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Abstract

In this article, we study the helium atom confined in a spherical impenetrable cavity

by using informational measures. We use the Ritz variational method to obtain the

energies and wave functions of the confined helium atom as a function of the cavity

radius r0. As trial wave functions we use one uncorrelated function and five explicitly

correlated basis sets in Hylleraas coordinates with different degrees of electronic cor-

relation. We computed the Shannon entropy, Fisher information, Kullback–Leibler

entropy, Tsallis entropy, disequilibrium and Fisher–Shannon complexity, as a function

of r0. We found that these entropic measures are sensitive to electronic correlation

and can be used to measure it. As expected these entropic measures are less sensi-

tive to electron correlation in the strong confinement regime (r0 < 1 a.u.).
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1 | INTRODUCTION

Spatially confined quantum systems have become the subject of increasing attention because when a very high pressure is exerted on a physical

system, its energy levels increase rapidly. However, not all of them grow with the same rate, and this results in the filling of the energy levels that

may differ significantly from those of the compression-free system. As a consequence its physical properties can change drastically with high pres-

sure. Notable changes are found in electronic structure, emission and absorption frequencies, half-lives of excited states, selection rules, polariz-

ability, electronic affinity, chemical and ionization potential and so forth. Confined quantum systems can be used to model a wide variety of

problems in physics and chemistry such as: atoms trapped in cavities, in zeolite channels, in fullerenes, the electronic structure of atoms and mole-

cules subjected to high external pressures, the behavior of the specific heat of a monocrystal solid under high pressure, in the study of the

proton–deuteron transformation as a source of energy in dense stars, in the theory of white dwarf stars, phase transitions caused by compression

as in the collapse of the chemical bonding of H2 [1–9] and so forth. This growing interest is also due to the fabrication of quantum systems of

nanometric sizes with potential technological applications such as in quantum wires, dots and wells [10, 11].

In 1937 Michels et al. [12] studied the variation of the polarizability of the hydrogen atom subjected to high external pressures. They pro-

posed a model in which a hydrogen atom is confined inside an impenetrable spherical cavity with the nucleus clamped in the center of a sphere of

radius r0. This model is known as the confined hydrogen atom (CHA) [7, 13–16], and has been used to study how some physical properties behave

in terms of pressure, such as: the hyperfine separation, given by the Fermi contact term, and the nuclear magnetic screening of the ground state.

Emission frequencies, as well as the half-lives of some excited states [17, 18], and electronic properties of multi-electron atoms have been studied

with it. The model has been extended to cavities of shapes other than spherical to study atoms and molecules trapped inside cavities.

After the confined hydrogen atom, the next most studied confined atom is the helium atom. Confined helium–like atoms are the simplest confined

many-electron atoms, consisting of a nucleus with nuclear charge Z and two electrons. It is now when the electron–electron repulsion appears, which
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is responsible for the fact that the time-independent Schrödinger equation does not have an exact solution. The first to study the ground state of

confined helium system were Ten Seldam and De Groot in 1952 [19]. They used the nonlinear variational method and a trial wave function that

explicitly contained the electronic correlation. Gimarc [20] used the same method but employing 5 different trial wave functions, one of which

produced results similar to the HF calculations, and two of them explicitly included electronic correlation. Subsequent to Gimarc, different

methods have been developed, for example, Hartree–Fock [21], Roothaan–Hartree–Fock [22], Configuration Interaction [23], time independent

perturbation theory [24], linear and non-linear variational method [24–35], Lagrange mesh method [36], B–splines [37], variational quantum

Monte Carlo [38, 39] and density functional theory [40–42]. Most of these studies have been devoted to the total energy calculations, correlation

energy due to the radial and angular contribution of trial wave functions [31, 32], polarizability, critical cage radius and so forth, as a function of

the confining radius. Subsequent work has been devoted to the study of low energy excited states 1sns1,3S, 1s2p1,3P, 1s3d1,3D, and other excited

states [22, 37, 39, 43–47].

In information theory, entropy is a measure of the uncertainty associated with a random variable. In 1948 Claude E. Shannon introduced an

information–theoretic measure, now known as the Shannon entropy [48], to quantify the expected value of the information contained in a message.

