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Abstract

Novel features derived from imaging and artificial intelligence systems are commonly

coupled to construct computer-aided diagnosis (CAD) systems that are intended as

clinical support tools or for investigation of complex biological patterns. This study

used sulcal patterns from structural images of the brain as the basis for classifying

patients with schizophrenia from unaffected controls. Statistical, machine learning

and deep learning techniques were sequentially applied as a demonstration of how a

CAD system might be comprehensively evaluated in the absence of prior empirical

work or extant literature to guide development, and the availability of only small sam-

ple datasets. Sulcal features of the entire cerebral cortex were derived from

58 schizophrenia patients and 56 healthy controls. No similar CAD systems has been

reported that uses sulcal features from the entire cortex. We considered all the

stages in a CAD system workflow: preprocessing, feature selection and extraction,

and classification. The explainable AI techniques Local Interpretable Model-agnostic

Explanations and SHapley Additive exPlanations were applied to detect the relevance

of features to classification. At each stage, alternatives were compared in terms of

their performance in the context of a small sample. Differentiating sulcal patterns

were located in temporal and precentral areas, as well as the collateral fissure. We

also verified the benefits of applying dimensionality reduction techniques and valida-

tion methods, such as resubstitution with upper bound correction, to optimize

performance.

K E YWORD S

cross-validation, deep learning, explanaible AI, machine learning, resubstitution with upper
bound correction, schizophrenia, sulcal morphology

1 | INTRODUCTION

This period of history is witnessing the breakthrough into clinical trials

of computer-aided diagnosis (CAD) systems based on artificial

intelligence (Hope Weissler et al., 2021). Research of, and with CAD

systems proliferate in the literature with applications in Alzheimer's

disease (Graña et al., 2011; Javier Ramírez et al., 2013; Ortiz

et al., 2016), Parkinson's disease (Arco et al., 2022; Martinez-Murcia
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et al., 2018; Shu Lih et al., 2018) and autism (Leming et al., 2020;

Leming et al., 2021; McAlonan, 2004). These approaches are primarily

based on features extracted from imaging of brain function, with fMRI

and PET, and brain structure, using MRI from which grey matter vol-

umes can be estimated (Gorriz et al., 2021; Wright et al., 1999) or

morphological features extracted from the cerebral cortex (Jimenez-

Mesa et al., 2020). A feature newly available from surface representa-

tions of the cortex are the sulcal (concave) and gyral (covex) folds

(Campero et al., 2014).

Sulcal patterns offer particularly interesting features. They gener-

ally form in the last trimester and early life and remain broadly unal-

tered throughout adulthood, although the complex patterning of the

cortex, whilst unique to the individual, strongly varies across individ-

uals. They therefore potentially contain information about early devel-

opment including the fetal and infant environment (Cachia

et al., 2021). There are several approaches in the literature describing

the detection, labelling and characterisation of sulci (Andreasen

et al., 1994; Auzias et al., 2015; Beeston & Taylor, 2000; Behnke

et al., 2003; Mateos et al., 2020; Yang & Kruggel, 2008). BrainVISA

(Geffroy et al., 2011), is a software package which undertakes all

these steps (Borne et al., 2020; Perrot et al., 2011). Other available

packages include Freesurfer (https://surfer.nmr.mgh.harvard.edu)

(Schaer et al., 2008) for detection and labelling combined with calc-

Sulc (Madan, 2019) or BrainGyrusMapping (Murphy et al., 2014) for

the calculation of characterising features of each sulcus. Each

approach has its strengths and limitations (Mikhael et al., 2018).

Sulcal information has proven to be useful in the study of a wide

range of conditions; for example, in Alzheimer's disease (Maciej Plo-

charski and Lasse Riis Østergaard, 2016; Mateos et al., 2020), Parkin-

son's disease (Wang et al., 2011), and anorexia (Collantoni

et al., 2021; Wagner et al., 2003). Schizophrenia has a rich and well-

replicated literature establishing patterns of cortical change (Liu

et al., 2020; Palaniyappan et al., 2018; Sallet et al., 2003; Zhang

et al., 2012). Whilst there has been some work on both overall and

specific sulcal information in schizophrenia (Csernansky et al., 2008;

Janssen et al., 2022; Rollins et al., 2020), there has not, to our knowl-

edge, been any exploration of the sulcal pattern as a way to classify

individuals with schizophrenia from unaffected controls.

One of the main problems often encountered in conducting this

type of study is the limited number of samples available. This is of par-

ticular concern when the number of features associated with each

sample is very high; known as the curse of dimensionality (Gorriz

et al., 2017). This is also a problem when applying classical statistics

which make strong assumptions based on the sample conforming to

the normal distribution. When the number of samples is small, it is not

easy to accurately determine the distribution from which they are

sampled and sometimes invalid techniques are implemented or inac-

curate results are obtained (Eklund et al., 2016; Ioannidis, 2005). For

this reason it is useful to consider other methods, such as data-driven

approaches (Gorriz et al., 2021) based on artificial intelligence, both

machine learning and deep learning (G�orriz et al., 2020). A key benefit

is to obtain insights similar to those obtained by parametric statistical

approaches but without requiring the dataset to satisfy certain

conditions. Furthermore, the black box problem, whereby there is no

easy interpretation of the biological meaning of a classification result

or understanding of the underlying decision-making process, is now

being addressed with explainable artificial intelligence (XAI) algorithms

(Gunning et al., 2019; Jimenez-Mesa, Arco, et al., 2023; van der

Velden et al., 2022).

