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Abstract

How much genome differences between species reflect neutral or adaptive evolution is a central question in evolutionary 
genomics. In humans and other mammals, the presence of adaptive versus neutral genomic evolution has proven particularly 
difficult to quantify. The difficulty notably stems from the highly heterogeneous organization of mammalian genomes at mul
tiple levels (functional sequence density, recombination, etc.) which complicates the interpretation and distinction of adap
tive versus neutral evolution signals. In this study, we introduce mixture density regressions (MDRs) for the study of the 
determinants of recent adaptation in the human genome. MDRs provide a flexible regression model based on multiple 
Gaussian distributions. We use MDRs to model the association between recent selection signals and multiple genomic factors 
likely to affect the occurrence/detection of positive selection, if the latter was present in the first place to generate these as
sociations. We find that an MDR model with two Gaussian distributions provides an excellent fit to the genome-wide distri
bution of a common sweep summary statistic (integrated haplotype score), with one of the two distributions likely enriched in 
positive selection. We further find several factors associated with signals of recent adaptation, including the recombination 
rate, the density of regulatory elements in immune cells, GC content, gene expression in immune cells, the density of mam
mal-wide conserved elements, and the distance to the nearest virus-interacting gene. These results support the presence of 
strong positive selection in recent human evolution and highlight MDRs as a powerful tool to make sense of signals of recent 
genomic adaptation.
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Significance
Human populations have been exposed to selective pressures that can trigger adaptation in the genome. The search for 
signals of these selective events is however obscured by the substantial variation across the genome of factors that are 
relevant for the presence of adaptation. We analyze the impact of multiple factors on adaptation using a biologically 
meaningful approach that considers the influence of adaptive and nonadaptive processes. This method outperforms 
classical correlation approaches, finding multiple functional elements associated with adaptation across the genome. 
This includes novel associations that emerge only after controlling for multiple confounding factors. Our results strongly 
suggest that adaptation was present in recent evolutionary times, producing a widespread correlation between func
tional elements and adaptation signals in the human genome.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
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Note on the Language Used in This 
Manuscript
In this manuscript, we use discrete population groups, such 
as the Yoruba. We want to emphasize that these discrete 
groups are only used for convenience and clarity when pre
senting our results, but in fact represent arbitrary human 
constructions, the same way that the boundaries of coun
tries are arbitrary. There is an unbroken continuum and 
mixing of geographical ancestries across groups often iden
tified as distinct populations across the world. The discrete 
groups we use are, as such, by no means discrete genetic 
entities. Once grouped together, the grouped individuals 
only happen to be genetically more similar, with their an
cestries coming from specific geographic locations more 
predominantly than individuals from the other groups.

Introduction
The characteristics of the human genome can influence both 
the occurrence and the detection of recent positive selection 
in a specific genomic region. Similar to other mammals, the 
human genome has a complex organization, with highly 
heterogeneous recombination rates and distribution of 
functional elements (regulatory or coding) along chromo
somes. This inherent heterogeneity in the factors that are 
likely to influence both the occurrence of positive selection 
and our ability to detect it has complicated the study of 
the prevalence of recent adaptation in the human genome 
(Hernandez et al. 2011; Enard et al. 2014). Another import
ant complicating factor is that statistics of recent adaptation 
have complex distributions across the genome (see below), 
which limits the ability of classic correlation and regression 
approaches to analyze the genomic factors that influence 
the occurrence/detection of recent genomic adaptation. 
There is nevertheless growing evidence from genomic scans 
suggesting that recent positive selection in the form of se
lective sweeps may have been relatively common during re
cent human evolution (Akey et al. 2002; Voight et al. 2006; 
Sabeti et al. 2007; Tang et al. 2007; Fumagalli et al. 2011; 
Johnson and Voight 2018; Enard and Petrov 2020). More 
recent and powerful selection scans using machine 
(deep) learning approaches suggest that a non-negligible 
proportion of the human genome may be affected by select
ive sweeps (Schrider and Kern 2017; Mughal et al. 2020; 
Gower et al. 2021; Hejase et al. 2022). Advances on this to
pic will depend on our ability to understand what factors 
govern the local genomic rate of recent adaptation along 
human chromosomes. Indeed, if signatures of selective 
sweeps do not occur randomly, as expected if all sweep sig
nals are false positives only reflecting genetic drift, but in
stead associate nonrandomly with functional elements in 
the genome, then this provides evidence that sweeps had 
to be present in the first place to generate the association.

What factors are then a priori expected to matter for re
cent adaptation? Among all genomic factors, recombin
ation is a key process determining the patterns of linkage 
disequilibrium between alleles across the human genome 
(The International HapMap Consortium 2005), which can 
strongly influence the probability of detecting recent selec
tion in the form of selective sweeps. The lower the recom
bination rate, the larger the genomic region where neutral 
variants will hitchhike to higher frequencies along with an 
advantageous variant, before recombination breaks down 
their linkage disequilibrium (Sabeti et al. 2006; Pritchard 
et al. 2010). The higher the recombination rate, the smaller 
the genomic region affected by the sweep. Different sweep 
sizes in low- and high-recombination regions result in a 
higher statistical power to detect sweeps in low- 
recombination region than in high-recombination region 
(Nielsen et al. 2007; O’Reilly et al. 2008; Johnson and 
Voight 2018; Booker et al. 2020). In parallel, the increase 
in linkage disequilibrium in low-recombination regions fa
vors the appearance of larger neutral haplotypes making 
these regions more prone to detect false positive sweeps 
(O’Reilly et al. 2008; Booker et al. 2020). In addition, recom
bination rate influences the probability of deleterious var
iants interfering with the adaptive ones given the 
increased probability of linkage disequilibrium between 
them under low recombination (Hill and Robertson 1966; 
Presgraves 2005; Castellano et al. 2016). Finally, the associ
ation between hotspots of recombination and regulatory 
elements (Spruce et al. 2020) could make it particularly dif
ficult to detect signals of positive selection in these regula
tory regions, where adaptation is specifically expected to 
happen (Enard et al. 2014). Therefore, not controlling for 
variation in recombination rates would reduce the power 
to detect signals of selection in regions expected to have 
undergone selective sweeps (see results below). This het
erogeneity, together with other factors such as background 
selection (BGS), has contributed to a persistent debate 
around the presence of selective sweeps in the human gen
ome (Hernandez et al. 2011; Enard et al. 2014). 
Consequently, the analyses presented here consider the im
pact of heterogeneous recombination rates and other fac
tors on positive selection.

