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Abstract: Global warming is precipitating an amplification of severe meteorological occurrences such
as prolonged dry spells and episodes of elevated temperatures. These phenomena are instigating
substantial elevations in environmental warmth, with metropolitan regions bearing the brunt of these
impacts. Currently, extreme heat is already impacting 30% of the global populace, and forecasts
suggest that this figure will escalate to 74% in the forthcoming years. One of the objectives outlined
in the United Nations 2030 agenda, specifically within Sustainable Development Goal 11 (SDG11), is
the attainment of sustainable urban development. To achieve this, it is imperative to scrutinize and
delve into urban environmental conditions in order to understand their dynamics comprehensively.
This understanding serves as the foundation for implementing mitigation and resilience strategies
against climate change, ultimately enhancing the well-being of city residents. In this context, the
field of remote sensing and geographic information systems has made substantial advancements.
Notably, the UrbClim model, developed by the European Space Agency, facilitates the assessment of
environmental conditions within numerous European urban centers. This research, utilizing data
from UrbClim, examines the evolution of the heat stress index (Hi) during extreme heat conditions
in Barcelona during the summer of 2017. Leveraging Landsat 8 satellite imagery, we derived the
following variables: the normalized difference vegetation index and the normalized building differ-
ence index. Our findings reveal that during extreme heat conditions, the Hi index experiences an
escalation, with areas characterized by a higher population density and industrial zones displaying
lower resistance in contrast to regions with a lower population density and rural areas, which exhibit
greater resilience to Hi. This disparity can be attributed to higher vegetation coverage and reduced
building density in the latter areas. In this way, Hi increases more quickly and intensely and decreases
more slowly when using high temperatures compared to average temperatures. This is of utmost
importance for the future planning of new urban developments.

Keywords: heat stress index (Hi); UrbClim model; remote sensing; heat mitigation; resilient urbanism

1. Introduction

In recent decades, there has been a substantial rise in environmental temperatures,
as confirmed by the Intergovernmental Panel on Climate Change (IPCC) report. This
increase in temperature is expected to have numerous adverse effects on health and overall
quality of life, particularly for urban dwellers [1,2]. One of the primary contributors to this
phenomenon is the urbanization process, which significantly alters the landscape through
the expansion of urban areas [3,4]. This transformation results in reduced evapotranspira-
tion due to changes in land use and cover [5]. This reduction is primarily driven by the
proliferation of impermeable materials like asphalt and concrete in urban construction
projects. Several studies have indicated that urban areas experience higher temperatures
compared to their rural counterparts, with urban green spaces consistently exhibiting lower
temperatures [6–8]. It is anticipated that this trend will persist, given the United Nations
Organization’s (UNO) recent projections of a 20% increase in the urban population by
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2050 [9]. This demographic shift will lead to a significant expansion of global urban ar-
eas [10]. Furthermore, the phenomenon of urban heat island (UHI) exacerbates temperature
increases in urban areas. UHI intensity is heightened by a variety of urban activities [11]
and is further amplified by extreme weather events such as droughts and heat waves.

Today, it is estimated that between 25 and 30% of the population is affected by high
temperatures, and the forecast is that it will reach 75% in the next 20 years [1]. Given
this situation, it is necessary to carry out studies to identify which areas of the cities are
more prone to high temperatures and therefore to severe thermal stress in order to adopt
measures that protect citizens and improve their quality of life through the determination
of guidelines and taking measures by planners and public entities. The heat stress index
(Hi) is commonly used to measure heat exposure to urban dwellers [12–14] since it obtains
adequate results with environmental conditions and only requires two parameters: ambient
temperature and relative humidity of the air. In order to know and obtain these environ-
mental variables, urban climate models such as the Muklimo of the German meteorological
agency [15] or the UrbClim of the Copernicus climate change service [14,16,17] attached to
the European Space Agency (ESA, Paris, France) are used. This consists of a simple energy
balance model of the urban surface designed to target the spatial scale of a city but that
is fast and comprehensive enough to obtain results with high levels of accuracy [16]. Its
use in urban heat stress studies is widespread [14,18] since it allows to obtain the climatic
variables at a resolution of 100 m.

