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Complete CMC-1 surfaces in hyperbolic space

with arbitrary complex structure
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Abstract We prove that every open Riemann surface M is the complex structure

of a complete surface of constant mean curvature 1 (CMC-1) in the 3-dimensional

hyperbolic space H3. We go further and establish a jet interpolation theorem

for complete conformal CMC-1 immersions M → H3. As a consequence, we

show the existence of complete densely immersed CMC-1 surfaces in H3 with

arbitrary complex structure. We obtain these results as application of a uniform

approximation theorem with jet interpolation for holomorphic null curves in C2×C∗

which is also established in this paper.
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1. Introduction

In this paper we shall establish that every open Riemann surfaceM is the underlying

complex structure of a complete surface of constant mean curvature 1 (CMC-1) in

the 3-dimensional hyperbolic space H3 (see Corollary 1.2). We prove more: our first

main result is the following jet interpolation theorem for complete conformal CMC-1

immersions M → H3 with some additional control on the asymptotic behavior.

Theorem 1.1. LetM be an open Riemann surface and Λ and E be a pair of disjoint

closed discrete subsets of M . Given a conformal CMC-1 immersion ϕ : U → H3 on

a neighborhood U ⊂M of Λ and maps k : Λ→ N = {1, 2, 3, . . .} and m : E → N such

that m only assumes odd values, there is a complete conformal CMC-1 immersion

ψ :M \E → H3 satisfying the following conditions:

(i) ψ and ϕ have a contact of order k(p) at every point p ∈ Λ.

(ii) For each point p ∈ E the end of ψ corresponding to p is of finite total

curvature, regular, and of multiplicity m(p).

(iii) For each point p ∈ m−1(1) ⊂ E the end of ψ corresponding to p is smooth.

Furthermore, ψ :M \E → H3 can be chosen to be an almost proper map.

Theorem 1.1 is proved in Section 6. We do not know whether the statement

remains to hold if the map m is allowed to also take even values or if the immersion

ψ is asked to have embedded non-smooth ends at some points in m−1(1). We

expect it does, although our construction method does not seem to work in these

cases (see Lemmas 6.1 and 6.2). Recall that a continuous map f : X → Y between

http://arxiv.org/abs/2306.14482v2
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topological spaces is said to be almost proper if for every compact set K ⊂ Y the

connected components of f−1(K) are all compact. Every almost properly immersed

submanifold of an open complete Riemannian manifold is complete. In particular,

almost properly immersed surfaces in H3 are complete.

Surfaces of constant mean curvature 1 in H3 are often called Bryant surfaces

after Robert Bryant for his seminal paper [11]; we shall adopt this terminology.

Bryant showed that these surfaces admit a conformal representation in terms of

holomorphic data on an open Riemann surface (see Section 5) that is analogous to the

Weierstrass representation formula for minimal surfaces in the Euclidean space R3.

This allows to study Bryant surfaces by using complex analytic methods. Moreover,

similar to minimal surfaces in R3 which are characterized by the holomorphicity

of their Gauss map, Bryant surfaces are characterized by their hyperbolic Gauss

map being holomorphic [11]. Complete Bryant ends of finite total curvature are

conformally equivalent to a punctured disc, but, unlike the case of minimal surfaces,

the hyperbolic Gauss map of such an end need not extend to the puncture. Complete

Bryant ends at which the hyperbolic Gauss map extends meromorphically are called

regular [41, Def. 1.4]. Since the hyperbolic Gauss map is fundamental to the

geometry of a Bryant surface, the study of regular ends, starting with the landmark

paper by Umehara and Yamada [41], is of great importance in the theory. The

multiplicity m ∈ N of a Bryant regular end (see Section 6 or [41, §5] for the precise

notion) measures how far is the end to be embedded; such an end is embedded if

and only if it is of multiplicity 1 [41, Theorem 5.2]. Bryant regular ends are tangent

to the ideal boundary ∂∞H3 of H3, while an immersed Bryant annular end is said

to be smooth if it is conformally equivalent to a punctured disc and the immersion

extends smoothly to the puncture through ∂∞H3 (see Bohle and Peters [10, p. 590]).

Smooth Bryant ends are properly embedded (hence of multiplicity one), regular, and

of finite total curvature. More generally, every properly embedded Bryant annular

end is regular and of finite total curvature by the fundamental result of Collin,

Hauswirth, and Rosenberg [14, Theorem 10].

The set E in Theorem 1.1 is allowed to be empty; conditions (ii) and (iii) are

vacuous in this particular case. We thus obtain the following immediate corollary

which proves that every open Riemann surface is the complex structure of a complete

Bryant surface (see Corollary 5.2 for a more precise statement).

Corollary 1.2. Let M be an open Riemann surface. For any divergent sequence

a1, a2, . . . inM without repetition and any sequence c1, c2, . . . in H3 there is an almost

proper (hence complete) conformal CMC-1 immersion ψ :M → H3 with ψ(aj) = cj
for j = 1, 2, . . . In particular, there is an almost proper (hence complete) conformal

CMC-1 immersion ψ :M → H3 with everywhere dense image: ψ(M) = H3.

Almost proper ones are in some sense the best class of immersions M → H3 that

can hit an arbitrary countable subset of H3. It remains an open question whether

every open Riemann surface M admits a proper conformal CMC-1 immersion

M → H3 [4, Problem 1]. Every such M is known to properly conformally immerse
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in R3 as a minimal surface [7]; see [6, §3.10] for further discussion. As far as we

are aware, Corollary 1.2 provides the first known examples of a complete densely

immersed Bryant surface in H3. See [1] and the references therein for similar

existence results for complete dense minimal surfaces in Euclidean space.

It follows from the Lawson correspondence [29] that every simply connected

CMC-1 surface in H3 is isometric to a minimal surface in R3, and vice versa. The

intrinsic local theory of Bryant surfaces is thus equivalent to that of minimal surfaces

in R3. If this was originally the main reason to study CMC-1 surfaces in H3 —but

see Donaldson [16, §3.3] and Hertrich-Jeromin, Musso, and Nicolodi [26] for different

motivations—, the topic became an active focus of interest in its own right which

counts with a sizable literature. On the other hand, the global theory of Bryant

surfaces differs substantially from that of minimal surfaces in R3; see Rossman

[36], Rosenberg [35], and the references therein for information in this direction.

Furthermore, the period problem for Bryant surfaces cannot be solved by classical

potential theory, and hence constructing Bryant surfaces with nontrivial topology

via conformal representation is a more difficult task than for minimal surfaces (see

Gálvez and Mira [23, p. 458] and Pirola [34] for a discussion of this fact). This

has not prevented the development of a number of different constructions of Bryant

surfaces (see [40, 41, 42, 37, 24, 9, 33, 38, 23, 39, 30] for a few instances); nevertheless,

only few open Riemann surfaces were known to carry a complete conformal CMC-1

immersion into H3 until now.

A way to overcome the aforementioned difficulty is to make use of a projection

C2 × C∗ → H3, discovered by Mart́ın, Umehara, and Yamada in [31], which takes

holomorphic null curves in C2×C∗ (see the next paragraph) into conformal CMC-1

immersions into H3; see Section 5 for the details. (As it is customary, we denote

C∗ = C \ {0}.) This strategy has been exploited by Alarcón, Forstnerič, and

López [8, 4] in order to produce Bryant surfaces with arbitrary topological type or

conformally equivalent to any bordered Riemann surface and enjoying various global

properties. In this paper we delve into this direction and show, in particular, that

this approach can be adapted to construct complete Bryant surfaces with arbitrary

complex structure and the additional conditions in Theorem 1.1.

We now present our results on holomorphic null curves in C2 ×C∗ leading to the

proof of Theorem 1.1. Let M be an open Riemann surface. A holomorphic null

curve M → Cn (n ≥ 3) is a holomorphic immersion X = (X1, . . . ,Xn) : M → Cn

which is directed by the null quadric

(1.1) A =
{
z = (z1, . . . , zn) ∈ Cn : z21 + . . .+ z2n = 0

}
,

in the sense that the derivative X ′ = (X ′
1, . . . ,X

′
n) with respect to any local

holomorphic coordinate onM has range inA∗ = A\{0}; equivalently, the differential
dX = (dX1, . . . , dXn) vanishes nowhere on M and satisfies

∑n
j=1(dXj)

2 = 0

everywhere onM . The real and imaginary part of a holomorphic null curveM → Cn

are conformal minimal immersions M → Rn. Conversely, every conformal minimal

immersion M → Rn is locally on each simply connected domain of M the real part
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of a holomorphic null immersion into Cn. This connection has strongly influenced

the theory of minimal surfaces, supplying the field with powerful tools coming from

complex analysis and the theory of Riemann surfaces, as well as from modern Oka

theory (see the monographs by Forstnerič [19, 20] for background on this subject).

We refer to [6] for a recent monograph on minimal surfaces in Rn and holomorphic

null curves in Cn from a complex analytic viewpoint.

The second main result of independent interest in this paper is the following

Runge type approximation theorem with Weierstrass-Florack jet interpolation for

complete holomorphic null curves in C2 × C∗ (see the more precise Theorem 3.1).