Another important measure of information is Fisher information. In 1920 Fisher information [49] of a probability distribution was introduced. These

two measures of information are classical, both quantities having their quantum counterparts. In addition, Quantum Information Theory (QIT) has gained

interest due to its applications in quantum computation [50], chemical reactivity [51], atoms [52–54] and molecules [55], in the derivation of equations

governing physics, [56–58], [59], image retrieval and indexing [60], machine learning [61], seismology [62], biological imaging [63] and so forth.

Information theory has been used in the study of one-, two-, and three-dimensional (1D, 2D and 3D) systems [64–70], in free systems and in sys-

tems subject to spatial confinement. As examples, we mention the study of free and spatially confined hydrogen and helium atoms [35, 41, 71–76].

As discussed in [77], in recent years a variety of complexitymeasures have been defined and applied to the study of systems in physical, biological, math-

ematical, computer science and so forth. These quantities are obtained from density functionals and expectation values of probability densities [73, 78–82].

Each complexity measure is directly related to information entropies and this allows us to determine global or local features of the probability density.

For example: a global-local measure is described by the Fisher–Shannon complexity which relates the Shannon entropic power to the Fisher entropy, with

the Fisher entropy providing a local measure of the probability density and the Shannon entropic power providing a global measure [53, 83–85].

The objective of this work is to obtain information about the level of correlation, beyond simply considering the correlation energy, by using

various information theoretic measures and to find out which of them are more or less ‘sensitive’, as indicators of the level of correlation incorpo-

rated into the wave function. We use the Ritz variational method to obtain the energies and wave functions. Five functions with different degree

of correlation were chosen as trial wave functions, the largest being an expansion in Hylleraas coordinates with 70 terms.

The work is organized as follows: In Section 2, we briefly describe the confined helium system, its solutions by the variational method and the

informational measures used in this work: manely the Shannon entropy, Fisher information, Tsallis, disequilibrium, Kullback–Leibler entropies, and

the Fisher–Shannon complexity. In Section 3 the respective numerical results are provided and discussed. Section 4 is devoted to the analysis the

information-theoretic mesaures. the appendix shows the relationship of correlation energy and information–theoretic measures. Finally, in Section

4 the main conclusions are summarized.

2 | THEORETICAL BACKGROUND

2.1 | Confined helium atom: Ground state energy, wave functions and its probability densities

The Hamiltonian of a helium–like atom confined in an impenetrable spherical box of radius r0 (in the infinite nuclear mass approximation), in

atomic units (ℏ¼ e¼me ¼1), is given by

Ĥ¼�1
2
r2

1�
1
2
r2

2þVð r!1, r
!

2Þ, ð1Þ

where the first two terms on the right-hand side are the electron kinetic energies, and the potential energy is given by:

Vð r!1, r
!

2Þ¼ � Z
r1
� Z
r2
þ 1
r12

, r1, r2 < r0

∞, while r1 ≥ r0 or r2 ≥ r0

8<
: , ð2Þ

where r1 is the distance from the nucleus to electron 1, r2 is the distance from the nucleus to electron 2, r12 ¼ j r!1� r
!

2j is the distance from elec-

tron 1 to electron 2 and Z¼2 is the nuclear charge for the helium atom. Inside the spherical barrier r1, r2 < r0, the potential energy is given by the

Coulombic attractive interaction between the electrons and the nucleus, and the repulsive interaction between the electrons.
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In order to solve the problem of finding the energy eigenvalues it is convinient to define the Hylleraas coordinates: s� r1þ r2, t��r1þ r2

and u� r12. The Hamiltonian of the confined helium atom in Hylleraas coordinates can be written as:

Ĥ ¼� ∂2

∂s2
þ ∂2

∂t2
þ ∂2

∂u2

 !
�2

sðu2� t2Þ
uðs2� t2Þ

∂2

∂s∂u

�2
tðs2�u2Þ
uðs2� t2Þ

∂2

∂t∂u
� 4s

ðs2� t2Þ
∂

∂s
þ 4t

ðs2� t2Þ
∂

∂t

�2
u
∂

∂u
�4Z

s

s2� t2
þ1
u
:

ð3Þ

In this report we only study the ground state of the confined helium atom. To obtain the approximate energy and its corresponding wave func-

tion, in terms of the box size r0, we use the Ritz variational method. We propose two types of trial wave functions: uncorrelated and correlated

wave functions.