Existing studies of heat stress in urban areas have reported that it presents a high
spatiotemporal variability and is conditioned by climatic and morphological conditions.
Thus, heat stress rates are higher during the summer months and are more intense in urban
areas with high densities and scarce green areas [12,13,15,19,20]. Thus, the study of heat
stress on the city of Madrid using the UrbClim model between 2008 and 2017 reported an
important correlation between the different land use/land cover (LULC) and heat stress [18].
Studies on four cities (Kolkata, Chenai, Delhi, and Mumbai) in India [21] and on the city of
Nagpur (India) [13] reported that in the face of an environmental situation of heat wave,
heat stress in urban areas increases considerably. This increase is greater in areas with higher
density and population as opposed to neighborhoods with lower density and population,
where the increase in stress is lower. In studies that take into account the morphological
conditions of cities [6,22,23], it is usually common to use the world-known classification of
local climate zones (LCZ) [24]. Thus, heat stress studies on the cities of Nagpur (India) [13],
Brno (Czech Republic) [15] and Antwerp, Brussels, and Ghent (Belgium) [14] reported that
LCZs identified as 2, 3, 5, 8, 9, and 10 had higher heat stress, while LCZs 6, B, D, and G
had lower heat stress due to the greater availability of green areas and fewer impervious
areas. These studies that are based on average temperatures are adequate for determining
the global effects of heat on the population but do not provide complete information on
the periods in which cities exceed average temperatures. To this is added that, in recent
years, warm days are increasing considerably. Thus, and according to data from the State
Meteorological Agency (AEMET), the city of Barcelona presented, during the year 2017,
44 days where the temperature exceeded the 90th percentile and 94 days where it exceeded
the 80th percentile [25]. Given this increase in days where temperatures are high, it is
of great importance to carry out studies such as the one presented here where the Hi is
evaluated not with average temperatures but with extreme temperatures to know the
effects on the population and allow mitigation and resilience measures of future urban
developments that improve people’s quality of life.

Our aim is to assess the thermal stress index within various land cover zones (LCZ)
in the city of Barcelona, Spain, during the summer of 2017, encompassing periods of
both average temperature conditions and extreme heat events (characterized by temper-
atures exceeding the 90th percentile). To achieve this, we employed the UrbClim model,
incorporating climatic parameters such as ambient temperature and relative humidity.
Additionally, we utilized Landsat 8 satellite imagery to derive essential metrics, including
the normalized difference building index (NDBI) and the normalized difference vegetation
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index (NDVI). These indices enable us to quantify changes in land cover and vegetation
density. Furthermore, we accessed data from the World Urban Database and Access Portal
Tools (WUDAPT) atlas to categorize the diverse LCZ present in the city. Through this
comprehensive analysis, we aimed to gain insights into how thermal stress varies across
different LCZ in Barcelona during the specified time frame, shedding light on the impact of
extreme heat events on urban environments.

Therefore, the questions that we propose to answer with this research are the following:
(1) What temporal space variability does Hi present in the LCZs of Barcelona? (2) What is the
variability of Hi when assessed with extreme heat temperatures (temperatures exceeding
the 90th percentile compared to average temperatures)? (3) Is there any relationship
between the heat stress index and the NDVI and NDBI indices in the different LCZ?

This research contributes significantly by providing insights into the evolution of
the stress index during extreme heat conditions within the land cover zones (LCZs) of
Barcelona. The primary objective is to inform and enhance future urban planning projects
undertaken by public authorities. By prioritizing the creation of heat-resistant LCZs, we
can facilitate the city’s transition into more resilient environments in the face of global
warming. This proactive approach not only benefits the urban landscape but also holds
the potential to significantly improve the health and overall quality of life for the city’s
residents.

2. Materials and Methods
2.1. Study Area

The area under study is represented in Figure 1. The city of Barcelona is located at the
following coordinates: latitude 2◦00′14.98′′; longitude 41◦24′19.49′′. Its average altitude
above sea level is 12 m. It has an urban area of 101.35 km2, and its population is 1,636,193.
Following the Köppen–Geiger climate classification, its climate is of the Mediterranean
climate type (Csa) [26]. The average temperature ranges between 5 ◦C in January and
28 ◦C in July, with minimums of 1 ◦C in winter and maximums of 31 ◦C in summer. The city
has an approximate average of 3526 h of sunshine, which gives an average of 9.66 h a day.
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2.2. Methodology

The methodology carried out for this research can be seen in Figure 2. Using Landsat
8 images, NDVI and NDBI indices were obtained at a resolution of 15 m. Next, the high-
precision plane of the different LCZs of the WUDAPT atlas was downloaded. This database
is supported by the values of observation and numerical modelling for the different thermal
characteristics of cities [14,27]. Its use in soil identification studies using LCZ is widely
documented [14,28,29]. The average values of relative humidity and ambient temperature
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for the month of August 2017 were obtained from the UrbClim model of the European
Space Agency (ESA). The calculation of Hi was made with average temperatures and with
temperatures exceeding the 90th percentile. With these data, the heat stress index in the
different LCZ was determined and subsequently correlated with the rest of the indices
through the help of statistical analysis using the STATA software, version 16. The ANOVA
analysis and the data panel were used to determine and analyze the significant correlations
of the variables.
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2.3. Landsat 8 Imagery

