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ABSTRACT

Carrion ecology, i.e. the decomposition and recycling of dead animals, has traditionally been neglected as a key process in
ecosystem functioning. Similarly, despite the large threats that inland aquatic ecosystems (hereafter, aquatic ecosystems)
face, the scientific literature is still largely biased towards terrestrial ecosystems. However, there has been an increasing
number of studies on carrion ecology in aquatic ecosystems in the last two decades, highlighting their key role in nutrient
recirculation and disease control. Thus, a global assessment of the ecological role of scavengers and carrion in aquatic
ecosystems is timely. Here, we systematically reviewed scientific articles on carrion ecology in aquatic ecosystems to
describe current knowledge, identify research gaps, and promote future studies that will deepen our understanding in this
field. We found 206 relevant studies, which were highly biased towards North America, especially in lotic ecosystems,
covering short time periods, and overlooking seasonality, a crucial factor in scavenging dynamics. Despite the low
number of studies on scavenger assemblages, we recorded 55 orders of invertebrates from 179 families, with Diptera
and Coleoptera being the most frequent orders. For vertebrates, we recorded 114 species from 40 families, with birds
and mammals being the most common. Our results emphasise the significance of scavengers in stabilising food webs
and facilitating nutrient cycling within aquatic ecosystems. Studies were strongly biased towards the assessment of the
ecosystem effects of carrion, particularly of salmon carcasses in North America. The second most common research topic
was the foraging ecology of vertebrates, which was mostly evaluated through sporadic observations of carrion in the diet.
Articles assessing scavenger assemblages were scarce, and only a limited number of these studies evaluated carrion
consumption patterns, which serve as a proxy for the role of scavengers in the ecosystem. The ecological functions
performed by carrion and scavengers in aquatic ecosystems were diverse. The main ecological functions were carrion
as food source and the role of scavengers in nutrient cycling, which appeared in 52.4% (N = 108) and 46.1% (N = 95)
of publications, respectively. Ecosystem threats associated with carrion ecology were also identified, the most common
being water eutrophication and carrion as source of pathogens (2.4%; N = 5 each). Regarding the effects of carrion
on ecosystems, we found studies spanning all ecosystem components (N = 85), from soil or the water column to terrestrial
vertebrates, with a particular focus on aquatic invertebrates and fish. Most of these articles found positive effects of
carrion on ecosystems (e.g. higher species richness, abundance or fitness; 84.7%; N = 72), while a minority found
negative effects, changes in community composition, or even no effects. Enhancing our understanding of scavengers
and carrion in aquatic ecosystems is crucial to assessing their current and future roles amidst global change, mainly
for water–land nutrient transport, due to changes in the amount and speed of nutrient movement, and for disease
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control and impact mitigation, due to the predicted increase in occurrence and magnitude of mortality events in
aquatic ecosystems.

Key words: aquatic subsidy, carcass, freshwater, land–water interface, ecological process, nutrient cycling, nutrient-rich
resource, scavenger, wetland.
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I. INTRODUCTION

Carrion ecology involves the carrion itself (i.e. dead animal
biomass), the scavengers (i.e. living organisms that are
carrion consumers), and the interactions between them.
Although the study of carrion decomposition has received
less attention than dead plant matter (Barton et al., 2019),
there has been an increase in studies on scavengers and carrion
in the last two decades (Olea, Mateo-Tom�as & Sanchez-
Zapata, 2019; Hyndes et al., 2022; Newsome et al., 2023), that
highlight the key ecological role of scavengers in ecosystems
(Barton et al., 2013). Carrion is a sporadic and usually unpre-
dictable but highly nutritious resource (Carter, Yellowlees &
Tibbett, 2007) that functions as a biodiversity hotspot for taxa
from microbes to top predators (Carter, Yellowlees &
Tibbett, 2008; Bump et al., 2009c; Mateo-Tom�as et al., 2015),
increasing macronutrients in the soil and also on vegetation
(Bump, Peterson &Vucetich, 2009a), not only in the short term,
but for decades afterwards (Keenan & Beeler, 2023). Moreover,
it can become an extremely abundant resource, which can drive
the functioning of ecosystems (Barton et al., 2013; Subalusky
et al., 2017). In a large-scale quantitative study, Morant et al.
(2022) estimated ungulate (livestock and wild ungulates) carrion

biomass production in Spain at 18,000 kg/ha/year. Large
amounts of carrion also are generated in aquatic ecosystems.
For example, Weber & Brown (2016) found up to 403 kg/ha
of common carp (Cyprinus carpio Linnaeus) carrion in some
USA lakes and Sousa et al. (2012) reported more than
102,250 kg/ha of bivalve carrion in Portuguese rivers, with
both studies taking place in winter (over 3 months). In addition,
scavengers are present in almost half of all trophic links
(Wilson & Wolkovich, 2011) and are therefore essential
in stabilising the food web and maintaining biodiversity.
Furthermore, by consuming carrion, scavengers perform
key ecosystem functions, such as disease control, nutrient
recirculation (Beasley et al., 2019), and nutrient transport
between aquatic and terrestrial ecosystems (Hocking &
Reimchen, 2006; Dunlop et al., 2021).
Inland aquatic ecosystems (hereafter, aquatic ecosystems)