2.1.1 | Uncorrelated wave function

Within the direct variational method the wave function is constructed as the wave function of the free (unconfined) system multiplied by a cut-

off function. The simplest wave function is given by the product of two hydrogen–like wave functions, multiplied by the cut-off function

ðr0� r1Þðr0� r2Þ that makes the wave function vanish at the confining surface of the spherical cavity. The uncorrelated wave function is:

ψ0 ¼Be�αðr1þr2Þðr0� r1Þðr0� r2Þ, ð4Þ

which in Hylleraas coordinates it can be written as

ψ0ðs,t,uÞ¼Be�αs r0� s� t
2

� �
r0� sþ t

2

� �
, ð5Þ

where α is a variational parameter and B is a normalization constant.

2.1.2 | Wave functions with electronic correlation

We used five wave functions that include electronic correlation u. The trial wave functions in Hylleraas coordinates are the following:

ψ1ðs,t,uÞ¼Be�αsð1þβuÞχðs,t,u; r0Þ, ð6Þ

ψ2ðs,t,uÞ¼Be�αsð1þβuþ γt2Þχðs,t,u; r0Þ, ð7Þ

ψ3ðs,t,uÞ¼Be�αsð1þβuþ γt2þδs2Þχðs,t,u;r0Þ, ð8Þ

ψkðs,t,uÞ¼B
X
n,m,ℓ

Cnlme
�αssntmuℓχðs,t,u; r0Þ, ð9Þ

where k¼4 denotes a seven-term wave function while k¼5 denotes a 70-term wave function and nþmþ l≤2,7, respectively,

χðs,t,u; r0Þ¼ r0� s�t
2

� �
r0� sþt

2

� �
is the cut-off function, and α,β,γ, δ and Cnlm are variational parameters.

2.1.3 | Energy calculations

As we mentioned above we use the Ritz variational method to obtain the approximate energy and wave functions. In this approach we minimize

the energy functional
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E¼hψ jĤjψi
hψ jψi , ð10Þ

with respect to the variational parameters, where Ĥ is the Hamiltonian in Hylleraas coordinates (Equation 3) and ψ ¼ψ i, i¼0,…,5.

For the confined helium atom, different expressions [19, 35, 86] have been used to evaluate the integrals involved in the energy functional;

those expressions are equivalent and provide the same results. The expression that we used to evaluate the integrals in the energy functional is

the following [86]: ð
fdτ ¼2π2

ðr0
0
ds
ðs
0
dt
ðs
t
fðs,t,uÞðs2� t2Þudu,

þ2π2
ð2r0
r0

ds
ð2r0�s

0
dt
ðs
t
fðs,t,uÞðs2� t2Þudu,

ð11Þ

where f can be either Ĥ or the probability density jψ j2.
All the integrals involved in the calculation of the energy functional E (Equation 10) are obtained in analytical form using Mathematica and/or

Maple programs. The minimization of the energy functional is performed using the function minimization commands of each program, in this way

we obtain the minimum energy and the set of optimal variational parameters of the wave functions. The minimum energy for each wave function

is shown in Table 1, as well as graphically in the Figure 1.

2.1.4 | Quantum probability density

The one–electron probability density is obtained by integrating over the coordinates of the other electron. The probability density associated with

the wave function ψ0 is given by

ρ0ð r!Þ¼Be�2αr ð12Þ

whereas for the wave functions ψ1,…,ψ5 the probability density is obtained by [87]:

ρið r!Þ ¼2π
r

ðr
0
dr2r2

ðrþr2

r�r2

dr12r12ψðr,r2, r12Þ2
�

þ
ðr0
r
dr2r2

ðr2þr

r2�r
dr12r12ψðr, r2, r12Þ2

�
, i¼1,…,5,

ð13Þ

where ψðr, r2, r12Þ is given by Equations (6), (7), (8), or (9) respectively.

TABLE 1 The ground state energy for uncorrelated and correlated wave functions as a function of confinement radius r0.

r0(a.u.) E(ψ0) E(ψ1) E(ψ2) E(ψ3) E(ψ4) E(ψ5)