The Landsat 8 imagery was obtained from the United States Geological Survey (USGS,
Reston, VA, USA) for the month of August 2017. The Landsat satellite has ten bands with a
resolution ranging from 100 to 15 m. However, a band resampling process was applied to
the images with the help of the Sentinel Applications Platforms (SNAP, Brockmann Consult,
Hamburg, Germany; Array Systems, Los Angeles, CA, USA) software using the bicubic
methodology due to the high quality of the results obtained. It was taken into account that
the cloudiness of the selected days was not more than 5% in order to increase the uptake of
urban areas. After downloading, the images underwent an atmospheric correction process
in OLI bands. For this reason, the process described by the authors [30,31] was followed
using the dark object subtraction (DOS) algorithm with the help of the QGIS software,
(OSGeo, Beaverton, OR, USA) [8,32]. NDVI is calculated using spectral bands according
the Equation (1). With NDBI, we can determine the proportion of built-up areas compared
to areas without buildings using the Equation (2) [33]:

NDVI =
NIR− Red
NIR + Red

(1)
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NDBI =
SWIR− NIR
SWIR + NIR

(2)

2.4. LCZ Mapping

The LCZ map of the city of Barcelona (Figure 3) can be found within the WUDAPT atlas
database [14,27] (https://LCZ-generator.rub.de/submissions (accessed on 25 September
2023)), which is based on the classification established by Steward and Oke [24].
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The identification of the different LCZ allows cataloguing areas that have a specific
thermal regime over time based on their situation and morphological characteristics [5].
Its use in landscape characterization studies is widely documented [28,29,34,35]. Figure 4
shows the surface area (%) occupied by each LCZ within the city of Barcelona. In this way,
it can be observed how the LCZ with greater extension are 2, 5, D, and A, while those with
less extension are LCZ G, 8, E, and 6.
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The accuracy value reported by the WUDAPT atlas for the city is 0.69. However, a
comparison of the different LCZs was made with Landsat and Google Street View satellite
imagery. In general, the LCZs of the atlas are consistent with satellite images and Google
Street View, presenting values that fall within the patterns defined by the authors Stewart
and Oke [36].

2.5. Urbclim Model and Study Period

The environmental temperature and relative humidity data of the city on the estab-
lished dates were obtained from the UrbClim model developed by ESA’s Copernicus
programmed. This is based on a transfer scheme between the Land Surface Atmosphere
and the geosphere called Land Surface Interaction Calculation (LAICA) that was later
modified to include the surfaces of urban areas [16]. The use of the UrbClim model was val-
idated through studies carried out in several European cities such as Madrid [17], Antwerp,
Bruges, and Ghent [14].

In order to know the different periods under study, the temperature data of the AEMET
were taken into account. Thus, in 2017, the month with the highest temperatures in the city
of Barcelona was August. This month’s employment is motivated by the fact that it was
the hottest month of the 2000–2017 series in the city. Within this month, temperatures had
average values on days 10, 11, and 31 and exceeded the 90th percentile on days 2, 3, 4, 5, 17,
18, 23, 24, 25, 28, and 29. Therefore, data from these days were obtained for the study in a
period of average temperatures and above the 90th percentile.

2.6. Heat Stress Index (Hi)

To obtain the heat stress index, the Hi formula developed in 1990 [36] and subsequently
modified [37] according to Formula (3) was used:

Heat Index(Hi) = −8.78469475556 + (1.61139411× T) + (2.33854883889× H)
−(0.14611605× T × H)−

(
0.012308094× T2)− (

0.0164248277778× H2)
+
(
0.002211732× T2 × H

)
+

(
0.00072546× T × H2)− (

0.000003582× T2 × H2) (3)

where Hi is the heat stress index in ◦C, T is the air temperature in ◦C, and H is the relative
humidity in %. Based on the results obtained, the effects on the population can be known
based on Table 1 [13].

Table 1. Classification of heat indices and heat risk conditions.

Heat Index Classification
of Heat Hi (◦C) General Effect on People

Hi-1 No Risk <26.00 No risk to population group.

Hi-2 Very Warm 26.66–32.21 Fatigue possible with prolonged
exposure and physical activity.

Hi-3 Hot 32.22–39.43

Sunstroke, heat cramps, or heat
exhaustion LIKELY and heat stroke
POSSIBLE with prolonged exposure

and/or physical activity.

Hi-4 Very Hot 39.44–51.10
Sunstroke, heat cramps, or heat

exhaustion POSSIBLE with prolonged
exposure and/or physical activity.

Hi-5 Extremely Hot >51.11 Heat/sunstroke HIGHLY LIKELY with
continued exposure.

Source: [13].

