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This paper concerns a method of describing hadrons that starts with the canonical front form Hamiltonian
of QCD. The method is developed in the relatively simple context of QCD with only heavy quarks. We
regulate its canonical Hamiltonian by introducing a vanishingly small gluon mass mg. For positive mg, the
small-x gluon divergences become ultraviolet and hence they are renormalized in the sameway the ultraviolet
transverse divergences are. This is done using the renormalization group procedure for effective particles. Up
to the second order of expansion of the renormalized Hamiltonian in powers of the quark-gluon coupling
constant g, only the quark mass-squared and gluon-exchange divergences require counterterms. In these
circumstances, we calculate an effective potential between quarks in heavy quarkonia in an elementary way,
replacing all the quarkonium-state components with gluons of massmg by only one component with just one
gluon that is assigned a massmG, comparable to or exceeding the scale of typical relative momenta of bound
quarks. In the limit ofmg → 0 and largemG two results are obtained. (1) While the color-singlet quarkonium
mass eigenvalue stays finite and physically reasonable in that limit, the eigenvalues for single quarks and octet
quarkonia are infinite. (2) Besides the coulomb terms, the effective quark-antiquark potential is quadratic as a
function of the distance and spherically symmetric for typical separations between quarks but becomes
logarithmic and no longer spherically symmetric for large separations. Our conclusion indicates how to
systematically improve upon the approximations made in this paper.

DOI: 10.1103/PhysRevD.109.016017

I. INTRODUCTION

Description of heavy-quark bound states in terms of their
virtual Fock-space components is meant to be achievable
through solving the Hamiltonian eigenvalue problem in
QCD, which in the first approximation is limited to only
involve quarks b and c. However, the canonical Hamiltonian
of even so severely limited theory poses conceptual and
computational problems. To begin with, the Hamiltonian

needs regularization. The formal momentum cutoffs one
imposes on the virtual Fock states of heavy quarks are much
greater than the quark masses. Therefore, from the regu-
larization point of view, the heavy quarks do not differ much
from the light ones—their masses are negligible in com-
parison with the cutoffs. Further, the canonical gluon mass is
zero, which is infinitely small in comparison to any nonzero
quark mass. The key distinction between the heavy and light
quarks is provided by the ratio of their masses to the
parameter ΛQCD. The latter results from dimensional trans-
mutation [1–3]. However, such a parameter cannot be
introduced in a precise way without a renormalization group
procedure for Hamiltonians. One faces the difficulty that
Hamiltonians in quantum field theory result from integrating
Hamiltonian densities over a three-dimensional space.
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The three-dimensional Hamiltonian density is a different
concept from the four-dimensional Lagrangian density and
the associated concepts of action, path integration, and
diagrammatic techniques of perturbation theory.
In this paper, we address the issue of dynamics of heavy

quarks using the renormalization technique called the
renormalization group procedure for effective particles
(RGPEP). The RGPEP is designed for Hamiltonians and
it applies to the front form (FF) of dynamics [4,5]. One is
motivated to use the FF instead of the more familiar
instant form (IF) because of the desire to describe the
quarkonia observed in motion as well as the quarkonia
observed at rest and to include other moving particles
with which the heavy quarks interact. The key feature of
the FF of Hamiltonian dynamics is that the required
boosts are kinematic; their generators do not involve
interactions. This is not the case in the IF, where motion is
associated with a dynamical change in the virtual Fock-
space decomposition.
The RGPEP has been used for the purpose of describing

heavy quarks before [6–8], including the effective poten-
tials derived using the RGPEP that were used in other
approaches for description of heavy tetraquarks [9]. The
new element utilized in this article is the small gluon mass
parameter mg that regulates the singularities caused by
gluons carrying small longitudinal momenta [10,11] or, in
the parton-model language, those that carry a small x.
The arbitrarily small parametermg, in combination with the
running scale parameter, denoted by t, provides a lower
bound on x. This bound is absent in the free part of the
Hamiltonian. It only appears in the interaction terms. The
reason is that the RGPEP does not integrate out large FF
energies. Instead it integrates out large changes of the
FF energies due to interactions. The free part of the
Hamiltonian does not change the FF energy. In other
words, instead of Wilsonian integrating out of large
energies and hence limiting the range of momenta of field
quanta in the Fock-space basis, we only integrate out the
interactions that cause large changes of the FF energy. In this
respect, our Hamiltonian approach differs from the extended
literature on heavy-quark bound states, including the out-
standing reviews [12,13]. Regarding boost invariance in
Minkowski approaches, we wish to mention [14–18] and
references therein, from which our Hamiltonian approach
also differs in this respect.
As a consequence of the regularization used in this

article, one circumvents the vacuum problem in the theory.
Instead of involving the ground state in the dynamics and
arguing that it somehow expels the colored states out from
the spectrum, we find that the renormalized Hamiltonian is
capable of producing infinite eigenvalues for colored states
in the limit mg → 0. This result only follows under the
assumption that an exchange of an effective gluon
between effective quarks is blocked by the non-Abelian
interactions when the RGPEP running scale parameter t is

increased to the value that characterizes the formation of
the quark bound states.
The simplest model of the blocking of effective gluons

from being exchanged between effective quarks is defined
by giving the gluons a large mass mG ≫ ΛQCD ≫ mg,
where ΛQCD is defined in the RGPEP scheme. One does
not need to specify how mG depends on t. It suffices to
assume that it is larger than the momentum transfers
between quarks involved in formation of bound states.
That way the Fock-space dynamics, which a priori
involves unlimited numbers of effective gluons, is dras-
tically simplified because emission and absorption of
heavy gluons is suppressed. In our calculation, we limit
the number of heavy effective gluons involved in the
dynamics to one. Since our FF Hamiltonian approach is
only developed in gauge Aþ ¼ 0, we ought to mention
that an effective gluon mass has also been found useful in
calculations using the Dyson-Schwinger equations in
Landau gauge, see Refs. [19–22].
The results we report follow from the renormalized

Hamiltonian that is computed in the limit mg → 0 using
expansion in a series of powers of the coupling constant
only up to second order. Although nowadays it may be not
surprising that such low-order computations can point
toward some mechanism of quark binding [23–25], the
mechanism our calculation points to is surprisingly simple:
the quark self-interaction tends to infinity as j logðtm2

gÞj,
but this logarithmic growth is canceled in colorless quar-
konia by the effective interaction term computed using
the RGPEP.
Before the limit mg → 0 is taken, a finite value of mg

converts the small-x divergences into the large FF
energy divergences. It happens because the gluon minus
momentum is

p−
g ¼ m2

g þ p⊥2
g

pþ
g

: ð1Þ

It becomes infinite when pþ
g → 0 no matter how small p⊥

g

is. If mg is zero, p⊥
g ∼

ffiffiffi
x

p
or smaller would lead to finite or

even vanishing p−
g . However, for mg > 0, the divergences

due to small x ¼ pþ
g =Pþ, where Pþ is a momentum of a

system under consideration, can be treated on an equal
footing with the transverse UV divergences associated with
p⊥
g → ∞, using the RGPEP.
It should be pointed out that the finite and phenomeno-

logically reasonable eigenvalues we obtain for white quar-
konia depend on the ratio of the quarkonium longitudinal
momentum as a whole, Pþ, to the running renormalization
group scale-parameter t. This is so due to the approximations
we are forced to make at this stage of developing the theory.
Namely: instead of solving the RGPEP equation for scale-
dependent, effective Hamiltonians Ht exactly, we use
expansion in powers of g only up to g2; we introduce the
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hypothetical mass mG for effective gluons, while we do
not know yet how the effective gluon mass actually
evolves with t; we limit the eigenvalue problem for Ht
to a subspace spanned by two effective components, one
with a quark and an antiquark and another one with a
quark, an antiquark and a gluon; we approximate the
dynamical contribution of the three-particle component to
the eigenvalue equation for the two-particle component
keeping only terms on the order of g2; we adjust the value
of t to bring the resulting mass eigenvalues close to data,
because our calculations are not exact so that the resulting
observables depend on t, and we extrapolate the coupling
constant g to the value gt that is in the ballpark of
expectations based on the perturbative evolution of gt,
but we cannot estimate the magnitude of error caused by
such extrapolation in calculations limited to second order.
The effective quark-antiquark potential we thus obtain is
rotationally symmetric only for relatively small quark-
antiquark distances. Its asymmetry at large distances
indicates that our approximations are too crude for a
precise description of the excited states.
The paper is organized in the following way. Section II

introduces the canonical FF Hamiltonian of QCD to which
we add the gluon mass term with a small parameter mg.
In Sec. III we apply the RGPEP to compute and then
supplement with a large massmG the effective Hamiltonian
for a sizable t, keeping terms on the order of 1, g and g2.
The quarkonium eigenvalue problem for the resulting
Hamiltonian Ht is examined in Sec. IV. The effective
potential we obtain in the nonrelativistic limit of the
eigenvalue problem is described in Sec. V, including
comments concerning rotational symmetry. Appendix A
contains details of derivation of the effective Hamiltonian
up to the second order, while Appendix B shows that the
gluon exchange counterterm ensures cancellation of
small-x divergences due to exchange of a gluon. We
often abbreviate the quark quantum number subscripts,
momentum, isospin or flavor, spin and color in just one
subscript. For example, instead of p1, i1 or f1, σ1 and c1,
we write only 1.