If recent adaptation and selective sweeps in particular 
were present during recent human evolution, we expect 
that other factors on top of recombination should be rele
vant for their occurrence and detection in the human gen
ome. Generally, we expect that selective sweeps should 
occur more frequently around functional segments of the 
genome where adaptive mutations are expected to take 
place (Enard et al. 2014). Therefore, we should find enough 
signals of positive association between selective sweeps 
and the overall density of functional elements, either cod
ing or noncoding. In a pioneer analysis, Barreiro et al. 
(2008) showed for the first time a relationship between 

Salazar-Tortosa et al.                                                                                                                                                        GBE

2 Genome Biol. Evol. 15(10) https://doi.org/10.1093/gbe/evad170 Advance Access publication 15 September 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/15/10/evad170/7275015 by U

niversidad de G
ranada - Biblioteca user on 03 M

ay 2024



genome-wide signatures of positive selection and the distri
bution of functional elements. Among those highly differ
entiated single nucleotide polymorphisms (SNPs), they 
found an excess of nonsynonymous SNPs compared with 
nongenic SNPs. Note, however, that they did not explicitly 
control for the impact of BGS, the coincident removal of 
neutral variants together with genetically linked deleterious 
mutations, which varies between the classes analyzed 
(McVicker et al. 2009; Hernandez et al. 2011). We also ex
pect specific functions to be associated with an increased 
occurrence of selective sweeps. For example, the presence 
of genes coding for proteins that interact with pathogens, 
and viruses in particular (virus-interacting proteins or VIPs), 
should influence the frequency of sweeps in a given gen
omic region, independently of other genomic features 
(Enard and Petrov 2020; Souilmi et al. 2021). More gener
ally, genomic regions with immune genes are expected to 
have experienced more sweeps (Barreiro et al. 2009; 
Deschamps et al. 2016; Enard et al. 2016; Enard and 
Petrov 2018). Similarly, reproduction-related functions 
show signals of positive selection (Nielsen et al. 2005; 
Voight et al. 2006), thus tissues related with these functions 
should be associated with the frequency of sweeps.

Several summary statistics are currently available to 
detect recent genomic adaptation. Among all possible 
choices, the statistics that use the structure of haplotypes 
along chromosomes are the most appropriate to investi
gate the presence and determinants of recent positive 
selection. First, haplotype-based statistics have good statis
tical power to detect strong and recent incomplete sweeps 
(Voight et al. 2006; Ferrer-Admetlla et al. 2014; Garud et al. 
2015; Enard and Petrov 2020). Second, they are not con
founded by BGS (Enard et al. 2014; Schrider 2020; see 
also results below). This insensitivity is a particularly import
ant attribute when studying genomic regions subject to dif
ferent levels of BGS. Given that multiple genomic factors 
correlate with this process, their association with selection 
can be confounded if the summary statistic used is also sen
sitive to BGS. In this regard, the integrated haplotype score 
(iHS; Voight et al. 2006) is a haplotype-based statistic that 
has been extensively tested (Voight et al. 2006; Barreiro 
et al. 2009; Enard et al. 2014; Johnson and Voight 2018), 
and can detect selection signals both from de novo muta
tions and to some extent from standing genetic variation, 
provided that selection started from not too high initial al
lele frequency (Ferrer-Admetlla et al. 2014; Enard and 
Petrov 2020). This summary statistic can be used to scan 
many genomes given the availability of fast implementa
tions (Maclean et al. 2015). Therefore, we use iHS as a 
measure of recent positive selection across the human gen
ome (Materials and Methods). As shown in figure 1, iHS has 
a complex, asymmetric distribution across the genome that 
is not well captured by classic distributions (supplementary 
Results S1: fig. S1, Supplementary Material online). Despite 

previous efforts made to correlate functional density with 
signals of positive, especially recent, selection (Enard et al. 
2014), the classical correlation/regression approaches 
used so far do not fit well the actual distribution of sum
mary statistics like iHS. In other words, the lack of fit of 
these statistics to a Gaussian distribution violates an import
ant assumption of classical linear modeling approaches. We 
previously made claims about the presence of positive se
lection based on positive correlations between functional 
density and summary statistics (Enard et al. 2014), but these 
correlations could be an artifact caused by a lack of fit to the 
summary statistic.

Furthermore, classic regression and correlation analyses 
may not capture well the process of recent positive selec
tion through selective sweeps measured by iHS. Indeed, 
classic regression and correlation assume a linear associ
ation between iHS and a factor contributing to recent posi
tive selection in a homogeneous way across the entire 
genome. This neglects the localized nature of recent selec
tion events that have likely affected only a limited genomic 
portion, while leaving the rest of the genome (and likely 
substantial majority) without any correlation between iHS 
and a contributing factor, although the latter did contribute 
to selection occurring locally in the genome. This creates a 
situation where only the higher values of a statistic such as 
iHS, those that are more likely to represent selection, might 
correlate at all with genomic factors influencing selection. 
In this respect, the distribution of iHS is particularly interest
ing, with an upper tail that is much heavier than the lower 
tail. We can hypothesize that localized selection in a limited 
portion of the genome might have generated this heavy 
tail, rather than a scenario where more generalized selec
tion covering the entire genome would have shifted the 
whole distribution. To solve the limitations of classical 
methods, we revisit the modeling of recent positive selec
tion by developing a new approach that properly accounts 
for the complex distribution of iHS.

