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Abstract
Cancer is one of the leading causes of death in the world, with radiotherapy as one of the
treatment options. Radiotherapy planning starts with delineating the affected area from
healthy organs, called organs at risk (OAR). A new approach to automatic OAR seg-
mentation in the chest cavity in Computed Tomography (CT) images is presented. The
proposed approach is based on the modified U‐Net architecture with the ResNet‐34
encoder, which is the baseline adopted in this work. The new two‐branch CS‐SA U‐
Net architecture is proposed, which consists of two parallel U‐Net models in which
self‐attention blocks with cosine similarity as query‐key similarity function (CS‐SA)
blocks are inserted between the encoder and decoder, which enabled the use of con-
sistency regularisation. The proposed solution demonstrates state‐of‐the‐art performance
for the problem of OAR segmentation in CT images on the publicly available SegTHOR
benchmark dataset in terms of a Dice coefficient (oesophagus—0.8714, heart—0.9516,
trachea—0.9286, aorta—0.9510) and Hausdorff distance (oesophagus—0.2541, heart—
0.1514, trachea—0.1722, aorta—0.1114) and significantly outperforms the baseline.
The current approach is demonstrated to be viable for improving the quality of OAR
segmentation for radiotherapy planning.

KEYWORD S
3‐D, COMPUTER VISION, DEEP LEARNING, DEEP NEURAL NETWORKS, IMAGE
SEGMENTATION, MEDICAL IMAGE PROCESSING, OBJECT SEGMENTATION

1 | INTRODUCTION

Cancer ranks as one of the leading causes of death and an
important barrier to increasing life expectancy in every country
of the world. According to estimates from the World Health
Organisation (WHO) in 2019, cancer is the first or second
leading cause of death before the age of 70 years in 112 of 183
countries and ranks third or fourth in a further 23 countries.
Lung cancer remains the leading cause of cancer death, with an
estimated 1.8 million deaths in 2020 (18%), followed by
colorectal (9.4%), liver (8.3%), stomach (7.7%), and female
breast (6.9%) cancers. [1].

Radiation therapy is one of the standard treatments for lung
and oesophageal cancer. In this procedure, the tumour is irra-
diated with ionising beams to destroy the target tumour, while

protecting healthy tissue and surrounding organs, called organs
at risk (OAR), from radiation. Thus, defining the boundaries of
the target tumour and OAR in computed tomography (CT)
images is the first step in treatment planning. As a rule, the
segmentation of OAR is performed manually by an expert.
Manual segmentation is time‐consuming and can be a source of
human error. In this regard, it becomes necessary to develop
automatic methods of OAR segmentation, which would speed
up the segmentation process and improve the quality of delin-
eation of healthy organs from the affected area [2].

Over the past few years, many solutions based on con-
volutional neural networks have been proposed to the problem
of OAR segmentation in the thorax [3–14] (see Related work
section), and deep learning is proven to be the most promising
approach to solving medical image segmentation problems.
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One of the common difficulties in working with the da-
tabases of medical imaging dataset is the small size of the
available training data, which does not provide enough vari-
ability of the anatomical structures that can be observed in
medical practice. This is particularly the case for SegTHOR [2]
dataset of 60 CT images introduced on a Codalab platform for
comparing the solutions for the OAR segmentation in the
chest cavity and since then recognised as the benchmark
dataset for such a task. Such a small amount of the training
data may lead to the fact that deep networks start to learn non‐
informative local features of training samples, which results in
worse performance at the inference stage (overfitting). Work-
ing with comparatively small medical datasets requires specific
actions to prevent overfitting and reduce the variance of the
deep learning models [15–17].

To prevent overfitting, regularisation techniques are used,
including weight decay [18, 19], batch normalisation [20],
dropout [21], augmentations [22, 23], mixing input data and
feature maps [24–27], additional noise [28–30], consistency
regularisation [31–38], contrastive regularisation [39, 40] etc.

Consistency regularisation is a highly effective method of
model regularisation that facilitates the training of more
generalised models and prevents the learning of local non‐
informative features of training samples, which can lead to
overfitting. This regularisation technique can be particularly
useful when training models on small datasets, such as
SegTHOR. The original version of consistency regularisation
involves utilising unlabelled data by assuming that the model
should generate similar predictions when presented with per-
turbed versions of the same image. [31, 34, 35, 37] Recently,
new variations of consistency regularisation have been intro-
duced, wherein the same data is fed to two different neural
networks instead of feeding perturbed input data to one
network. We have adopted this approach in our research work.

Typically, consistency regularisation is used during unsu-
pervised training (for example, generative adversarial networks
(GANs) [34, 35]) or semi‐supervised training [36–38] to
unlabelled data, including segmentation tasks [31–33]. While
some works [41, 42] have used consistency learning in super-
vised tasks; these are multi‐task learning problems where
different neural network branches solve different tasks, and
consistency loss functions are calculated for the intermediate
representations of input data. In our research, we propose to
explore the possibility of applying consistency regularisation to
labelled data without the use of auxiliary unlabelled data. To
this end, two neural networks (or two branches of a neural
network) will solve the same problem, and consistency regu-
larisation will be applied to the output feature maps.

