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A B S T R A C T

We analyze a particular Fredholm-type partial integro-differential equation. We study the direct
problem and prove existence and uniqueness of the solution via a fixed-point argument for
generalized contractive maps. This approach also allows us to formulate a collage-type result
that can be used to solve inverse problems. We provide numerical examples and we also
show how these equations can be used to model pollution diffusion of heavy pollutants and
non-volatile substances such as heavy metals, chemical spills, radioactive isotopes, and others.

1. Introduction

Integro-differential equations are expressions that involve the derivative of an unknown function, which also appears under an
integral sign. They have been used for several applications in numerous real-world problems (see [1,2] and the references therein).
Fredholm integro-differential equations are usually defined in such a way that the integration limits are constant. They arise in
various areas of science and engineering, including physics, biology, and finance and they are particularly useful in modeling
phenomena with non-local interactions where the behavior of the system at a point depends on the behavior of the system over an
interval [16,20,32,36].

In this paper we focus on the analysis of the following problem, which belongs to the family of Fredholm-type integro-differential
equations:

⎧

⎪

⎨

⎪

⎩

𝑢𝑡(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)𝑢(𝑥, 𝑡) + ∫

𝑏

𝑎
𝑓 (𝑥, 𝑠, 𝑢(𝑠, 𝑡))𝑑𝜇(𝑠), (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇 ]

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [𝑎, 𝑏]
. (1)

where 𝑢𝑡(𝑥, 𝑡) denote the partial derivative of 𝑢 with respect to 𝑡, the functions 𝑓 and 𝑔 are given and 𝑢0 is the initial condition and
we also suppose that 𝜇 is a generic probability measure with compact support over an interval [𝑎, 𝑏].

Our interest for this type of equations is motivated by the extensive use of them in pollution diffusion modeling. In that setting,
the probability measure 𝜇 describes the uncertainty due to unexpected emissions of pollutant or it describes the relative importance
and effect of a certain pollutant in a specific location. This family of equations is of particular importance when modeling heavy
pollutants or non-volatile substances (heavy metals, non-volatile organic compounds, oil spills, chemical spills, radioactive isotopes
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such as uranium, thorium, radium, and radon) that tend to remain localized in their original states or forms, rather than dispersing
into the surrounding atmosphere [35,47].

These pollutants can pose significant environmental and health risks, particularly if they contaminate soil, water bodies, or
cosystems, necessitating careful management and remediation efforts. Such pollutants are often associated with industrial processes,
nd the contamination process is quite slow and it cannot be described by a classical diffusion term. One can refer to [38] to
nderstand various aspects of atmospheric chemistry and physics of heavy pollutants. In [33,45] the authors provide an overview of
nvironmental modeling techniques, including diffusion modeling, for the fate and transport of pollutants in different environmental
edia while [6] covers the fundamental principles of fluid flow and transport in porous media, which are relevant to modeling the
ovement of pollutants in groundwater and soil (see also [15]).

We will show how the previous integro-differential problem (1) can be stated in terms of a fixed-point equation and, for this
bstract problem, we will discuss both the direct and the inverse problems.

The direct problem for a certain equation consists in proving the existence and uniqueness of a solution as well as the stability of its
solution. It starts with the causes and then calculates the effects. Solving a direct problem involves the following steps: Formulation
of the problem, selection of a solution technique, solution process, and verification and interpretation.

The inverse problem, instead, is the inverse of a direct problem [5,22,23,34,44,46] and it focuses on the estimation of the values of
unknown parameters from a set of observations. That is, an inverse problem’s solution starts from the effects to calculate (or, more
likely, to estimate) the causes. This is usually done by estimating the parameters from observed data or numerical approximations of
the solution. Solving inverse problems often requires sophisticated mathematical techniques, optimization algorithms, and numerical
simulations. Regularization methods and Bayesian approaches are commonly used to address the challenges associated with ill-
posedness and uncertainties in the data. Inverse problems have wide applications in a variety of different fields, ranging from system
identification to optics, from acoustics to communication theory, from signal processing to medical imaging, and many others.

In order to analyze the direct and inverse problems for problem (1), we will reformulate the equation using a fixed-point
framework. This approach has been used in several previous papers in the literature of differential, integral and integro-differential
equations for dealing with both direct and inverse problems (see [7,8,19,26–28]). In this context the direct problem is normally
studied by means of Banach’s fixed point Theorem (or its extensions), and it is based on a generalized contractivity property of
the map and the completeness of the underlying space. The inverse problem, instead, relies on a consequence of Banach’s Theorem
known as Collage Theorem. Thanks to this result, the inverse problem boils down to a finite dimensional optimization problem over
the space of unknown parameters. This optimization is, most of the time, a non-convex problem and it requires the implementation
of deterministic or stochastic global optimization algorithms.

The paper proceeds as follows. In Section 2, we recall some well known facts on fixed point theory and we reformulate Problem
(1) as a fixed point equation. Under certain hypotheses, an extended fixed-point result allows us to prove existence and uniqueness
of the solution. In the same section we also present an algorithm to approximate the solution using the notion of a Schauder basis.
We conduct some numerical experiments to test our results and show how the approximation method works in practical contexts. In
Section 3, we make use of a generalization of the Collage Theorem to state the inverse problem in terms of an abstract optimization
model. By means of practical examples and when specific families of functions are considered, we show how to solve it to estimate
the unknown parameters of the model. In Section 4, we present an application of problem (1) to modeling pollution diffusion when
heavy pollutants are considered. Finally, in Section 5 we present some conclusions and future research avenues.

2. The direct problem: Model analysis and numerical approximation

In this section we deal with existence and uniqueness of the solution to problem (1). We also derive a numerical algorithm to
approximate it and we illustrate this approach by means of numerical experiments.

2.1. Fixed point formulation

In this subsection we provide the theoretical foundations and the fixed-point argument that allow to establish existence and
uniqueness of a solution to the above problem (1).

The Banach Fixed-Point Theorem is a well known result and it is the basis for proving existence and uniqueness of fixed-point
solutions. We are going to use a more general although well-known version known as Caccioppoli-Banach Fixed Point Theorem
(see [3, Theorem 2.3]).