In this study, we explore the capacity of measurements of sulcal

patterns to discriminate between patients with schizophrenia and

controls. Initially, features relevant to this classification problem were

identified by traditional univariate statistical methods. The accuracy of

classification was then compared between machine learning classifiers

of varying complexity with input features from prior multivariate anal-

ysis of identified features. Explainable machine learning techniques

were also deployed to give a richer description of the pattern of case–

control differences observed.

This article is organised as follows. Section 2 provides a detailed

description of the database and the preprocessing pipeline applied for

extraction of sulcal features. Section 3 describes the methods applied

in this study, including feature selection and extraction, classification

algorithms, validation methods and XAI techniques, among others.

Then, in Section 4 we evaluate the results obtained. Finally, outcomes

and future study are discussed in Section 5, and conclusions are

drawn in Section 6.

2 | MATERIALS

2.1 | Database

Data used in this study consisted of MRI from 65 (27 females) Han

Chinese patients with schizophrenia (SCZ) and 57 (24 females) unaf-

fected controls (HC). Participants were recruited from the Shanghai

Mental Health Centre and the data set was published and analysed in

(Li et al., 2018). All participants provided a written informed consent.

The study was approved by the Ethics Committees of the Shanghai

Mental Health Centre and the Institute of Psychology, the Chinese

Academy of Sciences.

Participants underwent structural neuroimaging as well as a clini-

cal evaluation. High-resolution T1-weighted structural images were

acquired on a 3T MRI scanner with 1 mm isotropic voxel size. Details

of the acquisition parameters are given elsewhere (Li et al., 2018). No

non-linear spatial normalization was applied to the scans to avoid pos-

sible bias generated from shape deformations of the sulcal patterns

(Cachia et al., 2008; Mellerio et al., 2016).

2.2 | Data preprocessing

The MRI scans were processed using BrainVISA 5.0.4 (Geffroy

et al., 2011) to extract sulcal features by means of the Morphologist

2021 pipeline (Borne et al., 2020; Perrot et al., 2011). Information was

obtained from 62 areas per hemisphere (123 in total; the sulcus of the

supra-marginal gyrus is only defined in the left hemisphere). In each
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region, the features measured in Talairach space (Louis Collins

et al., 1994; Talairach, 1988) were length, depth (average and maxi-

mum), fold opening, medial surface of the cortical folds and grey mat-

ter thickness (Jin et al., 2018; Pizzagalli et al., 2017). The average and

maximum depth and length were calculated as features. Other avail-

able features are associated with morphological parameters rather

than surface topology. Figure 1 shows an example of an automatically

labelled brain by BrainVISA and the features extracted from a specific

region.

In some cases, a particular sulcus could not be identified or was

misdetected by the Morphologist 2021 pipeline. Therefore, samples

with more than 18 of these events (15% of the total number of

regions) was excluded from the analysis. Insula (left and right) regions

were also excluded because of the high possibility of being misde-

tected due to its peculiar shape. After these exclusions, any region

that still had at least one misdetection across remaining participants

was excluded. Finally, features were normalised to zero mean and

standard deviation 1. Individuals with any feature with values >6

times the standard deviation were removed. These exclusion criteria

result in 49 remaining areas for analysis, which are shown in Figure 2.

The final number of individuals (samples) was 114, the demographics

for whom are shown in Table 1. It can be seen that the sample set

was matched for size, sex and age, with a sample size of 58 SCZ

patients and 56 HC.

3 | METHODS

3.1 | Feature analysis and selection

Following preprocessing described in Section 2.2, sulcal length and

maximum and mean sulcal depth were tested by univariate statistical

methods to identify features important to classification. Both para-

metric and non-parametric techniques were considered.

3.1.1 | Parametric techniques

Initially, the Shapiro–Wilk test (Shapiro & Wilk, 1965) was applied to

identify which features obeyed a normal distribution, since the null

F IGURE 1 Example of a brain with
sulci regions automatically labelled by
BrainVISA using Morphologist 2021
pipeline (right). The central sulcus is

highlighted (middle) and indicates how
length and depth are measured in a
region (left).

F IGURE 2 The 49 regions from the BrainVISA sulcal atlas (Perrot et al., 2011) used in this study. All other regions were excluded due to
sulcal misdetection.
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hypothesis is that samples come from a normally distributed

population.

For those features where a normal distribution was followed, a

two-sample t-test (Kim, 2015; Welch, 1947) was applied to detect the

relevance of the feature to distinguish between schizophrenia and

control participants. To compare the importance of features, the

p values (Panagiotakos, 2008) associated with the tests were used.

Those features that did not follow a normal distribution were

assessed with the Mann–Whitney U test (Fay & Proschan, 2010;

Mann & Whitney, 1947), and the corresponding p value used.

3.1.2 | Non-parametric techniques

The importance of a feature to classification was also evaluated by

means of an AI-based approach: Statistical Agnostic Mapping (SAM)

(Gorriz et al., 2021). First, each feature was independently fed into a

supervised classification model. Then, accuracies obtained for each

feature were sorted based on a proportion test. The null hypothesis

of the test is that the population proportion is similar to a particular

proportion, π0, given a confidence interval. The test statistic for each

feature was estimated as:

z¼bπ�π0
σ0

ð1Þ

where bπ is the accuracy related to the feature, and

σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π0 1�π0ð Þð Þ=lp

. In this last expression, l is the number of accura-

cies higher than π0. In our case, π0 is the mean of all features'

accuracies, both empirical (derived from samples) and actual (related

to an infinite sample set). Once the z-statistics were calculated, the

p value of each statistic was estimated. For this, the null hypothesis

was considered to be true and therefore the test statistic follows a

standard normal distribution. From this p value, the most relevant fea-

tures of the study were determined.