To further improve model performance, we have also
implemented attention mechanisms, which have been shown
to increase the efficiency of neural networks [43, 44]. In recent
years, attention mechanisms in neural networks have gained
popularity and have become a crucial component of many
state‐of‐the‐art models. Attention mechanisms have been
particularly important for the success of transformer‐based
architectures, such as BERT [45] and GPT‐3 [46], which
have outperformed recurrent neural networks for sequential

modelling tasks. Moreover, attention‐based models have also
demonstrated competitive performance with fully convolu-
tional networks (FCNs) [47–49] in the field of computer vision
and have achieved state‐of‐the‐art results on various tasks [50–
52]. Self‐attention is one such mechanism, which relates
different positions of a single sequence to compute a repre-
sentation of the sequence [43]. However, we found that the use
of common self‐attention blocks resulted in uninformative
feature maps for SegTHOR data. To address this issue, we
proposed a modified attention block where the inner product
between pixel representations was replaced by scalable cosine
similarity. The use of this modified attention block has shown a
notable improvement in comparison to the commonly used
self‐attention block. This is due to the fact that the common
block is highly sensitive to the distribution of feature values
and can result in one pixel having significantly greater attention
weight than others in the attention map.

This paper introduces a novel two‐branch CS‐SA U‐Net
architecture, which includes two parallel U‐Net‐like models
with self‐attention blocks. The inner products of the element
representations in the self‐attention blocks are replaced by
cosine similarities (CS‐SA block). The proposed model is
trained using consistency regularisation, which optimises the
consistency loss between the two branches of the neural
network using hard pseudo‐labels. Our approach to OAR
segmentation outperforms the defined baseline and achieves a
state‐of‐the‐art performance in the trachea and aorta seg-
mentation while demonstrating competitive performance for
oesophagus and heart segmentation.

2 | RELATED WORK

In this section, several approaches to the design of segmen-
tation systems based on deep neural networks for organ seg-
mentation in CT images are presented.

Most of the existing solutions to the problem of OAR
segmentation [3–14] are based on U‐Net‐ [47] or V‐Net‐based
[48] architectures. U‐Net and V‐Net architectures are similar
conceptually and differ mainly in dimensionality (2D and 3D)
and minor architectural details. Therefore, by U‐Net‐ and V‐
Net‐based architectures, we mean an encoder–decoder struc-
ture with a residual connection between the encoder and
decoder blocks.

Han et al. [3] proposed a V‐Net model with bottleneck
blocks instead of the conventional convolutional layers. A
feature of their approach is the use of a multi‐resolution
strategy, where one model predicts coarse organ masks,
which are then used to localise regions of interest for a high‐
resolution model. The similar multi‐resolution approaches
were developed by Chen et al. [4] and Zhang et al. [5]. Zhang
et al. use a common encoder for coarse and fine resolution and
separate decoders. Kim et al. [6] also propose a two‐stage
approach with regions of interest extraction, but in 2D
fashion, a fine‐resolution segmentation model predicts masks
along all three axes. Wang et al. [7] proposed a cascaded end‐
to‐end multi‐scale model.
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Several papers have successfully applied dilated convolu-
tional layers [8, 9]. Lachinov [10] applied pixel shuffling as a
layer up sampling in 3D U‐Net with ResNet Encoder. Feng
et al. [11] proposed an axis‐based denoise method as a post‐
processing technique for mask adjustment. He et al. [12]
proposed a 2D U‐Net with an auxiliary head, which was used
to binary classify the presence of each organ in a CT slice. In
another work [13], they proposed a similar system with an
additional false positive filtering with a dynamic threshold
selection.

Particularly noteworthy is the Isensee et al. work [14],
which presents the current state‐of‐the‐art approach to OAR
segmentation and other medical image segmentation tasks. In
this work, a framework called nnU‐Net (‘no‐new‐Net’) is
presented, which implements three variations of the U‐Net
architecture (2D, 3D, and 3D cascaded). The main feature of
this framework is the complete automation of the training
pipeline design process: architecture parameters, pre‐
processing, and hyperparameters of the training process
completely depend on the features of the dataset and are
determined automatically, demonstrating high performance on
a huge set of semantic segmentation problems.

Many research studies focus extensively on system archi-
tectures, yet comparatively little attention is devoted to regu-
larisation techniques. When dealing with small datasets, the
regularisation of models is a crucial question. Moreover,
attention mechanisms, which can be highly beneficial, espe-
cially in tasks that involve the segmentation of small objects,
are often overlooked in these studies.

3 | METHOD

In this section, we present a novel approach for OAR seg-
mentation using a U‐Net‐like architecture that incorporates a
newly proposed CS‐SA block and consistency regularisation.
The approach is described in detail below.

3.1 | Baseline model

Medical image segmentation is a crucial task in computer‐aided
diagnosis and treatment planning. Various segmentation neural
network architectures have been developed, including 2D,
2.5D, 3D, or combined. In 2D convolutional networks, slices
of CT images are fed into the input, and segmentation masks
are obtained for each corresponding slice. In 3D convolutional
networks, a whole CT image or a cropped CT image is fed into
the input, and a mask is returned with the same size as the
input image. The 2.5D approach provides a trade‐off between
the 2D and 3D models, where a three‐dimensional crop of the
image, consisting of several slices of a CT image, is fed into the
input, and a mask is returned only for the middle slice.

Given the potential hardware and memory limitations, as
well as the relatively small size of our dataset, we opted to
utilise a 2D neural network approach that performs organ
segmentation slice by slice.

U‐Net architecture was chosen as a baseline model which is
one of the basic and the most common models for semantic
segmentation problems. The U‐Net architecture consists of a
contracting path to capture context and a symmetric expanding
path that enables precise localisation. To avoid loss of context
about small objects on large receptive fields, there are added skip
connections between the encoder and decoder blocks. To
enhance the performance of the baseline model, we replaced the
original U‐Net encoder with the ResNet‐34 architecture [53],
which is a deeper and more complex network that can handle
more complicated image features. In addition, ResNet‐34 was
trained and validated on the large‐scale classification dataset
ImageNet, and the parameters of the model pretrained on this
dataset are publicly available. In this regard, the encoder of the
model was initialised with pretrained ImageNet parameters.