II. QCD WITH GLUON MASS mg

The canonical FF Hamiltonian density for QCD is
obtained from its classical Lagrangian through the well-
known quantization procedure in gauge Aþ ¼ 0, e.g. see
Ref. [5]. We limit the theory to quarks c and b and supply
the Hamiltonian density with a gluon mass term,

H ¼ HQCD þ 1

2
m2

gA⊥aA⊥a: ð2Þ

The mass mg can be considered extremely small, so that its
presence in a regulated quantum theory is not noticeable at
the level of classical gauge symmetry and could not be
detected by experiment (current upper limit on the gluon

mass is on the order of a few MeV=c2 [26]). After
integration over x− and x⊥ and normal-ordering, one
obtains the free Hamiltonian term for gluons in the form

HA2 ¼
Z
3

p−
3 a

†
3a3; ð3Þ

where a3 is the gluon annihilation operator labeled by
quantum numbers σ3, c3, p

þ
3 , and p⊥

3 for polarization,
color, longitudinal momentum, and transverse momentum,
respectively, collectively denoted by 3.

p−
3 ¼ m2

g þ p⊥2
3

pþ
3

; ð4Þ

and

Z
3

¼
X
σ3;c3

Z
dpþ

3 d
2p⊥

3

16π3pþ
3

: ð5Þ

We use label 3 for gluons because we choose label 1 for
quarks and label 2 for antiquarks. For example, labels 10

and 1̃ will refer to quarks. Also,
R
1

R
2 ¼

R
12 and phrase

“pair 12” refers to a quark 1 and antiquark 2. The invariant
mass squared of a quark-gluon pair 13 is M 2

13 ¼ ðpþ
1 þ

pþ
3 Þðp−

1 þ p−
3 Þ − ðp⊥

1 þ p⊥
3 Þ2 with the minus components

being eigenvalues of the free part of the canonical
Hamiltonian.
Nonzero mg implies that whenever pþ

3 approaches zero,
p−
3 approaches infinity. In contrast, if mg ¼ 0, one can

simultaneously set pþ
3 → 0, and p⊥

3 → 0 in such a way that
p−
3 stays constant or vanishes. Therefore, for mg > 0 all

gluon modes with vanishing longitudinal momenta are FF
high-energy (large p−

3 ) modes, while formg ¼ 0 such modes
can also be FF small-energy modes. Using mg > 0 one can
simultaneously regulate transverse and small-x singularities
by a cutoff on the invariant mass. Renormalization due to
both singularities is discussed in Sec. III. Once the
Hamiltonian is renormalized so that the cutoff dependence
of its matrix elements between states of effective particles
with finite momenta is removed, the resulting theory
depends on mg. We discuss its limit when mg → 0 in
Sec. IVon the example of quarkonium eigenvalue problem.

III. RENORMALIZED HAMILTONIAN

To obtain the renormalized Hamiltonian we use the
renormalization group procedure for effective particles
(RGPEP). The procedure involves regularization, calcula-
tion of an effective Hamiltonian and determination of
counterterms, if necessary.
Gluon operators a3 (and a†3), introduced in Eq. (3),

annihilate (and create) gluons that can be characterized as
bare or pointlike. Effective gluons are created by a†t3 and
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annihilated by at3, where t ≥ 0 is the RGPEP parameter
related to the size of effective particles. The canonical,
point-like gluons correspond to t ¼ 0. The same relation-
ships hold for quark operators. So, the effective quarks
and antiquarks are created by b†t1 and d†t2, respectively. The
effective operators are related to the bare operators by
means of a unitary transformation U t,

bt1 ¼ U tb1U
†
t ; dt2 ¼ U td2U

†
t ; at3 ¼ U ta3U

†
t : ð6Þ

Dimension of the parameter t is the front form energy to
power minus two. In accordance with the dimensional
analysis of Ref. [27], we introduce two scale parameters,
longitudinal momentum scale P, and transverse momen-
tum scale λ,

t ¼ P2

λ4
: ð7Þ

The effective Hamiltonians, denoted by Ht, are linear
combinations of products of creation and annihilation
operators for effective particles. The coefficients in front
of those products are functions of t as well as all quantum
numbers labeling each particle operator involved.
The effective Hamiltonians describe the same theory, thus
Ht ¼ H0. Additionally, we define

Ht ¼ U†
t HtU t: ð8Þ

WhereasHt is a linear combination of products of effective
operators,Ht is the same linear combination (with the same
coefficients) of products of bare particle operators. We are
able now to implicitly define U t by demanding that Ht is
the solution of the following differential equation,

dHt

dt
¼ ½½Hf;Ht�;Ht�; ð9Þ

whereHf is the free part ofHt, i.e., the part that is obtained
by setting the coupling constant g to 0. The relation
between U t and Ht can be recovered from Eqs. (8)
and (9) remembering that dHt=dt ¼ 0. Effective particles
essentially define a t-dependent basis in the space of states.
Equation (9) is simpler than the corresponding equation in
Ref. [28] and it leads to simplified computations in the
cases we consider. We adopt the simplification because it
readily yields the attractive results that are described in
this paper.
The operator Ht>0 that solves Eq. (9) order-by-order in

powers of the coupling constant g is “narrow” in terms of
creation and annihilation operators for effective particles
[28] in the sense similar to the narrowness of solutions to
the Wegner equation for Hamiltonian matrices [29,30].
It means that the matrix elements of Ht between effective
particle states with vastly different FF energies are

negligibly small. More precisely, if the difference of FF
energies considerably exceeds t−1=2 ¼ λ2=P, then the
matrix element is exponentially suppressed and equivalent
to zero in our calculations. Therefore, the larger t the
narrower the Hamiltonian. Consequently, one can apply to
Ht the principles of the similarity renormalization group
procedure [31].

A. Formulas for the Hamiltonian

Below we present the relevant part of the renormalized
Hamiltonian obtained as an approximate solution of Eq. (9)
with the regularized canonical Hamiltonian of heavy-flavor
QCD as the initial condition. The solution is obtained using
the power expansion in the coupling constant gt for some
finite t, although up to the second order gt ¼ g, where g
is the coupling constant of the canonical Hamiltonian.
Nevertheless, we use the notation gt to indicate that the
coupling constant will evolve with t in higher order
calculations than the ones described in this paper.
We do not present the formulas for the pure canonical

Hamiltonian. They can be recovered by putting t ¼ tr ¼ 0
and omitting the counterterms.
Interaction vertices are regularized. For a three-leg vertex

in which particle a is annihilated and particles b and c are
created, and for its hermitian conjugate, see Fig. 1, the
regulating factor is set to

fbc:a;tr ¼ exp ½−trðp−
b þ p−

c − p−
a Þ2� ð10Þ

¼ exp

�
−tr
�
M 2

bc −m2
a

pþ
a

�
2
�
; ð11Þ

where M 2
bc is the invariant mass of the bc pair, ma is the

mass of particle a, and tr is a positive regulating parameter.
In the renormalized Hamiltonian, after cancellations of
divergences are guaranteed, one can set tr to zero. The
Hamiltonian includes also the instantaneous interaction
terms that graphically have four legs. Consider a term that
changes particles 1’ and 2’ to 1 and 2, see Fig. 2. It is
interpreted as composed of two three-leg vertices labeled
by 1, 1’, 3 and 2, 2’, 3, respectively, and joined by the

FIG. 1. First-order interaction vertices. The left vertex stands
for annihilation of particle a and creation of particles b, c and the
right vertex is for annihilation of particles b, c and creation of
particle a. The regularization factors fbc:a;tr in these vertices are
the same.
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common leg 3. The corresponding regularization factor
is set to

r12.1020 ¼ θðpþ
10 − pþ

1 Þf13.10;trf203.2;tr
þ θðpþ

1 − pþ
10 Þf103.1;trf23.20;tr : ð12Þ

The two terms correspond to two time orderings of the two
three-leg vertices, and the ordering is uniquely determined
by the sign of pþ