Theorem 1.3. Let M be an open Riemann surface, K ⊂ M be a compact subset

such that M \K has no relatively compact connected components, and Λ ⊂M be a

closed discrete subset. If X : U → C2 × C∗ is a holomorphic null curve on an open

neighborhood U ⊂M of K ∪ Λ, then for any number ε > 0 and any map k : Λ→ N

there is a complete holomorphic null curve X̃ :M → C2×C∗ such that |X̃ −X| < ε

everywhere on K, and X̃ − X vanishes to order k(p) at p for every point p ∈ Λ.

Furthermore, X̃ can be chosen injective provided that X|Λ is injective.

In fact, there is a holomorphic null curve X̃ = (X̃1, X̃2, X̃3) : M → C2 × C∗

satisfying the above properties such that (X̃1, X̃2) : M → C2 is an almost proper

map.

The analogue of Theorem 1.3 for holomorphic null curves in C3 is already known

except for the final assertion about the almost properness condition; see [7, 3, 2].

The main new point is that we are now working not in the whole space C3 but in a

considerably smaller target: C2×C∗. The proof, given in Section 3 as application of

the main technical lemma which we establish in Section 2 (see Lemma 2.3), broadly

follows the approach in the mentioned sources based on the control of periods via

the use of period dominating sprays of holomorphic maps into the punctured null

quadric A∗ = A \ {0} (1.1), but we proceed with additional precision and introduce

a new idea that enables us to prevent the third component function from vanishing.

We refer the reader to Sections 3 and 4 for more precise statements including also

Mergelyan and Carleman type approximation, as well as for analogous results for

holomorphic null curves in C3 with prescribed zero set of the third component

function (see Theorems 3.1 and 4.1). The latter is precisely what shall allow us

to guarantee the additional control on the asymptotic behavior of the conformal

CMC-1 immersion ψ in Theorem 1.1, conditions (ii) and (iii). A minor modification

of the proof gives the analogues of Theorem 1.3 for holomorphic null curves in

Cl × (C∗)n for arbitrary integers l ≥ 2 and n ≥ 1.

Our results on holomorphic null curves in C3 in Section 3 also have applications

to holomorphic null curves in the special linear group SL2(C) and to spacelike

surfaces of constant mean curvature 1 with admissible singularities in de Sitter

3-space S31 (called CMC-1 faces). In particular, we obtain analogues of Theorem 1.1

for these families of surfaces; we discuss these results in Section 5. On the other

hand, similar existence, approximation, and interpolation results for almost proper,
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injectively immersed complex curves in C2 have recently been obtained by Alarcón

and Forstnerič in [5], with a method completely different from the one in this paper.

2. Semi-global approximation for holomorphic null curves in C2 × C∗

We shall denote i =
√
−1 ∈ C and by | · |, dist(·, ·), and length(·) the Euclidean

norm, distance, and length on Cn (n ∈ N), respectively. Given a set K in a complex

manifold we denote by O(K) the space of holomorphic functions onK; i.e., extending

holomorphically to an open neighborhood of K. If K is compact we denote by

A r(K) the space of all C r functions K → C which are holomorphic in the interior

K̊ of K, and write A (K) for A 0(K). Likewise, we define the spaces O(K,N) and

A r(K,N) for maps into an arbitrary complex manifold N ; nevertheless we shall

omit the target from the notation when it is clear from the context. For a C r map

f : K → Cn, we denote by ‖f‖r,K the C r maximum norm of f on K.

Given a meromorphic function h : M → C on an open Riemann surface M , and

a point p ∈M , we denote by

(2.1) ordp(h) ∈ Z

the only integer such that z−ordp(h)h is holomorphic and nonzero at p, where z is

any local holomorphic coordinate on M with z(p) = 0.

Let us recall the type of sets and maps we shall use for the Mergelyan

approximation for holomorphic null curves; see [6, Def. 1.12.9 and 3.1.3].

Definition 2.1. An admissible set in a smooth surface M is a compact set of the

form S = K∪Γ ⊂M , where K is a (possibly empty) finite union of pairwise disjoint

compact domains with piecewise C 1 boundaries in M and Γ = S \ K̊ = S \K is

a (possibly empty) finite union of pairwise disjoint smooth Jordan arcs and closed

Jordan curves meeting K only at their endpoints (if at all) and such that their

intersections with the boundary bK of K are transverse.

Definition 2.2. Let S = K∪Γ be an admissible set in a Riemann surfaceM and θ be

a nowhere vanishing holomorphic 1-form on a neighborhood of S. A generalized null

curve S → Cn (n ≥ 3) of class A r(S) (r ∈ N) is a pair (X, fθ) with X ∈ A r(S,Cn)

and f ∈ A r−1(S,A∗) (see (1.1)) such that fθ = dX holds on K (hence X : K̊ → Cn

is a holomorphic null curve) and for any smooth path α in M parameterizing a

connected component of Γ we have α∗(fθ) = α∗(dX) = d(X ◦ α).

Recall that a compact subsetK of an open Riemann surfaceM is said to be Runge

(also holomorphically convex or O(M)-convex) if every function in A (K) may be

approximated uniformly on K by functions in O(M). By the Runge-Mergelyan

theorem [18, Theorem 5] this is equivalent to M \K having no relatively compact

connected components in M (i.e., holes). A map f : M → Cn is flat if f(M) is

contained in an affine complex line in Cn, and nonflat otherwise.
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In this section we establish the following semiglobal approximation result with jet

interpolation for holomorphic null curves in C3 with control on the zero set of the

third component function.

Lemma 2.3. Let M be an open Riemann surface, θ be a nowhere vanishing

holomorphic 1-form on M , S ⊂ M be a Runge admissible subset, L ⊂ M be a

smoothly bounded compact domain such that S ⊂ L̊, and Λ ⊂ S̊ be a finite subset. If

(X = (X1,X2,X3), fθ) is a generalized null curve S → C3 of class A r(S) (r ≥ 1)

such that

(2.2) X−1
3 (0) ⊂ Λ,

then for any numbers ε > 0 and k ∈ N there is a nonflat holomorphic null curve

X̃ = (X̃1, X̃2, X̃3) : L→ C3 satisfying the following conditions:

(a) ‖X̃ −X‖r,S < ε.

(b) X̃ −X vanishes to order k at every point of Λ.

(c) X̃−1
3 (0) = X−1

3 (0) ⊂ Λ.

Proof. Up to passing to a larger L if necessary, we assume that L ⊂M is connected

and Runge. We also assume without loss of generality that

(2.3) k > max{ordp(X3) : p ∈ X−1
3 (0)};

see (2.1). We shall first prove the following special case of the lemma.

Claim 2.4. The conclusion of the lemma holds if S is a connected smoothly bounded

compact domain which is a strong deformation retract of L and X : S → C3 is a

nonflat holomorphic null curve.

Proof. In the first step of the proof we shall follow the construction in [6, Sec. 3.2]

in order to embed the map f = dX/θ ∈ O(S,A∗) as the core of a suitable period

dominating spray of maps in O(S,A∗). For this, we fix a point p0 ∈ S̊ \Λ 6= ∅ and a

finite family {Cj}nj=1 of smooth Jordan arcs and curves in S̊ satisfying the following

properties (see [17] or [6, Lemma 1.12.10]):

• Ci ∩ Cj = {p0} for any i 6= j ∈ {1, . . . , n}.
• {C1, . . . , Cµ}, where µ ∈ {0, . . . , n} is the cardinal of Λ, are smooth Jordan

arcs with the initial point p0 and the final point in Λ.

• {Cµ+1, . . . , Cn} are smooth Jordan curves which together span the first

homology group H1(S,Z) = H1(L,Z) ∼= Zn−µ.

• The union C =
⋃n

j=1Cj is a Runge compact set in L, and
⋃n

j=µ+1 Cj ⊂ C is

a deformation retract of S, hence of L.

The period map P = (P1, . . . ,Pn) : C (C,C3) → (C3)n = C3n associated to the

family {Cj}nj=1 is defined by the expression

C (C,C3) ∋ h 7−→Pj(h) =

∫

Cj

hθ ∈ C3, j = 1, . . . , n.
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The holomorphic map f : S → A∗ ⊂ C3 is nonflat by nonflatness of X, hence

f |Cj
: Cj → A∗ is nonflat too for every j = 1, . . . , n. This and the fact that

C is a Runge compact subset of M allow to find holomorphic vector fields Vj,l
on C3 tangent to A with flows φj,lζ (ζ ∈ C), holomorphic functions hj,l : L → C,

(j, l) ∈ {1, . . . , n} × {1, 2, 3}, a holomorphic function g : L → C vanishing to order

k everywhere on Λ ⊂ S̊, and an open neighborhood U of 0 ∈ C3n such that the

holomorphic map Φf : S × U → A∗ given by

(2.4) Φf (p, t) = φ1,1
gh1,1(p)t1,1

◦ . . . ◦ φn,3
ghn,3(p)tn,3

(f(p)) ∈ A∗, t = (tj,l) ∈ U ⊂ (C3)n,

is a P-dominating spray of maps with the core f , meaning that the following

properties are satisfied (see [6, Lemma 3.2.1]):

(I) Φf (·, 0) = f .

(II) f − Φf (·, t) vanishes to order k everywhere on Λ for every t ∈ U .