In the proposed approach, a combination of categorical
cross‐entropy and logarithmic Dice loss [54] is used as an
optimised loss function L(p,y):

Lðp; yÞ ¼
DICEðp; yÞ þ CEðp; yÞ

2
; ð1Þ

CEðp; yÞ ¼ −
1
N

XN

i¼1

XC

c¼1
1yi∈Cclog

�
p
�
yi ∈ Cc

��
; ð2Þ

DICEðp; yÞ ¼ −log

0

B
B
B
@
2 ·

PN

i¼1

PC

c¼1
yci · pci

PN

i¼1

PC

c¼1
yci þ pci

1

C
C
C
A
; ð3Þ

where y—ground truth; p—softmax probability; N—number
of samples (pixels); C–number of classes; and 1yi∈Cc—indica-
tor function.

3.2 | Self‐attention block

The self‐attention mechanism has emerged as a powerful
architectural solution that can effectively capture global image
information at different levels of input data representation by
evaluating the interdependence of pixels. In this way, self‐
attention blocks can complement convolutional layers that
extract local image information at various scales of input data
representation. The utilisation of global image information can
have a significant impact on the accuracy of organs‐at‐risk
segmentation, especially in the thoracic cavity where the ob-
ject distribution is homogeneous. The attention mechanism
can help to more accurately locate and segment organs‐at‐risk
by providing global information on the distribution of objects
in the thoracic cavity. This global information can be effec-
tively incorporated into the self‐attention blocks, allowing the
neural network to take into account both global and local
features for better segmentation results.

In the proposed implementation of the CS‐SA block, the
traditional dot product operation of queries with keys is
substituted by calculating the cosine similarity, followed by
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multiplying the resulting values with a learnable parameter
denoted as β. A similar method was previously utilised in
Henry et al. [55], but in the context of machine translation. To
initialise the β parameter, we apply a heuristic expression

β¼ log2
�
L2 − L

�
; ð4Þ

where L—a sequence length.
Figure 1 illustrates the self‐attention block used in the

proposed architecture. The input tensor x is processed by three
independent convolutional layers with kernel 1 � 1 and out-
puts of these convolutional layers are flattened in space di-
mensions. Three representations of x referred to as queries,
keys, and values ( f(x),g(x),v(x), respectively) are obtained. An
attention function maps a query and a set of key‐value pairs to
an output. The output is obtained by computing a weighted
sum of the values, where each weight corresponds to a
compatibility function of the query with the corresponding key

[43]. The calculated output is reshaped back to the input spatial
resolution and fed to the convolution layer with kernel 1 � 1.
In some self‐attention blocks of the CS‐SA U‐Net architecture,
the input tensor size is very large. To reduce memory usage, a
max pooling operation is applied to the matrices of keys and
values. The output of the CS‐SA block is multiplied by the self‐
attention weight parameter α and added to the input tensor of
the block.

The output of the proposed attention block can be
calculated as follows:

attnij ¼ softmax

 

β ·
f ðxÞi · gðxÞ

T
j

�
�f ðxÞi

�
� ·
�
�
�gðxÞTj

�
�
�

!

; ð5Þ

o¼ attn · vðxÞ; ð6Þ

y¼ xþ α · convðorÞ; ð7Þ

F I GURE 1 Self‐attention block: (a) the proposed multi‐head self‐attention block; (b) the structure of the self‐attention block.
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where f(x),g(x),v(x)–a query, a key and a value tensors
accordingly; ||⋅||—vector's L2‐norm; softmax(⋅)—a softmax
function applied over the last dimension; β—a scaling
parameter of the attention block; α—a weight parameter of the
attention block output; or—reshaped output tensor o; and
conv(⋅) ‐ a convolutional layer.

The attention blocks in the proposed architecture are
implemented as multi‐headed attention. In the multi‐head
attention block, the input tensor, or query, key and value ten-
sors as in our case are split into multiple tensors along the
channel dimension. Thus, N sets of smaller‐dimensional
queries, keys and values are obtained and processed in paral-
lel, each in its own head, and the outputs from all heads are
concatenated.

In the CS‐SA U‐Net architecture (Figure 2), CS‐SA blocks
are incorporated between encoder blocks and decoder blocks
of the baseline U‐Net model with the ResNet‐34 encoder. The
input tensor resolution for the first block in the encoder and
the last block in the decoder is too large to fit into the memory,
so a max pooling layer with a filter size and step of two is
utilised in these blocks. For the remaining layers, the filter size
and step are set to 1. The α parameter is fixed to 1 and is not

learnable, while the head size is set to 64 filters for all self‐
attention blocks.

With the exception of the incorporated CS‐SA blocks, the
architecture remains similar to the standard U‐Net architecture
with the ResNet‐34 encoder. The encoder comprises five
encoder blocks, and each has a different receptive field sizes.
Conventional ResNet‐34 architecture with cut out classification
head is used as an encoder. The decoder follows the conven-
tional U‐Net design, consisting of four decoder blocks that
incrementally expand the receptive field with each successive
block. Hidden feature maps obtained from the encoder block
outputs are propagated through short connections, where they
are concatenated with the input feature maps of the decoder
blocks.