3. Results
3.1. NDVI and NDBI Indices

The examination of the NDVI and NDBI indices for the city of Barcelona during the
month of August 2017 is depicted in Figures 5 and 6. The computed average values for
these indices across the city are as follows: NDVI (0.155) and NDBI (0.198). The NDVI
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value of 0.155 implies that the vegetation within the city can be characterized as consistent
and suitable for the month of August. On the other hand, the NDBI value of 0.198 suggests
that the urban landscape predominantly consists of compact areas with medium to high
population density, contrasting with open areas featuring lower density.
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Figure 7 displays the average NDVI and NDBI values for each land cover zone (LCZ)
within the city of Barcelona. The NDVI index demonstrates the highest values in rural
zones, specifically LCZ-A (0.297), B (0.236), G (0.223), 9 (0.211), and C (0.205), while the
lowest values are observed in urban, industrial, and compact areas, particularly LCZ-E
(0.042), 3 (0.047), 8 (0.063), 10 (0.069), and 2 (0.073). Moreover, when considering urban
areas exclusively, compact LCZs exhibit lower NDVI values (0.060) compared to open areas
(0.131). These findings regarding vegetation highlight a denser presence of leafy greenery
in rural and open areas, contrasting with the comparatively lower vegetation cover in
industrial and compact urban zones within the city.
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The most elevated NDBI values are observed in urban zones: LCZ-8 (0.1045), LCZ-2
(0.040), LCZ-3 (0.038), and LCZ-10 (0.018). Conversely, the lowest values are found in
rural regions: LCZ-A (−0.127), LCZ-B (−0.082), LCZ-G (−0.077), and LCZ-9 (−0.064).
Additionally, when considering urban areas exclusively, compact LCZs exhibit higher
NDBI values (0.039) in contrast to open areas (0.008). These values indicate that urban
regions have a more extensive and denser building presence compared to rural areas.
Furthermore, within urban settings, compact and industrial areas tend to have a higher
degree of building occupation than open areas.

Table 2 shows the results of the statistical analysis–ANOVA for the indices (NDVI and
NDBI). Both present distributions of values classified as non-normal within each LCZ but
have statistically significant relationships greater than 99%.

Table 2. ANOVA test results for NDVI and NDBI indices.

NDVI NDBI

Difference of Square 0.0001 *** 0.0001 ***
R2 302.228 248.033

Robust standard errors: *** p < 0.001. R2, linear regression coefficient.

3.2. Spatiotemporal Evaluation of Temperature

In Figures A1 and A2 of the Appendix A, one can see the spatiotemporal analysis of
the average ambient temperature per hour of the city of Barcelona with the average values
and with the values above the 90th percentile. It is reported that the lowest temperatures
in both environmental situations are located in rural areas or outside urban areas. These
areas have higher values of the NDVI index and lower values of the NDBI index. On the
contrary, the highest temperatures are located in urban areas. The average temperature
of the city of Barcelona with normal values was 26.87 ◦C, while the average temperature
when the values were above the 90th percentile was 30.07 ◦C, which reports an average
increase of 11.90%. These values correspond to the weighted average of each value in the
corresponding pixel.

It can be observed (Figure 8) how the average increases in temperatures were higher
in the urban LCZ (2, 3, 4, 5, 6, 8, 9, and 10) with an average value of 11.06% compared
to the rural LCZ (A, B, C, D, E, F, and G) where the average growth was 10.59%. It
can also be seen how within the urban LCZ the growth was higher in the compact LCZ
(2 and 3) (11.02%) compared to the open areas (4, 5, and 6) where the growth was 10.57%.



Urban Sci. 2023, 7, 102 9 of 26

This circumstance could be motivated by two important factors: the use of impermeable
materials with high thermal absorption in the construction of urban areas and the low rates
of surfaces destined to green areas that prevent the cooling of cities. Building materials
such as asphalt, bricks, and concrete heat up during the day due to the solar radiation
they receive, and after the sun sets, they release the heat absorbed during the day into the
atmosphere. This sudden warming is what produces and intensifies the urban heat island
(UHI) phenomenon [6,11,38]. On the other hand, the regular distribution of trees in streets
and green areas in cities has been considered one of the most effective strategies to avoid
environmental warming [39].
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Figure 8. Temperature evolution values per LCZ.

Table 3 shows the results of the temperature by LCZs. Both present distributions of val-
ues classified as non-normal within each LCZ but have statistically significant relationships
greater than 99%.

Table 3. ANOVA test results for temperatures.

Sources Temperature

Difference of Square 0.0001 ***
R2 294.835

Robust standard errors: *** p < 0.001. R2, linear regression coefficient.