constitute highly productive environments that are critically
important for biodiversity conservation (Keddy et al., 2009),
hosting a disproportionate number of species compared to the
area they cover (Strayer & Dudgeon, 2010; Reid et al., 2019).
Moreover, aquatic ecosystems sustain key ecological processes,
such as biogeochemical cycling or hydrological buffering
(Junk et al., 2013) and therefore are crucial for supporting
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human well-being (Zedler & Kercher, 2005; Clarkson,
Ausseil & Gerbeaux, 2013). Worryingly, they show one of
the highest rates of both habitat and biodiversity loss, with
more than 85% of global wetland (inland aquatic ecosystems
together with coral reefs) area lost since 1700 (IPBES, 2019).
Some of the most important processes threatening aquatic
ecosystems and their biodiversity, such as overexploitation
or water pollution (Dudgeon et al., 2006), are persistent with
well-known effects including biodiversity loss, water eutro-
phication or emerging diseases (Reid et al., 2019). Other
threats such as climate change, salinisation, microplastics or
light and noise pollution are emergent with still unknown
effects (Junk et al., 2013; Taylor et al., 2021). These threats
are expected to become more severe under future climatic sce-
narios (Junk et al., 2013; Reid et al., 2019). While aquatic ecosys-
tems should constitute a research priority due to the threats they
face and their importance for biodiversity, the scientific litera-
ture is still biased towards terrestrial ecosystems, with less than
20% of articles focused on aquatic species (Di Marco
et al., 2017). Furthermore, many ecosystem processes have been
understudied in aquatic ecosystems, including long-term
responses to anthropogenic stressors, parasitism andmutualism,
plant–insect relationships and trophic networks, and especially
those related to carrion ecology (Anderson & Wallace, 2019).

Carrion ecology in aquatic ecosystems has important links
with terrestrial ecosystems. It is well known that the transport
of nutrients derived from carrion can occur between different
ecosystems due to the mobility of scavengers (Payne &
Moore, 2006). This is particularly important in aquatic
ecosystems, as terrestrial scavengers often consume carrion
originating from aquatic environments, such as brown bears
(Ursus arctos Linnaeus) or terrestrial arthropods feeding
on salmon carcasses (Collins & Baxter, 2014; Lincoln,
Wirsing & Quinn, 2021), or terrestrial vertebrate scavengers
consuming common carp carcasses, the most abundant fish
in many wetlands (Orihuela-Torres et al., 2022). To some
extent, the exchange can also take place in the opposite
direction when aquatic scavengers consume terrestrial
subsidies such as American alligators (Alligator mississippiensis
Daudin) consuming large amounts of carrion in waterfowl
breeding colonies (Gabel, Frederick & Zabala, 2019). Aquatic
subsidies are of vital importance for terrestrial ecosystems,
affecting all trophic levels, from primary producers
(Ben-David, Hanley & Schell, 1998; Irick et al., 2015) to
top predators (Rose & Polis, 1998; Darimont, Paquet &
Reimchen, 2008; Escobar-Lasso et al., 2016). Similarly,
terrestrial nutrients may be essential subsidies for the
aquatic environment. For example, mass inputs of wilde-
beest (Connochaetes taurinus Burchell) carrion from drowned
individuals are known to influence nutrient cycling in the
Mara River (Subalusky et al., 2017). Many scavengers play
a key role in these subsidies by incorporating and transporting
nutrients among ecosystems (Quinn et al., 2009). However,
studies assessing the importance of scavenging in inland
aquatic ecosystems are scarce. Furthermore, most
studies on carrion ecology at the water–land interface
have been conducted at the marine/ocean shoreline

(Huijbers et al., 2013; Brown et al., 2015; Gilby
et al., 2023). Therefore, there remains a large knowledge
gap on the consumption and ecology of carrion in most
aquatic ecosystems [but see Hyndes et al. (2022) for carrion
on beaches]. In addition, mass-mortality events, mostly
associated with biotoxicity and emerging diseases, may
add large amounts of nutrients to terrestrial ecosystems
(Fey et al., 2015; Ulloa et al., 2023). As these events are
expected to increase in frequency, the relevance of scavenging
and its related consumption and recirculation of nutrients
from large carrion pulses may also grow (Barton et al., 2023).

In this review, we summarise the ecological role of carrion
and scavengers in aquatic ecosystems, identifying the main
knowledge gaps and providing future directions. To do so,
we conducted a systematic review of existing information
on carrion ecology studies in aquatic ecosystems. We struc-
ture the review in three parts: (i) ‘when, where and how?’
by carrying out a spatial–temporal bibliographic analysis of
the relevant literature and identifying the types of aquatic
ecosystems studied, carrion types and carrion locations
(inside or outside of the water); (ii) ‘who?’, by identifying
the taxonomic distribution of scavenger species (inverte-
brates and vertebrates) at different levels (up to family and
species level respectively); and (iii) ‘what?’, by evaluating
the main topics of these studies, the ecological functions
and ecosystem threats related to carrion and scavengers, as
well as the effects of carrion on ecosystem functioning
(e.g. soil properties, primary production, or secondary
production) and the direction of these effects (i.e. positive,
negative, turnover and no effect). To the best of our
knowledge, this review is the first attempt to compile this kind
of information for inland aquatic systems, and allows us to
identify knowledge gaps and propose future research avenues
to advance our understanding on the importance of the ecological
roles of scavengers and carrion in aquatic ecosystems.

II. METHODS

We conducted a systematic literature review of peer-reviewed
scientific articles on scavengers and carrion in aquatic ecosys-
tems, which included a wide variety of natural habitats such
as rivers, streams, lakes, estuaries, marshes, bogs, swamps, fens,
everglades, and also man-made habitats such as artificial
wetlands, farm ponds, reservoirs or channels, but excluding
marine ecosystems (i.e. coastal marine and off-shore zones).
Our review included aquatic habitats with fresh, saline or
brackish water. We followed the guidelines for systematic
reviews by Pullin & Knight (2009), including a strict protocol
for article searching and inclusion criteria to ensure transparency
andminimise bias, and following the PRISMAEcoEvo checklist
(O’Dea et al., 2021; see online Supporting Information,
Appendix S1). We used both the Web of Science and Scopus

databases. We developed a search string that combined several
terms related to carrion and scavenging (‘scaveng*’ OR ‘carrion’
OR ‘carcass’) combined with terms related to inland aquatic
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ecosystems (‘wetland’ OR ‘freshwater’ OR ‘lake’ OR ‘pond’ OR

‘stream’ OR ‘river’ OR ‘marsh’ OR ‘swamp’ OR ‘bog’ OR ‘fens’ OR
‘everglade’ OR ‘reservoir’ OR ‘canal’ OR ‘channel’ OR ‘riparian’)
(see Appendix S2 for details).