Here, we model the genomic determinants of recent 
positive selection in the human genome. We measure re
cent selective sweeps with the iHS statistic from five human 
populations represented in the 1000 Genomes phase 3 
data set (The 1000 Genomes Project Consortium 2015). 
The iHS statistic has more power to detect recent and in
complete sweeps, while it has reduced power to detect 
complete sweeps or sweeps more than 30,000 years old 
(Sabeti et al. 2006; Enard and Petrov 2020). Therefore, 
we restrict our analyses to selection that occurred after 
the main human migration out of Africa (Henn et al. 
2012). To account for the observed complexity of the distri
bution of iHS, we use mixture density regressions (MDRs) to 
test the association between iHS and several genomic fac
tors that are possible determinants of selection (Materials 
and Methods). MDRs can fit a mixture of several distribu
tions to the observed statistic. In our case, we fit a mixture 
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of two Gaussian-distributed components to the observed 
iHS (Materials and Methods). The first component fitting 
lower values of iHS is expected to match more the distribu
tion of iHS under drift, the portion of the genome that was 
not affected by localized selection. The second component 
fitting higher iHS values is expected to be comparatively 
enriched in positive selection. Then, we look at the genomic 
factors that influence iHS in the regression model, 
interpreting the significant association of a genomic factor 

with the selection-enriched component as evidence for 
positive selection (Materials and Methods). This differs 
from other approaches trying to understand the determi
nants of selection. Previous studies have focused on the de
tection of classic partial correlations between selection and 
genomic factors (e.g., Lohmueller et al. 2011). Given that 
the impact of hitchhiking on the human genome is likely lo
calized and not expected to influence the entire genome, 
the signal of recent sweeps could be diluted enough across 

FIG. 1.—Mixture of Gaussian distributions fitting observed iHS (1,000 kb windows) for the five studied populations: (A) Africa—Yoruba; (B) Europe—Utah 
residents with Northern and Western European ancestry; (C) Europe—Toscani; (D) East Asia—Han Chinese; (E) America—Peruvians. For each population, the 
figure shows two Gaussian distributions, components 1 and 2 of iHS, being the latter enriched in positive selection. In that component, iHS linearly depends on 
the genomic factors considered. The figure shows iHS after log transformation and scaling (see Materials and Methods). Legend, light blue, observed iHS; dark 
blue, mixture model; full red curve, component 1 of the mixture model; dashed red curve, component 2 of the mixture model enriched in positive selection.
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the genome so that this classic approach misses true selec
tion signals. An approach that specifically uses a 
selection-enriched component should have more power 
to reveal the impact of positive selection.

As expected according to previous studies, we find a 
strong association between recombination rate and recent 
positive selection signals in the human genome. In addition 
to recombination, we find that other factors, such as the 
density of regulatory elements in immune cells, GC con
tent, gene expression in immune cells, the density of 
mammal-wide conserved elements and the distance to 
VIPs, all show strong associations with recent positive selec
tion. These results imply that recent positive selection had 
to be present to create these associations. This also high
lights how MDRs can be used to clarify the presence and de
terminants of recent positive selection based on genome 
scans.

Results
We first validate that the MDR with two Gaussian distribu
tions fits the distribution of iHS much better than a 
single Gaussian (supplementary Results S1: fig. S1, 
Supplementary Material online). The tight, visually obvious 
fit between the observed iHS distribution and the two 
Gaussians in our MDR model (fig. 1) also shows that 
more than two Gaussians are very likely not needed and 
would negligibly improve the fit. We consider multiple gen
omic factors to model the association with recent selection 
signals. These factors are possible determinants of selection 
according to previous evidence (Nielsen et al. 2005; Siepel 
et al. 2005; Voight et al. 2006; O’Reilly et al. 2008; Enard 
et al. 2014; Luisi et al. 2015; Booker et al. 2020; Enard 
and Petrov 2020). We use a gene-centric perspective where 
each individual protein-coding gene in the human genome 
is associated with a set of factors measured by centering a 
genomic window on each gene (Materials and Methods). 
This approach is likely to detect the influence of factors 
that differ between genes, rather than only differences be
tween genic and intergenic regions. The set of factors in the 
MDR model includes several genomic features, like the 
length of the gene at the center of the window or recom
bination estimates from the latest deCODE genetic map 
(Materials and Methods). We obtain other genomic factors, 
like the GC content and the densities of genes, coding se
quences, and conserved elements. Moreover, we include 
the density of transcription factor–binding sites according 
to the hypersensitivity to DNaseI and chromatin immuno
precipitation (ChIP-seq) experiments (The ENCODE Project 
Consortium 2012). In the latter case, we also obtain the 
density of regulatory elements for specific subsets of cell 
lines: testis and immune cells. Table 1 provides a complete 
list of the factors considered, and Materials and Methods 
details how these factors were obtained.

We also consider other functional factors like gene ex
pression, including the average gene expression across 53 
GTEx v7 tissues (GTEx Consortium 2015). The expression 
in testis and immune cells could impact the frequency of 
sweeps, thus we also include them as independent expres
sion variables (Nielsen et al. 2005; Voight et al. 2006). We 
also consider the number of protein–protein interactions 
(PPIs) of each gene, given that this variable has been previ
ously associated with the rate of sweeps (Luisi et al. 2015). 
Finally, we consider the influence of viruses on genomic 
adaptation, as previous evidence suggests that they have 
acted as a strong selective pressure during recent human 
evolution (Enard and Petrov 2020; Souilmi et al. 2021). 
We use the distance of each gene to the closest gene cod
ing for a protein that interacts with viruses. More details for 
all the factors considered are given in Materials and 
Methods. Note that our analysis is not expected to detect 
all selective pressures affecting the human genome. We 
test factors that should associate with positive selection ac
cording to strong prior evidence, using them to test the 
ability of our new method to detect the genome-wide ac
tion of recent adaptation (see Discussion).