Theorem 1. Let (𝑋, ‖ ⋅ ‖) be a Banach space and let 𝐓 ∶ 𝑋 ⟶ 𝑋 be an operator such that there exits a sequence of nonnegative real
numbers {𝜌𝑛}𝑛≥1 satisfying ‖𝐓𝑛𝑢1 − 𝐓𝑛𝑢2‖ ≤ 𝜌𝑛‖𝑢1 − 𝑢2‖ ∀𝑢1, 𝑢2 ∈ 𝑋 and the serie ∑𝑛≥1 𝜌𝑛 is convergent. Then 𝐓 has a unique fixed point
�̄� ∈ 𝑋 and for all 𝑛 ∈ N and 𝑢 ∈ 𝑋,

‖𝐓𝑛𝑢 − �̄�‖ ≤

( ∞
∑

𝑖=𝑛
𝜌𝑖

)

‖𝐓𝑢 − 𝑢‖ (2)

and in particular,

�̄� = lim𝐓𝑛(𝑢). (3)
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We study the nonlinear problem presented below: given 𝑔 ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]), 𝑓 ∈ 𝐶([𝑎, 𝑏]2 × R) and 𝑢0 ∈ 𝐶([𝑎, 𝑏]), find
∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) with 𝑢𝑡 ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) such that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)𝑢(𝑥, 𝑡) + ∫

𝑏

𝑎
𝑓 (𝑥, 𝑠, 𝑢(𝑠, 𝑡))𝑑𝜇(𝑠)

𝑢(𝑥, 0) = 𝑢0(𝑥)

. (4)

We consider that 𝑓 is Lipschitz in the third variable, and 𝑀 is the Lipschitz constant. Regarding this equation, we define the
ntegral operator 𝐓 ∶ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) ⟶ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) defined for (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇 ] and 𝑢 ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) as

(𝐓𝑢)(𝑥, 𝑡) ∶= 𝑢0(𝑥) + ∫

𝑡

0
𝑔(𝑥, 𝑟)𝑢(𝑥, 𝑟)𝑑𝑟 + ∫

𝑡

0 ∫

𝑏

𝑎
𝑓 (𝑥, 𝑠, 𝑢(𝑠, 𝑟))𝑑𝜇(𝑠)𝑑𝑟, (5)

here ‘‘𝑑𝑟’’ denotes Lebesgue measure.

heorem 2. Let be 𝑔 ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]), 𝑢0 ∈ 𝐶([𝑎, 𝑏]) and 𝑓 ∈ 𝐶([𝑎, 𝑏]2 × R) satisfying a Lipschitz condition with respect to the last
ariable, with Lipschitz constant 𝑀 . Then, problem (4) admits a unique solution.

roof. Let 𝐓 ∶ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) ⟶ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) be the operator defined by (5). We first proof that �̄� is solution of problem (4)
f, and only if 𝐓�̄� = �̄�.

If �̄� is solution of (4) taking into account that �̄� is continuous, by the Fundamental Theorem of Calculus we have that �̄� is a fixed
oint of the operator 𝐓. And conversely, if 𝐓�̄� = �̄�, as 𝑔, �̄� are continuous, then the Fundamental Theorem of Calculus yields

�̄�𝑡(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)�̄�(𝑥, 𝑡) + ∫

𝑏

𝑎
𝑓 (𝑥, 𝑠, �̄�(𝑠, 𝑡))𝑑𝜇(𝑠),

and since �̄�(𝑥, 0) = 𝑢0(𝑥), �̄� is solution of (4).
Therefore, to conclude the proof we will show that 𝐓 has a unique fixed point. To this end, if 𝑢1, 𝑢2 ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]),

(𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇 ] then, taking 𝑁 = max
(𝑥,𝑡)∈[𝑎,𝑏]×[0,𝑇 ]

|𝑔(𝑥, 𝑡)|, we have by induction that for 𝑛 ≥ 1

|𝐓𝑛𝑢1(𝑥, 𝑡) − 𝐓𝑛𝑢2(𝑥, 𝑡)| ≤
(𝑡(𝑁 +𝑀))𝑛

𝑛!
‖𝑢1 − 𝑢2‖.

More specifically, for 𝑛 = 1,

|𝐓𝑢1(𝑥, 𝑡) − 𝐓𝑢2(𝑥, 𝑡)| ≤ ∫

𝑡

0
|𝑔(𝑥, 𝑟)| ⋅ |𝑢1(𝑥, 𝑟) − 𝑢2(𝑥, 𝑟)|𝑑𝑟 + ∫

𝑡

0 ∫

𝑏

𝑎
|𝑓 (𝑥, 𝑠, 𝑢1(𝑠, 𝑟)) − 𝑓 (𝑥, 𝑠, 𝑢2(𝑠, 𝑟))|𝑑𝜇(𝑠)𝑑𝑟 ≤

𝑁‖𝑢1 − 𝑢2‖𝑡 +𝑀‖𝑢1 − 𝑢2‖𝜇([𝑎, 𝑏])𝑡 =
𝑡(𝑁 +𝑀)

1!
‖𝑢1 − 𝑢2‖,

and if we suppose that |𝐓𝑛𝑢1(𝑥, 𝑡) − 𝐓𝑛𝑢2(𝑥, 𝑡)| ≤
𝑡𝑛(𝑁 +𝑀)𝑛

𝑛!
‖𝑢1 − 𝑢2‖, then

|𝐓𝑛+1𝑢1(𝑥, 𝑡) − 𝐓𝑛+1𝑢2(𝑥, 𝑡)| ≤

∫

𝑡

0
|𝑔(𝑥, 𝑟)| ⋅ |𝐓𝑛𝑢1(𝑥, 𝑟) − 𝐓𝑛𝑢2(𝑥, 𝑟)|𝑑𝑟 + ∫

𝑡

0 ∫

𝑏

𝑎
|𝑓 (𝑥, 𝑠,𝐓𝑛𝑢1(𝑠, 𝑟)) − 𝑓 (𝑥, 𝑠,𝐓𝑛𝑢2(𝑠, 𝑟))|𝑑𝜇(𝑠)𝑑𝑟 ≤

≤ 𝑁 ∫

𝑡

0

𝑟𝑛(𝑁 +𝑀)𝑛

𝑛!
‖𝑢1 − 𝑢2‖𝑑𝑟 +𝑀 ∫

𝑡

0 ∫

𝑏

𝑎

𝑟𝑛(𝑁 +𝑀)𝑛

𝑛!
‖𝑢1 − 𝑢2‖𝑑𝜇(𝑠)𝑑𝑟 =

𝑡𝑛+1

(𝑛 + 1)!
𝑁(𝑁 +𝑀)𝑛‖𝑢1 − 𝑢2‖ +

𝑡𝑛+1

(𝑛 + 1)!
𝑀(𝑁 +𝑀)𝑛‖𝑢1 − 𝑢2‖𝜇([𝑎, 𝑏]) =

𝑡𝑛+1(𝑁 +𝑀)𝑛+1

(𝑛 + 1)!
‖𝑢1 − 𝑢2‖.