3.2 | Feature extraction

Along with feature selection, features were also processed to gener-

ate more compact information and reduce the dimension of the

feature vector. Partial Least Squares (PLS) (Wold et al., 1984) is a

supervised method which allows dimensionality reduction while

retaining the patterns for higher separability of the classes. Given a

matrix of features, Xlxm, where l is the number of samples and m the

number of features, and a vector of labelsYlx1, PLS generates a matrix

of loadings Xl , which is related to the initial data by the following lin-

ear combination:

X¼XsX
T
l þE ð2Þ

where Xs is the score matrix and E the assumed error matrix. The

reduced d-dimensional space desired comes from the dimensions of

Xl (m x d), as m> d. This new reduced space contains the original infor-

mation of X.

3.3 | Classification

Once the features to undertake the classification were selected, the

next stage was classification. For the binary classification problem

posed in this study, both machine learning (ML) and deep learning

(DL) methods were applied.

The ML algorithm implemented in this study was a Support Vec-

tor Machines (SVM) classifier with linear kernel (Schölkopf &

Smola, 2002). This combination was chosen for its easy explainability

as well as its propensity to generate excellent results in neuroimaging

(Javier Ramírez et al., 2013; Jimenez-Mesa et al., 2020; Orru

et al., 2012). This supervised algorithm establishes the maximum-

margin hyperplane which separates the samples of the different clas-

ses. In the case of a linear binary problem, the set of points, x, that

generate the hyperplane satisfy:

wTx�b¼0 ð3Þ

where w is the normal vector to the hyperplane and b represents the

error. The classification is done in such a way that samples on one side

of the hyperplane belong to one class, and samples on the other

side are associated with the second class.

The selected DL architecture was a multilayer perceptron (MLP)

as both the number of samples and features was small. Additionally, a

two-dimensional vector favours MLP over convolutional neural

TABLE 1 Demographic details of the participants included in the analysis.

SCZ HC Total t/χ2 statistic p value

Number 58 56 114

Sex (Male/Female) 35/23 29/27 64/50 0.85 .357

Age 22.95 ± 5.64 24.79 ± 7.36 23.85 ± 6.57 1.20 .233

IQ 93.18 ± 18.40 (N = 55) 116.41 ± 14.38 105.30 ± 19.91 7.16 <.0001*

Years of education 12.41 ± 2.91 13.40 ± 2.54 12.90 ± 2.77 1.93 .056

Hallucinations (yes/no) 20/38 0/56 20/94 76 <.0001*

Note: p values were obtained using: two-sample t-test or Chi-Square test, * when p< :05.

Abbreviations: HC, healthy controls; IQ, Intelligence quotient; SCZ, patients with Schizophrenia.
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network (CNN). The MLP is a feedforward artificial neural network

(ANN) composed of fully connected layers. Each layer has i percep-

trons which are connected in a forward direction to the perceptrons

of the next layer, but with no connections between perceptrons of

the same layer. Given a layer n, the output value of each perceptron is

computed as:

yni ¼ f wn
i �yn�1þbni

� � ð4Þ

where f �ð Þ is the activation function applied to the i-th perceptron.

This function is applied to the result of multiplying the weight vector,

wn
i , and the activations of the previous layer, yn�1, in addition to an

associated bias, bni .

The network configuration implemented is shown in Figure 3.

The number of epochs involved in the training was 18, with a batch

size of 1. The optimizer selected was Adam with a learning rate of

0.001, and the stopping criterion computed as the cross entropy loss

with balanced weights.

3.4 | Validation procedure

Two validation methods were used to assess the performance of the

classifiers. First, a 10-fold stratified cross-validation scheme

(Kohavi, 1995) was applied, which guaranteed independence between

training and test samples. The sample was randomly divided in to a

set in 10 folds, and for 10 iterations used one of the folds as test sam-

ples and the remaining folds as the training set. For the computation

of the performance metrics, the mean and standard deviation of the

values obtained in the 10 iterations were used.

The second validation method was an upper bound-corrected

resubstitution (Vapnik et al., 1994), which is referred to in previous

work as RUB (Jimenez-Mesa, Arco, et al., 2023; Jimenez-Mesa,

Ramirez, et al., 2023). One way to define the upper bound would be

as the difference between empirical and actual errors given a fitted

learning algorithm, μ≥ j Eact f xð Þð Þ�Eemp f xð Þð Þ j, or in terms of the

previous approach, the difference between the training error and the

test error. Thus, the entire database was used as the training set for

the classifier, that is, resubstitution was performed, and then the

actual accuracy was obtained by means of the upper bound. This

could be considered a theoretical classification limit that allows the

use of all accessible data to compute the metrics of interest. In addi-

tion to accuracy, other metrics such as sensitivity or specificity can

also be of limited value since their errors are related to the classifica-

tion error.

Different upper bounds are described in the literature. The most

well-known is based on the VC dimension as proposed by V. Vapnik

(Vapnik et al., 1994). In this article, an upper bound based on the

assessment of concentration inequalities was applied (G�orriz

et al., 2019). This bound is only applicable to linear classifiers, for

example, SVM with linear kernel, and its expression is:

μemp ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2n

ln

2
Pd�1

k¼0

n�1

k

� �
η

vuuut ð5Þ

where n is the number of samples used, size of the sample set, d is the

feature's dimension, and η is the significance level. In this study, the

significance level was set as 0.05.

The implementation of probably approximately correct (PAC)-

Bayesian bounds is another interesting proposal. In this study, a drop-

out bound (McAllester, 2013) was analysed. This bound considers a

dropout rate, α� 0,1½ �, which reduces the complexity cost of the func-

tion. The effect of this dropout is stronger the closer its value is to 1.