To establish the relationships between temperature and the various indices (NDVI and
NDBI), a statistical analysis technique known as the data panel was employed. Initially,
the Pearson correlation coefficient was computed, and subsequent analysis was conducted.
The results are presented in Tables 4 and 5.

Table 4. Pearson’s coefficient between temperature and NDVI and NDBI indices.

Temperature NDVI NDBI

Temperatures 1
NDVI −0.676 1
NDBI 0.593 −0.877 1
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Table 5. Results between temperature and NDVI and NDBI indices.

β p sd

NDVI −9.461 0.000 *** 0.9623
NDBI 0.028 0.000 *** 1.2810

R2 = 0.46 F = 209.52 Prob > chi2 = 0.00

β, coefficient. Robust standard errors: *** p < 0.001. sd, standard deviation; R2, linear regression coefficient;
F, statistical.

Table 4 indicates that temperature exhibits a positive correlation with the NDBI index
(0.593) and a negative correlation with the NDVI index (−0.676). These findings suggest
that as temperature increases, there is a tendency for higher values of the NDBI index,
signifying greater urban density. Conversely, higher temperatures are associated with
lower NDVI values, indicating reduced vegetation density.

The statistical analysis yielded significant and robust results, confirming the rela-
tionships identified earlier. Specifically, the results indicate a statistically significant
and positive relationship above the 99% confidence level between the ambient tempera-
ture variable and the NDBI variable. In contrast, there is a negative relationship above
the 99% confidence level with the NDVI variable. The statistical model’s goodness of
fit is exceptionally high, with a significance level exceeding 99%, as evidenced by the
Prob > Chi2 value of 0.000. These analytical findings provide strong empirical support for
the previously established relationships.

3.3. Spatiotemporal Evaluation of Humidity

Figures A3 and A4 of Appendix A show the spatiotemporal analysis of the average
hourly humidity of the city of Barcelona in the two environmental situations studied. It
is observed that the highest humidity values in both situations are concentrated in rural
areas (higher values of the NDVI indices), while the lowest values are located in urban
areas (higher values of the NDBI indices). The average humidity of the city of Barcelona
under normal environmental conditions was 64.87%, while the average humidity when the
temperature values were above the 90th percentile was 53.17%. These values demonstrate
a decrease of 17.78%.

The analysis reveals noteworthy patterns in humidity distribution across different land
cover zones (LCZs) in the study area (Figure 9). Specifically, humidity levels are notably
higher in rural LCZs (A, B, C, D, E, F, and G) compared to urban LCZs (2, 3, 4, 5, 6, and 8).
Additionally, it is evident that the reduction in humidity when the temperature rises is less
pronounced in rural LCZs (−15.62%) as opposed to urban LCZs (−18.69%). This variation
can be attributed to the phenomenon of evapotranspiration from plant elements. During
periods of elevated temperatures, these elements release moisture into the atmosphere,
contributing to an environmental cooling effect [40]. Moreover, within urban areas, compact
LCZs (2 and 3) exhibit relatively smaller declines in humidity (−19.05%) compared to open
LCZs (4, 5, and 6) (−19.43%). This difference may be attributed to the fact that open
areas have higher values in the NDVI indices, indicating more extensive green spaces
with vegetation. These green areas enhance ambient humidity through the process of
evapotranspiration, mitigating the decrease in humidity during temperature spikes.

Table 6 shows the results of the humidity by LCZs. Both present distributions of values
classified as non-normal within each LCZ but have statistically significant relationships
greater than 99%.

Table 6. ANOVA test results for humidity.

Sources Humidity

Difference of Square 0.0001 ***
R2 295.147

Robust standard errors: *** p < 0.001. R2, linear regression coefficient.
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3.4. Heat Stress Index (Hi)

In Figures A5 and A6 of Appendix A, one can see the spatial temporal analysis of
the average Hi by hours of the city of Barcelona in the two environmental situations
investigated. It can be seen how the lowest values of Hi in both situations are concentrated
in areas outside urban or rural areas (lower values of the NDBI indices), while the highest
values are located in urban areas and within them in the city center (lower values of the
NDVI indices). During the days with average temperature values, the Hi was 26.87 ◦C,
while the days with temperatures above the 90th percentile take a value of 31.22 ◦C. This
represents an average increase of 16.19%.

The analysis reveals that the highest Hi values (Figure 10), in both situations consid-
ered, are concentrated in urban areas (characterized by higher NDBI values), whereas the
lowest Hi values are situated in rural areas or on the outskirts of the city (associated with
higher NDVI values). Furthermore, it is evident that the most substantial increases in Hi
occur in urban land cover zones (LCZs 2, 3, 4, 5, 6, 8, 9, and 10), while, conversely, the
increases are more modest in rural LCZs (A, B, C, D, E, F, and G). In specific terms, the city
of Barcelona has witnessed an average Hi growth of 15.80% in urban LCZs, whereas the
growth in rural LCZs has been slightly lower at 14.20%. This demonstrates that the urban
areas have experienced a relatively higher increase in heat stress compared to the rural areas,
reflecting the impact of urbanization and its associated factors on thermal stress levels.