3.3 | Consistency regularisation

Consistency regularisation provides more a efficient imple-
mentation of collaborative training of two neural networks, in
our case, training of two branches of a neural network. The use
of consistency regularisation introduces noise into the data

F I GURE 2 CS‐SA U‐Net architecture.
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labels during the training stage, thereby regularising the model
and reducing the overfitting effect.

In this work we propose to use a Cross Pseudo Supervision
approach [33] as the strategy for consistency learning. Training
pipeline with consistency regularisation consists of two parallel
segmentation models with same architectures f(θ1) and f(θ2)
initialised differently. The input batch for both networks is the
same, and it means that the input data and augmentation of
this data at each step are the same for both networks. At each
step, both models return confidence maps P1 and P2, which are
then one‐hot encoded into Y1 and Y2. One‐hot encoded
predictions are then used as pseudo labels while calculating a
consistency loss function Lcons(p1,p2,y1,y2):

Lcons
�
p1; p2; y1; y2

�
¼
CE
�
p1; y2

�
þ CE

�
p2; y1

�

2
; ð8Þ

where p1,p2—softmax probabilities of the two models,
respectively; y1,y2—one‐hot encoded prediction of the two
models, respectively.

The supervised loss Lsv(p1,p2,y) function is also calculated
at each step for both models:

Lsv
�
p1; p2; y

�

¼
DICE

�
p1; y

�
þ CE

�
p1; y

�
þDICE

�
p2; y

�
þ CE

�
p2; y

�

2
:

ð9Þ

The final loss function L(p1,p2,y1,y2,y) is calculated by the
following expression:

L
�
p1; p2; y1; y2; y

�
¼ Lsv

�
p1; p2; y

�
þ λ · Lcons

�
p1; p2; y1; y2

�
;

ð10Þ

where λ—a consistency learning a trade‐off coefficient.
A schematic block diagram of the pipeline with consistency

regularisation is shown in Figure 3. The input tensor X and its
corresponding masks Y undergo preprocessing and

transformation prior to being utilised. Subsequently, the trans-
formed input tensor is provided as input to both models. An
argmax operation is applied to the resulting output tensors P1
and P2, yielding hard pseudo labels Y1 and Y2. The models'
outputs P1 and P2 are utilised to compute the loss function
using the actual labels Y. Additionally, a consistency loss
function is computed by leveraging the pseudo labelsY1 andY2.

4 | EXPERIMENTS

4.1 | Dataset

In our experiments, the SegTHOR benchmark dataset [2] is
used, which contains 60 thoracic CT scans with manual
labelled oesophagus, heart, trachea, and aorta (Figure 4). CT
scans in this dataset have resolutions 0.98 � 0.98 � (2–2.5)
mm per voxel. The data and corresponding masks are
divided into 40 images for training and 20 images for
testing.

4.2 | Pre‐processing

At the pre‐processing step, voxel values are clipped between
−1000 and 1000 Hounsfield units (HU). HU values lower than
−1000 do not have any semantic meaning (−1000 HU corre-
sponds to air) and are used for padding. Values higher than
1000 do not bring any relevant information since they repre-
sent bones or foreign bodies. [56] After clipping, the images
were transformed from single‐channel to three‐channel by
duplicating the image and normalising with ImageNet [57]
statistics. Finally, CT image slices are cropped in the centre
from 512 � 512 to 320 � 320.

4.3 | Training setup

During the training phase, five‐fold cross‐validation with
stratification by patients was used for all experiments. Data is

F I GURE 3 Training pipeline with consistency regularisation.
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randomly sampled as 2D transverse slices of CT images. To
prevent overfitting, data is augmented with affine trans-
formations (horizontal flip, rotation, shift, and scaling) and
randomly cropped to a 160 � 160 patch. In addition, the
consistency regularisation method was used to prevent
overfitting.

All models have been trained with a batch size of 32 for
1000 epochs with no early stopping. As an optimiser, we use
Lookahead [58] with RAdam [59] with an initial learning rate
equal to 5e‐3 and cosine annealing learning rate scheduler [60]
without warmup and restarts. Weight decay was not used. The
clipping gradient value is set to 1. During the validation pro-
cess and the best model selection, the average Dice coefficient
(see Evaluation) over all organs was monitored.

The consistency learning trade‐off coefficient was tuned by
running experiments with five‐fold cross‐validation. The
consistency learning trade‐off coefficient from the experiment
with the highest average Dice coefficient (see Evaluation) over
all organs was selected (Figure 5) and equal to 5. Since at the
beginning of the training process, the model predictions are
inaccurate and cannot be used as adequate pseudo‐labels, and
the consistency loss function is optimised starting from
epoch 500.

4.4 | Post‐processing

At the validation and inference stages, the model predicts one‐
hot encoded organ masks that are combined into 3D masks for
each patient. Subsequently, a post‐processing stage is

performed in which connected 3D components are clustered,
followed by filtering out components that consist of less than
5% of the entire predicted mask. This step is necessary to
remove outliers and ensure that only the relevant components
are retained.

4.5 | Evaluation

The resulting three‐dimensional predicted masks and anno-
tated masks are used to calculate the quality metrics of the
model. Dice coefficient and Hausdorff distance are used as
quality metrics. Dice coefficient is calculated by the following
expression:

DICEðp; yÞ ¼
2 ·
PN

i¼1

PC

c¼1
yci · ŷci

PN

i¼1

PC

c¼1
yci þ ŷci

1

C
C
C
A
; ð11Þ

where y—ground truth; ŷ—one‐hot encoded predictions; N ‐
number of samples; C ‐ number of classes.