The expression of this bound in the scenario proposed in this study is:

μPAC�bayes ¼ min
1≤ i≤ k

1

1� 1
2λi

�1

0
BB@

1
CCAbL Qð Þþ

1

1� 1
2λi

λiLmax

n
1�α

2
kΘk2þ ln

k
η

� �� � ð6Þ

F IGURE 3 Scheme of the MLP composed
of four layers: input layer, two hidden layers
and the output layer. AF, activation function.
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where k different values of the parameter λ, which was set to

1=2≤ λ≤10, were evaluated to minimise the bound. The estimated

value of the loss function to be bounded, that is, the error of the clas-

sifier, is bL Qð Þ. Its maximum value, Lmax , which must be a real number,

is 1 in this case. Finally, Θ was the classifier's parameter set.

3.5 | Explainable AI

Algorithms that give a qualitative understanding of performance are

key to extracting domain information from classification tasks. This

emerging field is referred to as explainable artificial intelligence (XAI).

Here, apart from considering the performance of the classifier, two of

these techniques were used to analyse the influence of features on

the decision making by the classifiers.

Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro

et al., 2016) focuses on providing explanations of individual predictions

of the classifier model. To do so, it makes a local approximation to an

easily interpretable model. Given the type of data used in this study,

LIME highlights the most relevant, both positively and negatively, sulcal

features during classification. In other words, LIME shows if a high value

of a feature brings the sample closer to a class (acts positively) or reduces

the likelihood of the sample belonging to that class (acts negatively).

This algorithm is able to explain any prediction model f locally.

This means that LIME provides explanations for a particular sample x,

since globally faithful explanations are still a challenge for complex

models (Ribeiro et al., 2016). To do this, the algorithm selects an

explanation model g�G, where G is a class of potentially interpretable

models. The selection is made according the following objective func-

tion related to the faithfulness of the explanation model:

ξ¼ argminℒ f,g,πxð ÞþΩ gð Þ ð7Þ

where interpretability and local fidelity is ensured by minimising the

trade-off between the loss related to the discrepancy between g and f

given the local kernel πx, and the complexity of g, measured by Ω gð Þ.
SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) is

a model-agnostic algorithm which can explain any classification model.

SHAP assigns the relevance of each feature by means of Shapley

values, a concept from game theory (Shapley, 1953).

Given the set of features S, the contribution of each feature s is

estimated on the basis of its average marginal contribution to all sub-

sets of features T ⊆ S, which do or do not include the feature s. Let

the prediction of the model given a particular sample and a subset of

features be denoted as fx Tð Þ. The marginal contribution of the feature

s is estimated as the difference in predictions when applying or not

applying such a feature, fx T[ sð Þ� fx Tð Þ½ �. So, the Shapley value, ϕs, is

computed considering all possible subsets T ⊆ S ∖ sf g:

ϕs f,xð Þ¼
X

T ⊆ S ∖ sf g

Tj j! Sj j� Tj j�1ð Þ!
Sj j! fx T[ sð Þ� fx Tð Þ½ � ð8Þ

SHAP values are the solution to Equation (8), that is, they are

Shapley values of a conditional expectation function of the original

model which satisfy properties such as local accuracy, missingness

and consistency (Lundberg & Lee, 2017). Several approximation

methods to compute SHAP values are proposed, since its exact com-

putation is difficult to achieve. The one applied is this study was Ker-

nel SHAP, a model-agnostic approximation which combines Shapley

values and linear LIME (local linear regression) to estimate the impor-

tance of each feature. To do this, the solution of Equation (7) are

Shapley values; that is, local accuracy, missingness and consistency

must be satisfied. Inherently, LIME does not meet all these properties

by choosing its parameters heuristically.

Both techniques have generated interesting results in previous

neuroimaging studies (Lombardi et al., 2021; Lombardi et al., 2022;

Scheda & Diciotti, 2022), where their application allows observation

of the congruence of the explanations and their usefulness.

3.6 | Performance evaluation

Performance of the classifiers was evaluated through metrics

extracted from the confusion matrix, where the positive class was

SCZ. These metrics were balanced for accuracy, specificity and sensi-

tivity. Their equations are:

BalAcc¼1
2

TP

P
þTN

N

� �

Spec¼ TN

TNþFP

Sens¼ TP

TPþFN

ð9Þ

where TP refers to the number of participants correctly classified as

SCZ (true positives), TN corresponds to the number of controls cor-

rectly identified (true negatives), FP quantifies the number of controls

misclassified (false positives), and FN quantifies the number of SCZ

participants misclassified (false negatives).

The receiver operating characteristic (ROC) curve was also con-

structed. The area under the ROC curve (AUC) evaluates the ability of

the model to differentiate between the two classes (Hajian-

Tilaki, 2013; Mandrekar, 2010).

3.7 | Summary of the procedure

The several stages of this work are depicted in Figure 4. In summary,

once data were preprocessed as described in Section 2.2, two differ-

ent scenarios were implemented: feature selection (see Section 3.1),

which highlighted the relevance of sulcal features, and feature extrac-

tion (see Section 3.2), which generated a reduced set of features to

make the best possible use of the information extracted from the orig-

inal data. From the features highlighted or generated by both

approaches, a classification stage followed where a ML model (SVM)

was applied using various validation methods, as described in Sec-

tions 3.3 and 3.4. Lastly, the classification model (MLP) obtained when

the 147 preprocessed features were used was analysed by means of

the XAI described in Section 3.5.
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4 | RESULTS

Three respective features (length, mean depth and maximum depth)

were extracted from 49 brain regions. The total number of features in

this study was 147, a value larger than the number of samples, 114.

This is an undesirable, but very common situation in neuroimaging.

