0, the largest eigenvalue is ¢?®) = 1 (9(0) = 0): as a,41(z) = Lla, ()] relaxes to the natural invariant
measure p(x), we have an eigenvalue of 1 for that particular eigenfunction, p(x) = L[p(z)], while others have associated
eigenvalues smaller than 1 (so the contributions of these modes to a generic initial distribution ap(x) decay across

time). Eq. (S12)) reduces in that case to Eq. (S2)), where Ly = L [see Egs. (S1) and (S5)] and ro(z) = p(x) is the natural



invariant measure of the chaotic map f. On the other hand, the left eigenfunction I(x) associated with the largest
eigenvalue of L, is the corresponding right eigenfunction of the adjoint tilted operator LI, since (I, L,[3]) = e?*) (I, B)
must be equal to (LI[l,],3) for any 8. For s = 0, again we have 6(0) = 0, so (lp, L[8]) = (lo, 8) for any 3, which
can only be satisfied for lp(z) = 1(z) = 1, and amounts to the conservation of probability under the action of the
Frobenius-Perron operator L. In terms of the tilted adjoint operator, conservation of probability thus means:

LL(a)] = L(f(2)) = L. (S14)

Doob operator

At this stage, following the analogy with the study of the auxiliary discrete-time Doob process in stochastic systems
[41] 42], we define the Doob operator, which, for a given value of s = sg, when applied on the normalized function
a(z), yields

LY ()] = €0, (2) Ly [(sy () " @) (S15)

The right eigenfunction associated with the largest eigenvalue, which is 1, is given by pl (z) = I, (z)rs,(x), which
corresponds to the invariant measure of LY, since LY [l (z)rs,(z)] = 6_9(3“)1 s0 () Lsg [1s (2)] = Uso ()75, ().

The importance of this operator is due to the following two properties:
1) it is a probability conserving operator (which L is not),

2) it makes rare events typical, in the sense that the statistics associated with a rare fluctuation observed for so # 0
(as encoded in the SCGF 6(s)) becomes associated with the natural stationary dynamics of the Doob operator.
This implies that the Doob operator generates the ensemble of trajectories giving rise to the biased probability
P, (a) for long times.

S0

Property 1) can be explicitly verified by checking that the Doob operator does indeed satisfy the requirement that
[; LR [B(x)] = [,(LE)[1(2)]8(x)dz = 1 for any normalized 5(z), hence (L )'[1(z)] = 1(x) = 1. The adjoint Doob
operator L%T is defined by

/6 I)W:/I5(56)6*0(8“)1%(50)%0[(lsO(x))_la(w)]dw

)/LT [B(@) Lsg (2)] (L ()~ a(@)dz = (L T[B], ). (S16)

This yields the following expression
LM [a(x)] = e (L, () " L L, () )] = e P T0s@l 1 ()71 1, (f(2)) alf(2)), (S17)
which indeed satisfies (L2)f[1(z)] = e=0(0) (I, () ™" LI [Is (2) L(2)] = €060 (I, (x)) " ?C0) I (x) = 1. Thus the
Doob operator is a probability-conserving operator, unlike the tilted operator: Li[1(z)] = e=*9(®)1 (f(:r) e59(®) £

1 (for s # 0).
Property 2) can be shown by tilting the Doob operator with parameter s,
LE Ja(x)] = e (@) Loy [e 79 (14 (2)) 7 ()] = €700, (@) Loy 1[(lso () ™' ()], (518)

whose right eigenfunction associated with the largest eigenvalue " (®), is lso ()1so+s(x), since

Lg s[l ($>TSO+S(37)] = e_G(SO)ZSO (m)LSO-l-S[TSO-&-S(x)] = 60(304—‘9)—0(30)180 (x)r50+5(x)' (819)