(III) The derivative at t = 0

∂

∂t

∣∣∣∣
t=0

P(Φf (·, t)) : (C3)n → (C3)n is an isomorphism.

In the second step of the proof we shall replace f in (2.4) by a suitable holomorphic

map f̂ = (f̂1, f̂2, f̂3) ∈ O(L,A∗); in particular, we shall ensure that f̂3θ = dX̂3 for a

holomorphic function X̂3 : L→ C which is close to X3 on S and whose zero set on

L equals the one of X3 on S. This is the key ingredient to ensure condition (c) in

the statement of the lemma. For this, call f = (f1, f2, f3) and A = f−1
3 (0) ⊂ S; note

that f3 is not identically zero since X is nonflat, hence A is finite. Up to passing to

larger S and k if necessary, we assume that A ⊂ S̊ and

(2.5) k > max{ordp(f3) : p ∈ A = f−1
3 (0)};

cf. (2.3). Fix δ > 0 to be specified later. Since C∗ is an Oka manifold (see [6,

Corollary 1.13.9]), the Runge approximation theorem with jet interpolation for maps

into Oka manifolds (see [6, Theorem 1.13.3] or [19, Theorem 5.4.4]) furnishes us with

a holomorphic function X̂3 : L→ C such that:

(i) ‖X̂3 −X3‖r,S < δ.

(ii) X̂3 −X3 vanishes to order k everywhere on Λ ∪A ∪ {p0}.
(iii) X̂−1

3 (0) = X−1
3 (0) ⊂ Λ ⊂ S̊.

Indeed, let τ : L → C be a holomorphic function whose zero divisor on L equals

that of X3 on S; hence τ−1(0) = X−1
3 (0) and X3/τ is holomorphic and nowhere

vanishing on S. Such a τ exists by the classical Weierstrass theorem on open

Riemann surfaces [6, Theorem 1.12.13]. By the aforementioned [6, Theorem 1.13.3],

we may approximate X3/τ : S → C∗ uniformly on S by a holomorphic function

σ : L → C∗ which agrees with X3/τ to order k everywhere on Λ ∪ A ∪ {p0}. The

function X̂3 = στ : L→ C then satisfies the required conditions if the approximation

of X3/τ by σ is close enough.
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Consider the holomorphic function

(2.6) f̂3 := dX̂3/θ ∈ O(L).

Properties (i) and (ii) ensure that:

(iv) ‖f̂3 − f3‖r−1,S < δ.

(v) f̂3 − f3 vanishes to order k − 1 everywhere on Λ ∪A.

Assuming that δ > 0 is chosen sufficiently small, (iv), (v), (2.5), and Hurwitz

theorem (see [27] or [15, VII.2.5, p.148]) guarantee that

(vi) the zero divisor of f̂3 on S equals that of f3. In particular, we have that

f̂−1
3 (0) ∩ S = f−1

3 (0) = A ⊂ S̊.

Set η := f1 + if2 ∈ O(S). Since f has range in A∗, we have that

(2.7)
f23
η

= −f1 + if2 ∈ O(S), f1 =
1

2

(
η − f23

η

)
, and f2 = −

i

2

(
η +

f23
η

)
.

Moreover, η and f23/η have no common zeros. As above, the Runge theorem with

jet interpolation in [6, Theorem 1.13.3] provides a function η̂ ∈ O(L) such that:

(vii) ‖η̂ − η‖r−1,S < δ.

(viii) η̂ − η vanishes to order k − 1 at every point in Λ ∪A.
(ix) The divisor of η̂ on L equals that of η on S.

By (vi), (ix), and (2.7), the function f̂23/η̂ is holomorphic on L, and hence so are

(2.8) f̂1 =
1

2

(
η̂ − f̂23

η̂

)
and f̂2 = −

i

2

(
η̂ +

f̂23
η̂

)
.

Moreover, f̂23 /η̂ and f23 /η have the same divisor on S, and hence, in view of (ix),

η̂ and f̂23 /η̂ have no common zeros on L (recall that η and f23 /η have no common

zeros on S and η̂ vanishes nowhere on L \S). This shows that the holomorphic map

f̂ := (f̂1, f̂2, f̂3) : L→ C3 has range in A∗. It enjoys the following properties:

(x) ‖f̂ − f‖r−1,S < δ.

(xi) f̂ − f vanishes to order k − 1 at every point in Λ.

(xii) f̂ : L→ A∗ is nonflat.

Indeed, (x) follows from (iv), (2.7), (vii), and (2.8) whenever the approximations

are close enough, while (xi) follows from (v), (2.7), (viii), and (2.8). Property (xii)

holds provided we choose f̂ close enough to f on S; recall that L is connected and

X is nonflat on S, hence so is f .

Properties (ii) and (2.6) show that
∫
Cj
f̂3θ =

∫
Cj
f3θ for all j = 1, . . . , n. However,

the analogous conditions for f̂1 and f̂2 may not happen, and hence P(f̂) need not

agree with P(f). To solve this issue we replace f by f̂ in the spray (2.4). This

way, if the approximation of f by f̂ in (x) is close enough and up to passing to
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a smaller neighborhood U of 0 in C3n, we obtain a well defined holomorphic map

Φ
f̂
: L× U → A∗, given by

Φ
f̂
(p, t) = φ1,1

gh1,1(p)t1,1
◦ . . . ◦ φn,3

ghn,3(p)tn,3
(f̂(p)) ∈ A∗, t = (tj,l) ∈ U ⊂ (C3)n

(recall that hi,j and g are defined on L), satisfying the following properties:

(IV) Φ
f̂
(·, 0) = f̂ (i.e., f̂ is the core of the spray).

(V) f̂ − Φ
f̂
(·, t) vanishes to order k everywhere on Λ for every t ∈ U .

(VI) Φ
f̂
is P-dominating in the sense that the derivative at t = 0

∂

∂t

∣∣∣∣
t=0

P(Φ
f̂
(·, t)) : (C3)n → (C3)n is an isomorphism.

Moreover, assuming that the approximation in (x) is close enough, properties (I)

and (IV) ensure that

(VII) ‖Φf − Φ
f̂
‖r−1,S×U < δ.

In view of (I), (III), (IV), (VI), (VII), and assuming the approximation in (x) is

close enough, the inverse function theorem gives us a point ζ0 ∈ U ⊂ C3n close to 0

such that

(2.9) P
(
Φ
f̂
(·, ζ0)

)
= P(f).

Since fθ = dX is exact, this implies that Φ
f̂
(·, ζ0)θ is exact as well, and hence we

obtain a holomorphic map X̃ = (X̃1, X̃2, X̃3) : L→ C3 given by

(2.10) X̃(p) = X(p0) +

∫ p

p0

Φ
f̂
(·, ζ0)θ ∈ C3, p ∈ L.

We claim that X̃ satisfies the conclusion of the lemma. Indeed, since Φ
f̂
(·, ζ0) has

range in A∗, we have that X̃ is a holomorphic null immersion. Condition (a) in the

lemma follows from (VII) and the fact that ζ0 can be chosen as close to 0 as desired,

provided that δ > 0 is chosen sufficiently small. This and the nonflatness of X also

guarantee that X̃ is nonflat. For (b), note that (2.9) guarantees that X̃(p) = X(p)

for all p ∈ Λ, while the higher order interpolation follows from (V) and (xi). Finally,

to check (c) it suffices to see that X̃−1
3 (0) = X̂−1

3 (0); this and (iii) complete the task.

Indeed, X̂−1
3 (0) = X−1

3 (0) ⊂ Λ ⊂ S̊ by (iii). Therefore, (2.2) and (b) ensure that

X̂−1
3 (0) ⊂ X̃−1

3 (0). This, (2.3), (ii), (2.6), (V), and (2.10) show that the divisor of

X̃3 on L is greater than or equal to the one of X̂3. For the other inclusion, (ii) gives

that X̂3(p0) = X3(p0), which together with (2.6), (IV), and (2.10) guarantee that

X̃3 can be chosen arbitrarily close to X̂3 uniformly on L. Since the zeros of X̂3 lie

in Λ ⊂ L̊, Hurwitz theorem implies that X̃−1
3 (0) = X̂−1

3 (0). �

For the general case of the lemma, the Runge-Mergelyan approximation theorem

with jet interpolation for generalized null curves (see [2, Theorem 1.2] or [6, Theorem

3.6.2]) enables us to approximate X in the C r(S)-norm by a nonflat holomorphic null

curve Y = (Y1, Y2, Y3) : L→ C3 such that Y −X vanishes to order k everywhere on Λ.
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Note that Y formally satisfies conditions (a) and (b) but it need not meet (c). By (b),

(2.2), and (2.3), and assuming that the approximation of X by Y in the C r(S)-norm

is close enough, Hurwitz theorem guarantees that Y −1
3 (0) ∩ S = X−1

3 (0) ⊂ Λ ⊂ S̊,

while the set Q := Y −1
3 (0) ∩ L̊ \ S is finite by the identity principle. Since the

compact set S is Runge, we can choose a family of pairwise disjoint smooth Jordan

arcs ςq ⊂ L \ S, q ∈ Q, such that ςq has q as an endpoint, the other endpoint

of ςq lies in bL, ςq intersects bL transversely there, and ςq is otherwise disjoint

from bL. Set ς =
⋃

q∈Q ςq and note that L̊ \ ς is an open connected domain,

S ⊂ L̊ \ ς, and (Y3|L̊\ς)−1(0) = X−1
3 (0). Let S′ ⊂ L̊ \ ς be a connected smoothly

bounded Runge compact domain such that S ⊂ S̊′ and S′ is a strong deformation

retract of L. Since the connected compact domain L ⊂ M is Runge by the initial

assumption, it follows that S′ is Runge in M as well. Moreover, we have that

(Y3|S′)−1(0) = X−1
3 (0) ⊂ Λ ⊂ S̊. This reduces the proof of Lemma 2.3 to the special

case in Claim 2.4. �

3. A Runge theorem for almost proper null curves in C2 ×C∗

In this section we prove the following Runge-Mergelyan approximation theorem with

jet interpolation for almost proper holomorphic null curves in C3 with control on

the zero set of the third component function. Recall Definitions 2.1 and 2.2.