4.1 | Parametric feature selection

To analyse the relevance of the features, firstly we followed a parametric

approach. The Shapiro–Wilk test for normality determined that among

the 147 features 125 followed a normal distribution, while the remaining

22 did not. The top row of Figure 5 shows examples of histograms of

three features that did not follow a normal distribution. It can be seen

that the main reason for this was the long tails skewing the distribution.

By visual inspection selecting eligible samples, the number identified was

adequate for a two-sample t-test with all the features. The Mann–

Whitney U test was used for non-normally distributed features.

The significance of each feature was assessed with the p value

obtained in their respective tests. The bottom graph in Figure 5 shows

a boxplot of the nine most relevant features according to the tests

applied. Only the first five had a p value <0.05, while 10 of them had

a p value <0.1.

F IGURE 4 Flowchart of the study. After preprocessing the data, two independent feature selection and feature extraction analyses were
conducted. The information extracted from both was fed into a ML classifier. Two validation methods were applied. Finally, the 147 preprocessed
features are fed into a multilayer perceptron (ML) model. The classifiers' performance was analysed by means of XAI techniques.
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4.2 | Non-parametric feature selection

Using the SVM algorithm with linear kernel and a validation based on

the resubstitution with upper bound correction, 1000 permutations

were applied by randomly modifying the position of the samples in

the set and calculating the mean accuracy for each feature. For accu-

racy estimation, a balanced estimator with class weights balancing

was applied during the classifier training. The p value associated with

each feature was assessed with a significance test for a proportion.

The nine most relevant features obtained are shown in Figure 6.

4.3 | Most relevant features analysis

Figure 7 shows the most relevant features ranked by their p value

in both approaches (parametric and non-parametric). Relevant

features had a p value <0.05, identifying nine features. Three

features appeared with both approaches, together with two from

the parametric and four from the non-parametric approach. These

include both depth-related and length-related features.

4.4 | Use of reduced dimensionality in
classification

Instead of analysing the relevance of the features independently, it is

possible to analyse the relevance of the feature set for the case–

control classification. To do this, a feature extraction stage was imple-

mented by applying PLS to the original data. The reduced feature

dimension was then classified with a SVM classifier with a linear ker-

nel. Performance was analysed using cross-validation (K-fold) and

RUB as validation procedures. Figure 8 (left) shows results how the

F IGURE 5 Statistical features analysis. Top row: histograms related to non-normal distributed features. Bottom row: boxplots of the nine
most relevant features according to the Two-sample t-test and the Mann–Whitney U test, depending on whether the feature follows a normal
distribution or not. These features are arranged from Frontal lobe to Occipital lobe (from left to right and from top to bottom). Average and
maximum depth are abbreviated as meandepth and maxdepth.

8 of 17 JIMENEZ-MESA ET AL.

 10970193, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26555 by U
niversidad D

e G
ranada, W

iley O
nline L

ibrary on [11/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



classifier's performance varied according to the PLS components used.

The upper bound applied in RUB, as detailed in Equation (5), depends

on the number of features, the fixed number of samples (114) and

significance level (0.05). Although there were no discernible trends in

performance as a function of number of PLS scores using K-fold, a

decreasing trend was observed applying RUB and higher accuracies

F IGURE 6 The nine most significant features
obtained by a classification approach. Their
related accuracy was estimated as the mean value
of 1000 permutations shuffling the samples and
using a SVM with lineal kernel classifier and
resubstitution with upper bound correction (RUB)
as a validation approach. Resubstitution accuracy
stands for the empirical accuracy obtained before
the upper bound is applied. The p values related to

each region were estimated using a test of a
proportion. Average and maximum depth are
abbreviated as meandepth and maxdepth.

F IGURE 7 Features under analysis
with a p value <0.05 in any of the
parametric and non-parametric tests.
These features are arranged from Frontal
lobe to Occipital lobe. The significant

features under the parametric analysis are
coloured cian, non-parametric analysis are
coloured magenta, or if both they are
coloured green. Average and maximum
depth are abbreviated as meandepth and
maxdepth.

F IGURE 8 Left: Performance of the SVM classifier along with PLS as the feature extraction technique. Results are shown for a wide range of
PLS components (1–20). Right: performance of the SVM classifier using four PLS components for several balanced samples sizes (20, 30, 40, 64,
88 and 112). In both cases: RUB (orange line) and 10-fold CV (box-plots). Resubstitution accuracy (black line) stands for the empirical accuracy
obtained before the upper bound is applied.
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were obtained using fewer components (<6). Conflating both

approaches, four PLS components were selected and results are illus-

trated in Figure 8 (right).

4.5 | Impact of sample size

To understand the effect on performance of sample size, four PLS

components were chosen as input features for the classifier. The

results are shown in Figure 8 (right). Theoretically, accuracy should

increase as the sample is enlarged, but this was not the case with

K-fold. The upper bound applied in RUB changes according to the

number of samples, with a fixed number of features, 4, and a signifi-

cance level, 0.05.

4.6 | Various classification scenarios

Case–control classification was undertaken with the features selected

with the parametric, non-parametric and ensemble approaches as well

as PLS features. The testing of the classification results were obtained

by performing 1000 permutations of the dataset, which are shown in

Table 2. Note that for the computation of the upper bound of

Equation (5), the RUB validation approach took into account the num-

ber of samples, 112 (as the data was balanced in each iteration), the

number of features (9 or 4, depending on the case), and the signifi-

cance level (0.05). This gave values for the upper bound of 0.3695 per

unit or 36.95% for nine features and 0.2675 (26.75%) for 4. The

reader is reminded that these values must be subtracted from the

accuracy rate obtained in order to determine the actual worst-case

accuracy rate. While K-fold CV worked reasonably well with the

extracted features, especially with those obtained with the parametric

method, RUB had improved performance with the PLS components

due to fewer input features, and thus a tighter upper bound. This is

especially true when extracting the main components of the full set of

features.