As consequence, for 𝑛 ≥ 1,

‖𝐓𝑛𝑢1 − 𝐓𝑛𝑢2‖ ≤ 𝜌𝑛‖𝑢1 − 𝑢2‖ (6)

where

𝜌𝑛 =
(𝑇 (𝑁 +𝑀))𝑛

𝑛!
. (7)

Since the series
∑

𝑛≥1
𝜌𝑛 is convergent, by Theorem 1, there exists a unique �̄� ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) such that 𝐓(�̄�) = �̄�, and for each

𝑢 ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) and 𝑛 ≥ 1,

‖𝐓𝑛𝑢 − �̄�‖ ≤

( ∞
∑

𝑖=𝑛
𝜌𝑖

)

‖𝐓𝑢 − 𝑢‖, (8)

and thus lim ‖𝐓𝑛𝑢 − �̄�‖ = 0. □
396
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In view of the above, the solution can be determined as the limit of the iterates of operator 𝐓. Since the calculations of such
terates from a practical point of view are not always feasible, in the next section we propose a method to approximate the solution.

.2. Numerical method

For our purposes, let us recall that a Schauder basis of a Banach space 𝑋 is a sequence {𝛾𝑛}𝑛≥1 ⊂ 𝑋 such that ∀𝛾 ∈ 𝑋 there is a
nique sequence {𝜆𝑛}𝑛≥1 of real numbers satisfying 𝛾 = ∑

𝑛≥1 𝜆𝑛𝛾𝑛.
The sequences of projections 𝑃𝑛 ∶ 𝑋 → 𝑋 and coordinate functionals {𝛾∗𝑛 }𝑛≥1 in 𝑋∗, are defined, respectively, as follows:

𝑃𝑛

(

∑

𝑛≥1
𝜆𝑛𝛾𝑛

)

=
𝑛
∑

𝑘=1
𝜆𝑘𝛾𝑘 and 𝛾∗𝑛

(

∑

𝑛≥1
𝜆𝑛𝛾𝑛

)

= 𝜆𝑛

nd it is verified that

lim
𝑛

‖𝑃𝑛(𝛾) − 𝛾‖ = 0 for all 𝛾 ∈ 𝑋. (9)

Let {𝐴𝑛}𝑛≥1 be a Schauder basis in 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) with {𝑄𝑛}𝑛≥1 as their associated projections and {𝐵𝑛}𝑛≥1 a Schauder basis in
([𝑎, 𝑏]2 × [0, 𝑇 ]), with its associated projections {𝑅𝑛}𝑛≥1. For 𝑝 ∈ N, we define 𝐆𝑝 ∶ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) ⟶ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]):

(𝐆𝑝𝑣)(𝑥, 𝑡) ∶= 𝑢0(𝑥) + ∫

𝑡

0
𝑄𝑛𝑝 (𝑔 ⋅ 𝑣)(𝑥, 𝑟)𝑑𝑟 + ∫

𝑡

0 ∫

𝑏

𝑎
𝑅𝑛∗𝑝 (𝐿0(𝑣))(𝑥, 𝑠, 𝑟)𝑑𝜇(𝑠)𝑑𝑟 (10)

here 𝑛𝑝 ∈ N, 𝑛∗𝑝 ∈ N, 𝑣 ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) and 𝐿0 ∶ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) → 𝐶([𝑎, 𝑏]2 × [0, 𝑇 ]),

𝐿0(𝑣)(𝑥, 𝑠, 𝑡) ∶= 𝑓 (𝑥, 𝑠, 𝑣(𝑠, 𝑡)), (𝑥, 𝑠, 𝑡) ∈ [𝑎, 𝑏]2 × [0, 𝑇 ]. (11)

Let �̃� ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]), and we define:

𝑧0(𝑥, 𝑡) ∶= �̃�(𝑥, 𝑡) (12)

nd for 𝑚 ∈ N,

𝑧𝑚(𝑥, 𝑡) ∶= 𝐆𝑚◦...◦𝐆1(�̃�)(𝑥, 𝑡). (13)

The following result allows us to choose 𝑛1,… , 𝑛𝑚, 𝑛∗1 ,… , 𝑛∗𝑚 ∈ N so that 𝑧𝑚 approximates the unique solution of (4).

heorem 3. Let �̃� ∈ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) and let �̄� be the unique solution of problem (1), then for each 𝜀 > 0 there exist 𝑚 ≥ 1 and
1,… , 𝑛𝑚, 𝑛∗1 ,… , 𝑛∗𝑚 ≥ 1 such that ‖�̄� − 𝑧𝑚‖ < 𝜀 with 𝑧0 and 𝑧𝑚 defined by (12) and (13).

roof. If we consider 𝜌0 = 1 and for all 𝑛 ≥ 1, 𝜌𝑛 is given by (7), then we have that for all 𝑚 ≥ 0,

‖𝐓𝑚�̃� − 𝑧𝑚‖ ≤

‖𝐓𝑚�̃� − 𝐓𝑚−1𝑧1‖ + ‖𝐓𝑚−1𝑧1 − 𝐓𝑚−2𝑧2‖ +⋯ + ‖𝐓2𝑧𝑚−2 − 𝐓𝑧𝑚−1‖ + ‖𝐓𝑧𝑚−1 − 𝑧𝑚‖ ≤

(𝑚−1
∑

𝑝=1
‖𝐓𝑚−𝑝+1𝑧𝑝−1 − 𝐓𝑚−𝑝𝑧𝑝‖

)

+ ‖𝐓𝑧𝑚−1 − 𝑧𝑚‖ ≤

(𝑚−1
∑

𝑝=1
‖𝐓𝑚−𝑝𝐓𝑧𝑝−1 − 𝐓𝑚−𝑝𝑧𝑝‖

)

+ 𝜌0‖𝐓𝑧𝑚−1 − 𝑧𝑚‖ ≤

(𝑚−1
∑

𝑝=1
𝜇𝑚−𝑝‖𝐓𝑧𝑝−1 − 𝑧𝑝‖

)

+ 𝜌0‖𝐓𝑧𝑚−1 − 𝑧𝑚‖ =
𝑚
∑

𝑝=1
𝜌𝑚−𝑝‖𝐓𝑧𝑝−1 − 𝑧𝑝‖.