Hausdorff distance is calculated by the following
expression:

dH
�
Ŷ ;Y

�
¼max

n
supŷ∈Ŷ infy∈Y dðŷ ; yÞ; supy∈Y inf ŷ∈Ŷ dðŷ ; yÞ

o
;

ð12Þ

F I GURE 4 Example of the SegTHOR training sample: top—computed tomography slices; bottom—corresponding masks with manually labelled organs
(green—heart, blue ‐ oesophagus, yellow—aorta, red—trachea).
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where Ŷ—set of predicted voxels of a specific class in image;
Y—set of annotated voxels of a specific class in image; sup—
the supremum; inf—the infimum; and dðŷ ; yÞ—the distance
between points ŷ and y in a specified metric space.

4.6 | Results

Table 1 presents the evaluation results for the OAR segmen-
tation task on the test set. The predictions of all models

obtained through five‐fold cross‐validation are averaged and
post‐processed using the method described in the Post‐
processing subsection. Table 1 shows the results for the
baseline U‐Net model, the two‐branch baseline model, the
two‐branch CS‐SA U‐Net model, and the two‐branch CS‐SA
U‐Net model with consistency regularisation.

All methods outlined above in Table 1 underwent evalua-
tion using the identical test set provided by the SegTHOR
dataset authors. No annotations for the test set are available,
and the evaluation of the approach is performed on the

F I GURE 5 Dependence of the validation DICE coefficients on the Cross Pseudo Supervision trade‐off coefficient.

TABLE 1 Comparison of evaluation performance on the test set obtained by different methods (red—the top result, blue—the second result).

Experiment

DICE Hausdorff distance

Eso Heart Trachea Aorta Eso Heart Trachea Aorta

Chen et al. [4] 0.8166 0.9329 0.8910 0.9232 0.4914 0.2417 0.2746 0.3081

Lachinov [10] 0.8303 0.9381 0.9088 0.9353 ‐ ‐ ‐ ‐

Vesal et al. [8] 0.8580 0.9410 0.9260 0.9380 0.3310 0.2260 0.1930 0.2970

Wang et al. [7] 0.8597 0.9459 0.9217 0.9433 0.2883 0.1594 0.2045 0.1551

He et al. [13] 0.8594 0.9500 0.9201 0.9484 0.2743 0.1383 0.1824 0.1129

Han et al. [3] 0.8651 0.9536 0.9276 0.9464 0.2590 0.1272 0.1453 0.1209

Isensee et al. [14] 0.8890 0.9570 0.9228 0.9509 (7) 0.1937 0.1216 0.1938 0.1219

Ours

One‐branch baseline 0.8617 0.9524 0.9263 0.9491 0.2635 0.1444 0.1897 0.1236

Two‐branch baseline 0.8620 0.9514 0.9258 0.9483 0.2659 0.1509 0.1883 0.1221

Two‐branch CS‐SA 0.8694 0.9504 0.9283 0.9510 (0) 0.2602 0.1554 0.1812 0.1153

Two‐branch CS‐SA U‐Net þ Cons. Reg. 0.8714 0.9516 0.9286 0.9510 (2) 0.2541 0.1514 0.1722 0.1114
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SegTHOR contest website. The approaches to organs‐at‐risk
segmentation outlined above diverge from our proposed
approach not only in terms of architectural variances but also
in preprocessing methods, augmentation techniques, model
regularisation methods, optimiser selection, and other factors.

Table 1 primarily showcases a noteworthy enhancement in
the performance achieved by the proposed method when
compared to the chosen baseline. Additionally, the results of
other approaches presented in the table demonstrate the
competitiveness of the proposed method in addressing the task
of organs‐at‐risk segmentation.

Figure 6 illustrates an example of the prediction made by
the two‐branch CS‐SA U‐Net model on a test sample.

5 | DISCUSSION

This paper proposes a novel architecture, named the two‐
branch CS‐SA U‐Net, comprising of two U‐Net models with
cosine similarity self‐attention blocks. The primary dis-
tinguishing feature of this block is the use of cosine similarity
as a metric for measuring the similarity between pixel repre-
sentations. Additionally, we hypothesise that consistency
learning can serve as an effective regularisation technique for
supervised segmentation tasks, and this hypothesis is sup-
ported by experimental results.

We demonstrate the efficacy and utility of CS‐SA blocks
and consistency regularisation in the context of OAR seg-
mentation. Our experimental results show significant im-
provements in quality metrics compared to the baseline model,
and our approach achieves the level of state‐of‐the‐art results.

5.1 | Model dimensionality

The usage of a 2D approach for medical image segmentation
can be justified in situations where the dataset size is relatively
small or when there are hardware and memory constraints that
limit the usage of 3D convolutional neural networks.

When working with small datasets, it may be difficult to
obtain sufficient training examples to fully exploit the potential
of 3D convolutional neural networks. This may result in
overfitting and poor generalisation performance, and hence a
2D approach may be more appropriate. Additionally, some
medical imaging applications may only require the segmenta-
tion of specific anatomical structures or regions of interest,
which may be well represented by 2D slices.

On the other hand, 3D CNNs require more computa-
tional resources and memory as compared to 2D CNNs,
which can be a limiting factor when working with large
datasets or limited hardware. This can lead to longer training
times and increased hardware requirements, which may not be
feasible in some scenarios. Moreover, complex datasets with
irregular structures may pose challenges for 3D CNNs, as
they require additional preprocessing steps such as resampling
or normalisation to achieve uniform voxel sizes and isotropic
resolution.