4.7 | Comparison of upper bounds

A PAC-Bayes upper bound was applied under the same experimental

conditions to test its performance against the upper bound based on

concentration inequalities. As this different bound depends on the

dropout rate, see Equation (6), several values of dropout were applied:

0, 0.25, 0.5, 0.75 and 0.95. The results are shown in Figure 9, where

the dashed horizontal lines represent the value shown in Table 2 with

the RUB approach.

4.8 | Examining predictions with XAI

The same classifier was tested using the 147 features as input fea-

tures. A summary of the performance results are shown in Table 3.

Accuracy values were below 50%. With the same features as input,

the MLP achieved a 58.83% accuracy on the test set by applying

CV. By applying all the features as input, we observed from explain-

able artificial intelligence techniques the main focus of the algorithm.

Due to the better performance obtained using MLP, the subsequent

results are associated with this classification model.

4.8.1 | LIME

LIME allowed us to identify qualitative patterns on the most relevant

features according to a classifier that distinguished case and control

classes. Four examples of individual explanations are shown in

TABLE 2 Performance of the SVM classifier using the nine extracted features in the parametric, non-parametric and both analyses after 1000
permutations.

Parametric Non-parametric Both PLS (all) PLS (both)

10-Fold training Acc (%) 73.59 ± 0.96 71.25 ± 0.83 71.19 ± 0.78 97.18 ± 0.56 70.82 ± 0.82

Sens (%) 67.98 ± 1.31 66.21 ± 1.42 67.72 ± 1.38 97.37 ± 0.67 67.80 ± 1.32

Spec (%) 79.20 ± 1.08 76.28 ± 1.50 74.68 ± 0.98 96.98 ± 0.75 73.85 ± 1.10

AUC 0.80 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 1.00 ± 0.00 0.76 ± 0.01

10-Fold test Acc (%) 66.26 ± 2.37 62.32 ± 2.72 64.45 ± 2.30 49.64 ± 3.04 63.12 ± 2.48

Sens (%) 62.07 ± 2.80 59.65 ± 3.50 61.94 ± 3.03 50.08 ± 4.39 62.00 ± 3.07

Spec (%) 70.44 ± 3.48 64.97 ± 4.02 66.92 ± 3.30 49.23 ± 4.05 64.25 ± 3.66

AUC 0.73 ± 0.02 0.67 ± 0.03 0.68 ± 0.03 0.48 ± 0.03 0.66 ± 0.03

RUB Acc (%) 34.38 ± 1.44 34.96 ± 1.41 33.34 ± 1.22 68.88 ± 1.15 43.77 ± 1.60

Sens (%) 27.51 ± 1.79 29.82 ± 1.86 30.88 ± 2.37 69.77 ± 1.48 40.64 ± 2.30

Spec (%) 41.25 ± 1.52 40.11 ± 2.86 35.81 ± 2.48 67.99 ± 1.54 46.90 ± 2.43

AUC 0.43 ± 0.01 0.39 ± 0.01 0.38 ± 0.01 0.73 ± 0.00 0.49 ± 0.01

Note: Results using four PLS components as input to the classifier are also included when they are extracted from all 147 and the nine globally significant

ones. Upper bounds related to this analyses were 0.3695 (9 features) and 0.2675 (4 features) for a significance level of 0.05.
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Figure 10. These examples are related to correctly classified HC (top

row) and SCZ (bottom row) test samples by the MLP. For this analysis,

the 10 most relevant features in the classification for each sample

were selected and displayed sorted from most to least importance

according to LIME.

All four major lobes of the brain appear in this analysis, although

the Temporal and Frontal lobes have greater representation. The

same applies to the three types of features related to length and

depth. Several features included in Figure 7 as the most relevant fea-

tures, according to parametric and non-parametric approaches, were

also relevant in this analysis. One prominent example was the length

of right posterior occito-temporal lateral sulcus. In the top right sam-

ple, a low value of the length of right posterior occito-temporal lateral

sulcus decreased the probability of being associated to HC class, while

in the bottom right sample, a similar low value increased the chance

of being classified as a SCZ patient.

4.8.2 | SHAP

Figure 11 shows the graphs that this technique returned from the

MLP model. Figure 11 (top left) is a summary graph of the impact of

the features during the classification process. The 10 most relevant

features in the classification are displayed. High SHAP values were

associated with the SCZ, while low values were associated with

HC. Colour blue in the instances of the test sample indicates low

values of the feature whereas a pink value indicates the opposite.

Please refer to the supplementary material for a summary graph with

the 147 features.

Overall, mean and max depth of specific sulci are notable in their

contribution to the classification. In this analysis, the impact of length

is minor. As examples, a high value of the maximum depth of left

intermediate precentral sulcus was associated with the HC class, since

it was associated with lower SHAP values, whilst a high value of mar-

ginal frontal sulcus mean depth was associated with the SCZ class.

Figure 11 also includes several dependency plots of these most

relevant features. Dependency plots illustrate the relationship

between the SHAP value and the magnitude of the feature. A second

feature reflected in the colour of the samples is included, which may

indicate some dependency between features. At the bottom, it is

observed that higher values of left inferior frontal sulcus maximum

depth, that is, deeper values, bring the sample closer to the SCZ class

(higher SHAP value). In the last graph, which includes the comparison

between left anterior lateral fissure maximum and mean depth, there

is a correlation between the two features, since samples with low

values of the maximum depth also have a lower mean depth.