10 − pþ
1 . Using conservation of momentum

components þ and ⊥ in the vertices, this factor can be
simplified to

r12.1020 ¼ f1;trf2;tr ; ð13Þ

with

fi;t ¼ exp

�
−t
�
m2

g − q2i
qþi

�
2
�
; ð14Þ

where

qμ1 ¼ pμ
10 − pμ

1; ð15Þ

qμ2 ¼ pμ
2 − pμ

20 : ð16Þ

Due to momentum conservation, qþ1 ¼ qþ2 ¼ qþ, q⊥1 ¼
q⊥2 ¼ q⊥.
Now, we write the effective Hamiltonian up to second

order in gt,

Ht ¼ Htf þ gtHt1 þ g2t Ht2: ð17Þ

The term Htf is the free Hamiltonian,

Htf ¼
Z
1

p−
1 b

†
t1bt1 þ

Z
2

p−
2 d

†
t2dt2 þ

Z
3

p−
3 a

†
t3at3: ð18Þ

The first-order interaction Hamiltonian is,

Ht1 ¼
Z
1310

jμ1t
3
110f1;tþtrb

†
t1ðδ̃13.10ε�3μa†t3 þ δ̃103.1ε3μat3Þbt10

−
Z
2320

jμ2t
3
202f2;tþtrd

†
t2ðδ̃23.20ε�3μa†t3 þ δ̃203.2ε3μat3Þdt20 ;

ð19Þ

with jμ1¼ ū1γμu10 , j
μ
2¼ v̄20γμv2¼ ū2γμu20 , t3110 ¼ χ†c1T

c3χc10 ,

and t3
202 ¼ χ†c20T

c3χc2 , where Tc3 is half of the Gell-Mann
matrix λc3 , c3 ¼ 1; 2;…; 8, and χci ¼ ðδ1;ci ; δ2;ci ; δ3;ciÞT is
the color vector of quark i, ci ¼ 1; 2; 3. This interaction
is represented diagrammatically in Fig. 1. Note that
fi;tþtr ¼ fi;tfi;tr , where fi;tr comes from regularization,
while fi;t is a result of solving Eq. (9). The fact that they
combine into fi;tþtr is the motivation behind our choice of

regularization, Eq. (11). Whenever FF energy changes in
the interaction by more than t−1=2 the form factor fi;t
becomes very small, manifesting the narrowness of Ht.
The second-order interaction Hamiltonian contains the

quark-antiquark interaction term and the quark and anti-
quark self-interaction terms,

Ht2 ¼ HUt þHδm: ð20Þ

The quark-antiquark interaction term is

HUt ¼ −
Z
121020

δ̃12.1020Ut12.1020 ta110t
a
202b

†
t1d

†
t2dt20bt10 ; ð21Þ

where the color superscript a is summed over and the
interaction kernel Ut12.1020 comprises three terms,

Ut12.1020 ¼ UC þUH þUX; ð22Þ

UC ¼ f1;trf2;trgμνj
μ
1j

ν
2ftF ; ð23Þ

UH ¼ −f1;tþtrf2;tþtr

�
q21 þ q22
2ðqþÞ2 jþ1 j

þ
2 þ gμνj

μ
1j

ν
2

�
F ; ð24Þ

UX ¼ ftf1;trf2;tr
jþ1 j

þ
2

ðqþÞ2
�
1þ q21 þ q22

2
F
�
− ftX; ð25Þ

with

F ¼ 1

2

�
1

m2
g − q21

þ 1

m2
g − q22

�
; ð26Þ

and

ft ¼ exp

�
−t
�
M 2

12 −M 2
1020

pþ
1 þ pþ

2

�
2
�

ð27Þ

¼ exp

�
−t
�
q22 − q21
pþ
3

�
2
�
: ð28Þ

The kernel is illustrated in Fig. 2. Subscripts “12.1020,”
which indicate dependence of the kernel on quantum
numbers of particles 1, 2, 10, and 20 are dropped for UC,
UH, and UX to simplify notation. Details of derivation of
HUt are given in Appendix A 3. HUt does not include the
terms in which the initial quark-antiquark pair annihilates
into an octet of gluons and then is recreated from the
gluons. The octet terms are not produced here because
they yield zero acting on the color-singlet quark-antiquark
states whose dynamics is the main focus of this article.
The symbol X, introduced in Eq. (25), denotes the
contribution of the gluon-exchange counterterm, dis-
cussed in Sec. III C. The self-interaction term Hδm in
Eq. (20) is discussed in Sec. III B.
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B. Self-interaction counterterm

Second-order quark self-interaction terms result from
successive action of two 1st-order Hamiltonian inter-
action terms, in accordance with Eq. (A7) that is illustrated
in Fig. 3,

Hδm ¼
Z
1

δm2
1t

pþ
1

b†t1bt1 þ
Z
2

δm2
2t

pþ
2

d†t2dt2: ð29Þ

Details of computing Hδm are in Appendix A 2. The self-
interaction shifts the free quark mass squared, m2

i in Ht,
by g2t δm2

it, where

δm2
it ¼ δm2

iX þ Iiðtþ tr; mgÞ − Iiðtr; mgÞ; ð30Þ

with

Iiðt; mgÞ ¼ CF

X
σ ĩ ;σ3

Z
d2k3ĩdx3ĩ
16π3x3ĩxĩ3

f2
ĩ3.i;t

M 2
ĩ3
−m2

i
ūi=ε3uĩūĩ=ε

�
3ui;

ð31Þ

and i ¼ 1; 2, and ĩ ¼ 1̃; 2̃, respectively, see Fig. 3. The
integrals Iiðtþ tr; mgÞ are finite for any finite t > 0, but
Iiðtr; mgÞ depends on tr in a divergent way,

Iiðtr; mgÞ ¼
CF

16π2

�
pþ
i

ffiffiffiffiffiffi
π

2tr

r �
log

�
pþ2
i

8m4
gtr

�
−
7

2
− γ

�
þ 1

2
m2

glog2
�

pþ2
i

2m4
i tr

�

−
�
3m2

i þ 4m2
g log

mg

mi
þ 3mimg −

3

2
m2

g þ γm2
g

�
log

�
pþ2
i

2m4
i tr

�
− 3m2

i þ 3γm2
i

�
þ oð1Þ; ð32Þ

where γ ≈ 0.577 is the Euler-Mascheroni constant. The
symbol oð1Þ denotes the terms that tend to 0 when tr → 0

and then mg → 0. One needs the counterterm δm2
iX to

remove the divergent part of Iiðtr; mgÞ. The finite part of the
counterterm is discussed below.
We define the mass counterterm to have the form which

removes “1” in “1 − f2” in the Hamiltonian with finite t,
see Eq. (A10), by which we mean that the counterterm is,

HmassCT
tr ¼ g2

Z
1

δm2
1X

pþ
1

b†1b1 þ g2
Z
2

δm2
2X

pþ
2

d†2d2; ð33Þ

where

δm2
iX ¼ Iiðtr; mgÞ: ð34Þ

On the one hand, this definition is motivated by the results
it leads to in our computations of masses of heavy
quarkonia [6–8]. Namely, the singlet quarkonium eigen-
value problem takes a simple and phenomenologically
reasonable form. At the same time the single quark mass
eigenvalue tends to infinity when mg → 0, see below. On
the other hand, this counterterm removes the ultraviolet
divergence from the quark self-interaction in the way that is
analogous to how the electron self-interaction counterterm
is defined in the FF Hamiltonian of QED. Our definition
of the counterterm is also compatible with the coupling
coherence, which in this case implies limt→∞ δm2

it ¼ 0, see
page 66 in Ref. [23]. At the current, crude-approximation
stage of the theory development, the authors find the above
reasons sufficient for adopting this choice of the quark self-
interaction counterterm including its finite part.

C. Gluon exchange counterterm

The quark-antiquark interaction term HUt does not
contain any loops. However, it leads to the divergent

FIG. 2. Graphs left and middle illustrate the second-order gluon-exchange terms resulting from the product of two first-order
interaction terms. Right graph illustrates the effective second-order instantaneous interaction that results from the unitary rotation of the
instantaneous term in the canonical Hamiltonian, see Eq. (A20).

FIG. 3. Second-order quark and antiquark self-interaction terms
resulting from the product of two first-order interaction terms.
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regularization dependence due to the factor 1=ðqþÞ2
in UH and UX. As long as t > 0, UH is regulated by
f1;tþtrf2;tþtr . These factors vanish exponentially fast when
qþ → 0, cf. Eq. (14). For finite t > 0 one can remove the
regularization dependence by setting tr ¼ 0. However, in
UX there is only the regulating factor f1;trf2;tr, which goes
to 1 when tr → 0. The factor ft in front of UX does not
regulate the singularity when qþ → 0. Moreover,

jþ1 j
þ
2

ðqþÞ2
�
1þq21þq22

2
F
�
¼ jþ1 j

þ
2

ðqþÞ2
m2

g

m2
g−q21

þO

�
1

qþ

�
: ð35Þ

Therefore, matrix elements of HUt diverge for tr → 0
whenever qþ → 0. More precisely, in the vicinity of
qþ ¼ 0, −q21 ≈ Δk2 ¼ ðk⊥12 − k⊥

1020 Þ2, and the regulator

f1;trf2;tr ≈ e
−2tr

ðΔk2þm2
g Þ2

ðqþÞ2 . Integrating f1;trf2;tr=ðqþÞ2 over

qþ gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
2trðΔk2þm2

gÞ2
q

as the part divergent when

tr → 0. Moreover, m2
g=ðm2

g − q21Þ ≈m2
g=ðm2

g þ Δk2Þ.
Hence, to counter the divergence we add the gluon
exchange counterterm, whose kernel is

X ¼ δðpþ
10 − pþ

1 Þjþ1 jþ2
m2

g

ðΔk2 þm2
gÞ2

ffiffiffiffiffiffi
π

2tr

r
. ð36Þ

Demonstration of cancellation of divergences is presented
in Appendix B. Since m2

gðΔk2 þm2
gÞ−2 tends to a two-

dimensional Dirac δ-function of the transverse momentum,
the counterterm is nonzero even in the limit mg → 0.
It becomes diagonal in momentum and spin. We remind
the reader the limit tr → 0 is performed before
we consider the limit mg → 0. The latter is discussed
in Sec. IV.