The search was applied to the title, abstract and key words
of peer-reviewed articles (i.e. we excluded book chapters and
conference papers) published in English up to December
2020, yielding 8,204 articles (6,173 articles after eliminating
duplicates). To identify relevant studies out of these 6,173 articles,
we carried out a two-stage review process (e.g. Hevia
et al., 2017; Dressel, Ericsson & Sandström, 2018; Appendix S3):
(i) initial screening by examining the title and abstract; and
(ii) full-text screening of the articles. We applied five
inclusion criteria. Specifically, we selected articles in English
(criterion 1) that empirically (criterion 2) investigated scaveng-
ing by vertebrates, invertebrates or microbial communities
and/or carrion–ecosystem effects (criterion 3) in aquatic
ecosystems (criterion 4) and that were not historical studies
(i.e. palaeoecological studies) (criterion 5) (see Appendix S4
for full details of inclusion criteria). The two-stage review process
was carried out by A. O.-T. and Z.M.-R. (double-checked for a
subset of articles which there was some doubt to confirm that
similar decisions weremade) to ensure that all potentially eligible
studies were identified.We identified 287 articles as eligible for
full-text screening after examining the title and abstract.
Finally, 206 articles fulfilled the five inclusion criteria and
therefore were selected for detailed analysis (see Database S1).

Following a systematic approach, we developed a coding
scheme to organise the database. We particularly examined
the following research questions related to carrion and
scavenging and identified eight sets of variables that repre-
sent the main themes of this review (see Table S1 for
complete list of variables): (1) when, where and how?
(i) Temporal and geographical distribution of the considered
studies (i.e. publication year, study lasting, country and
continent); (ii) Ecosystem type where the study took place
(Table S1); (iii) Carcass type (i.e. amphibian, bird, fish,
salmonid, mammal, reptile, invertebrate or eggs) and carcass

location (i.e. inside/outside water); (2) who? (iv) Scavenger

assemblages (invertebrates were recorded to the order and/or
family level and vertebrates to the species level); (3) what?
(v) Study topic (Table 1); (vi)Ecological functions of carrion and scav-
engers (e.g. carrion as food for animals, nutrient cycling, water
quality regulation; Table S2); (vii) Ecosystem threats associated
with carrion and scavengers (e.g. water eutrophication,
carrion as source of pathogens; Table S3); (viii) Ecosystem effects

of carrion on all biodiversity components from soil microbiomes
to vertebrate assemblages, and the direction of these effects
(i.e. positive, negative, turnover and no effect; Table S4). A
positive effect can be at the individual (e.g. fitness improve-
ment), population (e.g. increased abundance or density) or
community (e.g. increased species richness) level. Negative
effects refer to a decline in the targeted component
(e.g. negative effects associated with oxygen depletion, heavy
metals, water pollution, mortality risk, etc.). We define as
‘turnover’ effects involving changes in community species
composition. When no effects of carrion on the targeted

ecosystem component were identified, we assigned the cate-
gory ‘no effect’ (Table S4).

III. RESULTS

(1) When, where and how?

(a) Temporal and geographical distribution of studies

The oldest papers found in our review were published in the
1960s, and dealt with observations of the consumption of
salmon carcasses in the USA (Moyle, 1966; Nicola, 1968).
It was not until the 1990s that studies were published on carrion
ecology in aquatic ecosystems outsideNorthAmerica, especially
in Europe and to some extent in Australia (Hiraldo, Blanco &
Bustamante, 1991; Hewson, 1995; Elliott, 1997). There has
been a continuous increase in the number of studies published
since then, with the last decade (2010–2020) alone accounting
for 49% (N = 101) of the articles reviewed, and 2020 being
the year with the largest number of articles (8.7%; N = 18;
Fig. 1). Most of the studies were sporadic or carried out over
very short periods in a single season, and there were very few
(5.8%; N = 12) that covered at least an entire year. The vast
majority of studies were conducted in North America (69.9%;
N = 144), followed by Europe (14.1%; N = 29), Asia (7.8%;
N = 16), South America (4.4%; N = 9), Oceania (2.4%; N = 5)
and Africa (1.4%; N = 3; Fig. 1).

(b) Inland aquatic ecosystem types

Studies in lotic ecosystems were predominant, with streams
and rivers accounting for more than 65% of studies
(34% and 31.6%; N = 70 and 65, respectively). The next
most studied aquatic ecosystem types were lakes (15.5%;
N = 32), ponds (5.3%; N = 11) and marshes (3.9%; N = 8).
Other aquatic ecosystem types (e.g. channels, reservoirs,
dams, cave streams, swamps, canals, etc.) were studied in a
very small proportion of the articles (<2.5% each).

(c) Carcass types and locations

Most articles (64%; N = 119) studied carrion inside water,
while 24.2% (N = 45) placed carrion outside water and
11.8% (N = 22) used carrion both inside and outside water
(Fig. 2). The carcasses used most often were from fish
(67%; N = 122), of which the majority were salmonids
(75.4%; N = 92). After fish, the most commonly used carrion
was from mammals (13.7%; N = 25), invertebrates and birds
(7.1%; N = 13 each), amphibians (2.2%; N = 4), and finally
reptiles (1.6%; N = 3). Eggs were used in three studies (Fig. 2).

(2) Who?

(a) Invertebrate scavenger studies

We found 20 studies of scavenger invertebrate assemblages
in aquatic ecosystems. Almost half were conducted in
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Table 1. Description of the topics used for the classification of the articles that appeared in the systematic literature review on carrion
ecology in aquatic ecosystems.