Therefore,

‖𝐓𝑚�̃� − 𝑧𝑚‖ ≤
𝑚
∑

𝑝=1
𝜌𝑚−𝑝‖𝐓𝑧𝑝−1 − 𝑧𝑝‖.

For 𝑝 ∈ {1,… , 𝑚}, we define 𝐿𝑝 ∶ 𝐶([𝑎, 𝑏] × [0, 𝑇 ]) → 𝐶([𝑎, 𝑏]2 × [0, 𝑇 ]),

𝐿𝑝(𝑣)(𝑥, 𝑠, 𝑡) ∶= 𝑓 (𝑥, 𝑠,𝐆𝑝◦...◦𝐆1(𝑣)(𝑥, 𝑡)), (𝑥, 𝑠, 𝑡) ∈ [𝑎, 𝑏]2 × [0, 𝑇 ]. (14)

hen

|𝐓𝑧𝑝−1(𝑥, 𝑡) − 𝑧𝑝(𝑥, 𝑡)| ≤

𝑡
|

|(𝑔 ⋅ 𝑧𝑝−1)(𝑥, 𝑟) −𝑄𝑛 (𝑔 ⋅ 𝑧𝑝−1)(𝑥, 𝑟)
|

| 𝑑𝑟 +
𝑡 𝑏

|

|𝑓 (𝑥, 𝑠, 𝑧𝑝−1(𝑠, 𝑟)) − 𝑅𝑛∗ (𝐿𝑝−1(�̃�))(𝑥, 𝑠, 𝑟)
|

| 𝑑𝜇(𝑠)𝑑𝑟
397
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w
𝐶
t
a

Table 1
Absolute error |𝑧7(𝑥, 𝑡) − �̄�(𝑥, 𝑡)| for Example 2.1 with 𝑛𝑖 = 92 and 𝑛∗𝑖 = 93.

𝑡, 𝑥 0.2 0.4 0.6 0.8 1

0.2 1.03155 × 10-3 2.52247 × 10-3 4.62988 × 10-3 7.65072 × 10-3 1.18063 × 10-2

0.4 1.67067 × 10-3 4.06346 × 10-3 7.42057 × 10-3 1.21464 × 10-2 1.86538 × 10-2

0.6 1.92418 × 10-3 4.61077 × 10-3 8.2941 × 10-3 1.33447 × 10-2 2.01397 × 10-2

0.8 1.77083 × 10-3 4.12469 × 10-3 7.21951 × 10-3 1.13068 × 10-2 1.66163 × 10-2

1 1.32592 × 10-3 2.97533 × 10-3 5.03546 × 10-3 7.65843 × 10-3 1.09648 × 10-2

Table 2
Absolute error |𝑧7(𝑥, 𝑡) − �̄�(𝑥, 𝑡)| for Example 2.1 with 𝑛𝑖 = 172 and 𝑛∗𝑖 = 173.

𝑡, 𝑥 0.2 0.4 0.6 0.8 1

0.2 4.72292 × 10-4 1.14505 × 10-3 2.08206 × 10-3 3.36593 × 10-3 5.10239 × 10-3

0.4 3.68087 × 10-4 8.85775 × 10-4 1.59959 × 10-3 2.57172 × 10-3 3.88733 × 10-3

0.6 4.47135 × 10-4 1.07321 × 10-3 1.93185 × 10-3 3.09301 × 10-3 4.64846 × 10-3

0.8 1.3224 × 10-3 3.0642 × 10-3 5.33105 × 10-3 8.25494 × 10-3 1.2 × 10-2

1 5.04882 × 10-4 1.14554 × 10-3 1.95615 × 10-3 2.9809 × 10-3 4.27573 × 10-3

≤ 𝑇 ‖𝑔 ⋅ 𝑧𝑝−1 −𝑄𝑛𝑝 (𝑔 ⋅ 𝑧𝑝−1)‖ + 𝑇𝜇([𝑎, 𝑏])‖𝐿𝑝−1(�̃�) − 𝑅𝑛∗𝑝 (𝐿𝑝−1(�̃�))‖,

therefore,

‖𝐓𝑚�̃� − 𝑧𝑚‖ ≤
𝑚
∑

𝑝=1
𝑇 𝜌𝑚−𝑝

(

‖𝑔 ⋅ 𝑧𝑝−1 −𝑄𝑛𝑝 (𝑔 ⋅ 𝑧𝑝−1)‖ + ‖𝐿𝑝−1(�̃�) − 𝑅𝑛∗𝑝 (𝐿𝑝−1(�̃�))‖
)

. (15)

For all 𝜀 > 0, by (3), there exits 𝑚 ∈ N verifying that ‖�̄� − 𝐓𝑚�̃�‖ < 𝜀∕2. By (9) and (15), there exist 𝑛1,… , 𝑛𝑚, 𝑛∗1 ,… , 𝑛∗𝑚 ≥ 1 such
that

‖𝐓𝑚�̃� − 𝑧𝑚‖ < 𝜀∕2.

Then, by triangle inequality,

‖�̄� − 𝑧𝑚‖ ≤ ‖𝐓𝑚�̃� − �̄�‖ + ‖𝐓𝑚�̃� − 𝑧𝑚‖ <
𝜀
2
+ 𝜀

2
< 𝜀. □

2.3. Numerical experiments

The presented numerical method has been tested on two numerical examples. Given the dense sequence {𝑠𝑛}𝑛≥1 (respectively
{𝑡𝑛}𝑛≥1) taken on the diadic partition of the interval [𝑎, 𝑏] ([0, 𝑇 ], respectively) with 𝑠1 = 𝑎 and 𝑠2 = 𝑏 (𝑡1 = 0 and 𝑡2 = 𝑇 respectively),

e consider the Faber Schauder basis {𝜑𝑛}𝑛≥1 in 𝐶([𝑎, 𝑏]) and {𝜓𝑛}𝑛≥1 in 𝐶([0, 𝑇 ]), and we fix the concrete Schauder basis {𝐴𝑛}𝑛≥1 in
([𝑎, 𝑏]×[0, 𝑇 ]) and {𝐵𝑛}𝑛≥1 in 𝐶([𝑎, 𝑏]2×[0, 𝑇 ]) as the tensor product of bases {𝜑𝑛}𝑛≥1 and {𝜓𝑛}𝑛≥1 [39]. The advantage of introducing

hese bases is that, via the following change-of-variable, the calculations are feasible (see [25, Section 5]): Let us suppose that 𝜇 is
measure defined on the Borel subsets of R and suppose that supp(𝜇) = [𝑎, 𝑏] and that is non-atomic. Let 𝐹 ∶ 𝐾 = supp(𝜇) → [0, 1]

be the cumulative of 𝜇 and 𝐹−1 ∶ [0, 1] → 𝐾 be its inverse. Then, given a function 𝑓 ∶ 𝐾 → R, the following change of variable rule
holds:

∫𝐾
𝑓 (𝑥)𝑑𝜇(𝑥) = ∫

1

0
𝑓 (𝐹−1(𝑥))𝑑𝑥 (16)

where 𝑑𝑥 is the Lebesgue measure.
The computations to implement the algorithm for the approximate solution have been done using Mathematica.