Theorem 3.1. Let M be an open Riemann surface, θ be a nowhere vanishing

holomorphic 1-form on M , S ⊂ M be a Runge admissible subset, and Λ ⊂ M be a

closed discrete subset. Also let (X = (X1,X2,X3), fθ) be a generalized null curve

S → C3 of class A r(S) (r ≥ 1) which is a holomorphic null curve on a neighborhood

of Λ, and assume that

(3.1) X−1
3 (0) ⊂ Λ.

Given a map k : Λ → N and a number ε > 0, there exists a holomorphic null curve

X̃ = (X̃1, X̃2, X̃3) : M → C3 such that:

(a) ‖X̃ −X‖r,S < ε.

(b) X̃ −X vanishes to order k(p) at every point p ∈ Λ.

(c) X̃−1
3 (0) = X−1

3 (0) ⊂ Λ.

(d) Both (X̃1, X̃2) : M → C2 and (1, X̃1, X̃2)/X̃3 : M \X−1
3 (0)→ C3 are almost

proper maps. In particular, X̃ : M → C3 is almost proper as well.

Furthermore, if X|Λ : Λ→ C3 is injective then there is an injective holomorphic null

curve X̃ : M → C3 with the above properties.

Theorem 1.3 follows as an immediate corollary of Theorem 3.1. Indeed, property

(c) ensures that X̃ has range in C2 × C∗ whenever X does so. On the other hand,

recall that a path γ : [0, 1) → M on a smooth surface M is divergent if for any

compact subset K ⊂M there exists t0 ∈ [0, 1) such that γ(t)∩K = ∅ for all t > t0;

i.e., if γ is a proper map. Given a smooth immersion X : M → Cn (n ≥ 2) we denote
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by distX : M ×M → R+ the Riemannian distance function induced on M by the

Euclidean metric of Cn via X; i.e.

distX(p, q) := inf{length(X(γ)) : γ ⊂M arc connecting p and q}, p, q ∈M.

The immersion X : M → Cn is said to be complete if length(X ◦ γ) = +∞ for every

divergent path γ in M . Equivalently, if the Riemannian metric on M induced by

distX is complete in the classical sense. On the other hand, when X is almost proper

then X ◦γ : [0, 1)→ Cn is unbounded for every divergent path γ onM ; hence almost

proper immersions M → Cn are complete.

We shall need some preparations before proving the theorem. Given a map

f = (f1, f2, f3) : W → C3, we define the function

(3.2) m(f) :=
1√
2
max{|f1 + if2| , |f1 − if2|} : W → [0,+∞).

Note thatm(f) ≤ |(f1, f2)| ≤ |f | everywhere inW by the Cauchy-Schwarz inequality.

We shall make use of the following extension of [4, Lemma 4].

Lemma 3.2. Let M = M \ bM be a bordered Riemann surface, K ⊂ M be a

smoothly bounded compact domain, Λ ⊂ M be a finite set, s > 0 be a number, and

X = (X1,X2,X3) : M → C3 be a null curve of class A r(M) (r ≥ 1), and assume

that m(X) > s on M \ K̊. Given numbers ε > 0, ŝ > s, and k ∈ N, there exists a

null curve X̂ = (X̂1, X̂2, X̂3) : M → C3 of class A r(M ) satisfying the following:

(i) ‖X̂ −X‖r,K < ε.

(ii) m(X̂) > ŝ on bM .

(iii) m(X̂) > s on M \ K̊.

(iv) ‖X̂3 −X3‖0,M < ε.

(v) X̂ −X vanishes to order k everywhere on Λ.

Recall that a bordered Riemann surface is an open connected Riemann surfaceM

that is the interior, M = M \ bM , of a compact one dimensional complex manifold

M with smooth boundary bM consisting of finitely many closed Jordan curves; such

an M is called a compact bordered Riemann surface. The only improvements of

this lemma with respect to [4, Lemma 4] concern conditions (iv) and (v). On the

one hand, the interpolation condition (v) can be granted by following [4, proof of

Lemma 4] but applying [6, Theorem 6.4.2] (the Riemann-Hilbert problem for null

curves in C3 with jet interpolation) instead of the more basic result [4, Theorem 4]

which does not include interpolation. Likewise, one has to apply Mergelyan theorem

with jet interpolation when required. On the other hand, condition (iv) is stronger

than condition (L4) in [4, Lemma 4] to the effect that ‖X̂3‖0,M < ‖X3‖0,M + ε.

To guarantee (iv) only very minor modifications of the proof of [4, Lemma 4] are

required. In particular, property (b4) in that proof must be replaced by the more

accurate condition that |〈z, (0, 0, 1)〉 − F3(pi,j)| < ǫ/2 for all z ∈ λi,j (the given null

curve in [4, Lemma 4] is denoted by F = (F1, F2, F3)). Likewise, conditions (c4)
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and (e5) in [4, proof of Lemma 4] must be replaced by ‖F 0
3 − F3‖0,M < ǫ/2 and

‖F̂3 − F 0
3 ‖0,M < ǫ/2, respectively. Besides this, the proof is the same.

Proof of Theorem 3.1. For simplicity of exposition, we assume that X|Λ is injective,

the proof is otherwise simpler. We also assume that 0 < ε < 1 and

(3.3) k(p) > ordp(X3) for every p ∈ X−1
3 (0);

see (3.1) and recall the notation in (2.1). Moreover, arguing as in the final part of

the proof of Lemma 2.3, Hurwitz theorem and the Runge-Mergelyan theorem with

jet interpolation for generalized null curves in [6, Theorem 3.6.2] enable us to assume

that M0 := S is a connected, smoothly bounded, Runge compact domain and X

is a nonflat injective holomorphic null immersion on a neighborhood of S ∪ Λ (so

an embedding on M0; note that the mentioned approximation result also ensures

that holomorphic null curves in C3 are generically embedded). Finally, since X is

holomorphic on a neighborhood of Λ, we may also assume that Λ ∩ bM0 = ∅. Let

(3.4) M1 ⋐M2 ⋐M3 ⋐ · · · ⊂
⋃

n∈N

Mn =M

be an exhaustion of M by connected, smoothly bounded, Runge compact domains

such thatM0 ⊂ M̊1 and Λ∩bMn = ∅ for every n ∈ N. Choose a closed neighborhood

Ω ⊂M of Λ whose connected components are smoothly bounded closed discs, each

one containing a unique point of Λ, such that Ω ∩ bMn = ∅ for all n ≥ 0 and

X : M0 ∪Ω→ C3 is defined as a holomorphic null immersion. Choose ε0 < ε/2 and

set X0 = X|M0
. We shall inductively construct a sequence of numbers εn > 0 and

nonflat holomorphic null embeddings Xn = (Xn
1 ,X

n
2 ,X

n
3 ) : Mn → C3 satisfying the

following conditions for all n ∈ N.

(an) ‖Xn −Xn−1‖r,Mn−1
< εn−1.

(bn) X
n −X vanishes to order k(p) at every point p ∈ Λ ∩Mn.

(cn) (Xn
3 )

−1(0) = X−1
3 (0) ∩Mn ⊂ Λ.

(dn) m(Xn) > n (‖Xn
3 ‖0,bMn

+ 1) on bMn; see (3.2).

(en) 0 < εn < εn−1/2 and if Y : Mn → C3 is a holomorphic map that satisfies

‖Y −Xn‖r,Mn
< 2εn, then Y is a nonflat embedding.

Provided the existence of sequences εn > 0 and Xn : Mn → C3 satisfying (an) and

(en) for all n ∈ N, there is a limit holomorphic map

X̃ := lim
n→+∞

Xn : M =
⋃

n∈N

Mn → C3

satisfying

(3.5) ‖X̃ −Xn‖r,Mn
< 2εn < ε for all n ≥ 0.