5 | DISCUSSION

In this study, a staged approach of statistical, ML, and DL techniques

were applied to perform an analysis of sulcal patterns in a case–

control comparison of schizophrenia. Feature calculations were per-

formed by BrainVISA, where a 3D U-Net convolutional neural net-

work was implemented to the labeling of sulci (Borne et al., 2020).

Subsequently, sulcal length and depth were selected as features.

These features were standardised and independently tested with

parametric (t-test) and non-parametric (data-driven) approaches.

Machine and deep learning algorithms were applied to classify SCZ

patients from HC, and its predictions are evaluated by XAI

techniques.

Unlike most work on sulcus patterns, the features applied in this

study are extracted fully automatically and encompass the entire cere-

bral cortex. The sulcal dectection processes remain in their early

development, as it is still very difficult to correctly label all the sulcal

patterns, especially those that are small or peculiarly shaped (Maciej

Plocharski and Lasse Riis Østergaard, 2016). In the dataset used, the

amount of detection failures obtained was high, thus reducing

the number of sulci and the number of subjects finally included in the

study. This made it impossible to study some high-interest regions

such as the left hemisphere paracingulate sulcus (Rollins et al., 2020),

while the right hemisphere pair is represented in Figure 1 as right

F IGURE 9 Accuracies obtained with the RUB approach using two
different upper bounds. The dashed horizontal lines are the accuracies
obtained with the upper bound based on concentration inequalities
(Equation (5)). Accuracies with markers are those with the PAC-Bayes
bound (Equation (6). The classifier applied was SVM using the nine
extracted features in the parametric, non-parametric and both
analyses, and four PLS components. Accuracies shown are the mean
values after 1000 permutations.

TABLE 3 Classification performance of models based on SVM
and MLP when the 147 features (the complete set) were fed as input
of the classifier. Cross-validation was used as validation approach
(10-Fold CV).

SVM MLP

10-Fold training

Acc (%) 100 ± 0.00 67.94 ± 8.90

Sens (%) 100 ± 0.00 67.04 ± 26.06

Spec (%) 100 ± 0.00 68.83 ± 21.01

AUC 0.40 ± 0.49 0.71 ± 0.07

10-Fold test

Acc (%) 49.50 ± 9.72 58.83 ± 6.28

Sens (%) 54.00 ± 17.50 57.00 ± 27.87

Spec (%) 45.00 ± 14.47 60.67 ± 28.43

AUC 0.45 ± 0.13 0.56 ± 0.10
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calloso-marginal anterior fissure. Moreover, it was impossible to

include data from other centres because even with standardised MRIs,

similar values for the extracted features were not achieved. For these

reasons, the literature includes a large number of works which com-

bine automatic extraction and manual revision (Janssen et al., 2022;

Liu et al., 2020; Shen et al., 2018), apply manual segmentation (John

et al., 2006) or reduce the study to a concrete number of regions of

interest (Jin et al., 2018; Yang et al., 2019).

Most significant features obtained in this study reflect a similar

importance of length and depth, as it can be seen in Figures 5–7,

albeit slightly higher in the case of depth. Regarding the relevance of

using the maximum or mean depth, their occurrence in the most sig-

nificant features is practically identical. However, given the same fea-

ture, both are not necessarily equally relevant. According to the upper

right graph in Figure 11, while the correlation between maximum

depth of the intermediate precentral sulcus and its effect on classifica-

tion is inversely proportional, the mean depth has no direct relation-

ship with maximum depth.

The hemisphere most represented in these findings is the left

hemisphere, which is consistent with other studies (Cachia

et al., 2008; Liu et al., 2020; Ribolsi et al., 2014; Rollins et al., 2020).

Both the length and depth of the sulci in this hemisphere tended to

be smaller in SCZ subjects, as observed previously (Cachia

et al., 2008). For example, in line with previous studies, Figure 11 (left)

shows a negative correlation between the intermediate precentral sul-

cus and the disease (Nesvåg et al., 2014; Palaniyappan et al., 2014).

Nevertheless, differences were also found in the right hemisphere,

which is aligned with hemispheric symmetry previously discussed in

the literature (Csernansky et al., 2008), and as can be seen in

Figure 10, where both left and right values were relevant in the classi-

fication. Nevertheless, there is something noteworthy in the relevance

of the temporal region and that is that there was no decrease in the

length values of this region for those from the SCZ class. There was a

decrease in the value of maximum depth in the superior temporal sul-

cus in SCZ patients, which is consistent with previous study (Rollins

et al., 2020). In fact, this feature is one of the most relevant obtained

in the non-parametric approach, see Figure 6.

Several other features associated with the temporal cortex can be

seen in Figure 5. Of these, only the posterior terminal ascending

branch of the superior temporal sulcus (S.T.s.ter.asc.post) had a lower

average value for SCZ samples. This is also seen in Figure 11 by the

association of high values of inferior temporal sulcus features with

the SCZ class. On the contrary, the length of posterior occito-

temporal lateral sulcus was associated with smaller values for the SCZ

class, see Figure 10.