D. Renormalized Hamiltonian

With both mass and exchange counterterms included,
one can remove the ultraviolet regulator, i.e., one can take
the limit tr → 0. It is easily done in Ht1, UC, and UH.
The renormalized mass terms contain m2

i þ g2t δm2
it ¼

m2
i þ g2t Iiðt; mgÞ. The limit ofUX when tr → 0 is described

in Appendix B.

IV. QUARKONIUM IN HEAVY-FLAVOR QCD
WITH GLUON MASS ANSATZ

In this section, we derive the quarkonium eigenvalue
equation using expansion in powers of the coupling
constant up to second order. Working at so low order of
the expansion, we have to pay a price for not knowing what
comes out from the non-Abelian interactions of gluons in
orders higher than 2nd. In particular, these interactions
prevent gluons from behaving like photons in QED. Also,
the coupling constant gt needs to be extrapolated to values

larger than the charge e in QED. We assume that the
emission and absorption of effective gluons by effective
quarks and antiquarks is blocked for sizable t. We model
the non-Abelian blocking by introducing the gluon-mass
mG for the effective gluons. The resulting eigenvalue
equations for quarkonia and single quarks are then obtained
keeping mg > 0. Subsequently, we discuss these equations
in the limit mg → 0.

A. Effective Hamiltonian

Our description of heavy quarkonium closely follows
Ref. [6]. Here we focus on the main steps, cf. [32]. We
consider the quarkonium eigenvalue problem assuming that
a single quark-antiquark pair gives the dominant contribu-
tion. Other Fock sectors are included using expansion
in powers of gt. Up to the second order, we need two Fock
sectors: the leading quark-antiquark sector QQ̄ and the
quark-antiquark-gluon sector QQ̄G. The large letter G
signifies the effective gluons whose mass is assigned a
hypothetical value mG. Namely, we modify the
Hamiltonian limited to QQ̄ and QQ̄G by adding to it a
nonperturbative gluon mass term,

m̂2
G ¼

Z
123

m2
G

pþ
3

b†t1d
†
t2a

†
t3j0ih0jat3dt2bt1: ð37Þ

This operator acts only in theQQ̄G sector. In principle,mG
could be a multiple of ΛQCD in the RGPEP scheme and
hence not expandable in powers of gt. More about our
gluon mass ansatz can be found in Refs. [6,25].
Perturbative computation of the effective Hamiltonian

[33] in theQQ̄ sector yieldsHeff whose matrix elements are

hLjHeff jRi ¼ hLj
�
H11 þ

1

2
H12

�
1

EL −H22 − m̂2
G

þ 1

ER −H22 − m̂2
G

�
H21

�
jRi; ð38Þ

where Hij ¼ PiHtPj, with P1 and P2 the projection
operators onto the QQ̄ and QQ̄G sectors, respectively.
We keep only the free part of H22 in the denominators,
because other terms in H22 are of order g2 and contribute
terms in Heff of at least 4th order. The states

jLi ¼
Z
12

Pþ
L δ̃12:PL

δc1;c2ffiffiffiffiffiffi
Nc

p ψLð1; 2Þb†t1d†t2j0i; ð39Þ

jRi ¼
Z
1020

Pþ
R δ̃1020:PR

δc10 ;c20ffiffiffiffiffiffi
Nc

p ψRð10; 20Þb†t10d†t20 j0i; ð40Þ

are eigenstates of the free part of H11 with the eigenvalues
EL¼p−

1 þp−
2 ¼½M 2

12þðP⊥
L Þ2�=Pþ

L and ER¼p−
10 þp−

20 ¼
½M 2

1020 þðP⊥
R Þ2�=Pþ

R , respectively. Due to momentum
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conservation only matrix elements with PL ¼ PR ≡ P are
nonzero. The evaluation of the matrix elements gives

hLjHeff jRi ¼ Pþδ̃PL:PR

X
σ1;σ2

Z
½12�Pþ

L δ̃12:PL
ψ�
Lð1; 2Þ

× ðEψRÞð1; 2Þ; ð41Þ
where

ðEψRÞð1; 2Þ

¼
�
m2

1 þM 2
1 þ p⊥2

1

pþ
1

þm2
2 þM 2

2 þ p⊥2
2

pþ
2

�
ψRð1; 2Þ

− CFg2t
X
σ10 ;σ20

Z
½1020�δ̃12.1020Ũt12.1020ψRð10; 20Þ: ð42Þ

The momentum integration measure for two particles,
1 and 2, is,

½12� ¼ dpþ
1 d

2p⊥
1

16π3pþ
1

dpþ
2 d

2p⊥
2

16π3pþ
2

; ð43Þ

and analogously ½1020� for particles 10 and 20. The self-
interaction terms are

M 2
i ¼CFg2t

X
σ ĩ ;σ3

Z
d2k3ĩdx3ĩ
16π3x3ĩxĩ3

m2
G

x3ĩ

×
f2
ĩ3.i;t	

M 2
ĩ3
þm2

G
x3ĩ
−m2

i



ðM 2

ĩ3
−m2

i Þ
ūi=ε3uĩūĩ=ε

�
3ui; ð44Þ

and the effective QQ̄ interaction kernel, which one can call
the QQ̄ potential, is

Ũt12.1020 ¼ UC þ ŨH þUX; ð45Þ

where UC and UX are given in Eqs. (23) and (25),
respectively, and

ŨH¼f1;tf2;t

�
q21þq22
2ðqþÞ2 j

þ
1 j

þ
2 þgμνj

μ
1j

ν
2

�

×

�
1

2

�
1

m2
Gþm2

g−q21
þ 1

m2
Gþm2

g−q22

�
−F

�
: ð46Þ

B. Color-singlet quarkonium

Consider the eigenvalue problem,

ðEψÞð1; 2Þ ¼ M2 þ P⊥2

Pþ ψð1; 2Þ; ð47Þ

where M2 is the mass of the bound state. There are two
types of interaction terms in E, self-interactions and
potential terms. Both diverge logarithmically when
mg → 0. However, the self-interactions diverge to the
positive infinity, while the potential diverges to the negative
infinity. In order to isolate the divergence of the potential
terms we rewrite

ðEψÞð1; 2Þ ¼
�
m2

1 þM 2
1 þ p⊥2

1

pþ
1

þm2
2 þM 2

2 þ p⊥2
2

pþ
2

−
Δ

pþ
1 þ pþ

2

�
ψð1; 2Þ

− CFg2t
X
σ10 ;σ20

Z
½1020�δ̃12.1020ŨH½ψð10; 20Þ − δσ1;σ10 δσ2;σ20ψð1; 2Þ�

− CFg2t
X
σ10 ;σ20

Z
½1020�δ̃12.1020 ðUC þUXÞψð10; 20Þ; ð48Þ

where

Δ ¼ CFg2t
X
σ10 ;σ20

Z
½1020�ðpþ

1 þ pþ
2 Þδ̃12.1020ŨHδσ1;σ10 δσ2;σ20 ;

ð49Þ

results from subtracting and adding δσ1;σ10 δσ2;σ20ψð1; 2Þ to
ψð10; 20Þ under the integral R ½1020�. The most singular part
of the integrand appears in the vicinity of qþ¼qþ1 ¼qþ2 ¼0

while q⊥ ¼ q⊥1 ¼ q⊥2 ¼ 0. The singularity is regulated
by mg. Near that singular region the integrand is

proportional to ðpþ
1 þpþ

2 Þf1;tf2;t=ðqþÞ2, where f1;t≈f2;t ≈
e−tðp−

3
Þ2 ¼ expf−t½m2

gþq⊥2�2=ðqþÞ2g. Integration over qþ

from −pþ
1 to pþ

2 and over q⊥ over the whole two-
dimensional transverse plane gives,

Δ ¼ CFg2t
8π2

log
�
pþ
1 p

þ
2

8m4
gt

� ffiffiffiffi
π

2t

r
ðpþ

1 þ pþ
2 Þ þOðm0

gÞ; ð50Þ

where Oðm0
gÞ denotes the terms that are finite in the limit

mg → 0. Similarly, the integrand in the self-interaction of
Eq. (44) near pþ

3 ¼ 0 is approximately pþ
i f

2
i;t=ðpþ

3 Þ2,
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where fi;t ≈ exp f−t½m2
g þ ðp⊥