Genomic factors that are calculated across the genomic 
windows can vary depending on the window size used. 
Therefore, we infer the association between recent selection 
and factors measured in genomic windows of varying sizes 
(Materials and Methods). In total, we use five different win
dow sizes (50, 100, 200, 500, and 1,000 kb) centered at the 
genomic center of Ensembl v99 coding genes (Yates et al. 
2020). For example, we measure the association between 
the average iHS within 50 kb windows and the average re
combination rate within the same 50 kb windows, or be
tween the average iHS and recombination within the same 
1000 kb windows (Materials and Methods). Using different 
window sizes also relaxes assumptions about the expected 
strength of selection, as larger windows are likely more sen
sitive to strong selection compared with smaller windows, 
and vice versa (Enard and Petrov 2020). Using fixed size win
dows irrespective of gene length avoids a priori biasing mea
sures of iHS by gene length. We also account for gene length 
in our model through the inclusion of multiple functional 
densities along with the genomic length of the gene (be
tween transcription start and stop) at the center of the win
dow as potential explanatory variables.

We estimate recent selection signals using the iHS statis
tic in five populations represented in the 1000 Genomes 
Project (The 1000 Genomes Project Consortium 2015). 
Each population represents a different continent: Yoruba 
for Africa, Han Chinese for East Asia, Utah residents with 
Northern and Western European ancestry, Toscani for 
Southern Europe, and Peruvians for Americas. We select 
Peruvians given that they show the highest percentage of 
Native American ancestry among populations included in 
the 1000 Genomes Project (Harris et al. 2018; The 1000 
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Genomes Project Consortium 2015). The iHS statistic mea
sures how far the haplotypes carrying a specific derived al
lele extend upstream and downstream of this focal allele, 
compared with how far haplotypes carrying the ancestral 
allele extend (Voight et al. 2006). As such, the approach 
provides one value of iHS for each biallelic SNP in the gen
ome with clearly defined derived and ancestral alleles 
(Materials and Methods). Although isolated extreme values 
of iHS at a single SNP have often been used as a signature of 
selection, we recently found that measuring the average 
absolute value of iHS across all the SNPs in a genomic win
dow provides high power to detect recent selection (Enard 
and Petrov 2020). The average iHS in an entire window is 
also likely to better associate with other factors similarly 
measured as averages in the same windows. To account 
for the fact that the variance of the average iHS depends 
on the number of SNPs with individual iHS values in a win
dow, we include this number as a predictor in the tested 
MDR models.

MDR fit to Recent Selection Signals

For each separate human population and window size, we 
model the association between genomic factors and iHS 
using an MDR with a mixture of two Gaussian distributions. 
We design one distribution to match more the drift compo
nent of iHS that is not expected to correlate with genomic 
factors. In contrast, the second distribution is designed to 
be sensitive to positive selection and it is expected to asso
ciate with the tested genomic factors (Materials and 
Methods). We apply this approach to account for the fact 
that only a part of the genome is expected to have under
gone recent positive selection. In this context, a small se
cond distribution and nonsignificant associations with the 
tested predictive factors would suggest a very small contri
bution of recent positive selection. The patterns of iHS 
would then be entirely dominated by genetic drift and 
past demography. We use this modeling approach together 
with an optimization algorithm to get the overall mixture 
distribution with the best fit for the observed iHS in each 
population and window size (Materials and Methods).

Overall, the MDR models fit well to the distribution of 
observed iHS (fig. 1). iHS does not follow a Gaussian distri
bution, and our flexible approach combining a mixture of 
two Gaussian distributions and linear regression clearly 
fits better the iHS distribution than would a single distribu
tion from a classic linear model (supplementary Results S1: 
fig. S1, Supplementary Material online). We find a clear 
separation between the Gaussian components, with the se
cond component shifted toward higher iHS values, and 
thus likely enriched in positive selection (fig. 1). Together, 
the close fit and separation of the two Gaussian distribu
tions likely provide an improved ability of our model to es
timate the contributions of different factors to iHS.

Patterns of Selection Across Populations and Window 
Sizes

We find different patterns of selection across five populations 
from four different continents (fig. 1). The African Yoruba 
population shows the largest selection-enriched component 
(fig. 1A). This component is clearly shifted toward high iHS 
values, indicating stronger selection signals that stand out 
more from the first component. The selection-enriched com
ponents are less pronounced but still substantial in the four 
other populations (fig. 1B–E). The Peruvian population shows 
the smallest selection-enriched component (fig. 1E). Indeed, 
the cumulative effect of all genomic factors on the probability 
of the second component, that is, the magnitude of the 
selection-enriched component (see Materials and Methods), 
shows its lowest value in Peruvians (0.27 for Peruvians vs. 
0.34 for Yoruba, which is the population with the highest va
lue). Note, however, that we do not provide a formal test 
analyzing whether the magnitude of the second component 
in the Peruvian population is significantly lower than in the 
other populations. These results suggest that the visible 
(not necessarily the actual) contribution of selection to the 
whole variation of iHS is smaller in populations that were ex
posed to bottlenecks during migrations Out of Africa and 
consequently, more subject to genetic drift (Henn et al. 
2012; The 1000 Genomes Project Consortium 2015). In 
other words, our results might be explained by the fact that 
selection is more visible in Yoruba due to a reduced effect 
of genetic drift. Note that, besides bottlenecks, other factors 
such as admixture could explain these differences in the 
selection-enriched components. Although Peruvians show 
the greatest Native American ancestry among populations 
of the 1000 Genomes Project, this population still exhibits 
greater admixture compared with the other four populations 
analyzed in the present study (The 1000 Genomes Project 
Consortium 2015; Harris et al. 2018; Mooney et al. 2018). 
This greater degree of admixture could also contribute to ob
scure signatures of selection captured by iHS in Peruvians.