Example 2.1. Consider the following problem

⎧

⎪

⎨

⎪

⎩

𝑢𝑡(𝑥, 𝑡) =
2 + 𝑒𝑥−2𝑥2 − 𝑒𝑥𝑥2

2
𝑢(𝑥, 𝑡) + ∫

1

0
𝑥2𝑒−𝑠𝑢(𝑠, 𝑡)𝑑𝑠

𝑢(𝑥, 0) = 𝑒−𝑥 (𝑥, 𝑡) ∈ [0, 1] × [0, 1]
. (17)

where the exact solution is given by �̄�(𝑥, 𝑡) = 𝑒𝑡−𝑥. To compare numerical and exact solutions see Tables 1 and 2 where it is shown
the absolute errors |𝑧7(𝑥, 𝑡) − �̄�(𝑥, 𝑡)| taking, on one hand, 𝑛𝑖 = 92 and 𝑛∗𝑖 = 93, and in other hand 𝑛𝑖 = 172 and 𝑛∗𝑖 = 173 for 𝑖 = 1,… , 7.
The sup norm of the error ‖𝑧 − �̄�‖ is 2.27689 × 10−2 in the first case and 1.66485 × 10−2 in the second one.
398
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(

i

Table 3
Absolute error |𝑧3(𝑥, 𝑡) − �̄�(𝑥, 𝑡)| for Example 2.2 with 𝑛𝑖 = 92 and 𝑛∗𝑖 = 93.

𝑡, 𝑥 0.2 0.4 0.6 0.8 1

0.2 1.51415 × 10−4 3.01377 × 10−4 4.43192 × 10−4 6.06209 × 10−4 1.61912 × 10−3

0.4 3.04166 × 10−4 6.16909 × 10−4 9.16421 × 10−4 1.04999 × 10−3 7.86755 × 10−4

0.6 4.5769 × 10−4 9.33775 × 10−4 1.41162 × 10−3 1.70325 × 10−3 1.22657 × 10−3

0.8 6.4003 × 104 1.30108 × 10−3 1.98926 × 10−3 2.58337 × 10−3 2.4922 × 10−3

1 7.50114 × 10−4 1.55333 × 10−3 2.51532 × 10−3 3.74581 × 10−3 4.89973 × 10−3

Example 2.2. Let us suppose that the density 𝜉 of the measure 𝜇 over the interval [0, 1] is equal to 𝜉(𝑥) = 3
4
+ 𝑥

2
and 0 otherwise

and consider the problem

⎧

⎪

⎨

⎪

⎩

𝑢𝑡(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)𝑢(𝑥, 𝑡) + ∫

1

0
𝑥𝑢(𝑠, 𝑡)𝑑𝜇(𝑠)

𝑢(𝑥, 0) = cos(𝑥) (𝑥, 𝑡) ∈ [0, 1] × [0, 1]
. (18)

where 𝑔(𝑥, 𝑡) is such that �̄�(𝑥, 𝑡) = cos(𝑥− 𝑡) is the solution. The obtained results are presented for 𝑚 = 3 with 𝑛𝑖 = 92 and 𝑛∗𝑖 = 93 for
𝑖 = 1, 2, 3 can be viewed in Table 3. The sup norm of the error ‖𝑧3 − �̄�‖ is 4.89973 × 10−3.

3. The inverse problem

The inverse problem consists in determining an estimation of the unknown parameters of the model starting from data that have
been gathered by samples or experiments. In the case of our model Eq. (1), the data could be values of 𝑢 at particular observation
points (𝑥𝑖, 𝑡𝑖), and the parameters we wish to estimate might be the coefficients in the proposed functional forms of 𝑔 and 𝑓 . This
problem can be solved by using a Collage-type Theorem. The classical ‘‘Collage Theorem’’ for the standard version of Banach’s fixed
point theorem has been known for many years, but it was first used in the context of solving an inverse problem in [5] for the
analysis of inverse problems in fractal image compression. This classical Collage Theorem states an approximation result between
any target object 𝑢 and the solution �̄� of a fixed point equation 𝑇 �̄� = �̄�. In the fractal imaging context, the action of the fractal
transform operator 𝑇 on an image 𝑢 produces a new image 𝑣 that is an assemblage of adjusted subsets of 𝑢; it is this action that
gives rise to name ‘‘Collage’’. The Collage Theorem is a crucial result for solving inverse problems for fixed point equations and it
has been used in a variety of different formulations and frameworks (see [4,9,10,12–14,17,18,37,40,41]).

In the current paper, the next result Theorem 4 allows us to formulate a computable inverse problem approach to problem (1).
The proof of this result is similar to that in [24], which is based on the application of the standard Collage Theorem to a contraction
map 𝐓𝑛0 .