3 Þ2�2=ðpþ
3 Þ2g and k⊥

3ĩ
≈ p⊥

3 .
Integration over pþ

3 from 0 to pþ
i and over p⊥

3 over the
whole two-dimensional plane gives,

M 2
i ¼

CFg2t
16π2

log

�
pþ2
i

8m4
gt

� ffiffiffiffi
π

2t

r
pþ
i þOðm0

gÞ: ð51Þ

The logarithms of the gluon massmg obtained above cancel
out in

M 2
1

pþ
1

þM 2
2

pþ
2

−
Δ

pþ
1 þ pþ

2

¼ Oðm0
gÞ: ð52Þ

The eigenvalue problem has a finite limit for mg → 0.
However, the quarkonium mass eigenvalue M2 depends on
Pþ ¼ pþ

1 þ pþ
2 of the state. The dependence comes mainly

from the potential produced by the second term on the
right-hand side of Eq. (48). That potential is confining, cf.
Eq. (72) below. For small distances r between Q and Q̄ it
behaves as r2. The associated oscillator frequency ω is
proportional to ðt=Pþ2Þ−3=4. Therefore, it is natural to set
the longitudinal momentum scale P of Eq. (7) to the
quarkonium momentum, P ¼ Pþ, which implies ω ∼ λ3,
see Sec. V.

C. Color-octet quarkonium and eigenquarks

For color-octet quark-antiquark states one can proceed
by the same steps as for the color-singlet case. The quark-
antiquark annihilation interaction needs to be included. Its
contribution is finite in the limitmg → 0. Now, the color-octet
wave functions of the states jLi and jRi lead to the different
color factors in the potential term of the octet eigenvalue
equation, ð2NcÞ−1¼1=6 instead of −CF¼−4=3. The self-
interactions M 2

i do not depend on the color wave function
of quarkonium. Accordingly, the term Δ includes the factor
−ð2NcÞ−1. Therefore, instead of Eq. (52), we obtain for the
octet states

M 2
1

pþ
1

þM 2
2

pþ
2

−
Δ

pþ
1 þ pþ

2

¼ Nc
g2t

16π2
log

�
pþ
1 p

þ
2

2m4
gt

� ffiffiffiffi
π

2t

r
þOðm0

gÞ: ð53Þ

The cancellation of logmg is absent. The expectationvalue of
Heff in the color-octet states diverges to plus infinity in the
limit mg → 0.
Similar noncancellation of logmg appears in the eigen-

value equations for states with quantum numbers of a single
quark, which we for brevity call eigenquarks. The eigen-
quark mass eigenvalue MQ diverges to plus infinity when
mg → 0. Assuming the samemG as in the quarkonium case,
we obtain

M2
Q ¼ m2

1 þ CFg2t
X
σ1̃;σ3

Z
d2k31̃dx31̃
16π3x31̃x1̃3

m2
G

x31̃

f2
1̃3.1;t

ðM 2
1̃3
þ m2

G
x31̃

−m2
1ÞðM 2

1̃3
−m2

1Þ
ū1=ε3u1̃ū1̃=ε

�
3u1 ð54Þ

¼ m2
1 þ Pþ CFg2t

16π2

ffiffiffiffi
π

2t

r �
log

�
Pþ2

2m4
gt

�
− 2þ 1ffiffiffi

π
p
Z

∞

0

ds0 e−s02f
�
s0;

m02

Pþ ;
m02

G

Pþ

��
þ oðm0

gÞ; ð55Þ

where Pþ is the longitudinal momentum of the eigenquark
state, m02 ¼ ffiffiffiffi

2t
p

m2
1, and m02

G ¼ ffiffiffiffi
2t

p
m2

G, and

fða; b; cÞ ¼ 4 log

�
a2

aþ b

�
þ 2c
aþ b

− 4c

�
1

c
þ 1

a
þ bþ c=2

a2

�
log

�
1þ a2

cðaþ bÞ
�
:

ð56Þ
Function fða; b; cÞ should not be confused with any of the
form factors. Terms oðm0

gÞ vanish when mg → 0.

V. NONRELATIVISTIC APPROXIMATION OF
THE EFFECTIVE POTENTIAL

The eigenvalue equation (47) has interesting properties.
We exhibit them using the nonrelativistic (NR) limit in

which the quark masses are considered very large. In that
limit quarks have typical longitudinal momentum fractions
x1 ≈ x10 ¼ m1=ðm1 þm2Þ and x2 ≈ x20 ¼ m2=ðm1 þm2Þ.
Information about the state resides in the wave function
dependence on the deviation of x1 from x10 and the
quarks relative motion in the transverse directions. We
introduce the quark three-dimensional relative momentum
k⃗ ¼ ðkx; ky; kzÞ,

k⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

x1x2

r �
kx12

m1 þm2

;
ky12

m1 þm2

; x1 − x10

�
; ð57Þ

which generalizes the definition of k⃗ in Ref. [6] to the case
of m1 ≠ m2, both masses being large. The potential is a
function of k⃗ and k⃗0. The NR limit is obtained assuming that
jk⃗j; jk⃗0j ≪ m1 þm2 and keeping only the leading terms.
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After multiplying Eq. (47) by Pþ=ð2m1 þ 2m2Þ, the NR
limit of the eigenvalue equation reads

�
k⃗2

2μ
þ M 2

1

2m1

þ M 2
2

2m2

�
ψσ1;σ2ðk⃗Þ

− CFg2t

Z
d3k0

ð2πÞ3 ðVC þ VH þ VXÞψσ1;σ2ðk⃗0Þ

¼ Eψσ1;σ2ðk⃗Þ; ð58Þ
where the reduced mass μ ¼ m1m2=ðm1 þm2Þ. The poten-
tials VC, VH, and VX are the nonrelativistic approximations
of UC=ð4m1m2Þ, ŨH=ð4m1m2Þ, and UX=ð4m1m2Þ, respec-
tively. We obtain

VC ¼ ft
q⃗2 þm2

g
; ð59Þ

VH¼f1;tf2;t

�
1

ðqzÞ2−
1

q⃗2

�
q⃗2

q⃗2þm2
g

m2
G

m2
Gþm2

gþ q⃗2
; ð60Þ

VX ¼ 0; ð61Þ

where q⃗ ¼ k⃗0 − k⃗. VX is set to 0 because it is suppressed
by the inverse of μ2 in comparison to VC and VH, see
Eq. (B20). The eigenvalue E ¼ ½M2 − ðm1 þm2Þ2�=
½2ðm1 þm2Þ� ≈M − ðm1 þm2Þ, since M ≈m1 þm2.
The RGPEP form factors are

fi;t ¼ exp

�
−
tðm1 þm2Þ2
ðpþ

1 þ pþ
2 Þ2

ðq⃗2 þm2
gÞ2

ðqzÞ2
�
; ð62Þ

ft ¼ exp

�
−
tðm1 þm2Þ4ðk⃗2 − k⃗02Þ2

ðpþ
1 þ pþ

2 Þ2m2
1m

2
2

�
: ð63Þ

The NR approximation for the self-interaction termsM 2
i is

obtained using variables q̃x;y ¼ kx;y
3ĩ
, q̃z ¼ x3ĩmi that appear

in the form factors. We find

M 2
i ¼ miCFg2t

Z
d3q̃
ð2πÞ3 f

2
i;t

�
1

ðq̃zÞ2 −
1

q̃2

�

×
q̃2

q̃2 þm2
g

m2
G

m2
G þm2

g þ q̃2
ð64Þ

¼ miCFg2t

Z
d3q
ð2πÞ3 VH; ð65Þ

where fi;t is the same as in Eq. (62) except that q⃗ is replaced

by ⃗q̃. The second equality holds because in the NR
approximation f1;t ¼ f2;t. Therefore, the self-energy terms
M 2

1 and M 2
2 can be combined with the potential term VH.