With respect to window size, we find the largest select
ive components when using larger, 1,000 kb windows 
(supplementary Results S2, Supplementary Material on
line). This is an expected result, because it is easier to distin
guish strong selection from genetic drift and background 
noise in larger windows. Smaller windows are less sensitive 
to strong selection, while larger windows can include a 
great accumulation of large iHS values. In addition, small 
windows are more influenced not only by the content of 
a genomic window, but also by genetically linked surround
ing regions. These surrounding areas are in linkage with the 
genomic areas inside smaller windows as their center is clo
ser to the edges. Therefore, smaller windows do not differ
entiate well between inside and outside genomic regions 
(Enard et al. 2014; Enard and Petrov 2020). Given these re
sults, we highlight primarily the results for the Yoruba 
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population in the main text (while providing the results for 
all tested populations in table 1 and fig. 1), and we use 
1,000 kb windows.

Determinants of Strong Positive Selection in Human 
Populations

Several genomic factors show significant associations with 
iHS in the selection-enriched component (table 1). 
Unsurprisingly, we find the strongest association with re
combination rate, which negatively correlates with iHS 
(e.g., Yoruba slope = −2.44; P < 1E−16; table 1). This is 
congruent with the eroding effect of recombination on se
lection signatures, impacting the probability to detect se
lective sweeps. Recombination can break haplotypes 
generated by selection, making it more difficult to detect 
the selective events (O’Reilly et al. 2008; Booker et al. 
2020). These results confirm the role of recombination as 
a key determinant of the probability of detecting selection 
with iHS (Johnson and Voight 2018). We also find an asso
ciation between GC content and recent positive selection. 
When the effect of recombination is not accounted for, 
that is, recombination is not included in the model, GC con
tent negatively correlates with iHS (Yoruba slope = −0.29; 
P = 1.22E−03; supplementary Results S3: table S1, 
Supplementary Material online). This is expected given 
that GC content is positively associated with long-term re
combination (Duret and Arndt 2008). However, adding the 
control for recombination reveals a positive association be
tween GC content and iHS (Yoruba slope = 0.55; P = 1.34E 
−06; table 1). Given that recombination already explains a 
great proportion of iHS variability including that shared 
with GC content, the positive association between GC con
tent and iHS could be independent from recombination. 
Accounting for the eroding effect of recombination on 
haplotypes could make more visible a positive (direct or in
direct) influence of GC content on selection.

GC content might be a better proxy of overall functional 
density than individual functional factors included in the re
gression model, which could explain its positive association 
with iHS. We test this hypothesis by removing different gen
omic factors from the model (see supplementary Results S3, 
Supplementary Material online for modeling results after re
moving different sets of factors in Yoruba). The removal of 
GC content makes emerge a positive association of iHS 
with DNAseI hypersensitivity, which is a measure of the over
all density of transcription factor–binding sites (Yoruba 
slope = 0.44 vs. −0.047; P = 1.77E−07 vs. 7.15E−01; table 
1; supplementary Results S3: table S2, Supplementary 
Material online). As GC content has been positively asso
ciated with the density of functional elements (Lander et al. 
2001; Di Filippo and Bernardi 2008), removing GC content 
may thus make more visible a positive association between 
iHS and functional density. We further test if this is also the 

case for more tissue-specific functional densities such as the 
density of regulatory elements in testis or immune cells that 
are expected to exhibit more positive selection (Materials 
and Methods), but we find no such evidence. The removal 
of GC content does not affect to the association between se
lection and regulatory density in testis (slope = −0.765 vs. 
−0.795; P < 1E−16 in both cases; table 1; supplementary 
Results S3: table S2, Supplementary Material online) and im
mune cells (slope = 0.072 vs. 0.047; P = 4.5E−01 vs. 6.23E 
−01; table 1; supplementary Results S3: table S2, 
Supplementary Material online). As shown later in this manu
script, fine-scale patterns of recombination seem to hinder 
the detection of associations for these regulatory variables. 
Finally, we find that the removal of coding density and 
DNAseI hypersensitivity increases the significance for the as
sociation between GC content and iHS (P = 2.40E−14 vs. 
1.34E−06; table 1; supplementary Results S3: table S3, 
Supplementary Material online). From this model, we then 
further remove additional functional factors whose associ
ation with selection is also affected by the removal of GC con
tent, namely, gene number, gene length, and ChIP-seq 
regulatory density (Materials and Methods). Accordingly, 
the removal of these functional factors leads to a highly sig
nificant association between GC content and recent positive 
selection (slope = 0.49; P < 1E−16; supplementary Results 
S3: table S4, Supplementary Material online). In summary, 
the removal of different functional genomic factors from 
the model supports that the positive association between 
positive selection and GC content is mediated by the role 
of this factor as proxy of overall functional density. 
However, we cannot exclude the implication of other pro
cesses related to recombination that would require more de
tailed analyses (e.g., see fine-scale patterns related to 
regulatory density below).