The SCGF of the Doob operator is thus 8 (s) = 0(so + s) — 8(sg). This means that the stationary dynamics of
the Doob operator has the same statistics of A, given by the derivatives of §”(s) at s = 0, which are equal to the
derivatives of the SCGF 6(s) at sg. By Legendre transforming 67 (s) we get I”(a) = I(a) + 6(so) + soa, which is the
rate functlon of the tilted distribution, P, (a) ~ e~ N’ P(a) The atypical fluctuations of the natural dynamics given
by Eq. (S1)) associated with some sg # 0 thus become typical in the Doob-transformed dynamics.
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Doob effective map

The Doob operator has a stationary state that naturally yields the statistics for A that correspond to rare
fluctuations of the original dynamics for some sg # 0. For long times, points of the typical trajectories generated from
the original dynamics are distributed according to a density that approaches the invariant measure of f, which we
denote as p(x), whereas points of the rare trajectories approach pZ (y) = ls, (y)7s, (y). But how the latter distribution
can be generated from the typical trajectories of an effective chaotic map (which must be necessarily different from f)
is not clear at this point. Specifically, we would like to find a Doob effective map fslg , whose evolution 4,41 = f£ (yn)
yields an invariant measure that supports that Doob-operator statistics pZ ().

To address this question we consider the problem of how to transform values x taken by a random variable X
distributed according to the probability density p(x) into values y taken by a random variable Y distributed according
to a probability density pf()) (y). Specifically we will look for an invertible function 7, that carries out this mapping:
Y = Yso(x). We assume that p(x) and pl (y) are integrable (for example, they are continuous functions or have
countably many discontinuity points, so the Riemann integral exists) and strictly positive (p(x) > 0 for all x € I,
PP (y) > 0 for all y € v4,(I)), so that their cumulative distributions F(z) = [*_ p(u)du and F2(y) = [ pP (u)du
are continuous and increasing (hence invertible) functions. It is clear that

FP(y) = P(Y <y) = P(75,(X) <y) = P(X <v,'(¥) = F(vs,' () = F(). (520)

Solving for y, the required transformation is found to be y = 75, () = (F£)~'(F(z)). Applying this transformation
it is straightforward to find the Doob effective map taking into account that yn41 = f2(yn) = f2(7s,(2,)) and that

Yn+1 = Vso (@nt1) = Vs (f(2r)). From these equations we obtain S%(’ySO (n)) = Vs (f(xn)), ie. £ 0 Ysy = Vs © [,
so that the Doob effective map, which is topologically conjugate to f, takes the form

SDO =75 0f0 '75_017 (821)

or equivalently f = 78—01 ) SDO 0 sy, With 75, defined as right below Eq. (S20]). Indeed, mathematically speaking
the conjugacy is smoother than that provided by a homeomorphism, as s, is differentiable. This amounts to the
dynamics given by f plus a change of coordinates y = s, (), such that y,+1 = fslg(yn) = VSO(f('y;]l (yn))):

f
Ty ——F Tp41l

“/QOIT /0 l%o

s

Yn > Yn+1

Now, if we generate a long trajectory from an initial value of zy with the ergodic map f, it is clear that for long times
the points that make up the trajectory will be distributed according to the invariant measure of f, p(x). On the other
hand, if we transform each of these values xg, 1, T2, ... with the function v,, = (FS?)_1 o F, the resulting sequence
of states Yo = Vs, (T0), Y1 = Vso (1), Y2 = Vso (2), . . ., will be distributed following pZ (y). The rare fluctuations of f,
corresponding to a given sg # 0, become typical in fS%.

NUMERICAL METHOD TO SOLVE THE EIGENVALUE PROBLEM

In order to obtain the Doob effective map of the examples discussed in the main text, we need the largest eigenvalue
of the tilted operator, as well as its left and right eigenfunctions. Hence we have numerically solved the eigenvalue
problem for the tilted operator given by and . To that end we have extended to general observables a
numerical technique developed in Ref. [52] for the case of the finite-time Lyapunov exponent, g(z) = In|f'(z)|, in
which the eigenvalue problem is iteratively solved using Eq. , through the following recurrence relation

e300 (2)