Figures A7 and A8 of Appendix A show the rating of the Hi index as a function of the
effects on the population (Table 1) under normal environmental conditions and when the
values were above the 90th percentile. It can be observed how in normal environmental
conditions and during daytime hours, the city of Barcelona presents an index rated as very
warm that is minimized to the rating of without risk during the night hours. In conditions
above the 90th percentile, there is a strengthening of the Hi stress index in such a way that
during the night hours, the areas classified without risk are transformed to very warm areas,
and during the daytime hours, the areas classified as very warm become classified as hot.

Figure 11 shows the result of Hi under both environmental conditions for each LCZ. In
a situation of average temperatures, the open zones (3 and 4) and zones without coverage
(E) heat up quickly before the reception of the first rays of sun. On the contrary, and
when it gets dark, rural areas cool quickly compared to urban areas that maintain high
temperatures until dawn. In a situation of temperatures above the 90th percentile, all LCZs
warm up quickly, but open and rural LCZs cool more quickly once the sun goes down.
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Figure 11. Hi index under normal ambient conditions by LCZ.

Table 7 displays the Hi results categorized by LCZs. In both cases, the distributions
of values within each LCZ are characterized as non-normal. However, there are statisti-
cally significant relationships exceeding 99% between different LCZs, both during normal
environmental conditions and heatwave periods.
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Table 7. ANOVA test results for Hi.

Sources Hi

Difference of Square 0.0001 ***
R2 294.835

Robust standard errors: *** p < 0.001. R2, linear regression coefficient.

Tables 8 and 9 present the outcomes of the statistical analysis. Table 8 highlights
the positive correlation between Hi and the NDBI index (0.592), signifying that higher
building density, as indicated by NDBI, corresponds to elevated Hi values. Conversely,
Hi exhibits a negative correlation with the NDVI (−0.655) and LCZ (−0.471) indices. This
indicates that regions with more abundant vegetation cover (reflected in NDVI) and areas
categorized as non-urban (LCZ) tend to have lower Hi values, underscoring the cooling
effect of vegetation and the mitigating impact of non-urban land cover on heat stress.

Table 8. Pearson’s coefficient between Hi and NDVI, NDBI, and LCZ indices at normal temperatures.

Hi NDVI NDBI LCZ

Hi 1
NDVI −0.675 1
NDBI 0.592 −0.877 1
LCZ −0.471 0.422 −0.414 1

Table 9. Data Panel results between Hi and NDVI, NDBI, and LCZ indices at normal temperatures.

β p sd

NDVI −8.643 0.000 *** 0.9623
NDBI 0.842 0.000 *** 1.2810
LCZ −0.063 0.000 *** 0.0097

R2 = 0.49 F = 163.78 Prob > chi2 = 0.00

β, coefficient. Robust standard errors: *** p < 0.001. sd, standard deviation; R2, linear regression coefficient;
F, statistical.

The results report a positive relationship of more than 99% with the NDBI variable
and a negative relationship with the NDVI and LCZ variables.

The process of statistical analysis is repeated in the periods of heat wave suffered
in the city of Barcelona. Table 10 shows how the Hi again presents a positive correlation
with the NDBI index (0.610) and a negative correlation with the NDVI (−0.693) and LCZ
(−0.481) indices. The variables investigated have a higher correlation in conditions of
temperatures above the 90th percentile than in average temperatures. Therefore, the
relationships between the variables are stronger when temperatures increase. Table 11
shows the results of the statistical analysis in ambient conditions above the 90th percentile
repeat the previous results.

Table 10. Pearson’s coefficient between Hi and NDVI, NDBI, and LCZ indices with warm temperatures.

Hi NDVI NDBI LCZ

Hi 1
NDVI −0.693 1
NDBI 0.610 −0.867 1
LCZ −0.481 0.411 −0.403 1
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Table 11. Data panel results between Hi and NDVI, NDBI, and LCZ indices with warm temperatures.

β p sd

NDVI −8.422 0.000 *** 0.929
NDBI 0.962 0.000 *** 1.221
LCZ −0.066 0.000 *** 0.010

R2 = 0.22 F = 10.15 Prob > chi2 = 0.00

β, coefficient. Robust standard errors: *** p < 0.001. sd, standard deviation; R2, linear regression coefficient;
F, statistical.