Topic Description References

Carcass movement Articles studying how far the carcasses move. Strobel et al. (2009);
Muhametsafina et al. (2014)

Carcass persistence Articles studying how long it takes for the carrion to disappear/
decompose.

Linz et al. (1991); Weaver et al.
(2015)

Ecosystem–carrion effects Articles studying the effect of carrion in ecosystem functioning. Bilby et al. (1998); Chaloner &
Wipfli (2002); Weber &
Brown (2013)

Foraging ecology of invertebrates Articles where invertebrate species consume carrion either as a part
of their diet or in a sporadic observation.

Nicola (1968); Velasco &
Mill�an (1998)

Foraging ecology of vertebrates Articles where vertebrate species consume carrion either as a part of
their diet or in a sporadic observation.

Souza & Abe (2000); Gleason
et al. (2005); Gleason (2007)

Forensic studies Studies focusing on lesions and invertebrate succession in the carcass
for forensic purposes. In many cases, human corpses are used.

Keiper et al. (1997); Haefner
et al. (2004)

Invertebrate scavenger assemblages Studies focusing on the invertebrate scavenger assemblage that
consumes the carcasses and, in some cases, the consumption
patterns.

Fenoglio et al. (2005); Richards
et al. (2015)

Microbial communities Studies focusing on the microbial communities that decompose the
carcasses.

Tang et al. (2009); Pechal &
Benbow (2016)

Nutrient transport by scavengers Articles studying the role of scavengers in transporting nutrients. Francis et al. (2006); Quinn
et al. (2009)

Vertebrate scavenger assemblages Studies focusing on assessing the vertebrate scavenger assemblage
that consumes the carcasses and, in some cases, the consumption
patterns.

Hewson (1995); Abernethy
et al. (2017); Schlichting et al.
(2019)

Others The article focuses on a different topic than listed above. Cliplef & Wobeser (1993);
Sousa et al. (2012); Santori
et al. (2020)

Fig. 1. Global spatial and temporal distribution of studies on carrion ecology in inland aquatic ecosystems according to publication
year and country. Countries with no published studies are shown in white.

Biological Reviews (2024) 000–000 © 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Carrion ecology in inland aquatic ecosystems 5

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13075 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [11/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



North America (N = 9), followed by Europe (N = 5), South
America and Asia (N = 3 each). The most studied wetland
type was streams (N = 11), followed by lakes and rivers
(N = 4 each); marsh, ponds, cave streams and aquatic
containers had one study each. Most studies placed carrion
inside water (N = 13), while five studies used carrion outside
of water, and two placed carrion both in and out of water.
Fish carcasses were the most common carrion used (N = 11),
followed by birds (N = 4), while amphibian, reptile and
invertebrate carcasses appeared in one study each. The
number of carcasses placed in each study ranged between
one and 200, with an average of 46 carcasses per study.
There were only six studies in which carrion consumption
patterns (i.e. consumption rate and/or percentage of carrion
biomass consumed) were reported.

The recorded invertebrate scavenger assemblages included
an average of seven orders per article (range 1–17)
and 16 families per article (range 1–46). Considering
all invertebrate scavenger studies in aquatic ecosystems
(i.e. invertebrate scavenger assemblages, forensic studies
and foraging ecology of invertebrates) a total of 179 families
and 55 different orders were listed (Fig. 3; Table S5 and S6).
The orders that appeared in most articles were Diptera
(N = 37), followed by Coleoptera (N = 29), Trichoptera
(N = 19) and Ephemeroptera (N = 14; Fig. 3). The most
frequently recorded families were Chironomidae (N = 16),
Calliphoridae (N = 14), Baetidae and Silphidae (N = 11
each; Fig. 3).

(b) Vertebrate scavenger studies

We found only 15 articles focused on vertebrate scavenger
assemblages. Similar to invertebrate studies, most of these

were from North America (N = 11), with some in Europe
(N = 3) and one in South America. All studies were conducted
over fairly short periods of between one and six months. More
than half were conducted in rivers (N = 9), and the most
commonly used carrion type was fish (N = 9). The number
of carcasses ranged from one to 945, and the number of
scavenger species ranged from three in the study using one
carcass to 22 in the study using the highest number of carcasses
(N = 945), with an average of eight scavenger species per
study. Only eight studies assessed the ecological functions of
carrion consumption.
From all studies recording vertebrate scavenger species

consuming carrion in aquatic ecosystems, we recorded
114 species from 40 families and 22 orders of the five existing
classes of vertebrates (Table S7). The class with the
highest number of scavenger species recorded was birds, with
55 species belonging to 12 families and nine orders (Fig. 4).
Among birds, raptors (Accipitriformes) were the most
species-rich order with 17 species. The second richest class
was mammals with 32 species, 14 families and four orders
(Fig. 4). Among mammals, the order Carnivora was the best
represented with 17 species, especially the family Mustelidae
with seven species (Table S7). In third place was fish
(Actinopterygii), with 18 species belonging to seven families
and five orders (Fig. 4), the family Salmonidae being the most
represented with six species (Table S7). Reptiles were in
fourth place, with eight species belonging to six families from
three orders (Fig. 4), the order Testudines being the most
important with four species (Table S7). Finally, for amphibians,
only one species has been recorded consuming carrion, the
two-toed amphiuma (Amphiuma means Garden).
In terms of the number of studies in which the different

taxa appear, birds remain the main class (N = 94), followed
by mammals (N = 62), fish (N = 20), reptiles (N = 12) and
amphibians (N = 1; Fig. 4). However, for the different orders,
Carnivora (N = 46) appeared in the most articles, followed
by Accipitriformes (N = 33) and Passeriformes (N = 26;
Table S7). In terms of families, the three most frequent

Fig. 2. Carrion types and locations (inside versus outside water)
in the articles identified in the systematic literature review.
Articles that used carrion both inside and outside water are
included in both categories.