As mentioned above, one of the most important regions for the

study of schizophrenia is the medical surface of the brain around

the cingulate sulcus (Garrison, Fernyhough, McCarthy-Jones, Haggard,

F IGURE 10 Local explanations extracted from LIME for the schizophrenia (SCZ) and control (HC) classes. Features in green represent values
that increase the chance of being classified as the class under analysis. Features in red reduce it. Top row: explanations for two correctly classified
HC test samples. Bottom row: explanations for two correctly classified SCZ test samples. To improve comprehensibility, length, mean depth and

maximum depth are underlined in red, green and blue, respectively. On the left side, the letters F, T, P and O represent the feature belonging to
Frontal, Temporal, Parietal or Occipital lobe, respectively. Average and maximum depth are abbreviated as meandepth and maxdepth.
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Carr, et al., 2015; Yang et al., 2019; Yücel et al., 2002). However, it is

impossible to draw clear conclusions about this area in this study due

to the elimination of most of its features at the preprocessing stage

by the failure of the sulcal detection software. It is possible that this

occurred because the surface morphology of this region varies greatly

from one subject to another making it difficult to classify automati-

cally. For this reason, the literature tends to undertake manual detec-

tion of this sulcus (Garrison, Fernyhough, McCarthy-Jones, &

Haggard, 2015; Rollins et al., 2020).

The limitations of this study include the reduced number of sam-

ples available. With a larger sample size, the results obtained could be

strengthened and subtle changes in sulcal dimensions could be

analysed in more detail. This is especially important when applying

deep learning, as shown in its performance in Table 3. When introduc-

ing the 147 features, the network, although not excessively complex,

was not able to obtain robust classifications due to a lack of samples.

Therefore, in order to optimise the information extracted from the

available data and to avoid the curse of dimensionality (samples

vs. features ratio) (Gorriz et al., 2017), in addition to the widely used

cross-validation, resubstitution with upper-bound correction was also

adopted (Jimenez-Mesa, Ramirez, et al., 2023; Vapnik, 1982).

This approach allows better performance to be obtained in small

sample sizes, especially when the number of features is very

small (ideally 1) (Castillo-Barnes et al., 2020; Gorriz et al., 2021;

F IGURE 11 SHAP charts, where each point represents an instance of the test sample. Top left: Summary plot of features importance in the
classification decision; the 10 most relevant are shown. To improve comprehensibility, length, mean depth and maximum depth are underlined in
red, green and blue, respectively. Letters F, T, P and O represent the feature belonging to Frontal, Temporal, Parietal or Occipital lobe,
respectively. Top right and bottom: Dependence plots of some relevant regions according to their SHAP values. Colour in the graph corresponds
to the value of a second feature for that same sample. The positive class is SCZ. Average and maximum depth are abbreviated as meandepth and
maxdepth.
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Jimenez-Mesa, Ramirez, et al., 2023). This is because it takes advan-

tage of all the samples in the set to fine-tune the classification

approach (resubstitution), adjusting the results a posteriori without

bias (upper bounding). This is clearly seen in the PLS component and

sample size studies in Figure 8. For example, while the performance

using CV was very similar for different PLS values, RUB managed to

improve performance when the number of components was small.

With the sample size used in this study something similar happened.

RUB managed to improve the results with increasing sample size,

while CV remained inconsistent for any sample size. The former was

expected, since by increasing the set, the classifier's learning should

theoretically improve.

The contrast between validation approaches is also seen in

Table 2. In this case, by working with a slightly larger number of fea-

tures, 9, the upper bound obtained to apply in RUB was large, and

therefore better results were obtained by applying K-fold. Conversely,

when the number of features was 4 (PLS column), the best perfor-

mance was again achieved by using RUB, irrespective of the upper

bound applied, see Figure 9. In this figure, when using K-fold, the gen-

eralisation capacity of the algorithm was lost. RUB managed to main-

tain results close to those obtained with the most relevant features in

the first columns. Consistently better results were obtained using only

the most relevant features compared to dimensionality reduction

techniques. This is because in the feature extraction process, all ana-

lysed regions were included.

The results in Table 2 also indicate better results when using the

features selected by parametric rather than non-parametric methods.

The difference in accuracy is <4%, so both methods were feasible to

use. This suggests that in the absence of normal distributions or with a

reduced sample size, non-parametric techniques are a tempting option.

However, Figure 7 shows how both methods report relevant features.

Future study will expand the analysis to include the interaction

between features, as well as comparisons between sulcal and gyral

morphological features. For this purpose, further processing tools will

be tested, such as calcSulc and Freesurfer with a multidisciplinary

working group, in order to be able to analyse in detail all the results

obtained. It would also be useful to expand the database to be able to

verify the results obtained on an independent dataset. It would even

be highly interesting if such an extension could include databases

from different regions in order to be able to detect the environmental

impact on schizophrenia. Moreover, more specific studies could be

conducted, such as the identification of patterns in those who suffer

from hallucinations.

6 | CONCLUSION

In this study, we evaluated the potential of several ML and DL tech-

niques combined with sulcal features to undertake a novel case–

control classification task with schizophrenia patients. Sulcal features

were obtained automatically through BrainVISA and encompass the

entire cerebral cortex. These features were analysed using techniques

of feature selection and extraction, considering parametric and non-

parametric approaches. Then, different classification scenarios were

implemented to evaluate the relevance of the features and the perfor-

mance of the validation methods (resubstitution with upper bound

correction and K-fold cross-validation) given the circumstances of the

study, both in terms of number of samples and features. Explainable

artificial intelligence techniques were also applied to detect regions of

interest in schizophrenia and to compare their findings with those

obtained from feature selection techniques. The performance

achieved reflects potentially interesting features that have not previ-

ously been reported in terms of length and/or depth, such as the col-

lateral fissure or the superior postcentral intraparietal superior sulcus.

Moreover, expected results are obtained in temporal or precentral

areas. This study makes manifest the issues involved with classifica-

tion tasks using novel features obtained from small sample-size data-

sets. The techniques described give a roadmap for how researchers

might approach a similar problem, and indicates how dimensionality

reduction (feature extraction) techniques and validation methods such

as upper-bounding resubstitution help to mitigate the inherent

difficulties.
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