Therefore, X̃ = (X̃1, X̃2, X̃3) : M → C3 is a nonflat injective holomorphic null curve

by (en) and (3.4). We claim that X̃ satisfies the conclusion of the theorem whenever

Xn also enjoys properties (bn)–(dn) for all n ∈ N. Indeed, conditions (a) and

(b) in the statement of the theorem follow from (3.5) and (bn). Concerning (c),
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we have X−1
3 (0) ⊂ X̃−1

3 (0) by (3.1) and (b). To check the converse inclusion

X̃−1
3 (0) ⊂ X−1

3 (0), reason by contradiction and assume that there is a point

p ∈ X̃−1
3 (0) \ X−1

3 (0). Let U ⊂ M be a smooth open disc neighborhood of p in

M such that X3 6= 0 everywhere on U . We have that U ⊂ Mn and Xn
3 6= 0

everywhere on U by (cn) for all large enough n ∈ N. Hurwitz theorem then implies

that X̃3 = 0 everywhere on U , hence on M , which is a contradiction, recall that X̃

is nonflat. This shows (c). Finally, let us see (d). First, for (X̃1, X̃2), we use (dn)

and (3.5) to obtain that

|(X̃1, X̃2)|+ ε > |(Xn
1 ,X

n
2 )| ≥ m(Xn) > n on bMn for all n ∈ N.

This and (3.4) show that (X̃1, X̃2) : M → C2 is an almost proper map. Concerning

the map (1, X̃1, X̃2)/X̃3 : M \X−1
3 (0)→ C3, which is well defined and holomorphic

by property (c), note that (dn), (3.5), and the assumption that ε < 1 imply that

(3.6)
∣∣∣ 1

X̃3

(X̃1, X̃2)
∣∣∣ > | (X

n
1 ,X

n
2 ) | − ε

|Xn
3 |+ ε

>
m(Xn)

|Xn
3 |+ 1

− 1 > n− 1 on bMn, n ∈ N.

On the other hand, for each n ∈ N choose a compact domain Wn which is a union

of pairwise disjoint smoothly bounded closed discs Wn,p, p ∈ X−1
3 (0) ∩Mn, such

that p ∈ W̊n,p ⋐ Mn. Set W ′
n = Mn \ W̊n, which is a connected smoothly bounded

compact domain with bW ′
n = bMn ∪ bWn = bMn ∪

⋃
p∈X−1

3
(0)∩Mn

bWn,p. By (c) and

(3.4), we may choose the discs Wn,p so small at each step that

(3.7) W ′
1 ⋐W ′

2 ⋐ · · · ⊂
⋃

n∈N

W ′
n =M \X−1

3 (0) =M \ X̃−1
3 (0)

and |X̃3| < 1/n on bWn for all n ∈ N. This inequality together with (3.6)

imply that |(1, X̃1, X̃2)/X̃3| > n − 1 on bW ′
n for all n ∈ N, and hence the map

(1, X̃1, X̃2)/X̃3 : M \X−1
3 (0)→ C3 is almost proper in view of (3.7). So, (d) holds.

To complete the proof it only remains to explain the induction. Note that

X0 = X|M0
: M0 → C3 satisfies (b0)–(d0), while (a0) and (e0) are void. Fix

n ≥ 0, assume that we have a number εn > 0 and a holomorphic null immersion

Xn : Mn → C3 satisfying (bn)–(dn), and let us find a number εn+1 > 0 and a nonflat

holomorphic null embedding Xn+1 : Mn+1 → C3 satisfying (an+1)–(en+1). Set

(3.8) k := max{k(p) : p ∈ Λ ∩Mn+1}
andM ′

n =Mn∪ (Ω∩Mn+1); recall that Ω∩ (bMn∪bMn+1) = ∅, henceM ′
n ⊂ M̊n+1.

Note that M ′
n ⊂M is a (possibly disconnected) smoothly bounded Runge compact

domain and Λ ∩M ′
n = Λ ∩Mn+1 ⊂ M̊ ′

n. Extend X
n to M ′

n by setting

(3.9) Xn|Ω∩Mn+1\Mn
= X|Ω∩Mn+1\Mn

.

Lemma 2.3 applied to M ′
n, Mn+1, Λ ∩M ′

n, X
n : M ′

n → C3, εn/2, and k provides a

holomorphic null curve Y = (Y1, Y2, Y3) : Mn+1 → C3 such that:

(A) ‖Y −Xn‖r,Mn
< εn/2.

(B) Y −Xn vanishes to order k at every point of Λ ∩Mn+1 ⊂M ′
n.

(C) Y −1
3 (0) = (Xn

3 )
−1(0) = X−1

3 (0) ∩M ′
n = X−1

3 (0) ∩Mn+1 ⊂ Λ ∩Mn+1.
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For (C) take into account (3.1), (cn), and (3.9). Furthermore, we may assume by

the general position result in [6, Theorem 3.4.1 (a)] and Hurwitz theorem that

(D) m(Y ) > 0 on bMn+1.

By (D) and compactness of bMn+1 there are a number s > 0 and a smoothly

bounded compact domain R ⊂ M such that M ′
n ⋐ R ⊂ M̊n+1 and m(Y ) > s on

Mn+1 \ R̊. Fix a number 0 < δ < εn/2 to be specified later. By Lemma 3.2 applied

to Y : Mn+1 → C3, R ⊂ M̊n+1, Λ ∩Mn+1 ⊂ M̊n+1, k, s, δ and and a large enough

number ŝ > s, and [6, Theorem 3.4.1 (a)], we obtain a nonflat holomorphic null

embedding Xn+1 : Mn+1 → C3 such that:

(E) ‖Xn+1 − Y ‖r,Mn
< δ < εn/2.

(F) m(Xn+1) > (n+ 1) (‖Y3‖0,bMn+1
+ δ + 1) on bMn+1.

(G) ‖Xn+1
3 − Y3‖0,Mn+1

< δ.

(H) Xn+1 − Y vanishes to order k everywhere on Λ ∩Mn+1.

Choose a number εn+1 > 0 so small that (en+1) holds. Condition (an+1) follows

from (A) and (E). Condition (bn+1) from (3.8), (3.9), (B), (H), and (bn). By (C),

to check (cn+1), it suffices to see that (Xn+1
3 )−1(0) = Y −1

3 (0). Indeed, (C) and (H)

ensure that Y −1
3 (0) ⊂ (Xn+1

3 )−1(0). This, (H), (3.3), and (3.8) show that the zero

divisor of Xn+1
3 is greater than or equal to that of Y3 on Mn+1, whose support lies

in Λ ∩Mn+1 ⊂ M̊n+1. Choosing δ > 0 sufficiently small, (G) and Hurwitz theorem

imply that they actually have the same divisor; in particular (Xn+1
3 )−1(0) = Y −1

3 (0)

as claimed. This proves (cn+1). Finally, ‖Y3‖0,bMn+1
+ δ > ‖Xn+1

3 ‖0,bMn+1
by (G),

hence (F) implies (dn+1). This closes the induction and completes the proof. �

4. A Carleman theorem for complete null curves in C2 × C∗

This section is devoted to prove a Carleman type theorem on better than uniform

approximation for null curves in C2×C∗ or, more generally, with control of the zero

set of the third component function. To state the result we need some preparations.

Let S be a closed subset in an open Riemann surface M . The holomorphic hull

of S is the union Ŝ =
⋃

n∈N Ŝn, where {Sn}n∈N is any exhaustion of S by compact

subsets and Ŝj denotes the holomorphic convex hull of Sj, that is, the union of Sj
and its holes. The hull Ŝ is independent of the choice of exhaustion. The closed

set S ⊂ M has bounded exhaustion hulls if for every compact set K ⊂ M , the set

K̂ ∪ S\K∪S is relatively compact inM . A closed set S ⊂M is said to be Carleman

admissible if Ŝ = S, S has bounded exhaustion hulls, and S = K ∪ Γ where K is

the union of a locally finite pairwise disjoint collection of compact domains with

piecewise smooth boundaries and Γ = S \K is the union of a locally finite pairwise

disjoint collection of smooth Jordan arcs, so that each component of Γ intersects

bK only at its endpoints (if at all) and all such intersections are transverse (see [12,

Def. 2.1] or [6, §3.8]). A compact set S ⊂ M is a Carleman admissible set if and

only if it is a Runge admissible set in the sense of Definition 2.1. The notion of
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generalized null curve S → Cn on a Carleman admissible set S extends naturally

that of generalized null curves on admissible sets in Definition 2.2, just replacing

admissible by Carleman admissible. In particular, if (X, fθ) is a generalized null

curve S → Cn on a Carleman admissible set S ⊂M , then for any compact smoothly

bounded domainM ′ inM , the restriction of (X, fθ) to the admissible set S′ = S∩M ′

is a generalized null curve S′ → Cn.

The following is the main result of this section.

Theorem 4.1. Let M be an open Riemann surface, θ be a nowhere vanishing

holomorphic 1-form on M , S = K ∪Γ be a Carleman admissible subset, and Λ ⊂M
be a closed discrete subset. Also let (X = (X1,X2,X3), fθ) be a generalized null

curve S → C3 of class A 1(S) and a holomorphic null curve on a neighborhood of

Λ, and assume that

(4.1) X−1
3 (0) ⊂ Λ.

Given a map k : Λ → N and a continuous function ε : S → (0,+∞), there is a

complete holomorphic null curve X̃ = (X̃1, X̃2, X̃3) : M → C3 such that:

(a) |X̃(p)−X(p)| < ε(p) for all p ∈ S.
(b) X̃ −X vanishes to order k(p) at every point p ∈ Λ.