Therefore, the use of 2D CNNs can be a practical and
efficient solution in certain scenarios where hardware and
memory limitations or small dataset sizes make the use of 3D
CNNs less feasible. However, it is important to note that 2D
CNNs may not fully consider the spatial information from 3D
volumes and may result in suboptimal performance for certain
tasks.

F I GURE 6 Model prediction on a test sample (green—heart, blue—oesophagus, yellow—aorta, red—trachea).
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5.2 | Consistency regularisation

In order to determine the most suitable approach for our task,
we conducted experiments with several configurations of the
consistency learning pipeline. Specifically, we evaluated an
approach with soft pseudo‐labels and regression loss functions
(MSE and KL‐divergence), following the Cross Confidence
Consistency approach [61], as well as an approach with hard
pseudo‐labels and a cross‐entropy loss function, as in the
Cross Pseudo Supervision approach [33]. Given the notable
performance demonstrated by these approaches in semi‐
supervised learning tasks, we adopted them as a framework
for our consistency regularisation approach. Furthermore, it is
noteworthy that other conventional consistency learning ap-
proaches share conceptual similarities with these two ap-
proaches. For instance, the Mean Teacher approach [62] and
PseudoSeg approach [63] can be regarded as one‐sided ver-
sions (only one model learning from the pseudo‐labels of the
other model) of Cross Confidence Consistency and Cross
Pseudo Supervision, respectively.

The Mean Teacher approach, characterised by the uti-
lisation of soft pseudo‐labels, introduces a lower degree of
noise compared to the Cross Pseudo Supervision approach.
However, it is likely that this reduced noise level diminishes the
regularisation effect of the Mean Teacher approach, leading to
a minimal impact on the overall performance. Our results
showed that the Cross Pseudo Supervision‐based approach
had a more significant effect on the learning process and
resulted in higher performance. Therefore, we used it as an
inspiration for our proposed solution.

During the training process, each branch of the model
learns from both the annotator labels and the predictions of
the opposite model branch. However, consistency learning can
be unstable at an early stage of training, when the model still
does not predict accurately enough. To address this issue, we
enabled the consistency loss function after a certain number of
epochs. We conducted several experiments with different
numbers of waiting epochs and found that the most reliable
and effective option was to include the consistency loss
function when the metric reached a plateau. As a result, we
enabled the consistency loss function at the 500‐th epoch out
of 1000.

It may initially appear counterintuitive that intentionally
training a model on partially incorrect pseudo‐masks in the
presence of correct labels labelled by an expert would not
result in a decrease in performance. However, in fact, consis-
tency learning has a regularising effect on the model by
introducing noise into the annotations. The use of pseudo‐
labels also transforms the decision space, making it dynamic
as the pseudo‐labels change over time due to the training of
the model. This process reduces the chance of getting stuck in
a local minimum. However, the effectiveness of the consis-
tency loss function cannot be solely attributed to these reasons.
In order to better understand the workings of the consistency
loss function in this approach, we will consider its behaviour in
different scenarios.

� Both branches of the model correctly predict the pixel class
—the case where the label and pseudo‐label are identical for
both branches, and the confidence scores increase; these
examples demonstrate a relatively simple pattern that both
branches of the model were able to effectively learn from.
This suggests the existence of prominent and shared local
features that are worth paying attention to;

� Both branches of the model incorrectly predict the pixel
class—in cases where the label and pseudo‐label do not
match for both branches and the confidence scores decrease
with a sufficiently large consistency learning trade‐off co-
efficient λ, the examples are considered complex. This
complexity may be due to atypical local features for the
dataset, erroneous expert labelling, or other reasons.
Continuously attempting to train both branches to correctly
detect such pixels may result in overfitting of the model.
Sacrificing such pixels may potentially lead to an increase in
the precision of classifying simpler pixels.

� One branch correctly predicts the pixel class, and the second
one does not—this is the most unpredictable case, since this
case is essentially an adversarial example—one branch tries
to convince the opposite one that this pixel belongs to the
annotated class and the second one vice versa.

The relationships between the branches as described above
are considered in a one‐pixel approximation. Due to the
complexity of the model containing millions of parameters, it is
challenging to confidently assert the precise nature of the in-
teractions between the branches. However, simplified models
of such interactions can be proposed based on assumptions
and observations from the experiments conducted.

The consistency regularisation technique not only provided
an improvement in the performance of OAR segmentation but
it also has the potential to enhance the precision of segmenting
objects with poorly defined or blurry boundaries, such as the
oesophagus in the SegTHOR dataset.

5.3 | Self‐attention

When designing the attention block, various configurations
were tested, including multiple heads (multiple heads and single
head), the weight coefficient of the attention block output
(constant or learnable, different initialisation values), the pixel
similarity function (inner product and cosine similarity), the
presence of normalisation of attention maps before the soft-
max function.

Comparing experiments with multi‐head and single‐head
attention blocks, the multi‐head approach demonstrated
slightly better performance.

Different weight coefficients for the attention maps were
also tested, including constant and learnable weights. However,
learnable weights tend to approach zero during training, which
can lead to the vanishing of the attention block's effect.
Additionally, learnable weight coefficients can also have nega-
tive values, which is undesirable.
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The primary challenge in designing the self‐attention block
was to ensure an appropriate distribution of softmax values
while predicting attention maps. Initially, our model showed
nearly the same performance with and without the self‐
attention blocks described in ref. [64]. Upon closer examina-
tion of the internal representations of input data and attention
maps, we discovered that the inner product of sequence and
key pixel values could generate large values, leading to a wide
range of values. This resulted in a distribution of softmax
function output values where almost all pixel values tended
towards zero, particularly for feature maps with large receptive
fields.