Another genomic factor associated with selection is the 
density of conserved elements (Materials and Methods), 
showing a positive association with iHS (Yoruba slope =  
0.16; P = 6.4E−04; table 1). This is an expected result, as 
coding sequences and noncoding regulatory elements 
tend to be conserved (Siepel et al. 2005). This factor shows 
a significant association in all populations except in the 
Peruvian population sample, which might reflect the impact 
of past bottlenecks on the visibility of the selective patterns 
(table 1). The density of conserved elements is thus likely to 
be a good proxy of overall (coding and noncoding) func
tional density. The inclusion of this factor in the model 
could then, however, explain the lack of association for 
other factors related to functional density such as coding 
density. Indeed, the removal of conserved elements density 
makes significant the positive association between coding 
density and selection in Yoruba (Yoruba slope = 0.26 vs. 
0.16; P = 2.35E−03 vs. 8.41E−02; table 1; supplementary 
Results S3: table S5, Supplementary Material online). All 
other populations have a clear significant positive 
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correlation of iHS with coding density even without remov
ing the density of conserved elements (table 1). In addition, 
the simultaneous removal of conserved elements density 
and GC content, which can also act as a proxy of functional 
density, increases even more the positive association 
of coding density with iHS in Yoruba (slope = 0.29; 
P = 7.76E−04; supplementary Results S3: table S6, 
Supplementary Material online). These, and previous results 
about GC content suggest that the lack of association for 
multiple functional factors could be explained, at least par
tially, by the simultaneous consideration of better measures 
of overall functional density in our models.

The number of PPIs is another factor that correlates with 
iHS. This factor associates negatively with selection, sug
gesting the existence of a slight depletion of selection for 
regions with higher number of PPIs (Yoruba slope =  
−0.07; P = 4.25E−02; table 1). This is opposite to that 
found by Luisi et al. (2015), as they reported higher recent 
positive selection on central proteins within the human in
teractome. Higher number of PPIs has been also associated 
with higher positive selection in the chimpanzee lineage ac
cording to the McDonald–Kreitman (MK) test. However, 
this factor does not seem to be a determinant of positive se
lection when other genomic factors are simultaneously 
considered using an MK regression approach (Huang 
2021). Given the inconsistency with previous evidence 
and the low strength of the association, the weak negative 
relationship between selection and the number of PPIs 
found in this study should be taken with caution.

The modeling approach presented in this study can also 
be used to test the influence of specific selective pressures. 
We illustrate this feature by showing that positive selection 
is associated with multiple variables related to viral inter
action (table 1). One of the factors more highly associated 
with iHS is the distance to VIPs in all tested populations 
(Yoruba slope = −0.17; P = 4.16E−06; table 1). Selection 
decreases further away from VIPs, in other words, we find 
an enrichment of selection around VIPs. Viruses have acted 
as a strong selective pressure during human evolution, 
shaping genomic adaptation, and previous studies have 
also found more positive selection at VIPs (Enard and 
Petrov 2020; Souilmi et al. 2021). Gene expression is an
other functional factor significantly associated with selec
tion (table 1). The average expression across 53 tissues 
from GTEx (GTEx Consortium 2015) is negatively associated 
with iHS (Yoruba slope = −0.14; P = 3.77E−02), while gene 
expression in immune cells shows a strong and positive as
sociation with selection in all populations (Yoruba slope =  
0.26, P = 1.51E−05; table 1). Given their relevance in the 
response to pathogens, genomic regions highly expressed 
in immune cells do represent expected targets of positive 
selection.

Overall, we find positive associations between the dens
ity of regulatory elements and iHS except in Yoruba where 

this association is not significant (table 1; see below for si
mulations without positive selection that explain these re
sults). However, the densities of regulatory elements in 
tissues expected to experience more positive selection (tes
tis and immune cells) show surprising patterns of associ
ation with iHS (table 1). In particular, a higher density of 
transcription factor–binding sites in testis correlates with 
weaker iHS selection signals (slope = −0.79; P < 1E−16). 
This is a counterintuitive result, given that more regulatory 
density would give more options to modulate gene expres
sion and hence more room for positive selection to act. An 
explanation could be the following: hotspots of recombin
ation are usually regions where the chromatin is more 
open, and hence more accessible for transcription factors 
to bind (Spruce et al. 2020). If the density of transcription 
factor–binding sites in testis (where meiosis and recombin
ation occur) is higher in areas with high recombination, 
then selection signals within these sites would be erased 
by recombination (O’Reilly et al. 2008; Booker et al. 
2020). Fine-scale patterns of recombination and selection 
support this hypothesis, as recombination tends to increase 
close to regulatory elements, while iHS tends to decrease 
(supplementary Results S4: figs. S1–S3, Supplementary 
Material online). Therefore, high levels of local recombin
ation could erode haplotypes close to the selected variants, 
although the average recombination in the gene window 
covering that region is low. In other words, the 1,000 kb 
gene windows we use could have a low-recombination 
rate on average, while containing local peaks of recombin
ation close to regulatory elements. Our original model con
siders the average recombination in each 1,000 kb 
gene-centered window, so it is likely unable to detect the 
effect of these fine-scale patterns of recombination. We 
also observe a surprising lack of association between im
mune regulatory density and iHS (table 1), although we 
find a strong positive association between iHS and immune 
gene expression. Here again we find that the fine-scale pat
terns of recombination close to immune regulatory ele
ments are likely to blame, with an increase in the 
fine-scale recombination rate as one gets closer to immune 
regulatory elements (supplementary Results S4: fig. S3, 
Supplementary Material online). It is surprising that we 
find a positive association between iHS and regulatory 
density across multiple tissues, but not when focusing on 
specific tissues where selection is expected to act (i.e., testis 
and immune cells). Although recombination rate tends to 
concentrate close to all regulatory elements, as it does 
more specifically around regulatory elements in testis and 
immune cells (supplementary Results S4: fig. S1–S3, 
Supplementary Material online), recombination declines 
rapidly when considering regulatory elements of all tissues 
compared with testis and immune cells (supplementary 
Results S4: fig. S4, Supplementary Material online). This 
suggests that we could have more power to detect positive 
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associations with iHS and regulatory density in all tissues 
compared with testis or immune cells (see below for further 
evidence).