Fig. 3. Invertebrate scavengers identified in the systematic
literature review. The 11 most common orders and families are
shown. The wide bars show orders and the inset narrow
bars show families: A, Chironomidae; B, Muscidae; C,
Calliphoridae; D, Silphidae; E, Staphylinidae; F, Dytiscidae; G,
Limnephilidae; H, Baetidae; I, Formicidae; J, Chloroperlidae; K,
Nemouridae. See Tables S5 and S6 for all orders and
families.
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were all bird families (Accipitridae, Corvidae and Laridae;
N = 33, 21 and 18 articles, respectively), while the next three
are mammals (Canidae, Ursidae and Mustelidae, N = 13,
13 and 12 articles, respectively). The individual scavenger
species recorded in the most articles were the bald eagle
(Haliaeetus leucocephalus Linnaeus; N = 13) and the American
black bear (Ursus americanus Pallas; N = 10; Table S7).

(3) What?

(a) Topics

About half of the reviewed articles focused on ecosystem–
carrion effects (41.3%; N = 85). The next most common
topic was foraging ecology of vertebrates (23.3%; N = 48),
followed by invertebrate scavenger assemblages (9.7%;
N = 20), vertebrate scavenger assemblages (7.3%; N = 15)
and forensic studies (4.9%; N = 10), while all the remaining
topics were investigated to a lesser extent (Fig. 5). Specific
topics appearing in less than three articles (e.g. facilitation
of carcass colonisation, effects of industrial disturbances on
invertebrate scavengers, or water quality regulation by

scavengers) were grouped in the topic ‘others’ (5.7%;
N = 12; Fig. 5).

(b) Ecological functions

The ecological functions performed by carrion and scaven-
gers in aquatic ecosystems were diverse. The two main eco-
logical functions were carrion as food source and the role of
scavengers in nutrient cycling, which appeared in 52.4%
(N = 108) and 46.1% (N = 95) of the articles, respectively
(Fig. 6). A much smaller number of articles focused on the
ecological function of nutrient transport by scavengers
(4.9%; N = 10) and water quality regulation (1.9%; N = 4).
Lastly, only two articles dealt with carrion as breeding place,
pathogen regulation, and facilitation process of breeding
place and colonisation (1%; N = 2 each; Fig. 6).

(c) Ecosystem threats

Althoughmost articles did not identify ecosystem threats derived
from carrion or scavengers, they did appear in a few (N = 18).
Themost common ecosystem threats were water eutrophication

Fig. 4. Number of articles per class of vertebrate scavengers identified in the systematic literature review. For each class, the number
of orders, families and species included in the respective set of studies are shown. Silhouettes represent the orders that appeared in
each class.
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and carrion as source of pathogens (2.4%; N = 5 each) followed
by nest predation (1.5%, N = 3), oxygen depletion (1%; N = 2),
transport of contaminants by scavengers (1%; N = 2) and alter-
ation of leaf litter decomposition (0.5%; N = 1: Fig. 6).

(d) Ecosystem–carrion effects

Regarding the effects of carrion on ecosystems, we found stud-
ies spanning all ecosystem components (N = 85), from soil
(i.e. sediment under water and terrestrial soil) to water column,
but also biofilm and vegetation, with a particular focus on both
invertebrate and vertebrate scavenger assemblages. In addi-
tion, we also found studies assessing the effect of carrion on
ecological processes (i.e. litter and wood decomposition).
Although the effects were very different, overall, the majority
of articles found positive effects (84.7%; N = 72), a minority
found negative effects (10.6%; N = 9), five articles found turn-
over effects (i.e. changes in community species composition)
and 11 articles found no effects.

The most frequently studied organisms were aquatic inver-
tebrates (N = 24), which were usually positively (e.g. increased
abundance/biomass) affected by carrion in most cases
(N = 22). In a few cases, aquatic invertebrates were negatively
impacted [e.g. increased mercury (Hg) in macroinvertebrates,

or decline in adult aquatic invertebrates’ biomass] by carrion
(N = 3), or carrion had no effects (N = 2) or caused a turnover
in the aquatic invertebrate assemblage (N = 1; Fig. 7). Effects
on fish were the next best studied (N = 15; Fig. 7).Most studies
found a positive effect (e.g. increase on individual growth, or
on population abundance) of carrion on fish (N = 11), while
negative effects (e.g. oxygen depletion in the water leading to
embryo mortality) were reported in one study, with three stud-
ies where carrion had no effect on fish (Fig. 7). Effects on other
organisms were studied to a lesser extent (Fig. 7). A total of
17 studies explored the effects of carrion on different compo-
nents of the food web as a whole (i.e. three or more compo-
nents), in all cases reporting a positive effect of carrion
(e.g. individual fitness improvement, increased abundance/
density or species richness of the different components and
ecosystem levels) on the food web (Fig. 7).

IV. DISCUSSION

(1) What do we know

Research into carrion ecology in aquatic ecosystems has expe-
rienced exponential growth in recent years demonstrating a

Fig. 5. Topics used for the classification of the reviewed articles and number of articles per topic.
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growing interest of scientists in this field of ecology. Lotic
systems in North America have garnered the most extensive
attention, particularly regarding the significance of fish
carrion within aquatic environments. Nevertheless, numerous
research gaps and challenges persist. It is paramount to
emphasise the vital roles that scavengers and carrion play in
the functioning of aquatic ecosystems, and we call for
additional research in this field.