The quarkonium eigenvalue equation in the limit mg → 0

becomes

k⃗2

2μ
ψðk⃗Þ þ ðVconfψÞðk⃗Þ −

Z
d3k0

ð2πÞ3
CFg2t ft
q⃗2

ψðk⃗0Þ ¼ Eψðk⃗Þ;

ð66Þ

where the spin indices are omitted and, by definition,

ðVconfψÞðk⃗Þ

¼ lim
mg→0þ

ð−CFg2t Þ
Z

d3q
ð2πÞ3 VH½ψðk⃗þ q⃗Þ − ψðk⃗Þ�: ð67Þ

The limit mg → 0 is well-defined, because the difference
of wave functions regulates 1=ðqzÞ2 in VH. We expand
ψðk⃗þ q⃗Þ in a Taylor series in q⃗. Only terms with even
powers of qx, qy, and qz contribute to the result of
integration over q⃗ because VH is even in q⃗. Therefore,

ðVconfψÞðk⃗Þ¼
X
n;k

0Cn;k

�
∂
2

ð∂kxÞ2þ
∂
2

ð∂kyÞ2
�

n
�

∂

∂kz

�
2k
ψðk⃗Þ;

ð68Þ

where
P

n;k
0 is the sum over all non-negative n and k with

the exception of the n ¼ k ¼ 0 term, and

Cn;k ¼ −
CFg2t
ð2πÞ2

2

ð2nn!Þ2ð2kÞ!
Z

1

0

dwð1 − w2Þnþ1w2k−2

×
Z

∞

0

dq
m2

G

m2
G þ q2

q2nþ2ke−
t0q2
w2 ; ð69Þ

where

t0 ¼ 2tðm1 þm2Þ2
ðpþ

1 þ pþ
2 Þ2

¼ 2P2ðm1 þm2Þ2
λ4ðpþ

1 þ pþ
2 Þ2

: ð70Þ

Coefficients Cn;k can be evaluated explicitly for
m2

G → ∞,

lim
m2

G→∞
Cn;k ¼ −

CFg2t
ð2πÞ2

ffiffiffi
π

p
23nþkþ1

ðnþ 1Þt0−k−n−1
2

ð2kþ 2nÞ!!ð2kþ 2nþ 1Þð2kþ nÞ
�
nþ 2k

n

�
: ð71Þ

The potential in position space is obtained by substituting, ∂
2

ð∂kxÞ2þ ∂
2

ð∂kyÞ2→−ρ2¼−x2−y2 and ð ∂

∂kzÞ2 → −z2. Consequently,

Vconfðr⃗Þ ¼ Vconfðρ; zÞ ¼
X
n;k

0Cn;kð−ρ2Þnð−z2Þk: ð72Þ
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The double summation makes it difficult to obtain the
potential as a function of r⃗. However, for small separations
between the quark and antiquark only the quadratic terms
in r⃗ count in Vconf . Moreover, in the limit mG → ∞ one
obtains C1;0 ¼ C0;1 and the potential is spherically sym-
metric as a function of r⃗,

Vconfðr⃗Þ ¼
CFg2t

192π3=2t03=2
r⃗2 þO

�
r4

t05=2

�
: ð73Þ

For arbitrary separations we found simple expressions
along some special directions of r⃗ in the limit m2

G → ∞.

Vconfðρ; 0Þ ¼
CFg2t
8π3=2

"
2
ffiffiffi
π

p
ρ

erf

�
ρ

4
ffiffiffi
t0

p
�

þ
log
	

ρ2

16t0



þ E1

	
ρ2

16t0



þ γ − 1ffiffiffi

t0
p

#
; ð74Þ

Vconfð0; zÞ ¼
CFg2t
16π3=2

"
2
ffiffiffi
π

p
z

erf

�
z

2
ffiffiffi
t0

p
�

þ
log
	
z2
4t0



þ E1

	
z2
4t0



þ γ − 2ffiffiffi

t0
p

#
; ð75Þ

where erf is the error function and E1 is the exponential
integral function. For large ρ or z (or small t0) the effective
potential becomes logarithmic,

Vconfðρ; 0Þ ¼
CFg2t
8π3=2

log
	

ρ2

16t0



þ γ − 1ffiffiffi
t0

p

þ CFg2t
4πρ

þO

 ffiffiffi
t0

p
e−

ρ2

16t0

ρ2

!
; ð76Þ

Vconfð0; zÞ ¼
CFg2t
16π3=2

log
	
z2
4t0



þ γ − 2ffiffiffi
t0

p þ CFg2t
8πz

þO

 
t03=2e−

z2

4t0

z4

!
: ð77Þ

Our result agrees at large distances with the logarithmic
potentials found in Ref. [23], if one sets Λ2

Pþ ¼
1
2

ffiffi
π
2

p
λ2

m1þm2

pþ
1
þpþ

2

P , where Λ2=Pþ is the p− cutoff of
Ref. [23]. Hence, our potential breaks rotational symmetry
at large interquark distances in a similar way to the one
discussed in Refs. [24,34] using coupling coherence.
However, our potential is not constrained that way and
can be improved using the RGPEP, see below.

Figure 4 shows the accuracy of the harmonic oscillator
approximation for the potential. We first notice thatffiffi
t0

p
g2t
Vconfðρ; 0Þ ¼ Fρð ρffiffi

t0
p Þ and

ffiffi
t0

p
g2t
Vconfð0;zÞ¼Fzð zffiffi

t0
p Þ, where

the functions Fρ and Fz do not depend on the parameters
of the theory. In the harmonic oscillator approximation,
Fρðr=

ffiffiffi
t0

p Þ ¼ Fzðr=
ffiffiffi
t0

p Þ ¼ r2=144t0π3=2. Typical separa-
tions between quarks in theoretical description of
ground-states of heavy quarkonia can be determined
by computing the quarkonium electromagnetic form
factors [8]. Using the values for λ, gt, and the quark masses
fitted in Ref. [7], which imply results quoted in Table I,
we obtain1 that: For bottomonium

ffiffiffi
t0

p
≈ 0.37 GeV−1 ≈

0.073 fm, while rEM ∼ 0.15 fm, where rEM is the radius
extracted from the electromagnetic form factors [8].
The relative separation between quark and antiquark is
r ∼ 2rEM. Therefore, typical r=

ffiffiffi
t0

p
for bottomonium is 4.1.

For charmonium
ffiffiffi
t0

p
≈ 0.55 GeV−1 ≈ 0.109 fm, while

rEM ∼ 0.25 fm. Therefore, typical r=
ffiffiffi
t0

p
∼ 4.6. Harmonic

oscillator potential becomes twice too strong in the z
direction for r=

ffiffiffi
t0

p
≈ 5.4 at which point it is approximately

1.4 times too strong in the transverse direction.
In the excited states, an important weakening of the

potential occurs due to the change of a rotation-symmetric
quadratic behavior over to a logarithmic one that breaks
rotational symmetry. In addition, the excited states are
likely to be sensitive to the details of gluon components.

FIG. 4. Harmonic oscillator approximation compared to the
full potential, as functions of the distance r between quark and
antiquark in units of

ffiffiffi
t0

p
, see Eq. (70). The ground state wave

functions, cc̄ w.f. and bb̄ w.f., are obtained fitting the corre-
sponding spectra. They are plotted for comparison with the
potential. The harmonic oscillator H.o. is an extrapolation of the
quadratic behavior of the potential near r ∼ 0. Functions Fρ and
Fz are explained in the text below Eqs. (76) and (77).

1Since Ref. [7] uses a different RGPEP generator, we have to
rescale λ in order to obtain the same spectroscopy. If we define
λold to be the value of λ used in Ref. [7] and λnew to be the value of
λ we are using here, then, in Ref. [7] t0 ¼ ðm2

1 þm2
2Þ=λ4old, while

from Eq. (70) we have here t0 ¼ 2ðm1 þm2Þ2=λ4new (assuming
P ¼ pþ

1 þ pþ
2 ). Therefore, for equal quark masses, m1 ¼ m2, we

have λnew ¼ ffiffiffi
2

p
λold.
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Such details are not accounted for in any way by the gluon
mass ansatz and the resulting oscillator. To derive these
details one needs to solve the RGPEP equation to higher
order than second and include effective components with
more gluons than one, shifting the mass ansatz to sectors
with the maximal number of gluons one includes in
numerical computations. We hope that systematically
proceeding along these lines will lead to reduction of
rotational symmetry breaking.