Given that some of the gene-centered windows used in 
these analyses are physically overlapping and this lack of in
dependence could bias our results, we run again the MDR 
across the 5 studied populations but using only 1,000 kb 
windows without physical overlap. We find that the 
P-values are much less significant, an expected result given 
the reduction in sample size and consequent decrease of 
statistical power (only 1,680 genes are included in the sub
set). However, the slopes for many genomic factors are 
qualitatively similar to that of the original model 
(supplementary Results S5: table S1, Supplementary 
Material online), suggesting that the nonindependence of 
some genomic windows is not biasing our results. In add
ition, note that we perform population simulations show
ing that other processes rather than positive selection 
cannot explain our results (see next sections). Importantly, 
these simulations use the same overlapping gene windows, 
that is, they reproduce the same level of linkage between 
gene observed in the real genome. Therefore, population 
simulations further support that our results are not biased 
due to the nonindependence of gene windows, as this 
lack of independence is not sufficient to reproduce our 
results.

Robustness of Recent Selection Patterns to Varying 
Genomic Window Sizes in Yoruba

Next, we ask if the trends observed with 1,000 kb windows 
in the Yoruba genomes also hold when using smaller win
dow sizes (supplementary Results S2: tables S1–S5, 
Supplementary Material online). Some patterns visible in 
large 1,000 kb windows are also visible when using smaller 
genomic window sizes, while some are not (100 vs. 
1,000 kb windows; supplementary Results S2: tables S2 
and S5, Supplementary Material online). The strong nega
tive association between recombination rate and selection 
is found regardless of window size. On the contrary, the dis
tance to VIPs, for example, shows a strong association with 
iHS in large windows but not in smaller windows (100 kb 
windows: slope = −0.02; P = 5.11E−01; supplementary 
Results S2: tables S2 and S5, Supplementary Material on
line). This is consistent with previous evidence showing 
that VIPs are particularly enriched in strong selective 
sweeps, for which larger windows are more sensitive 
(Enard and Petrov 2020). This is also the case for the density 
of conserved elements (100 kb windows: slope = 0.1; 
P = 9.3E−02) and especially regulatory elements in testis, 
with a slope going from −0.79 in 1,000 kb windows to 
−0.03 in 100 kb windows (supplementary Results S2: 
tables S2 and S5, Supplementary Material online). These re
sults suggest that both factors may correlate with strong 

rather than weak selection. In the case of testis regulatory 
density, this pattern might be explained by the fact that 
smaller windows take better into account the fine-scale 
patterns of recombination, which limits the negative influ
ence of using average recombination (see below for 
fine-scale analyses of recombination). Note, however, 
that all these differences might also be explained by the 
fact that smaller windows do not differentiate well be
tween inside and outside of the genomic regions they are 
supposed to delineate. That is, they may be more influ
enced by the surrounding, genetically linked genomic re
gions (Enard et al. 2014; Enard and Petrov 2020). See 
supplementary Results S2, Supplementary Material online 
for the complete results across populations and window 
sizes.

Population Simulations of Expectations in the Absence 
of Positive Selection for the Associations With iHS

As described above, we find multiple strong functional asso
ciations with iHS in the directions expected under recent posi
tive selection. That said, some observations remain 
unexplained at this point, with for example a lack of positive 
association between overall regulatory density and iHS in 
Yoruba. We also observe a lack of association between the 
overall sum of regulatory plus coding functional density and 
iHS in Yoruba (slope = −0.063; P = 0.65; supplementary 
Results S6: fig. S1, Supplementary Material online). The asso
ciation of this overall coding plus regulatory density with iHS 
is strongly positive in the other tested populations 
(supplementary Results S6: fig. S1, Supplementary Material
online). This prompted us to better characterize the null ex
pectations of the associations between this overall coding 
plus regulatory density (as a measure encompassing the dif
ferent functional types of elements considered in our model) 
and iHS in the absence of positive selection. In particular, the 
heterogeneous, fine-scale patterns of recombination and 
their variation around functional elements (supplementary 
Results S4: figs. S1–S5, Supplementary Material online) might 
make null expectations deviate from a simple lack of associ
ation with slopes centered around zero.

We therefore use forward SLiM (Haller and Messer 2019) 
simulations to estimate the expected associations between 
overall coding plus regulatory density and iHS in the absence 
of positive selection (Materials and Methods). Under neutral 
conditions (i.e., only neutral mutations), and recreating the 
actual distribution of recombination rate and functional (cod
ing plus regulatory) elements (Materials and Methods), we 
find that the association between iHS and functional density 
tends to be negative, and in every case, much less positive 
compared with the studied populations including Yoruba 
(supplementary Results S6, fig. S1, Supplementary Material
online). In addition, the magnitude of the second Gaussian 
component (estimated with P, see Materials and Methods) 
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is lower under neutral expectations compared with Yoruba 
(supplementary Results S6: fig. S2, Supplementary Material
online). We also perform simulations including, not only neu
tral, but also deleterious mutations to consider the potential 
impact of BGS (Materials and Methods). We find that the 
presence of deleterious mutations and BGS does not affect 
our results; the latter look the same with BGS as those with 
only neutral mutations (supplementary Results S6: figs. S3 
and S4, Supplementary Material online). This is consistent 
with previous evidence showing that BGS does not strongly 
affect iHS (Schrider 2020). Therefore, the results observed 
with the MDR approach cannot be explained by neutral evo
lution or BGS. These simulations also show that recombin
ation rate, a relevant factor for the detection of positive 
selection, cannot explain our results given that the simula
tions consider the actual local recombination rates found in 
the human genome. Moreover, these results support that, al
though the second Gaussian distribution captures neutral loci 
as shown by its presence even in the absence of positive se
lection (supplementary Results S6: figs. S2 and S4, 
Supplementary Material online), this component is also sensi
tive to adaptation, supporting its enrichment in signals of re
cent positive selection. These results also show that the lack 
of association between iHS and functional coding plus regu
latory density in Yoruba does not represent a lack of support 
for positive selection. Indeed, the null expected distribution 
for this association is negative and the observed Yoruba asso
ciation is clearly above (supplementary Results S6: figs. S1 
and S3, Supplementary Material online). In the discussion, 
we mention multiple reasons why recent positive selection 
may have been not less, or even more common in the 
Yoruba compared with the rest of studied populations, while 
still having a weaker impact on iHS.