(c) X̃−1
3 (0) = X−1

3 (0) ⊂ Λ.

Furthermore, if X|Λ : Λ → C3 is injective, then there is an injective holomorphic

null curve X̃ with the above properties.

Except for property (c), Theorem 4.1 is proved in [12] (see also [6, §3.8]), where

a Carleman type approximation result with interpolation for more general families

of directed holomorphic immersions of open Riemann surfaces is shown. Note that

the Carleman type approximation in Theorem 4.1 is optimal in the sense that if

the original holomorphic null curve is not complete on S, then the approximation

by complete solutions may be done in the fine C 0(S) topology, but not even in the

C r(S) topology provided that (X, fθ) is of class A r(S) for some r ≥ 1. Nevertheless,

if we do not insist on the completeness condition, a modification of the proof leads

to approximation in the fine C r(S) topology in that case.

Proof. We may assume that K 6= ∅, Λ ⊂ S̊, and ε < 1 everywhere on S. As in

the proof of Theorem 3.1, we assume that X|Λ : Λ → C3 is injective and that (3.3)

holds. Choose a connected component M0 of K ⊂ S and fix p0 ∈ M̊0. By [13,

Lemma 3] (see also [6, proof of Theorem 3.8.6]), we can exhaust M by connected,

smoothly bounded, Runge compact domains M1 ⋐M2 ⋐ · · · ⋐
⋃

n∈NMn =M such

that M0 ⊂ M̊1, (bMn ∩S) ⊂ Γ \K, the intersection bMn ∩Γ is transverse and finite

and the closed set S ∪Mn is Carleman admissible for all n ∈ N. We also make sure

that the compact sets

(4.2) Sn := S ∩Mn+1 and S′
n :=Mn ∪ Sn
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are Runge admissible (Definition 2.2), and Λ ∩ (bSn ∪ bMn) = ∅ for all n ≥ 0. In

particular, M0 =: S−1 ⋐ S0 ⋐ S1 ⋐ S2 ⋐ · · · ⋐ ⋃n∈N Sn = S is an exhaustion of S.

Set X0 = X|M0
: M0 → C3. We shall inductively construct a sequence of numbers

εn > 0 and holomorphic null embeddings Xn = (Xn
1 ,X

n
2 ,X

n
3 ) : Mn → C3 of class

A 1(Mn) satisfying the following properties for all n ≥ 1.

(an) |Xn(p)−X(p)| < ε(p)/2 for all p ∈ Sn−1.

(bn) ||Xn −Xn−1||0,Mn−1
< εn−1.

(cn) X
n −X vanishes to order k(p) at every point p ∈ Λ ∩Mn ⊂ S̊n−1.

(dn) (Xn
3 )

−1(0) = X−1
3 (0) ∩Mn ⊂ Λ ∩Mn.

(en) 0 < εn < εn−1/2 and if Y : M → C3 is a holomorphic map with

‖Y −Xn‖1,Mn
< 2εn, then Y |Mn

is an embedding and distY (p0, bMn) > n.

Given such a sequence satisfying (an), (bn), and (en) for all n ≥ 1, the limit map

X̃ = limn→∞Xn : M → C3 is a complete holomorphic injective immersion which

satisfies condition (a) in the statement. If the sequence also meets (cn) and (dn)

for all n ≥ 1, then X̃ also satisfies (b) and (c), which follow as in the proof of

Theorem 3.1 using also (4.1). To explain the induction, note that X0 : M0 → C3

meets (a0) ,(c0), and (d0). Fix n ≥ 0, assume that we have a holomorphic null curve

Xn = (Xn
1 ,X

n
2 ,X

n
3 ) : Mn → C3 of class A 1(Mn) satisfying (an), (cn), and (dn), and

let us find εn+1 > 0 and a holomorphic null embeddingXn+1 = (Xn+1
1 ,Xn+1

2 ,Xn+1
3 )

of class A 1(Mn+1) enjoying (an+1)–(en+1). For this, note that the closure of S
′
n\Mn

intersects the smoothly bounded compact domain Mn at a finite set, where some

arcs of the Runge admissible set S′
n are attached. Thus, by (an), we may apply the

gluing lemma in [12, Lemma 3.1] in order to extend Xn to a generalized holomorphic

null curve (Xn, fnθ) on S
′
n such that:

(A) |Xn(p)−X(p)| < ε(p)/2 for all p ∈ Sn.
(B) Xn −X vanishes to order k(p) at every point p ∈ Λ ∩Mn+1 ⊂ S̊′

n.

The idea for this is to deform X|S′

n\Mn
very slightly in a small neighborhood of

Sn ∩ bMn in order to glue it with Xn. Lemma 2.3 applied to S′
n ⋐Mn+2, Λ∩Mn+1,

Xn : S′
n → C3, and sufficiently large k ∈ N and small δ > 0 gives a holomorphic null

curve Xn+1 : Mn+2 → C3 satisfying (an+1)–(dn+1); take into account (A) and (B).

Furthermore, by first applying [6, Lemma 7.3.1] to enlarge the intrinsic diameter of

Xn+1, then the general position result in [6, Theorem 3.4.1 (a)], and with the help

of Hurwitz theorem, we can assume in addition that Xn+1 is an embedding and

distXn+1(p0, bMn+1) > n + 1. So, to close the induction we just choose a number

εn+1 > 0 so small that (en+1) holds. This concludes the proof. �
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5. From holomorphic null curves in C2 × C∗ to

holomorphic null curves in SL2(C) and CMC-1 surfaces in H3 and S31

A holomorphic null curve in the complex special linear group

SL2(C) =

{
z =

(
z11 z12
z21 z22

)
∈ C4 : det z = z11z22 − z12z21 = 1

}

is a holomorphic immersion F : M → SL2(C) of an open Riemann surface M which

is directed by the quadric variety

A =

{
z =

(
z11 z12
z21 z22

)
∈ C4 : det z = z11z22 − z12z21 = 0

}
;

see Bryant [11, Eq. (2.3)]. As above, to be directed by A means that the derivative

F ′ : M → C4 with respect to any local holomorphic coordinate on M has range

in A \ {0}. The term null refers to the fact that tangent vectors to F (M) are

null (or lightlike) for the Killing metric in SL2(C); see [25, §2.6] or [28, §11.5]. As

pointed out by Mart́ın, Umehara, and Yamada in [31, §3.1], the biholomorphism

T : C2 × C∗ → SL2(C) \ {z11 = 0},

(5.1) T (z1, z2, z3) =
1

z3

(
1 z1 + iz2

z1 − iz2 z21 + z22 + z23

)
, (z1, z2, z3) ∈ C2 ×C∗,

takes holomorphic null curves in C2 × C∗ into holomorphic null curves in SL2(C) \
{z11 = 0}. The inverse biholomorphic map T −1 : SL2(C) \ {z11 = 0} → C2 × C∗

also takes holomorphic null curves into holomorphic null curves. Using this

correspondence we obtain the following corollary of the proof of Theorem 3.1.

Corollary 5.1. Let M be an open Riemann surface, Λ ⊂ M be a closed discrete

set, and F : U → SL2(C) \ {z11 = 0} be a holomorphic null curve on an open

neighborhood U ⊂ M of Λ. For any map k : Λ → N there is a holomorphic null

curve

F̃ =

(
F̃11 F̃12

F̃21 F̃22

)
: M → SL2(C) \ {z11 = 0}

such that:

(i) F̃ − F : U → C4 vanishes to order k(p) at every point p ∈ Λ.

(ii) (F̃12, F̃21) : M → C2 is an almost proper map. In particular, the holomorphic

null curve F̃ : M → SL2(C) ⊂ C4 is almost proper, and hence complete.

Furthermore, if F |Λ is injective then F̃ can be chosen to be injective.

Proof. We assume that F |Λ is injective, otherwise the proof is simpler. Set

X = (X1,X2,X3) := T −1 ◦ F : U → C2 × C∗, where T is given in (5.1). Note

that X|Λ : Λ → C3 is injective. Choose an exhaustion M1 ⋐ M2 ⋐ · · · of M as in

(3.4). Since X−1
3 (0) = ∅, an inspection of the proof of Theorem 3.1 for the data

S = ∅, Λ ⊂ M , X : U → C3, and k : Λ → N gives an injective holomorphic null

curve X̃ = (X̃1, X̃2, X̃3) : M → C2 × C∗ such that:
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(a) X̃ −X vanishes to order k(p) at every point p ∈ Λ.

(b) |(X̃1, X̃2)/X̃3| > n− 1 on bMn for all n ∈ N; see (3.6).