In contrast to other disciplines where most studies focus on
vertebrates, invertebrate scavenger assemblages have histor-
ically been more the subject of study due to their forensic
value, and their successional stages in carrion are relatively well
understood, especially for terrestrial species (Payne, 1965;
Payne &King, 1974; Anderson & VanLaerhoven, 1996). Early
studies on invertebrate assemblages in aquatic ecosystems also
had a forensic approach (Vance, VanDyk & Rowley, 1995;
Keiper, Chapman & Foote, 1997), although since the 2000s
studies on invertebrate scavengers have shifted towards an
ecological focus (Chaloner,Wipfli & Caouette, 2002; Fenoglio
et al., 2005). The most frequently occurring order in the
reviewed literature was Diptera, followed by Coleoptera. In
terrestrial ecosystems, Diptera are the first invertebrates to
arrive to carrion and tend to be the most abundant and con-
sume the most biomass (Blackith & Blackith, 1990;
Davies, 1999), while Coleoptera consume carrion at later

stages of decomposition, or can be predators of carrion insects
(Archer, 2014). Overall, there is an extensive and diverse
community of invertebrates that benefits from carrion in
aquatic ecosystems.

Vertebrate scavengers have historically received less
attention, leading to an underestimation of their ecological
importance. Wilson &Wolkovich (2011) found that scaveng-
ing was underestimated by 16-fold in food web research, and
Sebasti�an-Gonz�alez et al. (2023) determined that more than a
half of the scavenger species identified in their database were
not assigned as carrion-consumers in the Elton Traits
database, one of the most complete diet databases (Wilman
et al., 2014). However, recent studies show that a wide
range of organisms, including omnivores, carnivores and
other feeding guilds, consume carrion to varying degrees
(Sebasti�an-Gonz�alez et al., 2023). Despite the smaller number
of studies on vertebrate scavenging in aquatic ecosystems,
our database included more than a hundred vertebrate
scavenger species consuming carrion, highlighting the
importance of this group for food web stabilisation and
nutrient transport at the water–land interface (Escobar-Lasso
et al., 2016; Schlichting et al., 2019). The majority of
studies documenting vertebrates consuming carrion involved
sporadic observations. However, in a few cases the species
composition of the vertebrate scavenger assemblage in an

Fig. 6. Ecological functions and ecosystem threats of carrion and scavengers identified in the systematic literature review and number
of articles where each ecological function and ecosystem threat was identified. The black outlined segment shows the ratio of studies
reporting ecosystem threats to those reporting ecological functions.
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area was investigated, or the study systematically assessed
carrion consumption patterns by vertebrates. For example,
Schlichting et al. (2019) and Gabel et al. (2019) reported that
vertebrates consumed most monitored carcasses (85% and
89.5%, respectively). By contrast, Abernethy et al. (2017),
using amphibian and reptile carcasses, reported that verte-
brates consumed less than 20% of the carrion, with inverte-
brates being the main carrion consumers. Studying
scavenging dynamics in more detail will help us to deepen
our understanding of the importance of this guild in aquatic
ecosystems.

This review highlights that studies related to carrion
ecology in aquatic ecosystems focused most often on the
effects of carrion on the ecosystem, especially for aquatic
invertebrates and fish, as well as on terrestrial components
such as terrestrial vegetation or invertebrates, evidencing
the importance of nutrients from aquatic carrion for
terrestrial ecosystems (Quinn et al., 2018). Particularly
noteworthy is the considerable amount of research on
the effects of salmon carcasses in North America (60.7%
of the ecosystem–carrion effects articles), perhaps
motivated by economic interests, as this species generates
millions of dollars of revenue annually (Tveteras &
Asche, 2008), and also because of the large carrion
biomass that these post-reproductive mass-mortality
events regularly produce (Gende et al., 2004). The second
most common topic covered by studies was the foraging

ecology of vertebrates, which was mostly evaluated
through sporadic observations of carrion in the diet.
Several recent studies of vertebrate scavenger assemblages
in lentic systems in Spain (Orihuela-Torres et al., 2022;
Orihuela-Torres, Sebasti�an-Gonz�alez&Pérez-García, 2023)
and Canada (Etherington et al., 2023) where 26 and five scav-
enger species were recorded respectively, and in Norway
(Dunlop et al., 2021) where six scavenger species consumed
carcasses in a lotic system, show that vertebrate scavenger
assemblages are much more limited than those in terrestrial
ecosystems, as is also the case for invertebrate scavenger
assemblages (Olea et al., 2019).
Despite the bad reputation of many scavenging species

(Margalida & Don�azar, 2020), our review of the literature
showed that ecological functions such as carrion as food
source or the role of scavengers for nutrient cycling in
aquatic ecosystems far outweigh (by 12-fold) the ecosystem
threats they pose. In addition, these threats often result
from ecosystem imbalances due to a lack of scavenging.
If carrion is not consumed, it will remain for longer
periods and in greater amounts in ecosystems and then
can act as a source of pathogens or promote water eutro-
phication (Evelsizer, Clark & Bollinger, 2010; Weber &
Brown, 2013). However, the vast majority of studies
reported positive effects of carrion on ecosystems
(e.g. increased species richness, abundance or fitness)
reaching all levels of the food web.

Fig. 7. Ecosystem effects of carrion and effect direction (positive, negative, turnover or no effect) on the different components of the
ecosystem identified in the systematic literature review. Each segment within the arrow represents one article.
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(2) Critical research gaps

Despite significant advances in carrion ecology research,
substantial knowledge gaps regarding scavenging dynamics
remain. Our review highlights the particularly limited
information available in the context of aquatic ecosystems.
Geographical disparities are very pronounced compared to
previous systematic reviews in other disciplines (Lozano
et al., 2019; Loss et al., 2022; Festa et al., 2023). Efforts should
be concentrated on less-studied regions such as tropical
areas, and Africa, Asia, and Oceania. Consequently, caution
must be exercised when interpreting the conclusions of our
review, as most studies originated from North America.
Furthermore, while studies on carrion ecology in aquatic
ecosystems have increased in the last decade, research
covering periods of up to a full year and considering the
effects of seasonality (Parmenter & Macmahon, 2009;
Walker et al., 2021) remains rare. To enhance our under-
standing of carrion’s roles and significance in these vulnerable
ecosystems, future research should be designed to extend over
longer periods.