4. Discussion

The analysis of the NDVI and NDBI indices in relation to land cover and urban
morphology reveals distinct patterns within the study area. Firstly, it is evident that the
NDVI index, which is associated with vegetation, exhibits higher values in rural areas
(LCZ-A, B, C, D, E, F, and G) and open urban areas (LCZ-4, 5, and 6). Conversely, industrial
and compact urban areas (LCZ-2, 3, and 10) display lower NDVI values. This indicates that
rural and open urban areas have more extensive vegetation cover, while industrial and
compact urban zones have less greenery. On the other hand, the NDBI index, linked to
building density, showcases higher values in urban areas (LCZ-2, 3, 5, 6, and 10) compared
to rural areas (LCZ-A, B, C, D, E, F, and G), where NDBI values are lower. Moreover, among
urban LCZs, the NDBI values are higher in compact zones (2 and 3) as opposed to open
areas (4, 5, 6, 8, and 9), where NDBI values are lower. This trend highlights the correlation
between building density and NDBI values. In areas with higher building density, NDBI
values are elevated, while in areas with lower building density, NDBI values are lower.
These observations collectively define the urban morphology of each city and LCZ under
investigation, reflecting the extent of vegetation and building density within these regions.
These results are in line with other studies conducted by other authors [6,41–45] in other
cities and territories allowing to validate the data obtained in this research. These studies
report results that mainly relate low NDVI values with high NDBI index values in compact
areas of cities. Conversely, high NDVI values are related to low NDBI values in rural areas.

The analysis revealed a significant increase in temperatures during warm periods.
Interestingly, when examining both periods under investigation, it becomes apparent that
urban areas tend to have lower temperatures during the morning hours compared to rural
areas. However, as the day progresses, urban temperatures surpass those in rural areas.
Several factors contribute to this pattern. Firstly, during the morning hours, urban areas
receive less solar radiation compared to rural areas. This can be attributed to several
factors. First, the presence of trees and buildings in urban areas casts shadows, reducing
the amount of direct sunlight reaching the ground. Second, urban areas often consist of
heterogeneous surfaces with high thermal absorption properties. These surfaces contribute
to lower morning temperatures, as they absorb less heat from the sun. Lastly, the presence
of vegetation in urban areas has a cooling effect on the environment during the morning,
while areas lacking greenery experience warming rates. The shadows created by trees and
buildings in cities, particularly in compact urban areas, play a pivotal role in preventing the
rapid heating of surfaces when solar radiation is limited during the morning hours. This
phenomenon contributes to the observed temperature variations between urban and rural
areas throughout the day. This prevents these heated walls from subsequently releasing
high doses of heat into the atmosphere and altering the temperature of the area [43,46,47].
On the contrary, the temperature during the night hours is higher in urban areas as opposed
to rural areas, where it is lower. This is motivated by the fact that once the sun goes down,
urban areas tend to cool slowly since heat is conserved, while rural areas cool quickly. The
more compact an area is, the more surface area of walls it has, and the more heat is retained
in them. The use of waterproof construction materials with high thermal absorption
inside cities causes them, after the sun goes down, to release the heat absorbed during the
day [39,43,48]. Within urban areas, the temperature is higher in compact and industrial
areas (LCZ-2, 3, and 10) than in open areas (LCZ-4, 5, and 6). This circumstance is again
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influenced in the configuration presented by the LCZ-4, 5, and 6, with buildings located at
great distances and large green spaces with vegetation. Numerous studies have shown that
vegetation has a cooling effect in urban areas [49–51], ranging from 1 to 3 ◦C. Our results
are in line with the results reported by other authors [14,15,17] who used the UrbClim
climate model in their studies of other European cities.

The analysis underscores a significant decrease in humidity levels during periods
of elevated temperatures. However, consistently across both periods studied, humidity
values are higher in rural areas when compared to urban areas, where humidity levels
are notably lower. Specifically, the lowest humidity values are observed in compact and
industrial areas (LCZ 2, 3, 10, and 6). As previously noted, these areas exhibit lower NDVI
and PV indices and higher values in the NDBI and UI indices. Concurrently, they also
experience higher temperatures. This observed correlation can be attributed to the presence
of vegetation and its evapotranspiration process. The amount of vegetation surface directly
influences the magnitude of evapotranspiration. In areas with more extensive plant cover,
the evapotranspiration process is more pronounced. Consequently, this leads to higher
ambient humidity levels and lower temperatures. In summary, the amount of vegetation
available within the different LCZs plays a crucial role in influencing humidity levels and,
consequently, temperature variations within these areas. This circumstance is corroborated
by the study carried out on four cities in the Tennessee region (TN, USA), where it was
reported that trees minimize the heat effect due to increased environmental humidity [19].
This circumstance denotes that our results are in line with the research carried out by other
authors [14,15,17] who used the UrbClim climate model in their studies of other European
cities.