The injective holomorphic null curve F̃ := T ◦ X̃ : M → SL2(C) \ {z11 = 0}
then satisfies the conclusion of the corollary. Indeed, condition (i) follows from

the biholomorphicity of T and (a). On the other hand, by (5.1) we have that

|F̃12|2 + |F̃21|2 = 2(|X̃1|2 + |X̃2|2)/|X̃3|2. This, (b), and (3.4), imply (ii). �

Denote by L4 the Minkowski space of dimension 4 with the canonical Lorentzian

metric of signature (−+++). We identify L4 with the space of hermitian matrices

Her(2) ⊂M2(C) by

L4 ∋ (x0, x1, x2, x3)←→
(

x0 + x3 x1 + ix2
x1 − ix2 x0 − x3

)
∈ Her(2),

and consider the hyperboloid model for the hyperbolic 3-space

H3 =
{
(x0, x1, x2, x3) ∈ L4 : −x20 + x21 + x22 + x23 = −1, x0 > 0

}

with metric induced by L4. Under the above identification we have that

H3 = {AAT
: A ∈ SL2(C)} = SL2(C)/SU(2),

where · and ·T mean complex conjugation and transpose matrix respectively. In this

setting, the canonical projection

(5.2) πH : SL2(C)→ H3, πH(A) = AA
T
,

takes holomorphic null curves in SL2(C) to conformal CMC-1 immersions in H3

(i.e., Bryant surfaces); see [11]. Since SU(2) is compact, πH is a proper map,

so it takes almost proper holomorphic null curves in SL2(C) into almost proper

CMC-1 immersions. Conversely, every simply connected Bryant surface in H3 lifts

to a holomorphic null curve in SL2(C). Finally, note that the restricted map

πH |SL2(C)\{z11=0} : SL2(C) \ {z11 = 0} → H3 is surjective. These observations lead

to the following more precise version of Corollary 1.2.

Corollary 5.2. Let M be an open Riemann surface, Λ ⊂ M be a closed discrete

subset, and ϕ : U → H3 be a conformal CMC-1 immersion on an open neighborhood

U ⊂ M of Λ. For any map k : Λ → N there is an almost proper (hence complete)

conformal CMC-1 immersion ϕ̃ : M → H3 agreeing with ϕ to order k(p) at every

point p ∈ Λ. In particular, there is an almost proper (hence complete) conformal

CMC-1 immersion M → H3 with everywhere dense image.

Corollary 5.2 proves Theorem 1.1 in the special case when E = ∅. The general

case of the theorem requires some extra work and we prove it in Section 6.

Proof. We may assume without loss of generality that U is simply connected,

otherwise we restrict ϕ to a simply connected domain. Since πH |SL2(C)\{z11=0}

is surjective, there exists a holomorphic null curve F : U → SL2(C) such that

πH ◦ F = ϕ and F (Λ) ⊂ SL2(C) \ {z11 = 0}. Up to replacing U by a
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smaller open neighborhood of Λ if necessary, we may assume that F has range

in SL2(C) \ {z11 = 0}. Corollary 5.1 then furnishes us with an almost proper

holomorphic null curve F̃ : M → SL2(C) ⊂ C4 (with range in SL2(C) \ {z11 = 0})
such that F̃ −F vanishes to order k(p) at every point p ∈ Λ. The conformal CMC-1

immersion ϕ̃ := πH ◦F̃ : M → H3 clearly satisfies the conclusion of the corollary. �

Now consider the de Sitter 3-space

S31 = {(x0, x1, x2, x3) ∈ L4 : −x20 + x21 + x22 + x23 = 1}
with metric induced from L4 and identify S31 = SL2(C)/SU1,1 as in [22, §0]. By [21,

Proposition 1.7] (see also [21, Theorem 1.9]), the canonical projection

πS : SL2(C)→ S31, πS(A) = A

(
1 0

0 −1

)
A

T

takes holomorphic null curves in SL2(C) into CMC-1 faces in S31 in the sense of

Fujimori [21, Def. 1.4]; see also Fujimori et al. [22, Def. 1.1]. Moreover, as shown

by Yu in [43, p. 2999], complete holomorphic null curves in SL2(C) project to

weakly complete CMC-1 faces in S31 in the sense of [22, Def. 1.3]. Conversely, every

simply connected CMC-1 face in S31 lifts to a holomorphic null curve in SL2(C) [21,

Theorem 1.9]. Finally, πS|SL2(C)\{z11=0} : SL2(C) \ {z11 = 0} → S31 is easily seen to

be surjective. Therefore, reasoning as in the proof of Corollary 5.2 we can establish

the following analogous result for CMC-1 faces in S31.

Corollary 5.3. Let M be an open Riemann surface, Λ ⊂ M be a closed discrete

subset, and f : U → S31 be a CMC-1 face on an open neighborhood U ⊂M of Λ. For

any map k : Λ→ N there exists a weakly complete CMC-1 face f̃ : M → S31 agreeing

with f to order k(p) at every point p ∈ Λ. In particular, there is a weakly complete

CMC-1 face M → S31 with everywhere dense image.

Remark 5.4. A point of view which unifies CMC-1 surfaces in H3 and CMC-1 faces

in S31 is that of holomorphic null (also called isotropic) curves in the nonsingular

complex hyperquadric Q3 ⊂ CP4, regarded as the Grassmannian of Lagrangian

2-planes of C4, with its standard holomorphic conformal structure. We refer to

the paper by Musso and Nicolodi [32], where the relations between holomorphic

null curves in Q3 and a number of relevant classes of surfaces in Riemannian and

Lorentzian spaceforms are discussed.

6. Completion of the proof of Theorem 1.1

We begin with some preparations. Denote D = {z ∈ C : |z| < 1} and D∗ = D \ {0}.
Let F = (Fij) : D

∗ → SL2(C) ⊂ C4 be a holomorphic null curve extending

meromorphically to D with an effective pole at the origin. In particular, the end of

F at the origin is proper, hence complete. According to the discussion preceding

Corollary 5.2 (in particular, see (5.2)), we have that

(6.1) ϕ := πH ◦ F : D∗ → H3
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is a conformal CMC-1 immersion which is proper (hence complete) at the origin as

well. Assume that ϕ is not totally umbilic and let us look more carefully at the

geometry of ϕ near the origin, by following the developments in [41]. We can write

F−1dF =

(
g −g2
1 −g

)
ω,

where

(6.2) g = −dF12

dF11
= −dF22

dF21
is a meromorphic function on D

(the so-called secondary Gauss map of ϕ; see [42, Def. 1.2]) and

(6.3) ω = F11dF21 − F21dF11 is a meromorphic 1-form on D

which is holomorphic on D∗. Up to replacing D by aD∗ for some small a > 0 if

necessary we may assume that g is holomorphic on D∗. The hyperbolic Gauss map

G : D∗ → ∂∞H3 is then given by

G =
dF11

dF21
=
dF12

dF22
,

see [11] or [41, Eq. (1.12)], and hence it extends to a meromorphic function on D.

This means that ϕ has a regular end at the origin [41, Def. 1.4]. Moreover, the

Riemannian metric induced on D∗ by the hyperbolic metric in H3 via ϕ is

(6.4) (1 + |g|2)2|ω|2,
see [41, Eq. (1.9)]. By (6.2), (6.3), and (6.4), the end of ϕ at the origin is of finite

total curvature. The Hopf differential of ϕ (see [11] or [41, Eq. (1.10) and (2.2)]) is

given by the holomorphic 2-form

(6.5) Q = ωdg =
( ∞∑

j=−2

q̂jz
j
)
dz2 on D∗,

where q̂j ∈ C for every integer j ≥ −2. By (6.2), (6.3), and (6.4), and since ϕ is

complete at the origin, there are integers µ, ν with min{ν, 2µ+ ν} ≤ −1 such that

(6.6) g(z) = zµĝ(z) and ω(z) = zνŵ(z) dz,

where ĝ, ŵ : D→ C are holomorphic functions which do not vanish at the origin; see

[41, Eq. (W.1)–(W.3)]. The indicial equations of (g, ω) are

(6.7) t2 − (ν + 1)t− q̂−2 = 0, t2 − (2µ + ν + 1)t− q̂−2 = 0;

see [41, Eq. (e.1) and (e.2)]. Denote their solutions by λ1, λ1 − m1 ∈ C and

λ2, λ2−m2 ∈ C, respectively. In this situation, [41, Theorem 2.4] ensures thatm1,m2

lie in Z \ {0}, and hence we may assume that both m1 and m2 are positive integers.

(These numbers are nothing but the positive square roots of the discriminants of

the equations in (6.7).) The positive integer

(6.8) m := min{m1,m2} ∈ N

is the multiplicity of the end of ϕ at the origin; see [41, Def. 5.1]. By virtue of [41,

Theorem 5.2], the end of ϕ at the origin is embedded if and only if m = 1.
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From now on, we assume in addition that the given holomorphic null curve

F : D∗ → SL2(C) is of the form

(6.9) F = T ◦X|D∗ : D∗ → SL2(C),

where T is the biholomorphism in (5.1) and X = (X1,X2,X3) : D → C3 is a

holomorphic null curve with X−1
3 (0) = {0} ⊂ D. In particular, F has range in

SL2(C) \ {z11 = 0}. Since X is a null immersion we have that

(6.10) (X ′
1 − iX ′

2)(X
′
1 + iX ′

2) = −(X ′
3)

2 and
3∑

j=1

|X ′
j | 6= 0.

From the former condition above, (6.2), (6.3), and (6.5), it follows that

(6.11) g =
−X ′

3X3

X ′
1 − iX ′

2

− (X1 + iX2), ω =
X ′

1 − iX ′
2

X2
3

dz,

and

(6.12) Q =

(
−X

′′
3

X3
+
X ′

3

X3
· X

′′
1 − iX ′′

2

X ′
1 − iX ′

2

)
dz2.