.5000 22.9229 22.9043 22.8321 22.7765 22.7426 22.7413

.6000 13.4250 13.3986 13.3645 13.3421 13.3204 13.3181

.7000 7.9968 7.9642 7.9490 7.9382 7.9278 7.9252

.8000 4.6656 4.6282 4.6224 4.6201 4.6120 4.6104

.9000 2.5117 2.4706 2.4691 2.4706 2.4642 2.4632

1.0000 1.0625 1.0186 1.0185 1.0214 1.0163 1.0157

2.0000 �2.5284 �2.5797 �2.5976 �2.5994 �2.5977 �2.6040

3.0000 �2.7935 �2.8419 �2.8651 �2.8659 �2.8679 �2.8724

4.0000 �2.8301 �2.8763 �2.8955 �2.8960 �2.8981 �2.9004

5.0000 �2.8391 �2.8843 �2.9003 �2.9007 �2.9023 �2.9034

6.0000 �2.8425 �2.8871 �2.9015 �2.9018 �2.9029 �2.9036

10.0000 �2.8462 �2.8900 �2.9022 �2.9026 �2.9033 �2.9037

∞ �2.84766 �2.8911 �2.9024 �2.9027 �2.9034 �2.9037
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The one electron probability density is normalized to unity as

ð
ρið r!Þd r!¼1: ð14Þ

2.2 | Information-theoretic approach

2.2.1 | Shannon entropy

The Shannon entropy [48, 67, 88–90] is a functional of the probability density ρð r!Þ defined by:

Sr ¼�
ð
ρð r!Þ lnρð r!Þd r!: ð15Þ

It quantifies the total extent of the density. It has also been used as a measure of localization-delocalization of the electron. A smaller value of

S corresponds to a more concentrated distribution, that is, the particle (electron) is more localized.

2.2.2 | Kullback–Leibler entropy

The Kullback–Leibler entropy [79, 89, 91, 92] for a continuous probability distribution ρð r!Þ, relative to a reference distribution ρrefð r!Þ is defined
as follows:

KLðρ,ρrefÞ¼
ð
ρð r!Þ ln ρð r!Þ

ρrefð r!Þ
d r
!
, ð16Þ

where

ð
ρð r!Þd r!¼

ð
ρrefð r!Þd r!¼1, ð17Þ

verifying KLðρ,ρrefÞ≥0. It can be seen that ρð r!Þ¼ ρrefð r!Þ,KLðρ,ρrefÞ¼0:

F IGURE 1 Energy variation for the helium atom with and without electronic correlation, varying the confinement radius r0.
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2.2.3 | Disequilibrium

Similarly the disequilibrium [85, 93, 94] gives a measure between two distributions, only in this case the deviation is with respect to the equi-

probability, also known as equilibrium state. It is determined as follows:

D¼
ð
ρ2ð r!Þd r!: ð18Þ

2.2.4 | Tsallis entropy

The Tsallis entropy for the confined helium atom is studied using a wave function with electronic correlation in order to obtain a measure of the

correlation intensity. The Tsallis entropy [65, 75, 95–99] is defined as follows:

Sq � 1
q�1

1�
ð
ρqð r!Þd r!

� �
: ð19Þ

The Tsallis index q plays a crucial role in identifying the magnitude of correlations in a system. In the limit q!1, Sq ! Sr , that is, the Shannon

entropy is recovered.

2.2.5 | Fisher–Shannon complexity

Fisher–Shannon complexity measure for a probability density ρ is defined jointly by the Fisher information Fr ½ρ� and the Shannon entropic power.

The Fisher information [49, 51–53, 55, 83, 88, 93, 100, 101] is a point-to-point measure of the electron cloud distribution since it is a gradient

functional of ρð r!Þ and in configuration space is tightly connected to the kinetic energy due to its dependence on the gradient of the distribution.

It is interpreted as a measure of the tendency toward disorder, meaning that the larger this quantity is, the more ordered the distribution will

be. It is defined by:

Fr½ρ� ¼
ð jr!ρð r!Þj2

ρð r!Þ
d r
!
: ð20Þ

The entropic Shannon power [94] guarantees the positivity of this quantity and is defined as follows:

J½ρ� ¼ 1
2πe

e2S½ρ�=3: ð21Þ

It is common to define Fisher–Shannon complexity [53, 83, 84] as follows:

CFS½ρ� ¼ Fr ½ρ�� J½ρ� ¼ 1
2πe

F½ρ�e2S½ρ�=3: ð22Þ

As a consequence of Stam's inequality [102] this quantity satisfies the following inequality

1
3
CFS½ρ�≥1 ð23Þ

for any continuously differentiable probability density ρ. Moreover, this complexity measure is invariant under scaling transformations and transla-

tions, and is a monotone measure [103].