As an example, in Figure 7a input image with segmentation
mask is presented. For this input image, attention maps were
calculated and presented (Figure 7b) for three residual blocks
outputs in the encoder. Bottom three images correspond to the

attention maps obtained using the cosine similarity function,
and top images correspond to the attention maps with the
inner product. Every row of the attention map corresponds to
attention scores of one query pixel with all key pixels. Each
row represents an attention mask for each specific pixel in the
input image and can be reshaped to fit the input of the
attention block. Figure 7c shows the attention masks for the
pixel marked with a pink dot in Figure 7a (top row—vanilla
attention blocks, bottom row—CS‐SA blocks).

When using the inner product in attention layers, the values
of the elements fed to the softmax function can range from
hundreds to millions, leading to a few elements in the key
matrix with such large feature values regardless of the query
element considered, and the inner product is significantly larger
for this element of the key matrix than for others. This can
result in an attention map with only one or a few columns filled

F I GURE 7 Self‐attention maps: (a) Input image and mask; (b) Attention maps for one head of intermediate CS‐SA blocks (bottom) and vanilla self‐
attention blocks (top); (c) Attention mask for the pixel marked pink in the input image (bottom—CS‐SA blocks, top—vanilla self‐attention blocks).

MANKO ET AL. - 11

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12303 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [11/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



with ones, and the remaining elements are equal to zero.
Although this behaviour does not occur in all attention blocks,
it can render some of the attention blocks in the architecture
useless.

This behaviour of self‐attention blocks is observed from
the beginning of network training. It is expected that the neural
network would learn to normalise the distributions of the inner
product values of keys and queries, but there is no guarantee of
this. It is likely that the neural network does not fully
comprehend the benefits of learning the self‐attention block
and instead continues to set the softmax values of almost all
attention map pixels to zero (Figures 7b,c). However, by
replacing the inner product with a cosine similarity function
and introducing a trainable scaling parameter beta, some
control over the distribution of softmax values is achieved,
which encourages the neural network to learn to predict
appropriate attention maps (Figure 7b,c).

5.4 | Performance metrics precision and
overfitting

In this work, we report segmentation performance using the
Dice score metric. The precision of this metric is given to 4
decimal places, which is highly relevant for the three‐
dimensional object segmentation task. Specifically, when the
Dice score reaches values of 0.85–0.9, accurate delineation of
the object’s boundary becomes more critical, especially for
large objects with a significant ratio of volume to surface. For
the OAR segmentation task, precise boundary delineation is
crucial as it allows more accurate targeting of malignant tissues.
We note that the scatter of values among the best solutions in
Table 1 is in the range of a third‐second decimal digit after the
comma, confirming the importance of precision in this task.

To avoid overfitting given the small size of the SegTHOR
dataset, we employed data augmentation and cross‐validation.
We also tested models with an independent control test set
using an ensemble of all models obtained by cross‐validation.
The use of model ensembling ensures good generalisation of
the results by averaging predictions and prevents overfitting.
For the aorta segmentation, we report results up to 5 decimal
places for ranking purposes only, as our results coincide with
those of the nnU‐Net model up to 4 decimal places.

5.5 | Statistical tests

Although we see an improvement for certain organs in com-
parison with the baseline according to the average values of the
metrics, the question arises about the statistical significance of
the obtained estimates. Statistical tests are used to determine
the statistical significance of the obtained results. They are used
to determine if there is a significant difference between two or
more groups or if a relationship exists between two variables.

In this study, we perform pairwise statistical tests for Dice
metric scores. As a group, we use a set of Dice scores for each
patient obtained in one experiment. Since we do not know the

law of distribution of Dice metric scores in each experiment, a
non‐parametric test will be used. Considering the small sample
size and the use of the same test sets in different experiments,
the most suitable option is a non‐parametric analogue of the
paired t‐test, which is the Wilcoxon signed‐rank test [65].

In our case, a one‐tailed test is used, since we are interested
in segmentation improvement. Tests are conducted to test two
hypotheses that the CS‐SA U‐Net model with consistency
regularisation segments certain organs better than the one‐
branch baseline model and nnU‐Net. p‐values are given in
Table 2. If we use the typical significance level (p ≤ 0.05), we
can conclude that the CS‐SA U‐Net model reliably out-
performs the baseline model for two organs (oesophagus and
aorta) and performs at about the same level for the heart. As
for the trachea, although the result does not reach the specified
level of significance, we can still assume with a high degree of
confidence that the model outperforms the baseline in the
trachea segmentation task. As for nnU‐Net, nnU‐Net strongly
outperforms our model in segmenting the oesophagus and
heart and segments the aorta at about the same level. For the
trachea, the results are similar to those of the baseline model.

5.6 | Limitations

The proposed consistency learning approach in the given
section shows potential for applications in various segmenta-
tion tasks. However, there are some limitations and consider-
ations that need to be taken into account when utilising this
method.

Firstly, the instability of the method is a key limitation. The
proposed consistency regularisation approach involves training
a model using both real labels and pseudo labels to enforce
consistency between predictions of different models. While
this can improve generalisation and robustness, it can also
introduce instability during training. The selection of the
consistency learning trade‐off coefficient, which determines
the balance between the supervised and consistency losses,
requires careful consideration. If this coefficient is set too high,
it may lead to overemphasising the consistency loss and result
in over‐smoothed predictions. On the other hand, setting it too
low may undermine the benefits of consistency learning.
Finding the right balance is crucial and may require some trial
and error or experimentation.