An important variability of Hi was evidenced in the different LCZs of the city both
with average temperatures and with temperatures above the 90th percentile. Thus, and
during the first periods, heat stress during the day can be qualified as very warm be-
tween 12:00 and 19:00 h in all LCZs. On the contrary, and during the nights and at dawn
(22:00 and 09:00 h), the heat stress index can be qualified as without risk. It has been
corroborated how rural LCZs with vegetation increase in Hi more slowly during the morn-
ing hours (10:00 and 11:00 h), while in the afternoons, it is reduced more quickly there
than in urban areas. During periods of ambient temperatures above the 90th percentile, a
significant intensification of Hi is reported in the different LCZ, especially between 9:00 and
19:00 h, where a hot Hi is reported. In the mornings, Hi intensifies rapidly in all LCZs, but
in the afternoons, it decreases in intensity more rapidly in rural areas. In this sense, compact
and industrial LCZs (LCZ-2, 3, and 10) have higher Hi values and maintain intensity for
longer than open areas (LCZ-4, 5, and 6) that minimize the value in less time. This is
because the built-up areas of the city have a higher percentage of impermeable materials
that absorb heat more quickly compared to rural areas. At night, this heat is released into
the atmosphere, maintaining high values of Hi and needing more time to minimize its
effects. This trend was observed and reported in studies on the cities of Kolkata, Chenai,
Delhi, Mumbai, and Nagpur (India), where the studies related the areas with the largest
built-up area and less vegetation cover with the hottest areas and with higher Hi [13,21]. In
turn, our results are in line with the research carried out by other authors [14,15,17]. The
regression model reported statistically significant and negative relationships between Hi
and NDVI and LCZ indices and positive relationships with the NDBI variable, evidencing
what was reported analytically. In turn, these relationships intensify under conditions of
temperature increases, signifying the importance of green areas as a measure to mitigate
the effects of Hi on the population. Therefore, our results report a greater and faster growth
of the HI index and a subsequent slower decrease compared to studies that used average
temperatures [14–16].
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5. Conclusions

This study assessed the heat stress index (Hi) in Barcelona during August 2017, utiliz-
ing data from ESA’s UrbClim climate model both under conditions of average temperatures
and during periods when temperatures exceeded the 90th percentile. To enhance the
evaluation and facilitate the extrapolation of results to other cities, the well-established
classification of land areas based on land cover zones (LCZ) was employed.

The findings indicate that a significant portion of Barcelona’s population experienced
an average heat stress index classified as “very warm” during the daytime and “without
risk” during the nights in the presence of average temperatures. However, these values
increased notably on days when temperatures exceeded the 90th percentile, categorizing
the daytime Hi as “hot” and the nights as “very warm”.

Furthermore, the analysis revealed substantial temporal and spatial variability in
Hi, with considerable increases during intense heat episodes. A positive correlation was
established between Hi and the NDBI index, while a negative correlation was observed
with the NDVI and LCZ indices. Hi values were notably higher in compact and industrial
LCZs (LCZ-2, 3, and 10) compared to open and rural LCZs (LCZ-4, 5, 6, D, B, and G), which
exhibited lower Hi values and greater resilience to extreme heat events. This underscores
that areas with higher percentages of impervious surfaces and fewer green spaces are more
susceptible to experiencing higher levels of heat stress. Moreover, these areas tend to heat
up faster and retain heat for longer periods.

Based on these results, it is recommended that urban planning for new areas prioritize
open spaces with substantial green areas over compact, high-density developments with
limited green spaces. Additionally, to increase greenery in existing compact areas, the use
of green facades and green roofs is proposed. Such measures can significantly enhance the
resilience of urban areas to extreme heat events, ultimately improving the quality of life for
city residents.

Regarding the limitations of this study, it is necessary to review the need to obtain
more updated data regarding humidity and temperature values. Remember that the last
five summers have been classified by ESA’s Copernicus as the five warmest of the centuries.
Therefore, and as future lines of research, it is necessary to update the data presented here
with the values of recent summers in order to improve the predictions presented here and
improve people’s quality of life.
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Figure A2. 90th percentile hourly mean ambient temperatures. Figure A2. 90th percentile hourly mean ambient temperatures.
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Figure A3. Hourly average humidity. Figure A3. Hourly average humidity.
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Figure A4. 90th percentile hourly mean humidity. Figure A4. 90th percentile hourly mean humidity.
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Figure A5. Hourly average Hi (°C). 
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Figure A6. 90th percentile hourly mean Hi. 
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Figure A7. Hi hourly average (scale according to Table 1). 
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