3 | RESULTS AND DISCUSSION

3.1 | Shannon entropy

From Table 2 and Figure 2, we can see that in the confinement regime r0 > 1 a.u. the value of the Shannon entropy for the uncorrelated density

Sðρ0Þ is smaller than the value of the entropies SðρiÞ, {i¼1,2,3,4,5}, corresponding to the functions including electronic correlation.

6 of 17 ESTAÑÓN ET AL.
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Gadre et al. [81] and Hô et al. [104] used the Shannon entropy as a measure of the quality of the basis set of a free molecular system.

They constructed a wave function as an expansion in a certain basis, observing that increasing the number of basis functions resulted in a better

wave function, and that the Shannon entropy increased as the quality of the wave function improved. Extending Gadre's conjecture to the wave

functions used in this work, we conclude that by increasing the number of Hylleraas functions the quality of the wave function improves, that is,

it approaches the exact wave function.

From Figure 3, we can observe that the Shannon entropy values calculated with the electronically correlated wave functions are higher than

the Shannon entropy of the uncorrelated wave function. The more correlation the wave function contains the higher the value of the Shannon

entropy. This is more evident for r0 greater than 2 a.u. Romera and Dehesa [83] point out that this is because electronic correlation produces a

dispersion of the electronic cloud, and therefore, the Shannon entropy increases.

An entirely different situation occurs in the strong confinement regime where r0 < 1 a.u. The value of the Shannon entropy for the

uncorrelated wave function Sðρ0Þ is smaller than Sðρ1Þ, the Shannon entropy associated with ψ1, but is larger than the entropy values for the other

correlated wave functions. If Gadre's conjecture could be applied to this situation we would conclude that the best wave function, of those used

TABLE 2 Shannon entropy for different probability densities as a function of the confining radius r0, and its comparison with those reported
by Sen [105].

r0(a.u.) S(ρ0) S(ρ1) S(ρ2) S(ρ3) S(ρ4) S(ρ5) [105]

.5000 �1.5142 �1.5129 �1.5181 �1.5181 �1.5257 �1.5247

.6000 �.9986 �.9967 �1.0012 �1.0065 �1.0083 �1.0068

.7000 �.5696 �.5670 �.5708 �.5747 �.5767 �.5752

.8000 �.2046 �.2013 �.2041 �.2066 �.2086 �.2075

.9000 .1109 .1148 .1131 .1123 .1095 .1108 .1515

1.0000 .3867 .3914 .3910 .3919 .3874 .3898

2.0000 1.9117 1.9263 1.9587 1.9627 1.9548 1.9735 2.0097

3.0000 2.3673 2.3902 2.4777 2.4803 2.4839 2.5124 2.5241

4.0000 2.4906 2.5161 2.6229 2.6243 2.6381 2.6654 2.6197

5.0000 2.5310 2.5571 2.6628 2.6642 2.6798 2.6986 2.6651

6.0000 2.5481 2.5743 2.6768 2.6783 2.6883 2.7042 2.7042

10.0000 2.5673 2.5937 2.6900 2.6919 2.7029 2.7050 2.7106

∞ 2.5749 2.60159 2.6945 2.6967 2.7035 2.7051 2.7117

F IGURE 2 Shannon entropy for the helium atom confined in a spherical impenetrable cavity with and without electronic correlation. The
values SðρiÞ are given in Table 2, where i¼0, 1, 2, 3, 4, and 5.
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in this report, would be ψ1, and we could state that electronic correlation produces a spread in the electronic probability density. We should men-

tion that our calculations of the Shannon entropy, using the ψ1 function, are in complete agreement with previously published results [35]. The

other wave functions, with higher correlation content, would make the electron density more compact, contrary to what is expected. It has been

shown [28, 30] that in the strong confinement regime the electron kinetic energy is so large that the problem can be reasonably well treated by

perturbation theory using uncorrelated wave functions, that is, the electron correlation is not so important in this regime. Therefore, a good

description of the wave function is obtained by the ψ1 function.

3.2 | Fisher information

Fisher information is a measure of the concentration of the probability density. Fisher information is a local measure, which is very sensitive to

variations of the probability density, even in small regions. However, contrary to Shannon entropy, Fisher information decreases as r0 increases,

as shown in Figure 4, indicating greater delocalization as r0 increases. The values of Fisher information as a function of r0, for the different wave

functions, with and without correlation, are very similar.