VI. CONCLUSION

Once canonical FF Hamiltonian for heavy-quark QCD in
gauge Aþ ¼ 0 is supplied with a small gluon mass mg and
subjected to the RGPEP scale-evolution of second order in
a weak-coupling expansion, a simple dynamical picture is
obtained in terms of the resulting eigenvalue equations for
quarkonia at the scale of quark masses, provided that the
emission and absorption of the effective gluons by quarks
is blocked by assigning to them a hypothetically large
effective gluon mass mG. Quark self-interactions diverge in
the limit mg → 0 but the divergence is canceled by the
effective quark-antiquark interaction in color-singlet states.
In color-octet states the cancellation does not occur. As a
consequence, they cannot have finite masses in that limit.
Single quark mass also cannot be finite. The finite color-
singlet quarkonium eigenvalue problem can be further
analyzed using the nonrelativistic approximation. The
effective quark-antiquark potential at small distances r
between the quarks includes a Coulomb term and a
spherically symmetric oscillator term. The latter turns at
large distances into a logarithmic dependence on r with
different strengths in the transverse and longitudinal
directions, matching the confining potential obtained by
Perry using coupling coherence. Previous calculations of
white quarkonia masses with such potentials indicate that
the effective dynamics is likely to explain the ground and

low excited states when the effective quark and gluon
dynamics is computed using the RGPEP for heavy quarks
more accurately. However, inclusion of light quarks in the
dynamics would initially require guessing effective masses
for them in a similar way to how it is done here for gluons.
Systematic increase in accuracy of quarkonium dynam-

ics may be sought using the RGPEP by computing the
running of Ht for heavy quarks in orders higher than 2nd.
The actual running of the coupling constant gt shows up in
the quarkonium dynamics first in 4th order. Increasing the
order implies inclusion of Fock components with more than
one effective gluon in the hadronic states that are described
numerically by solving the nonperturbative eigenvalue
problem of Ht. The ansatz mG must be shifted to the
sector with the highest number of gluons. One may hope
that the ansatz is eventually eliminated when the gluon
effects are saturated by increasing their number.
Blocking effective gluons from significant involvement

in the dynamics of lowest-mass quarkonia using mass mG
may reasonably reflect the effective gluons behavior
because the results summarized above do not depend
qualitatively on the value of mG when it exceeds the scale
of relative momentum of effective quarks, p ∼ ffiffiffiffiffiffi

μω
p ¼ffiffiffiffiffiffiffiffiffiffiffiffi

mω=2
p

. Our mass spectrum fit for quarkonia, see Table I,
yields for cc̄ that mc ∼ 1.46 GeV, ω ∼ 322 MeV and
pcc̄ ∼ 0.5 GeV. For bb̄, we get mb ∼ 4.7 GeV, ωbb̄ ∼
269 MeV and pbb̄ ∼ 0.8 GeV. More accurate computations
than ours can provide more precise estimates of mG,
if mG turns out to properly grasp the mechanism of
blocking gluons. It is not known yet if a universal mG
may result from the RGPEP evolution that includes
some arbitrarily small mg added to the canonical QCD
Hamiltonian at t ¼ 0.
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TABLE I. Examples of the quark masses mQ in MeVobtained
using the RGPEP scale λ from our fits [8] to measured
charmonium and bottomonium mass spectra [26], together with
the resulting values of harmonic oscillator frequency ω in MeV
and electric charge radii rEM in fm for the lowest 0−þ and 1−−

states for the optimized mQ and λ. For more details and more
examples of radii computations, see Ref. [8]. For comparison,
PDG particle listings [26] give the MS running masses in GeV:
m̄cðm̄cÞ ¼ 1.27ð2Þ and m̄bðm̄bÞ ¼ 4.18ð3Þ, and the correspond-
ing pole masses: mc ¼ 1.67ð7Þ and mb ¼ 4.78ð6Þ. The lattice
results for charmonium electric radii are on the order of 0.25 fm
with accuracy on the order of a few percent exemplified in
Ref. [35].

mQ λ ω rEMð0−þÞ rEMð1−−Þ
cc̄ 1460(10) 2749(30) 321.6 0.249 0.257
bb̄ 4698(10) 6022(70) 268.8 0.1521 0.1535
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APPENDIX A: SECOND-ORDER RGPEP

1. General formulas

Our notation closely resembles the notation used in
Ref. [28]. Letters a, b, and x denote configurations of
particles, i.e. collections of quantum numbers that label
particle operators. Each configuration can contain arbitrary
number and kinds of particles.Htab denotes the coefficient
that multiplies the term in Ht in which particles in
configuration b are annihilated and particles in configura-
tion a are created. For arbitrary a and b, the RGPEP
Eq. (9) gives

H0
tab ¼ −ðP−

a − P−
b Þ2HItab

þ
X
x

ðP−
a þ P−

b − 2P−
x ÞHItaxHItxb; ðA1Þ

where
P

x denotes the sum over all possible configurations
x and the sum or integration over all quantum numbers in
each individual configuration, P−

a , P−
b , and P−

x are sums of
front-form energies of all particles in configurations a, b,
and x, respectively, and HIt ¼ Ht −Hf. Factoring out the
1st-order form factors from vertices,

Htab ¼ fa:b;tGtab; ðA2Þ

where

fa:b;t ¼ e−tðP
−
a−P−

b Þ2 ; ðA3Þ

we get differential equation for Gtab:

G0
tab ¼

X
x

ðP−
a þ P−

b − 2P−
x Þ

fa:x;tfx:b;t
fa:b;t

GtaxGtab: ðA4Þ

One obtains fa:x;tfx:b;t=fa:b;t ¼ exp½−2tðP−
a − P−

x Þ×
ðP−

b − P−
x Þ�. Expanding Gt in a series in powers of the

coupling constant g,

Gtab ¼ Gfab þ gGt1ab þ g2Gt2ab þ…; ðA5Þ

and can solve Eq. (A4) order by order. Gf is independent
of t, which is already reflected in the notation. Up to
second order,

Gt1ab ¼ G01ab; ðA6Þ

Gt2ab ¼ G02ab þ
X
x

Bð123;0Þ
taxb G01axG01xb; ðA7Þ

where

Bð123;0Þ
taxb ¼

Z
t

0

dτðP−
a þ P−

b − 2P−
x Þ

fa:x;τfx:b;τ
fa:b;τ

: ðA8Þ

After integration,

Bð123;0Þ
taxb ¼

( ðP−
a þ P−

b − 2P−
x Þt when ðP−

a − P−
x ÞðP−

b − P−
x Þ ¼ 0;

1
2
½ðP−

a − P−
x Þ−1 þ ðP−

b − P−
x Þ−1�ð1 − fa:x;tfx:b;t=fa:b;tÞ otherwise:

ðA9Þ

2. Self-interaction terms

For mass terms we have P−
a ¼ P−

b , hence, fa:b;t ¼ 1, and fa:x;t ¼ fx:b;t. Equation (A7) becomes,

Gt2ab¼G02abþ
Z
ĩ3

1

P−
a −P−

x
ð1−f2a:x;tÞG01axG01xb; ðA10Þ

where G01ax ¼ ūiγμuĩt
3
iĩ
fi:ĩ3;tr δ̃i:ĩ3ε3μ, G01xb ¼ ūĩγ

νui0 t3ĩi0fĩ3.i0;tr δ̃ĩ3.i0ε
�
3ν, and P−

a − P−
x ¼ ðm2

i −M 2
ĩ3
Þ=pþ

i . Therefore,

Gt2ab ¼ G02ab þ δ̃i:i0
Z
ĩ3
t3
iĩ
t3
ĩi0

pþ
i δ̃ĩ3.i

m2
i −M 2

ĩ3

	
f2
ĩ3.i;tr

− f2
ĩ3.i;tþtr



ūi=ε3uĩūĩ=ε

�
3ui0 : ðA11Þ

Now, using
P

c3 t
c3
iĩ
tc3
ĩi0 ¼ CFδci;ci0 , and

P
σ ĩ
δ̃i:i0 ūi=ε3uĩūĩ=ε

�
3ui0 ¼

P
σ ĩ
δ̃i:i0δσi;σi0 ūi=ε3uĩūĩ=ε

�
3ui, we get,

Gt2ab ¼ G02ab þ δ̃i:i0δσi;σi0 δci;ci0CF

X
σ ĩ ;σ3

Z
½ĩ3�pþ

i δ̃ĩ3.i
f2
ĩ3.i;tþtr

− f2
ĩ3.i;tr

M 2
ĩ3
−m2

i
ūi=ε3uĩūĩ=ε

�
3ui ðA12Þ

¼ G02ab þ δ̃i:i0δσi;σi0 δci;ci0 ½Iiðtþ tr; mgÞ − Iiðtr; mgÞ�: ðA13Þ
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Writing G02ab ¼ δ̃i:i0δσi;σi0 δci;ci0 δm
2
iX, we obtain Gt2ab ¼

δ̃i:i0δσi;σi0 δci;ci0 δm
2
it, where δm2

it is defined in Eq. (30).
Finally,

Hδm ¼
Z
110

Gt2abb
†
t1bt10 þ

Z
220

Gt2abd
†
t2dt20 ðA14Þ

¼
Z
1

δm2
1t

pþ
1

b†t1bt1 þ
Z
2

δm2
2t

pþ
2

d†t2dt2: ðA15Þ

3. Gluon exchange terms

For gluon exchange potentials, if gluon is emitted from
the quark, we have,

G01ax ¼ −jμ2 t3202 f2;tr δ̃203.2 ε3μ; ðA16Þ

G01xb ¼ jν1 t
3
110 f1;tr δ̃13.10 ε

�
3ν; ðA17Þ

Bð123;0Þ
taxb ¼ 1

2

�
1

p−
2 − p−

20 − p−
3

þ 1

p−
10 − p−

1 − p−
3

�

×
�
1 −

f2.203;tf13.10;t
f12.1020;t

�
ðA18Þ

¼1

2

�
pþ
3

q22−m2
g
þ pþ

3

q21−m2
g

��
1−

f2;tf1;t
ft

�
; ðA19Þ

and

Gt2ab ¼ G02ab þ
Z
3

Bð123;0Þ
taxb G01axG01xb ðA20Þ

¼ G02ab − f1;trf2;tr δ̃12.1020
1

2

�
1

q21 −m2
g
þ 1

q22 −m2
g

�

×

�
1 −

f1;tf2;t
ft

�X
σ3

ε3μ ε
�
3ν j

ν
1 j

μ
2 t

a
110 t

a
202: ðA21Þ

The initial condition, G02ab, includes the canonical instan-
taneous interaction (regularized) plus the counterterm,