Research within the field of carrion ecology has been
predominantly focused on rivers and streams, which are lotic
systems characterised by the presence of flowing water for a
significant portion of the hydrological year. These systems
exhibit distinct functioning and biodiversity compared to
lentic systems, which include standing water bodies like
lakes, ponds, and marshes where surface flow is absent
(Likens, 2010; Allan, Castillo & Capps, 2021). It is likely that
the processes and significance of carrion consumption and
decomposition in these two main system types will differ
significantly. Therefore, it is crucial to prioritise studies in
lentic systems to obtain a greater understanding of the role
of carrion and scavengers in all aquatic ecosystems.

In addition, most studies focused on carcasses inside the
water column and mostly used fish carcasses, with few studies
monitoring other types of carcasses. It is known that carcass
type is decisive in structuring the scavenger assemblage
(Olson, Beasley & Rhodes, 2016), in the decomposition
process, and in the nutrients they input into the ecosystem
(Parmenter & Lamarra, 1991). Carcass location is also a
key determinant of the scavenger species that consume them,
as scavenger assemblages are completely different inside and
outside the water (Redondo-G�omez et al., 2022) and carrion
decomposition processes may also vary substantially
(Wallace, 2016). To advance our understanding of the
ecology of carrion in aquatic ecosystems, it will be important
to carry out studies with different types of carrion at the same
time, both inside and outside the water, to assess the role of
terrestrial scavengers that consume carrion of aquatic origin
and incorporate nutrients into the terrestrial ecosystem
(Hewson, 1995; Orihuela-Torres et al., 2022), or in the
opposite direction, i.e. scavengers consuming terrestrial car-
casses and incorporating the nutrients into the aquatic
environment.

Another interesting result of this review relates to the very
few studies assessing carrion consumption patterns. This type

of study would allow us to measure quantitatively the
ecological role of scavengers as biomass recyclers, so we
recommend that future work incorporates variables such as
consumption rates (carrion biomass consumed per time unit),
the duration of carcass removal, and the number of carcasses
completely consumed or percentage of biomass consumed.
Furthermore, studying the scavenging dynamics of verte-
brates and invertebrates together will allow us to obtain a
deeper knowledge about the relative roles of each scavenger
group under different circumstances.

We also identified a lack of comprehensive quantitative
assessments on the ecological functions that scavengers
perform (e.g. nutrient recirculation, disease control, water
quality regulation) (Santori et al., 2020; Maslo et al., 2022;
Inagaki et al., 2022) in aquatic ecosystems. This is especially
relevant under current trends of population reductions of
large animal species in both aquatic and terrestrial ecosys-
tems (e.g. cetaceans, large freshwater fish and large terrestrial
mammals), potentially slowing down the recirculation
and transport of nutrients, such as the movement of phospho-
rus between aquatic and terrestrial ecosystems (Doughty
et al., 2016). However, many populations of scavenger species
[e.g. gulls, red foxes (Vulpes vulpes Linnaeus), wild boar (Sus
scrofa Linnaeus)] in aquatic ecosystems are increasing, due
to their plasticity and ability to take advantage of anthropo-
genic subsidies (Podg�orski et al., 2013; Reshamwala
et al., 2021; Vez-Garz�on et al., 2023). In this context, verte-
brate scavengers may play an essential role in aquatic ecosys-
tems, as they consume large amounts of carrion and are able
to move them long distances through ecosystems (Payne &
Moore, 2006; Orihuela-Torres et al., 2022). Therefore,
improving our knowledge on the ecological role of vertebrate
scavengers in aquatic ecosystems and the implications of
defaunation on nutrient cycling and transport across ecosys-
tems should be a priority for future studies.

Aquatic ecosystems are affected by global changes, where
threats such as water pollution by industrial and agricultural
discharges or direct human impacts such as tourism and out-
door recreation are increasing. These threats may have
adverse effects on scavengers, disrupting the assemblage
composition and negatively affecting carrion removal
(Orihuela-Torres et al., 2023). However, we found few studies
assessing the effects of these threats on invertebrate and
vertebrate scavenger assemblages and their ecological func-
tions (e.g. Knight, Anderson & Verne Marr, 1991; Silva
et al., 2020). Understanding the effects of global change
scenarios in aquatic ecosystems is essential for their effective
management and for maintaining healthy populations of
scavengers, thus preserving their ecological functions within
these endangered ecosystems.

(3) Future challenges

Unravelling the role of scavengers, particularly in the context
of nutrient transfer between water and land in aquatic
ecosystems presents a deep challenge. First, it will be crucial
to determine the quantity of carrion consumed by
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scavengers, and then how these nutrients are distributed
throughout aquatic ecosystems and their subsequent impact
on terrestrial and aquatic environments. However, obtaining
accurate data on the amount of carrion consumed by individ-
ual organisms through traditional diet studies is virtually
impossible (Sebasti�an-Gonz�alez et al., 2023). To estimate
the amount of carrion consumed by scavengers in aquatic
ecosystems, it is necessary to develop experimental designs
using different methods, such as camera traps for vertebrates,
or exclusion cages for invertebrates. New analytical tech-
niques such as DNA analyses or stable isotope studies, in
combination with fieldwork may also help to clarify the role
of carrion in the diet of scavengers in aquatic ecosystems
(Nielsen et al., 2018).