In the region r0 > 1 a.u., the Fisher information values for the correlated wave functions are larger than the corresponding value of the Fisher

information for the uncorrelated wave function. In the strong confinement regime r0 < 1 a.u., the Fisher information corresponding to the

uncorrelated wave function Fðρ0Þ is smaller than Fðρ1Þ. However, Fðρ0Þ is larger than the Fisher information for the ψ2,ψ3,ψ4 and ψ5 wave func-

tions, which contain more electron correlation than ψ1. This behavior is most evident from Figure 5 where the difference between the Fisher

information for the correlated functions and the Fisher information for the uncorrelated wave function is shown. This difference between these

values is entirely due to electronic correlation. It can be seen from the graph that there is a well defined maximum value around r0 ¼2 a.u., for the

Fisher curves with higher correlation.

3.3 | Kullback–Leibler entropy

The Kullback–Leibler (KL) entropy is a measure of the information that quantifies the amount of information by which the probability density

ρð r!Þ differs from the reference density ρ0ð r!Þ. This measure is zero when the probability density ρð r!Þ is identical to the reference probability den-

sity ρ0ð r!Þ. In other words, this measure quantifies the similarity between the two probability densities. When the KL entropy is small the probabil-

ity densities ρð r!Þ and ρ0ð r!Þ are similar, and when the KL entropy is large, the two probability densities are remarkably different. Figure 6 shows

F IGURE 3 Shannon entropy difference S ρið Þ�Sðρ0Þ, where i¼1,2,3,4, and 5.
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the KL entropy values for the electronically correlated ρið r!Þ densities with respect to the uncorrelated ρ0ð r!Þ reference density. Those values are

entirely due to the electronic correlation.

For values of r0 > 1 a.u., the KL entropy values increase with r0, but even so the densities ρ1ð r!Þ and ρ0ð r!Þ remain very similar. The KL entro-

pies for the densities with greater correlation increase with r0, and have a maximum value near r0 ¼4 a.u., and then decrease and tend asymptoti-

cally to the values of the free case. The Kullback–Leibler entropy varies with r0 and its highest value is found around r0 ¼4 a.u.

For r0 < 1 a.u., the KL entropies for ρið r!Þ, i¼2�5, decrease as r0 decreases, reach a minimum value and increase again, indicating that the

correlation decreases with r0, KL reaches a minimum value at r0 ¼1 a.u. and increases again.

F IGURE 4 Fisher information for the helium atom confined in a spherical impenetrable cavity with and without electronic correlation.

F IGURE 5 Fisher information difference F ρið Þ�Fðρ0Þ, where i¼1,2,3,4, and 5.
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3.4 | Disequilibrium

As can be seen from Figure 7, in the region 0< r0 < 2 the Disequilibrium is a decreasing function of r0 and it has practically the same value for all

wave functions. However, in the region r0 > 2 a separation is shown between the Disequilibrium corresponding to the uncorrelated wave function

and those with explicitly correlation terms. As we seen in other entropic measures, the value of the Disequilibrium for the correlated functions is

higher than that of the uncorrelated function.

F IGURE 6 Kullback–Leibler entropy for the helium atom confined in a spherical impenetrable cavity.

F IGURE 7 Disequilibrium for the helium atom confined in a spherical impenetrable cavity.
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3.5 | Tsallis entropy

The Tsallis entropy with a q value different from 1 has been used as a measure of the electronic correlation [75]. Figure 8 shows the Tsallis

entropy using a wave function without electronic correlation, where values of q = .5, …, .9 were used. It should be noted that this plot does not

provide correlation information. The Tsallis entropy curves have a maximum around .6 a.u. and this becomes more pronounced as q approaches

1. We must remember that in the limiting case q!1, Tsallis entropy becomes the Shannon entropy, shown in Figures 2 and 3.

The analysis shown below is for ρ3ð r!Þ, however, the behavior of Tsallis entropy for ρið r!Þ, (i¼1,2,4, and 5) is very similar. On the other hand,

Figure 9 shows the Tsallis entropy with electronic correlation for the same values of q. Here we can notice that as the confinement radius

becomes smaller the correlation decreases, as expected, since the kinetic energy is greater than the potential energy in the region of strong con-

finement. In addition, we notice that the correlation is greater for q = .5 and as we increase the value of q the correlation decreases. Finally, in

F IGURE 8 Tsallis entropy for the helium atom confined in a spherical impenetrable cavity without electronic correlation.