G02ab ¼ δ̃12.1020

�
−f1;trf2;tr

jþ1 j
þ
2

ðqþÞ2 þ X

�
ta
110 t

a
202: ðA22Þ

If gluon is emitted from the antiquark, we have,

G01ax ¼ jμ1 t
3
110 f1;tr δ̃103.1 ε3μ; ðA23Þ

G01xb ¼ −jν2 t3202 f2;tr δ̃23.20 ε
�
3ν; ðA24Þ

Bð123;0Þ
taxb ¼ 1

2

�
1

p−
1 − p−

10 − p−
3

þ 1

p−
20 − p−

2 − p−
3

�

×

�
1 −

f1.103;tf23.20;t
f12.1020;t

�
ðA25Þ

¼ 1

2

�
pþ
3

q21 −m2
g
þ pþ

3

q22 −m2
g

��
1−

f1;tf2;t
ft

�
; ðA26Þ

and we arrive again at Eq. (A21). The final result,

HUt ¼
Z
121020

Gt2ab b
†
t1 d

†
t2 dt20 bt10 ; ðA27Þ

after simple manipulations gives Eq. (21).

APPENDIX B: GLUON EXCHANGE
COUNTERTERM

If we split HUt ¼ ÛC þ ÛH þ ÛX, in accordance with
Eq. (22), then

hLjÛXjRi ¼ −CFg2t δ̃PL:PR

X
σ1;σ2

Z
dx1d2k⊥12
16π3x1x2

ψ�
Lð1; 2Þ

×
Z

dx10d2k⊥1020
16π3

ðY1 þ Y2 þ Y3Þ; ðB1Þ

where

Y1 ¼ f1;trf2;tr ½Zðx10 Þ − Zðx1Þ�=qþ2; ðB2Þ

Y2 ¼
"
f1;trf2;tr − e

−2tr
ðΔk2þm2

g Þ2

Pþ2x2
3

#
Zðx1Þ=qþ2; ðB3Þ

Y3 ¼ e
−2tr

ðΔk2þm2
g Þ2

Pþ2x2
3 Zðx1Þ=qþ2 −

ftX
x10x20

ψRðx10 ; k1020 Þ; ðB4Þ

and

Zðx10 Þ ¼
�
1þ q21 þ q22

2
F
�
ftj

þ
1 j

þ
2

x10x20
ψRðx10 ; k1020 Þ; ðB5Þ

Zðx1Þ ¼ lim
x10→x1

Zðx10 Þ ¼ 4Pþ2f̃t
m2

g

m2
g þ Δk2

ψRðx1; k1020 Þ;

ðB6Þ

with the dependence of Z on x1, k12, and k1020 not indicated
explicitly, while f̃t ¼ limx10→x1 ft.
Lifting the regularization we obtain

lim
tr→0þ

Z
dx10d2k⊥1020

16π3
Y1¼P

Z
dx10

Z
d2k⊥

1020

16π3
lim
tr→0þ

Y1: ðB7Þ

SERAFIN, GÓMEZ-ROCHA, MORE, and GŁAZEK PHYS. REV. D 109, 016017 (2024)

016017-14



The singularity 1=ðqþÞ2 is removed due to the difference Zðx10 Þ − Zðx1Þ. The principal value P is obtained because the
regulator is approximately symmetric in qþ in the vicinity of qþ ¼ 0. We take the limit mg → 0,

lim
mg→0þ

P
Z

dx10
Z

d2k⊥
1020

16π3
lim
tr→0þ

Y1 ¼ P
Z

dx10
Z

d2k⊥
1020

16π3
lim

mg→0þ
½Zðx10 Þ − Zðx1Þ�=qþ2 ðB8Þ

¼ −P
Z

dx10
Z

d2k⊥
1020

16π3
1

qþ2

ðq21 − q22Þ2
4q21q

2
2

ftj
þ
1 j

þ
2

x10x20
ψRðx10 ; k1020 Þ ðB9Þ

¼ −
Z

dx10
Z

d2k⊥
1020

16π3
ðM 2

12 −M 2
1020 Þ2

4q21q
2
2

ftj
þ
1 j

þ
2

pþ
10p

þ
20
ψRðx10 ; k1020 Þ; ðB10Þ

where in the last equality the principal value turns out not needed anymore. The term Y2 gives zero in the limit tr → 0. The
term Y3 is where the divergence resides and needs a counterterm. Below we present the demonstration that small-x
divergences are canceled once the counterterm is added, which we denote by X. Using Eq. (36) and the definition of Z we
rewrite Y3,

Y3 ¼ e
−2tr

ðΔk2þm2
g Þ2

Pþ2x2
3 Zðx1Þ=qþ2 −

1

Pþ δðx10 − x1Þ
1

Δk2 þm2
g

ffiffiffiffiffiffi
π

2tr

r
Zðx1Þ: ðB11Þ

The integral becomes,

Z
dx10d2k⊥1020

16π3
Y3 ¼

Z
d2k⊥

1020

16π3
Zðx1Þ
Pþ2

Z
1

0

dx10

2
64e

−
2trðΔk2þm2

g Þ2

Pþ2ðx
10−x1Þ

2

ðx10 − x1Þ2
− δðx10 − x1Þ

Pþ

Δk2 þm2
g

ffiffiffiffiffiffi
π

2tr

r 3
75: ðB12Þ

The integral over x10 can be evaluated,

Z
dx10d2k⊥1020

16π3
Y3¼

Z
d2k⊥

1020

16π3
Zðx1Þ
Pþ2

Pþ

Δk2þm2
g

ffiffiffiffiffiffi
π

2tr

r �
1

2
erfc

� ffiffiffiffiffiffi
2tr

p ðΔk2þm2
gÞ

Pþx2

�
þ1

2
erfc

� ffiffiffiffiffiffi
2tr

p ðΔk2þm2
gÞ

Pþx1

�
−1

�
: ðB13Þ

Note that −1 in the square bracket comes from the counterterm. If it were absent, the bracket would be 1 for tr → 0 and the
integral would be proportional to t−1=2r . Therefore, the matrix elements of ÛX are divergent without the counterterm.
Expansion of the square bracket for small tr gives,

Z
d2k⊥

1020

16π3
Zðx1Þ
Pþ2

Pþ

Δk2 þm2
g

ffiffiffiffiffiffi
π

2tr

r �
−

ffiffiffiffiffiffi
2tr
π

r �
Δk2 þm2

g

Pþx2
þ Δk2 þm2

g

Pþx1

�
þOðt3=2r Þ

�
: ðB14Þ

Hence,

lim
tr→0þ

Z
dx10d2k⊥1020

16π3
Y3 ¼ −

Z
d2k⊥

1020

16π3
Zðx1Þ
pþ
1 p

þ
2

: ðB15Þ

Since Zðx1Þ → 0 when mg → 0,

lim
mg→0þ

lim
tr→0þ

Z
dx10d2k⊥1020

16π3
Y3 ¼ 0: ðB16Þ

Summarizing,

lim
mg→0þ

lim
tr→0þ

hLjÛXjRi¼CFg2t δ̃PL:PR

X
σ1;σ2

X
σ10 ;σ20

Z
dx1d2k⊥12
16π3x1x2

Z
dx10d2k⊥1020
16π3x10x20

ψ�
Lð1;2Þ

ðM 2
12−M 2

1020 Þ2
4q21q

2
2

ftj
þ
1 j

þ
2

Pþ2
ψRð10;20Þ: ðB17Þ
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This formula could be obtained by first taking the limit
tr → 0 in UX, neglecting the counterterm and the diver-
gences, and then taking the limit mg → 0. Such procedure
is valid only if the vicinity of qþ ¼ 0 is excluded. However,
the above analysis shows that if one includes the counter-
term the result is the same. Thus, we can write

lim
mg→0þ

lim
tr→0þ

UX

¼ −ft
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x10x20

p ðM 2
12 −M 2

1020 Þ2
q21q

2
2

δσ1;σ10 δσ2;σ20 ; ðB18Þ

and in the nonrelativistic limit,

VX ¼ lim
NR

lim
mg→0þ

lim
tr→0þ

UX

4m1m2

ðB19Þ

¼ −ft
ðm1 þm2Þ2
4ðm1m2Þ2

ðk⃗2 − k⃗02Þ2
ðq⃗2Þ2 δσ1;σ10 δσ2;σ20

¼ O

�
1

μ2

�
: ðB20Þ
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