Ar(s)rit D (@) = Y T (522)
— 11 (2)]
zef~ (=)
with ¢ = 0,1, .... Since the limit of the iterative procedure is unique, we start with an initial function rgo) () =1. As

described in [52], at each step rgi)(m) is normalized, [; rgi)(x)dx = 1, so that rs(z) is approached by the sequence of
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FIG. S1. Comparison between analytical results and numerical results obtained with the cloning algorithm
and with the numerical method, given by —, used in the main text. We consider here the fluctuations of
the time-averaged position A = N~! Zf;ol Zn for the doubling map xn+1 = 2z, mod 1. (a) SCGF: The blue solid line is the
analytical result while the red dots have been obtained with the numerical method. The black square is the value obtained with
the cloning algorithm for s = —1. The inset shows the convergence to the analytical result (black dashed line) of the natural
logarithm of the largest eigenvalue associated with the right and left eigenfunctions using the numerical method for s = —1.
(b) Analytical result (blue solid line) for the right eigenfunction, together with the results based on the cloning algorithm (red
solid line) and the numerical method (black solid line), all for s = —1. A perfect overlap is observed. (c) Left eigenfunction for
s = —1. In the absence of an explicit analytical expression, results with the cloning algorithm (red solid line) and the numerical
method (black solid line) are displayed.

functions 7. (z), which evolves as

e 39 (D) (1)
Yizef-i(a) )

A

r{t (z) = : (S23)

with
, —59(),.(0)
A0 = / de Y 6/77“(2) (S24)
I e (a) \f (Z)|

The sequences (S23)) and (S24) converge to the right eigenfunction r,(z) and to the largest eigenvalue A(s) = /()
respectively, as 7 increases.
We now apply the same strategy to obtain the left eigenfunction [eigenvalue problem (S13|)], with the normalization

at each step satisfying [; rgi)(x)lgi)(x)dx =1, so that

) —sg(z)7(1)
Zgz-l-l)(x) — € /\l(gz) (f(x)) ; (825)
l

with

A = [ da N0 f(@)r D ). (826)
I

We start as well with lgo)(x) = 1, and, in this case, the sequences and converge to the left eigenfunction
ls(x) and to the largest eigenvalue A(s), respectively, as ¢ increases.

This is how the SCGF and the eigenfunctions have been calculated in all the examples of the main text. In order to
reach values of i large enough to ensure a clear convergence, we have discretized the spatial coordinate x in equations
— by dividing the interval [0, 1] into 3 x 105 subintervals of equal length. The largest iteration considered
imax has been adapted to each particular case: thus, in the tent map example, displayed in Fig. [[]of the main text, we
have taken i,,q, = 12, while in the second example, displayed in Fig. 2] of the main text, we have taken iy, = 50 to
ensure a good convergence. In the third example, presented in Fig.|3|of the main text, to construct the Doob effective
map for s = —3 we have used i,,,, = 10, while to obtain it at the critical point, s = —2, we have taken 4,,,, = 100,
since, due to the non-analyticity, the convergence is very slow at that point.
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FIG. S2. Original and Doob effective map, together with the typical and atypical trajectories for the doubling
map. Fluctuations of the time-averaged position, A = N~* Zf;ol Zn, of the doubling map zp+1 = 2z, mod 1. (a) Cobweb
plot for N = 100 iterations of the doubling map. (b) Trajectory illustrated in (a). (c) Cobweb plot for N = 100 iterations of
the Doob effective map for sop = —1. (d) Trajectory illustrated in (c).

To further illustrate this method, we compare the convergence of the numerical results with an analytical example
that has been recently solved [29], namely, the large deviations of the time-averaged position, g(z) = x, in the
one-dimensional doubling map, f(z) = 2z mod 1, where x € [0,1] and z mod 1 is the fractional part of z. This
chaotic map has an invariant measure p(z) = 1, a SCGF 6(s) = In[(1 + e ®)/2] and a right eigenfunction equal to
rs(z) = —se™*%/(e~° — 1), as shown in [29].