Theorem 4 ([24]). Let (𝑋, ‖ ⋅ ‖) be a Banach space and let 𝐓 ∶ 𝑋 ⟶ 𝑋 be an operator such that there exits a sequence of nonnegative
real numbers {𝜌𝑛}𝑛≥1 satisfying ‖𝐓𝑛𝑢1 − 𝐓𝑛𝑢2‖ ≤ 𝜌𝑛‖𝑢1 − 𝑢2‖ ∀𝑢1, 𝑢2 ∈ 𝑋 and the series ∑𝑛≥1 𝜌𝑛 is convergent. Let �̄� be the unique fixed
point of 𝐓, as guaranteed by Theorem 1, and 𝑢 be a chosen element of 𝑋. Then there exists 𝑛0 such that 𝜌𝑛0 < 1 and this implies

‖𝑢 − �̄�‖ ≤
∑𝑛0−1
𝑖=0 𝜌𝑖

1 − 𝜌𝑛0
‖𝐓𝑢 − 𝑢‖. (19)

When we label the observational data or their interpolant as 𝑢, we can identify the right-hand side of (19) as the error in
approximating 𝑢 by the fixed point �̄� of 𝐓. If 𝜌𝑛0 ≪ 1, then the magnitude of the error can be controlled by minimizing ‖𝐓𝑢− 𝑢‖. If,
as usually happens in this context, the operator 𝐓 belongs to a fixed family of functions and it is parametrized by a vector 𝜆 ∈ 𝛬 ⊂ R𝑝

in the inverse problem framework the target element 𝑢 ∈ 𝑋 is fixed and known), the minimization of the term 𝛥(𝜆) ∶= ‖𝐓𝜆𝑢 − 𝑢‖
boils down to solving the optimization problem:

min
𝜆∈𝛬

‖𝐓𝜆𝑢 − 𝑢‖ (20)

which has at least one solution whenever 𝛥 is continuous and 𝛬 is a compact subset of R𝑝.
Now let us apply the previous abstract inverse problem approach to our specific model. We suppose we know or have an estimate

of the target solution 𝑢 to the model and we want to determine an estimation of 𝑔 and 𝑓 . Using the Collage Theorem, this can be
stated in terms of the minimization of the Collage distance:

min
𝑓,𝑔

‖𝑢 − 𝐓𝑢‖ =
‖

‖

‖

‖

‖

𝑢(𝑥, 𝑡) − 𝑢0(𝑥) − ∫

𝑡

0
𝑔(𝑥, 𝑟)𝑢(𝑥, 𝑟)𝑑𝑟 − ∫

𝑡

0 ∫

𝑏

𝑎
𝑓 (𝑥, 𝑠, 𝑢(𝑠, 𝑟))𝑑𝜇(𝑠)𝑑𝑟

‖

‖

‖

‖

‖

, (21)

where the minimization is done over all Lipschitz functions 𝑓 and 𝑔.
The complexity of this optimization problem depends on the assumptions of 𝑓 and 𝑔. A regularization term [42,43], expressed
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Table 4
Results from Example 3.1.
𝑁𝑥 𝑁𝑡 𝐷 𝜀 𝛥 True values

1.0000000 −0.4323324 −0.4323324 −0.2161662

𝑔0 𝑔2 𝑔3 𝑔4
20 10 6 0.00 0.0000000 0.9996606 −0.5236164 −0.1846185 −0.4777624
20 10 10 0.00 0.0000000 0.9996503 −0.5218805 −0.1879165 −0.4759510
100 50 6 0.00 0.0000000 0.9996606 −0.5236164 −0.1846185 −0.4777624
100 50 10 0.00 0.0000000 0.9996503 −0.5218805 −0.1879165 −0.4759510
20 10 6 0.01 0.0000037 1.0009614 −0.5334301 −0.3618969 −0.3097484
20 10 10 0.01 0.0000078 1.0037317 −0.2392890 −0.6389388 −0.2441403
100 50 6 0.01 0.0000037 1.0009614 −0.5334301 −0.3618969 −0.3097484
100 50 10 0.01 0.0000078 1.0037317 −0.2392890 −0.6389388 −0.2441403
20 10 6 0.05 0.0000619 0.9953297 −1.3535893 0.8862019 −0.7843862
20 10 10 0.05 0.0001412 1.0012706 −0.5801000 −1.1627976 0.3364531
100 50 6 0.05 0.0000619 0.9953297 −1.3535893 0.8862019 −0.7843862
100 50 10 0.05 0.0001411 1.0012706 −0.5801000 −1.1627976 0.3364531

As mentioned above, in a practical inverse problem, both functions 𝑓 and 𝑔 may be assumed to take specific forms. Therefore,
the essence of the inverse problem lies in estimating the unknown coefficients within these predefined forms, namely 𝑔𝑖, 𝑖 = 1,… , 𝑛𝑔 ,
and 𝑓𝑗 , 𝑗 = 1,… , 𝑛𝑓 . The inverse problem boils down to the following form:

min
𝑔𝑖 ,𝑓𝑗

‖𝑢 − 𝐓𝑢‖ . (22)

The following examples show a practical implementations of the Collage Theorem.

Example 3.1. We return to (17) considered in Example 2.1. We sample the solution 𝑒𝑡−𝑥 on [0, 1]2 on a uniform grid with 𝑁𝑥 (𝑁𝑡)
nodes in the 𝑥- (𝑡-) direction, add Gaussian noise with amplitude 𝜀 to the sample values, and then fit a polynomial 𝑢(𝑥, 𝑡) of degree
𝐷 to the noised data. We seek an equation of the form

𝑢𝑡(𝑥, 𝑡) = 𝑔(𝑥)𝑢(𝑥, 𝑡) + ∫

1

0
𝑥2𝑒−𝑠𝑢(𝑠, 𝑡)𝑑𝑠, (23)

supposing that 𝑔 has the form

𝑔(𝑥) = 𝑔0 + 𝑔2𝑥2 + 𝑔3𝑥3 + 𝑔4𝑥4.

The resulting collage distance ‖𝑢 − 𝐓𝑢‖, with 𝐓 the associated integral operator and 𝑢 our fitted target, is a function of the 𝑔𝑖.
The results of minimizing the collage distance in various scenarios are presented in Table 4. Writing the first terms of the Taylor
expansion of the true function 𝑔𝑡𝑟𝑢𝑒(𝑥) about 𝑥 = 0, we note that near 𝑥 = 0,

𝑔𝑡𝑟𝑢𝑒(𝑥) ≈ 1.0000000 − 0.4323324𝑥2 − 0.4323324𝑥3 − 0.2161662𝑥4,

with coefficients to 7 decimal places. We see that the quality of the results is alright when there is no noise or very low noise, but
the worsens as the noise level grows to 5%.