Additionally, the number of waiting epochs before enabling
the consistency loss function is another factor that needs
careful consideration. Enabling the consistency loss too early
in the training process can lead to unstable and unreliable
predictions. On the other hand, delaying the introduction of
the consistency loss for too long may hinder the model's ability
to learn consistent representations. The waiting epochs should
be chosen based on the dataset, model architecture, and the
convergence characteristics observed during training.

To enhance the proposed consistency learning approach,
one possible idea is to investigate adaptive approaches for
determining the consistency learning trade‐off coefficient.
Instead of manually selecting a fixed value, an adaptive
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mechanism could dynamically adjust the coefficient based on
the progress of training or other relevant metrics. This would
allow the model to self‐regulate and find the optimal balance
between supervised and consistency losses.

Moving on to the self‐attention block, it is a versatile
component that can be used without any specific restrictions.
However, as the size of the input image increases, the
computational operations required by the self‐attention
mechanism also increase significantly. This poses a limitation
in terms of computational efficiency, especially when dealing
with high‐resolution images or large‐scale datasets.

To address this limitation, several strategies can be
considered. One approach is to reduce the size of the key and
value matrices through pooling operations. Pooling can
effectively downsample the feature maps and decrease the
computational demands of the self‐attention mechanism.
However, it is important to strike a balance between down-
sampling and preserving the necessary spatial information for
accurate segmentation.

Another strategy is to decrease the number of attention
heads in the self‐attention block. Attention heads allow the
model to capture different types of relationships and de-
pendencies within the input, but reducing their number can
help mitigate computational complexity. However, this reduc-
tion should be carefully evaluated to ensure that sufficient
attention capacity is retained for effective representation
learning.

Lastly, reducing the number of channels in the input tensor
of the attention block can also help alleviate computational
demands. By reducing the dimensionality of the input, fewer
computations are required within the self‐attention mecha-
nism. However, similar to the previous strategies, a careful
analysis of the trade‐off between computational efficiency and
model performance should be conducted to ensure that the

reduction in channels does not adversely affect segmentation
accuracy.

In summary, the proposed consistency learning approach
has the potential for broader applications but requires caution
in selecting appropriate configurations to mitigate instability.
For the self‐attention block, computational efficiency can be
improved by employing strategies such as pooling, reducing
attention heads, or decreasing the number of input channels,
while considering the impact on segmentation performance.

5.7 | Open questions and further steps

The efficacy of the proposed consistency regularisation
method needs further investigation for its application to other
tasks.

The impact of including the consistency loss function was
observed only in some of the validation folds, while for others,
there was no significant positive or negative effect. In the
experiment presented in the Results section, the inclusion of
the consistency loss function was clearly observed to have a
positive impact on three out of five validation folds (Figure 8).
However, even when the effect was not clearly observable, the
metrics were consistently higher when the model was trained
with the regularisation. Further research will be conducted to
identify the reasons for the presence or absence of the effect of
the consistency loss function.

The effectiveness of the self‐attention block has been
demonstrated in our experiments, but there are concerns
regarding the optimality of the heuristic expression used for
calculating the beta parameter. In future research, we plan to
derive a more theoretically rigorous formula for initialising
the beta parameter specifically for the task of image
segmentation.

TABLE 2 p‐values obtained from the Wilcoxon signed‐rank test.

Pair of experiments Eso Heart Trachea Aorta

One‐branch BL ‐ > two branch CS‐SA U‐Net þ Cons. Reg. 0.001 0.608 0.101 0.024

nnU‐Net ‐ > two branch CS‐SA U‐Net þ Cons. Reg. 0.999 0.988 0.095 0.622

F I GURE 8 Dice metric validation curves for two folds trained with the consistency loss function (for better visibility plots were smoothed with a Gaussian
filter and cropped to range from 100‐th epoch to 1000‐th epoch; the red vertical line indicates the moment of enabling the consistency loss function).
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6 | CONCLUSIONS

This paper introduces a novel approach for organ segmenta-
tion in the thoracic cavity using a 2D U‐Net‐like architecture
called CS‐SA U‐Net, which incorporates a custom cosine
similarity self‐attention block (CS‐SA block) and a consistency
regularisation method. Unlike traditional consistency regular-
isation methods, the proposed method applies consistency
regularisation to the labelled data in the supervised task, which
was shown to enhance the performance of the model signifi-
cantly compared to the model without regularisation.

Our method has been demonstrated to be effective for
segmenting OAR, achieving state‐of‐the‐art results for the
trachea and aorta segmentation and competitive results for the
oesophagus and heart segmentation. However, it requires
careful selection of hyperparameters, specifically, the consis-
tency learning trade‐off coefficient λ and the number of
waiting epochs before enabling the consistency loss function.

The key feature of the architecture is the use of self‐
attention blocks with cosine similarity as the sequence‐key
similarity function (CS‐SA block). Our proposed method re-
places the inner product in the self‐attention block with a
cosine similarity function that incorporates a learnable scaling
parameter β. This modification improves the effectiveness of
self‐attention blocks and has resulted in a significant perfor-
mance improvement in organ segmentation tasks.

In addition, our approach presents a new perspective on
consistency regularisation, which can be applied to other su-
pervised learning tasks. However, further research is required
to determine the generalisability of this method to other tasks.

Overall, our proposed CS‐SA U‐Net architecture with
consistency regularisation and CS‐SA blocks shows promising
results in the field of organ segmentation and provides a new
avenue for improving the performance of deep learning
models for medical image analysis.
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