There may be fundamental differences between terrestrial
and aquatic scavengers. For example, terrestrial ecosystems
tend to have more specialised scavengers that rely exclusively
on carrion for their life cycle, but such specialists appear to be
absent from aquatic ecosystems (Fenoglio, Merritt &
Cummins, 2014). However, due to the inherent technologi-
cal and logistical challenges associated with studying
underwater ecosystems, there has been only limited investi-
gation into aquatic scavenging assemblages. It is very diffi-
cult to monitor lentic systems, where waters are often
turbid and aquatic cameras cannot be used (Anderson &
Wallace, 2019). Therefore, it will be important to conduct
studies of scavenger assemblages with carrion submerged
in the water to understand better the different stages of suc-
cession in aquatic scavengers, as well as to study consump-
tion patterns to determine their efficiency in carrion
removal and nutrient recirculation.

Mass-mortality events are increasing in occurrence and
magnitude in aquatic ecosystems due to increased disease
emergence, biotoxicity, and events produced by multiple
interacting stressors (Fey et al., 2015). Scavengers are likely
to play a key role in disease mitigation and nutrient cycling
by consuming large amounts of carrion in these ecosystems
(Barton et al., 2023). In most aquatic ecosystems, especially
in lentic systems, a large part of carrion is generated as large
pulses, i.e. mass-mortality events (e.g. botulism, avian influ-
enza, pond drying). These events represent a drastic change
in the availability of carrion both spatially and temporally.
However, studies on how scavengers respond to mass-mortality
events in aquatic ecosystems and the effects they have are scarce,
partly because they are relatively unpredictable and also
demanding to simulate experimentally. It is essential for future
work to explore how the spatial and temporal availability of
carrion affects the ability of scavengers to remove carcasses,
prevent the spread of pathogens and recirculate nutrients in
the ecosystem (Tomberlin et al., 2017).

V. CONCLUSIONS

(1) Given the significant biases detected in this review in
terms of regions, target ecosystems and temporal coverage,

future research should prioritise understudied regions, lentic
systems and extend coverage across different seasons in
order to understand scavenging dynamics better in aquatic
ecosystems.
(2) Considering the scarcity of studies on scavenger assem-
blages, both vertebrate and invertebrate, a major concern is
the lack of quantitative data addressing carrion consumption
patterns. Such data serve as a proxy for assessing the
ecological functions performed by scavengers, and its
absence hampers our ability to obtain a comprehensive
understanding of their ecosystem roles.
(3) The large number of species (invertebrates and
vertebrates) recorded consuming carrion in the reviewed
studies emphasises the significance of scavengers in stabilising
food webs and facilitating nutrient cycling within aquatic
ecosystems.
(4) Most of the reviewed studies identified ecological
functions performed by carrion and scavengers rather than
ecosystem threats. If healthy scavenger populations are
preserved, the threats caused by longer persistence of car-
casses in ecosystems could be largely avoided.
(5) The effects of carrion on aquatic ecosystems involve the
entire food web, from soil and vegetation to vertebrates,
and from individual to community level, highlighting the
key role of carrion in these ecosystems. Studies on the carrion
biomass produced in aquatic ecosystems, as well as biomass
consumed by different scavenger groups (vertebrates, inver-
tebrates and microbes) are key to understanding food webs
and energy flows, and ultimately the roles they play in the
functioning of these threatened ecosystems.
(6) It will be important to increase our knowledge on scaven-
gers in aquatic ecosystems to understand their current roles,
and the roles they may play in the future under global
change. This could be most relevant in water–land nutrient
transport due to the changes in the amounts and speed of
nutrient movements, especially regarding phosphorus, and
in disease control and impact mitigation due to the increased
occurrence and magnitude of mass-mortality events in
aquatic ecosystems.
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Postmortem injuries inflicted by crawfish: morphological and histological aspects.
Forensic Science International 206, e49–e51.

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I.,
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IX. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Data S1.Database containing all the variables extracted for
this review. The ‘Dataset’ sheet shows the main information
used for the review. The ‘Vertebrates’ sheet lists the verte-
brate species recorded in each article. The ‘Invertebrate
orders ‘sheet lists the invertebrate orders recorded in each
article. The sheet ‘Invertebrate families ‘lists the invertebrate
families recorded in each article.
Appendix S1. PRISMA EcoEvo checklist (O’Dea
et al., 2021).
Appendix S2. List of key words and search filters used in the
systematic literature review.
Appendix S3. Flow diagram of the selection process for the
articles used in the systematic literature review.
Appendix S4. Description of the inclusion criteria used in
the two-stage review process.
Table S1. Complete list of variables used in the systematic
literature review.
Table S2. Ecological functions performed by carrion and
scavengers identified in the systematic literature review.
Table S3. Ecosystem threats associated with carrion and
scavengers identified in the systematic literature review.
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Table S4. Direction of ecosystem effects of carrion identi-
fied in the systematic literature review.
Table S5. List of invertebrate scavenger orders identified in
the systematic literature review.

Table S6. List of invertebrate scavenger families identified
in the systematic literature review.
Table S7. List of vertebrate scavengers identified in the sys-
tematic literature review.

(Received 27 September 2023; revised 28 February 2024; accepted 4 March 2024 )

Biological Reviews (2024) 000–000 © 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Carrion ecology in inland aquatic ecosystems 19

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13075 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [11/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Carrion ecology in inland aquatic ecosystems: a systematic review
	I.  INTRODUCTION
	II.  METHODS
	III.  RESULTS
	(1)  When, where and how?
	(a)  Temporal and geographical distribution of studies
	(b)  Inland aquatic ecosystem types
	(c)  Carcass types and locations

	(2)  Who?
	(a)  Invertebrate scavenger studies
	(b)  Vertebrate scavenger studies

	(3)  What?
	(a)  Topics
	(b)  Ecological functions
	(c)  Ecosystem threats
	(d)  Ecosystem-carrion effects


	IV.  DISCUSSION
	(1)  What do we know
	(2)  Critical research gaps
	(3)  Future challenges

	V.  CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	REFERENCES