Example 3.2. Let us suppose that [𝑎, 𝑏] = [−1, 1], 𝑔(𝑥, 𝑡) is linear and takes the form

𝑔(𝑥, 𝑡) = 𝑔0 + 𝑔1𝑥 + 𝑔2𝑡 (24)

and the function 𝑓 , instead, can be written as

𝑓 (𝑥, 𝑠, 𝑢(𝑥, 𝑡)) = 𝜙(𝑥, 𝑠)𝑢(𝑠, 𝑡) (25)

where 𝜙 is a normal kernel taking the form

𝜙(𝑥, 𝑠) = �̄�(𝑥)𝑒−
1

1−𝑠2 . (26)

Let us suppose that the density 𝜉 of the measure 𝜇 over the interval [−1, 1] is equal to 𝜉(𝑥) = 𝑥 + 1
2 and 0 otherwise. Then the

cumulative 𝐹 (𝑥) = 𝜇([−1, 𝑥]) is equal to 𝑥2

4 + 𝑥
2 + 1

4 over [−1, 1], 0 when 𝑥 ≤ −1 and 1 when 𝑥 ≥ 1. The inverse of the cumulative
𝑥 = 𝐹−1(𝑦) =

√

4𝑦 − 1 and then the operator 𝐓𝑢 can be written as

(𝐓𝑢)(𝑥, 𝑡) = 𝑢0(𝑥) + ∫

𝑡

0
𝑔(𝑥, 𝑟)𝑢(𝑥, 𝑟)𝑑𝑟 + ∫

𝑡

0 ∫

1

−1
𝜙(𝑥, 𝑠)𝑢(𝑠, 𝑡)𝑑𝜇(𝑠)𝑑𝑟

= 𝑢0(𝑥) +
𝑡
(𝑔0 + 𝑔1𝑥 + 𝑔2𝑟)𝑢(𝑥, 𝑟)𝑑𝑟 + �̄�(𝑥)

𝑡 1
𝑒−

1
1−𝑠2 𝑢(𝑠, 𝑟)𝑑𝜇(𝑠)𝑑𝑟
400
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Fig. 1. Solution for Example 3.2, (a) profiles and (b) solution surface for 0 ≤ 𝑡 ≤ 1.

Table 5
Results for Example 3.2. True values are (𝑔0 , 𝑔1 , 𝑔2) = (0.5, 2,−1).
𝑁𝑥 𝑁𝑡 𝜀 𝛥 𝑔0 𝑔1 𝑔2
20 10 0.00 0.0001917 0.4950936 2.0116270 −1.0357785
50 25 0.00 0.0001518 0.4948047 2.0129139 −1.0356112
100 50 0.00 0.0001435 0.4946804 2.0133074 −1.0354633
20 10 0.01 0.0002193 0.4938846 2.0039143 −1.0298406
50 25 0.01 0.0001650 0.4869434 2.0167247 −1.0247163
100 50 0.01 0.0001622 0.5015758 2.0094539 −1.0446763
20 10 0.05 0.0009047 0.5205707 1.9106357 −1.0320081
50 25 0.05 0.0002995 0.5208807 2.0356040 −1.0885161
100 50 0.05 0.0002057 0.4713763 2.0317943 −1.0070384
20 10 0.10 0.0021695 0.4923433 1.9702788 −1.0065235
50 25 0.10 0.0009982 0.4551648 2.0330032 −0.9799383
100 50 0.10 0.0002851 0.4853762 2.0299821 −1.0296401

= 𝑢0(𝑥) + ∫

𝑡

0
(𝑔0 + 𝑔1𝑥 + 𝑔2𝑟)𝑢(𝑥, 𝑟)𝑑𝑟 + �̄�(𝑥)∫

𝑡

0 ∫

1

0
𝑒
− 1

1−(
√

4𝑦−1)2 𝑢(
√

4𝑦 − 1, 𝑟)𝑑𝑦𝑑𝑟 (27)

Taking �̄�(𝑥) = 𝑒−𝑥2 , 𝑢0(𝑥) = 1 − 𝑥2, and, temporarily, (𝑔0, 𝑔1, 𝑔2) = (0.5, 2,−1), we solve (1) numerically and the solution surface is
illustrated in Fig. 1. We display the solution on a uniform grid with 𝑁𝑥 (𝑁𝑡) nodes in the 𝑥- (𝑡-) direction, add Gaussian noise with
amplitude 𝜀 to the sample values, and then fit a polynomial 𝑢(𝑥, 𝑡) of degree 6 to the noised data. This 𝑢 plays the role of the target
in the Collage Theorem, as described above, with (𝐓𝑢)(𝑥, 𝑡) given in (27). The inverse problem we seek to solve is

min
𝑔0 ,𝑔1 ,𝑔2

𝛥 ∶= ‖

‖

‖

𝑢 − (𝐓𝑔0 ,𝑔1 ,𝑔2𝑢)
‖

‖

‖

Results are presented in Table 5. We see that the recovered values are reasonable; that improving the target by increasing 𝑁𝑥 and
𝑁𝑡 improves the results; and that the results are negatively, but not severely, impacted by the addition of noise.

4. An application to pollution diffusion modeling

The control of pollution emissions is probably one of the most challenging issue to guarantee the long-run sustainability and
growth. There is a broad research interest in modeling pollution diffusion and determine which actions can be put in place to
control the emissions and implement abatement activities and optimal policies. In general, in a one-dimensional environment [𝑎, 𝑏],
the level of pollution 𝑃 (𝑥, 𝑡) at the time 𝑡 ∈ [0, 𝑇 ] and location 𝑥 can be model through a reaction–diffusion equation taking the form
(𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇 ]:

⎧

⎪

⎨

⎪

𝑃𝑡(𝑥, 𝑡) = 𝑐𝑃𝑥𝑥(𝑥, 𝑡) + 𝑆(𝑥, 𝑡)𝑃 (𝑥, 𝑡) − 𝛿𝑃𝑃 (𝑥, 𝑡) + ∫

𝑏

𝑎
𝜙(𝑠, 𝑥)𝑃 (𝑠, 𝑡)𝑑𝜇(𝑠)

𝑃 (𝑥, 0) = 𝑃 (𝑥)
(28)
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Table 6
Numerical results 𝑧8(𝑥, 𝑡) obtained in Example 4.1.
𝑡, 𝑥 0.2 0.4 0.6 0.8 1

0.2 0.256062 0.293058 0.30049 0.276818 0.229786
0.4 0.56453 0.712074 0.803802 0.813097 0.738161
0.6 0.932108 1.28944 1.58932 1.74599 1.71097
0.8 1.36636 2.0656 2.76622 3.28263 3.45529
1 1.8741 3.08456 4.46908 5.70699 6.43501

subject to an initial condition at 𝑡 = 0 where 𝑃𝑡(𝑥, 𝑡) denote the partial derivative of 𝑃 with respect to 𝑡. Here 𝑃𝑥𝑥 is the second-order
spatial derivative of 𝑃 (𝑥, 𝑡), 𝑐 is the diffusion coefficient, 𝑆(𝑥, 𝑡) is the growth rate of pollution and it depends on the level of emissions
determined by the production output, −𝛿𝑃𝑃 takes into account the natural environmental cleaning, and the integral term models
the contribution of the level of pollution at each location 𝑠 to the accumulation of pollution at 𝑥 and the probability measure 𝜇
describes the relative importance and effect of certain pollutant in a specific location (see [11,21,29–31]). The kernel 𝜙 weights the
contribution of each location in terms of total emissions.