F IGURE 9 Tsallis entropy for the helium atom confined in a spherical impenetrable cavity with electronic correlation for Sqðρ3Þ.
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Figure 10 we plot the difference: Tsallis entropy with correlation–Tsallis entropy without correlation. The difference Sqðρ3Þ�Sqðρ0Þ is due

completely to the correlation.

3.6 | Fisher–Shannon complexity

The Fisher–Shannon complexity is a measure of the probability density distribution in a global-local form that has been used as a measure of the

correlation energy by Dehesa et al. [83]. This interpretation makes sense if we look at Figure 11, in which we notice that around r0 ¼1:5 a.u. there

F IGURE 10 Tsallis entropy difference Sq ρ3ð Þ�Sqðρ0Þ.

F IGURE 11 Fisher–Shannon complexity for the helium atom confined in a spherical impenetrable cavity with and without electronic
correlation.
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is a minimum, which is close to the value of r0 ¼2 a.u., at which the maximum of the correlation energy was found by Wilson et al. [31]. For values

of r0 < 1 a.u. the values of all curves are very similar. For r0 > 1 a.u. the Fisher–Shannon complexities for the correlated wave functions are all

higher than for the uncorrelated wave function.

4 | CONCLUSIONS

In this work, we obtained the energies and wave functions of the helium atom confined in a spherical box with impenetrable walls. We used the

variational method and as trial wave functions we employed one function without electronic correlation (ψ0, Equation 4) and five functions with

different degree of correlation (Equations 5–9), where the trialfunction ψ5 gives accurate energy values and quality wave functions. We con-

structed the probability densities of the five trial functions and calculated the Shannon entropy, Fisher information, Kullback–Leibler entropy,

Tsallis entropy and Fisher–Shannon complexity as a function of the radius of the spherical box r0.

The main conclusions derived from the present work are summarized as follows:

• Each of the diverse information-theoretic functionals here considered reveals, in different ways, a specific dependence of their respective values in

terms of the confinement radius r0. Most usually, the corresponding curves display structured behaviors accordingly with a diversity of ranges for r0.

• Nevertheless, the visualizations just mentioned for a given functional are nuanced, to a greater or lesser extent, by considering the whole set

of wavefunctions to describe the confined system. The comparative analysis emphasizes the relevance of interelectronic correlation, as rev-

ealed by the information-theoretic values. This comment applies both to the structure and ordering of curves.

• For all information measures, except Tsallis entropy, the difference between the values obtained with a wave function with correlation ψ i,

(i¼1�5) and with the uncorrelated function ψ0, is entirely due to electronic correlation, then, we may consider this difference as a measure of

correlation. All information measures show evidence of electronic correlation. The electronic correlation is not constant but varies with r0. The

maximum value of the information theoretic correlation measure varies with the type of information measure used.

The above major conclusions are detailed below for the information measures considered, attending to the different functionals and their features:

• Maxima and minima: For example, for Shannon entropy the maximum value is reached around r0 ¼4 a.u., while for Fisher information at r0 ¼2 a.u.,

for Kullback–Leibler entropy at r0 ¼4 a.u., while for the Tsallis entropy a minimum is observed around r0 ¼ :6 a.u., and for the Fisher–Shannon com-

plexity the minimum is located around r0 ¼1:6 a.u., which is close to the point r0 ¼2 a.u., at whichWilson et al. [31] find a higher correlation energy.

• Shannon entropy: To understand the behavior of the Shannon entropy associated with the trial functions ψ0,…,ψ5 as a function of r0, it was

convenient to divide the variable r0 into two regions. In the first region r0 > 1, the Shannon entropy increases when employing a wave function

with a larger number of correlation terms, this is the usual behavior in free atoms [81]. While in the second region r0 < 1 the Shannon entropy

for wave functions ψ2,…,ψ5 has an opposite behavior to the one presented in the region r0 > 1. However, the Shannon entropy for ψ1 is always

higher than for ψ0 (Figure 3). The Shannon entropy and correlation energy show a similar trend at :5< r0 < 2, this becomes different at

2 < r0 < 4:5, and for r0 > 4:5 both quantities have an almost constant behavior. In the region :5< r0 < 2, we see that as r0 decreases the Shannon

entropy decreases (localization) and also the correlation energy decreases.