Recall the notation in (2.1) and set

(6.13) c = ord0(X3) ≥ 1 and l = ord0(X
′
1 − iX ′

2) ≥ 0.

By (6.10), we have that X ′
1 − iX ′

2 and X ′
1 + iX ′

2 have no common zeros on D,

(6.14) l ∈ {0, 2c − 2}, and ord0(X
′
1 + iX ′

2) = 2c− 2− l ∈ {0, 2c − 2}.
On the other hand, (6.12) and (6.13) give that q̂−2 = c(1 − c + l). Thus, by (6.14)

it turns out that

(6.15) q̂−2 = 0 if and only if c = 1 (and hence l = 0).

By (6.6), (6.11), (6.13), and (6.14) we have that ν = l−2c ≤ −2 and either µ = 0 or

µ ≥ 2c− 1− l = −(ν +1) ≥ 1. In any case, (2µ+ ν +1)2 ≥ (ν +1)2, so (6.7), (6.8),

and the fact that q̂−2 = c(1−c+ l) ensure that m = m1 =
√

(ν + 1)2 + 4q̂−2 = l+1.

This, (6.13), and (6.14) show the following.

Lemma 6.1. Let ϕ : D∗ → H3 be a conformal CMC-1 immersion of the form (6.1)

with F of the form (6.9). If ϕ is not totally umbilic, then the secondary Gauss map

of ϕ is holomorphic at the origin and the end of ϕ at the origin is complete, of finite

total curvature, regular, and of multiplicity ord0(X
′
1 − iX ′

2) + 1, which is odd.

Since the holomorphic null curve F = T ◦ X|D∗ : D∗ → SL2(C) extends

meromorphically to D with an effective pole at the origin, [10, Lemma 3.2 (i)] ensures

that the end of the conformal CMC-1 immersion ϕ = πH◦F : D∗ → H3 at the origin is

smooth (see Section 1 or the definition in [10, p. 590]) if and only if F ′F−1 : D→ C4

has a pole of order 2 at the origin; i.e., min{ord0(Sij) : i, j = 1, 2} = −2 where

F ′F−1 = (Sij). A straightforward computation shows that

S11 = −S22 =
−X ′

3

X3
− (X1 − iX2)(X

′
1 + iX ′

2)

X2
3

, S12 =
X ′

1 + iX ′
2

X2
3

,
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S21 = (X ′
1 − iX ′

2)−
(X1 − iX2)

2(X ′
1 + iX ′

2)

X2
3

− 2
(X1 − iX2)X

′
3

X3
.

It then follows from (6.13) and (6.14) that min{ord0(Sij) : i, j = 1, 2} = ord0(S12) =

−(l+2). Thus, the end of ϕ at the origin is smooth if and only if l = 0. This, (6.13),

Lemma 6.1, and the aforementioned [41, Theorem 5.2] prove the following.

Lemma 6.2. Let ϕ : D∗ → H3 be a conformal CMC-1 immersion of the form (6.1)

with F of the form (6.9). If ϕ is not totally umbilic, then the end of ϕ at the origin

is smooth if and only if it is of multiplicity 1.

Proof of Theorem 1.1. Assume that E 6= ∅; otherwise the result follows from

Corollary 5.2. Arguing as in the proof of Corollaries 5.1 and 5.2, up to passing

to a smaller neighborhood U of Λ in M if necessary, we may assume that E∩U = ∅

and ϕ = πH ◦ T ◦ X : U → H3 for a holomorphic null curve X : U → C2 × C∗;

see (5.1) and (5.2). Let V =
⋃

p∈E Vp be a domain which is a union of smoothly

bounded holomorphic coordinate discs Vp ∋ p, p ∈ E, with pairwise disjoint closures

such that V ∩ U = ∅, and let z : Vp → D be a holomorphic coordinate on Vp with

z(p) = 0, p ∈ E. We extend X : U → C2 ×C∗ to V as follows. For p ∈ E, we define

(6.16) X(z) =
(z
2
− 2

z3

3
, i
(z
2
+ 2

z3

3

)
, z2
)
, z ∈ Vp,

if m(p) = 1, while if m(p) > 1 then we define

(6.17) X(z) =
(zm(p)

m(p)
− α(p)2z , i

(zm(p)

m(p)
+ α(p)2z

)
, 2zα(p)

)
, z ∈ Vp,

where α(p) = (m(p) + 1)/2 ∈ N (recall that m(p) is odd for all p ∈ E). This gives a

holomorphic null curve X = (X1,X2,X3) : U ∪ V → C3 such that X−1
3 (0) = E and

(6.18) ordp(X
′
1 − iX ′

2) = m(p)− 1 for all p ∈ E.
Extend the given map k : Λ→ N to E by setting k(p) = m(p) + 1 ≥ 2 for all p ∈ E.

Theorem 3.1 applied to X : U ∪ V → C3 and k : Λ ∪ E → N furnishes us with a

holomorphic null curve X̃ = (X̃1, X̃2, X̃3) : M → C3 satisfying the following:

(I) X̃ −X vanishes to order k(p) at every point p ∈ Λ ∪ E.

(II) X̃−1
3 (0) = X−1

3 (0) = E.

(III) (1, X̃1, X̃2)/X̃3 : M \E → C3 is an almost proper map.

We claim that the conformal CMC-1 immersion

ψ := πH ◦ T ◦ X̃ |M\E : M \ E → H3

satisfies the conclusion of the theorem; note that it is well defined by (II). Indeed,

condition (i) in the statement of the theorem is implied by (I). By (6.18), (I), and

(II) we have that, locally around each point p ∈ E, ψ is of the form (6.1) with F

of the form (6.9), and ordp(X̃
′
1 − iX̃ ′

2) = m(p)− 1. Further, by (6.5), (6.13), (6.15),

(6.16), (6.17), (I), and the fact that α(p) ≥ 2 for all p ∈ E \m−1(1), we have that the

Hopf differential of ψ is not identically zero; equivalently, ψ is not totally umbilic.

Lemmas 6.1 and 6.2 then imply conditions (ii) and (iii). Finally, (III) ensures that



Complete CMC-1 surfaces in hyperbolic space 23

the holomorphic null curve T ◦ X̃ |M\E : M \ E → SL2(C) is almost proper, and

hence ψ : M \ E → H3 is almost proper as well by properness of πH . �

Remark 6.3. The proof we have given provides a conformal CMC-1 immersion

ψ : M \E → H3 satisfying the conclusion of Theorem 1.1 which, in addition, lifts to

a holomorphic null curve M \E → SL2(C) with range in SL2(C) \ {z11 = 0}.
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[6] A. Alarcón, F. Forstnerič, and F. J. López. Minimal surfaces from a complex analytic viewpoint.

Springer Monographs in Mathematics. Springer, Cham, [2021] ©2021.
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155):12, 321–347, 1987. Théorie des variétés minimales et applications (Palaiseau, 1983–1984).

[12] I. Castro-Infantes and B. Chenoweth. Carleman approximation by conformal minimal

immersions and directed holomorphic curves. J. Math. Anal. Appl., 484(2):123756, 2020.

[13] B. Chenoweth. Carleman approximation of maps into Oka manifolds. Proc. Amer. Math. Soc.,

147(11):4847–4861, 2019.

https://doi.org/10.1007/s10231-023-01418-8


24 A. Alarcón, I. Castro-Infantes, and J. Hidalgo

[14] P. Collin, L. Hauswirth, and H. Rosenberg. The geometry of finite topology Bryant surfaces.

Ann. of Math. (2), 153(3):623–659, 2001.

[15] J. B. Conway. Functions of one complex variable, volume 11 of Graduate Texts in Mathematics.

Springer-Verlag, New York-Heidelberg, 1973.

[16] S. K. Donaldson. Boundary value problems for Yang-Mills fields. J. Geom. Phys., 8(1-4):89–

122, 1992.

[17] H. M. Farkas and I. Kra. Riemann surfaces, volume 71 of Graduate Texts in Mathematics.

Springer-Verlag, New York, second edition, 1992.
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[20] F. Forstnerič. Recent developments on Oka manifolds. Indag. Math. (N.S.), 34(2):367–417,

2023.

[21] S. Fujimori. Spacelike CMC 1 surfaces with elliptic ends in de Sitter 3-space. Hokkaido

Mathematical Journal, 35(2):289 – 320, 2006.

[22] S. Fujimori, W. Rossman, M. Umehara, K. Yamada, and S.-D. Yang. Spacelike mean curvature

one surfaces in de Sitter 3-space. Comm. Anal. Geom., 17(3):383–427, 2009.

[23] J. A. Gálvez and P. Mira. The Cauchy problem for the Liouville equation and Bryant surfaces.

Adv. Math., 195(2):456–490, 2005.

[24] L. Hauswirth, P. Roitman, and H. Rosenberg. The geometry of finite topology Bryant surfaces

quasi-embedded in a hyperbolic manifold. J. Differential Geom., 60(1):55–101, 2002.

[25] S. Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate

Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected

reprint of the 1978 original.

[26] U. Hertrich-Jeromin, E. Musso, and L. Nicolodi. Möbius geometry of surfaces of constant mean
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