When heavy pollutants or non-volatile substances such as heavy metals, non-volatile organic compounds, oil spills, chemical
spills, radioactive isotopes such as uranium, thorium, radium, and radon are considered, the diffusion coefficient can be neglected
and the equation boils down to

⎧

⎪

⎨

⎪

⎩

𝑃𝑡(𝑥, 𝑡) = 𝑆(𝑥, 𝑡)𝑃 (𝑥, 𝑡) − 𝛿𝑃𝑃 (𝑥, 𝑡) + ∫

𝑏

𝑎
𝜙(𝑠, 𝑥)𝑃 (𝑠, 𝑡)𝑑𝜇(𝑠)

𝑃 (𝑥, 0) = 𝑃0(𝑥)
. (29)

In fact, heavy pollutants tend to remain localized in their original states or forms, rather than dispersing into the surrounding
atmosphere. In this case there is no flow of material associated with pollution diffusion but, instead, the level of pollution increases
as a consequence of pollution stocks and water or soil contamination.

We apply the numerical method described in Section 2 for the following pollution model in [0, 1] × [0, 1].

Example 4.1. Let us suppose that the density 𝜉 of the measure 𝜇 over the interval [0, 1] is equal to 𝜉(𝑥) = 2𝑥 and 0 otherwise and
consider the problem with 𝑆(𝑥, 𝑡) = 2 + 2𝑥 − 3𝑡, 𝛿𝑃 = 1, 𝜙(𝑠, 𝑥) = 𝑥2 cos(𝑠) and 𝑃0(𝑥) = 𝑥.

The obtained results are presented for 𝑚 = 8 with 𝑛𝑖 = 92 and 𝑛∗𝑖 = 93 for 𝑖 = 1,… , 8 can be viewed in Table 6. That 𝑚 has been
chosen in such away that

‖𝑧𝑚 − 𝑧𝑚−1‖ ≤ 10−3.

An interesting inverse problem for the above problem (29) is the following: Given gathered data of 𝑃 and suppose we know both
𝛿𝑃 and 𝜙, let us determine an estimation of the growth rate 𝑆. The following example shows a numerical implementation of the inverse
problem with simulated data.

Example 4.2. As an example inverse problem, we proceed similar to Example 3.2, choosing the same measure 𝜇, and again taking
�̄�(𝑥) = 𝑒−𝑥2 and 𝜙(𝑥, 𝑠) = �̄�(𝑥)𝑒−

1
1−𝑠2 . Here we set, 𝑢0(𝑥) = 2𝑥6 + 𝑥5 − 4𝑥4 − 2𝑥3 + 3

2𝑥
2 + 𝑥 + 1

2 , with its graph identifying two peak
pollution levels on [−1, 1]. We suppose that 𝑆(𝑥, 𝑡) = 𝑆0 + 𝑆1𝑥 + 𝑆2𝑡, using the values (𝑆0, 𝑆1, 𝑆2) = (1,−2, 0.8) to generate a target
𝑃 , in the manner of Example 3.2. For each (𝑁𝑥, 𝑁𝑡, 𝜀) triplet, we construct two targets, one of degree 8 and the other of degree 10.
The numerical solution (with no noise added) is presented in Fig. 2 We now seek to solve the corresponding inverse problem for
(𝑆0, 𝑆1, 𝑆2). The results are presented in Table 7. The recovered values are close to the true values, and they hold up when a low
level of noise is added. It is helpful to look again at the solution surface in Fig. 2 to recognize the challenges of using a polynomial
basis for the target function. In the third- and second-last rows of the table, for example, we see that increasing the degree of the
fitted polynomial reduces the accuracy of the recovered parameter values.

5. Conclusion

In this paper we have analyzed a particular Fredholm-type integro-differential equation. In the first part we have considered the
direct problem and proved existence and uniqueness of the solution via a fixed-point argument. In the second part, instead, we have
formulated a collage-type result that can be used to solve inverse problems. Numerical examples as well as a potential application to
modeling of pollution diffusion conclude the paper. Future avenues include the analysis of more general models of macroeconomic
geography in which demography and pollution dynamics affect each other. These problems are modeled with systems of two partial
differential equations, one describing the evolution of pollution over time and space and the other describing the evolution of the
human population.
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Fig. 2. Solution for Example 4.2, (a) profiles and (b) solution surface for 0 ≤ 𝑡 ≤ 1.

Table 7
Results for Example 4.2. True values are (𝑆0 , 𝑆1 , 𝑆2) = (1,−2, 0.8).
𝑁𝑥 𝑁𝑡 𝑢𝑑𝑒𝑔 𝜀 𝛥 𝑆0 𝑆1 𝑆2

20 10 8 0.00 0.0068456 0.9617454 −2.0042190 0.8510397
20 10 10 0.00 0.0012286 0.9586120 −2.0105501 0.8804124
50 25 8 0.00 0.0045729 0.9530788 −2.0088078 0.8881269
50 25 10 0.00 0.0008383 0.9482695 −2.0115794 0.9097584
100 50 8 0.00 0.0041239 0.9510689 −2.0100785 0.8973780
100 50 10 0.00 0.0007860 0.9483386 −2.0116352 0.9096776
20 10 8 0.01 0.0079357 1.0039053 −2.0249152 0.7235289
20 10 10 0.01 0.0031682 0.9457433 −2.0137754 0.9298703
50 25 8 0.01 0.0054294 0.9686385 −1.9884721 0.8390496
50 25 10 0.01 0.0022734 0.9423102 −1.9752634 0.9260981
100 50 8 0.01 0.0045695 0.9812885 −1.9972603 0.8085704
100 50 10 0.01 0.0021155 0.9745145 −1.9891479 0.8272391
100 50 8 0.10 0.0150653 1.0456401 −1.9884490 0.6865258
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