• The Fisher information of the five wave functions as a function of the confining radius r0 is a rapidly decreasing function. In the region :5< r0 < 2

the Fisher information increases (localization) and the correlation energy decreases, as r0 decreases, in agreement with the Shannon entropy results.

• The Kullback–Leibler entropy indicates that for values of r0 < 1, the probability densities ρ1,…,ρ5, or their respective wave functions, are similar to

the uncorrelated density ρ0, or its corresponding wave function ψ0. In that region the KL entropy is small, the wave functions are very similar but

the correlation energy is different from zero. At r0 ¼2 the values of the entropies split lightly, but at that point the correlation energy has a maxi-

mum. The maximum of the KL entropy is reached near r0 ¼4 but at that value of r0 the correlation energy is already almost a constant. In this

study the KL entropy is useful to establish the similarity between two wave functions but not to describe the correlation energy.

• The Disequilibrium is a decreasing function of r0. The values of Disequilibrium are almost the same for 0 < r0 < 2. In the region r0 > 2 the values

of Disequilibrium for the correlated functions overlap, in this region the Disequilibrium value for the functions with correlation is higher than

for the function without correlation.

• The Fisher–Shannon complexity and the correlation energy show almost opposite behaviors, near the position where the Fisher–Shannon

complexity has a minimum the correlation energy has its maximum value. We can say that when the FSC decreases the correlation energy

increases and vice versa.

Finally, let us mention the information-theoretic study in terms of correlation energy, as provided in the Appendix. Although it remains as an

open problem, important conclusions are already derived from the results included here. Attention is paid to the comparative analysis among the

correlation energy and each of the information measures.
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APPENDIX: CORRELATION ENERGY AND ENTROPIES

The correlation energy Ecorr is defined by:

Ecorr ¼ Eexact�EHF ðA1Þ

where Eexact are the exact energies, which we will approximate by the energy obtained with the 70-term trial wave function, for each value of r0,

whereas EHF are the energies obtained by the Hartree-Fock method [31]. The correlation energies used in this work are the same reported by

Wilson et al. [31].

The Figure A1 shows the informational measures, for the five trial functions, and the correlation energy. In each figure, on the left vertical axis

the values of the informational measures are reported, while on the right vertical axis are the values of the correlation energies.

The correlation energy for r0 ¼ :5 has a value close to �:05 a.u., its value increases as r0 grows, until it reaches a maximum value near r0 ¼2,

then slowly decreases until it reaches a value very close to that of free helium atom at r0 ¼10.

Figure A1A shows a coincidence in the increasing trend of Shannon entropy (delocalization) and correlation energy, as a function of r0, up to

a value close to r0 ¼2, then, the Shannon entropy curves increase very slowly with r0 up to about 4.5. For r0 > 4:5 their values remain constant. In

the interval 2 < r0 < 4:5, Ecorr and Shannon entropy show different trends. However, for r0 > 4 the Shannon entropy and correlation energy follow

the same trend again.

In Figure A1B, it is shown that the Fisher information decreases monotonically with r0. In the region 0< r0 < 2 Fisher information grows (local-

ization) fast as r0 decreases, while the correlation energy decreases. As mentioned before, correlation energy has a maximum around r0 ¼2, while

Fisher information decreases (delocalization) as r0 increases. For r0 > 4:5, both curves remain constant.

F IGURE A1 Informational measures compared to correlation energy for the helium atom confined in a spherical impenetrable cavity.
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Figure A1C shows the Kullback–Leibler entropy and correlation energy curves. In the region :5< r0 < 2 the Kullback–Leibler entropy curves

are concave upward and present a small minimum, close to r0 ¼1, a behavior that is not shared by the correlation energy curve. It should be noted

that in this region the uncorrelated wave function and the correlated functions are very similar but the correlation energy is different from zero.

The Kullback–Leibler entropy curves have their maximum near r0 ¼4, while the correlation energy has its maximum near r0 ¼2. For values of

r0 ≥4:5, the entropy curves decrease and tend asymptotically to the respective values of the free case, while the correlation energy remains

constant.

In Figure A1D, we observe opposite behaviors of the curves of the Fisher Shannon complexities and the correlation energy curve. The curves

of the F–S complexities have a minimum at a point in the interval 1 < r0 < 2, while the correlation energy curve has a maximum at a point near

r0 ¼2. For r0 > 6, the curves asymptotically reach their values of the free case, in this region all curves remain almost constant.
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