By applying the numerical method above —, we obtain the results displayed in Fig. (a), where we observe
perfect agreement of the SCGF with the analytical results. The inset to Fig. a) displays the convergence of the

natural logarithm of the largest eigenvalue associated with the right and left eigenfunction, i.e., ln[)\g)] and ln[)\l(i)],
for s = —1. With 4,4, = 10 iterations there is already a good agreement with the theoretical value corresponding to
the dashed black line.

In addition, we have applied the cloning algorithm developed in [24] 27] to further check the validity of our results
for s = —1, specially to corroborate the convergence of the left eigenfunction, for which there is no explicit analytical
expression. As we can observe, the SCGF [see black square in Fig. a)], the right eigenfunction [displayed in
Fig. [S1(b)] and the left eigenfunction [shown in Fig. [ST|(c)] are all in excellent agreement with the numerical and also
the analytical results (when available). This further supports the validity of the numerical method here presented
and used in all the examples of the main text.

It is worth noting that computing the left eigenfunction with the cloning algorithm is non-trivial. Indeed, we have
to first measure the histogram of the midtime statistics, calculated for the intermediate times of the trajectories
sustaining the prescribed rare fluctuation. This is achieved by tracing backwards those trajectories of the clones that
survive until the end, as explained in Ref. [49]. By doing so, we obtain p7¥(z) = ls(z)rs(x), which corresponds to
the Doob stationary state. Then, in order to obtain the left eigenfunction, we need to divide p7¢(x) by the statistics
at the endtime, which yields p¢"?(z) = r,(x). Further details about midtime and endtime statistics can be found in
[7,133,49] [55]. The parameters of the cloning algorithm in this case are Nejones = 2 x 10* (corresponding to the number
of trajectories) starting with a uniform random initial condition. The duration of the trajectories is N = 1000, and
they are averaged over 200 realizations. A noise of amplitude ¢ = 1076 is added to the dynamics at each time-step
(as v/€en,, with n, being a white noise of unit variance), since the maps are deterministic and the clones would perform
a poor sampling otherwise, see [24], [27].

Finally, we also show the Doob effective map in this case (with sg = —1). It has been computed from Eq. with
Yoo (x) = (FE)™1(F(x)), where F(z) = fox p(u)du and F2(y) = 'ZO(O) pE (u)du have been numerically integrated. For

the doubling map, the invariant measure is uniform p(z) = 1, and p2 (x) = I, (z)7s,(x), where 7y, (x) and I5,(z) are the
functions displayed in Fig. b) and Fig. [S1(c) respectively. The resulting Doob effective map, f2__ (z), is shown in
Fig.[S2{(c) (black solid line), together with its corresponding cobweb plot (red solid line), the trajectory being further
represented in Fig. (d) for N = 100 iterations. We also included the original map, f(x) = 2z mod 1, in Fig. (a),
with its cobweb, and the corresponding trajectory also for N = 100, see Fig. b). In the typical trajectories of the
Doob effective map, the biasing (sg = —1) promotes fluctuations larger than the average of the original dynamics,
which is (A4) = f01 xzp(x)dx = 0.5, the biased average being (A)s,——1 = —0'(s9) = f01 apl __(z)dx ~ 0.73. This
is illustrated in the trajectory of Fig. d), generated with fg:_l(x), which brings a substantial fraction of points
above 0.5. The value of 0.73 is obtained by averaging over many such trajectories.
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As we have pointed out in the main text, solving the eigenvalue problem in order to obtain the Doob effective
process is in general a difficult task. In general it is necessary to make use of numerical methods, such as the iterative
approach or the cloning algorithm, for this purpose, as explained above. Recall that in this case, an additional
requirement to derive the Doob effective map (one which is absent in the case of stochastic dynamics) is the need
to find the right eigenfunction and not only the left one. In this sense, it would be very interesting to extend recent
numerical schemes that have been put forward in the context of stochastic systems to chaotic maps. These include the
cloning algorithm and transition path sampling complemented with trajectory umbrella sampling [33H35], variational
tensor networks [36H38], or machine learning techniques [39] [40]. Such techniques might be particularly useful to
tackle higher dimensional maps, continuous-time flows as well as to derive the Doob optimal dynamics at finite times.
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