Fine-Scale Patterns of Recombination Around 
Regulatory Elements

The increase of recombination rate around regulatory ele
ments may explain the fact that the null expectations for 
the association between functional density and iHS is nega
tive (supplementary Results S4: figs. S1–S5, Supplementary 
Material online). Our simulations recreate the distribution 
of recombination rate and functional (coding plus regula
tory) elements of the human genome, thus regulatory and 
coding elements tend to be close to recombination peaks 
also in the simulations (supplementary Results S4: fig. S5, 
Supplementary Material online), leading to lower iHS and 
lowering the null expectations. This led us to further analyze 
the influence of local patterns of recombination around 
regulatory elements. Given the local increase of recombin
ation around regulatory elements, it is likely that whole win
dow estimates of recombination are not a sufficient measure 
of its effect on the association between iHS and regulatory 
densities. In particular, this might explain the surprising 

negative association between iHS and testis regulatory dens
ity or the lack of association for immune regulatory density 
(table 1). Indeed, recombination rate tends to be higher spe
cifically around these regulatory elements compared with 
the whole set of regulatory elements (supplementary 
Results S4: fig. S4, Supplementary Material online). We use 
three variables related to the recombination around regula
tory elements in immune cells, testis, and across multiple tis
sues, respectively. We calculate the more local, average 
recombination around regulatory elements within each 
gene window, up to a maximum distance of 5 kb from 
each side of regulatory elements. Each variable is included 
in the original model of Yoruba 1,000 kb separately, and re
places the previous, window-wide average recombination. 
Given that some gene windows can overlap with more regu
latory elements than others, we also consider the number of 
recombination data points obtained for regulatory elements 
inside each gene window. In this way, we account for the 
fact that recombination may vary more broadly in windows 
that have less regulatory elements. See supplementary 
Results S4, Supplementary Material online for further details 
about these calculations.

The iHS statistic decreases around regulatory elements in 
immune cells while recombination increases, staying very 
high further from immune regulatory elements compared 
with other tissues (supplementary Results S4: figs. S1–S4, 
Supplementary Material online). This might have confounded 
the expected positive association with selection in the original 
regression model with window-wide recombination rates. 
The control for local patterns of recombination around im
mune regulatory elements should however increase our 
power to detect this association. In line with this prediction, 
we find that the association between immune regulatory 
density and iHS becomes positive and highly significant 
when considering the local patterns of recombination around 
immune regulatory elements (Yoruba slope = 0.68 vs. 0.047, 
P = 4.60E−14 vs. 6.24E−01; table 1; supplementary Results 
S4: table S1, Supplementary Material online). In order to as
sess whether this increase is caused just by the lack of consid
eration of recombination patterns at a window-wide scale, 
we repeat this analysis but including the original window- 
wide average recombination variable. After including the 
average recombination rate at window-wide scale, the posi
tive association remains stronger compared with the original 
model (slope = 0.28 vs. 0.047, P = 5.72E−03 vs. 6.24E−01; 
table 1; supplementary Results S4: table S2, Supplementary 
Material online).

As explained above, we hypothesize that the confounding 
effect of recombination is caused by a mismatch between dif
ferent scales. Gene windows with low recombination can 
have local peaks of recombination around transcription fac
tor–binding sites (supplementary Results S4: figs. S1–S4, 
Supplementary Material online), as these peaks are more ac
cessible to transcription factors (Spruce et al. 2020). 
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Therefore, recombination could erode signals of positive se
lection around regulatory elements even if the region has 
an overall low-recombination rate. In contrast, regions with 
high recombination at the average window-wide level should 
suffer less from this confounding effect, as recombination 
rate is then high both at a local and window-wide scale. 
Therefore, focusing on high-recombination regions should 
improve our ability to detect the expected positive association 
between selection and regulatory density. This approach, 
however, has the caveat of reducing the power to detect 
positive selection due the higher probability that recombin
ation breaks selected haplotypes. We nevertheless repeat 
the analysis focusing only on gene windows with a recombin
ation rate equal or higher than the second tertile (1.552 cM/ 
Mb). Focusing on high-recombination regions, regulatory 
density in immune cells shows a stronger association with se
lection in a model including recombination rate around both 
gene windows and immune regulatory elements compared 
with the same model run across all genes (Yoruba slope =  
0.85 vs., 0.28, P = 1.27E−08 vs. 5.72E−03; supplementary 
Results S4: tables S2 and S3, Supplementary Material online). 
Interestingly, regulatory density in testis also shows a positive 
association with selection in a model including recombination 
around both testis regulatory elements and gene windows 
and focused on high-recombination regions. Note that this 
regulatory variable shows one of the strongest negative asso
ciations with selection in the original model (Yoruba slope =  
0.58 vs. −0.79, P = 4.98E−05 vs. <1E−16; supplementary 
Results S4: tables S4–S6, Supplementary Material online), 
an unexpected result given the role of regulatory sequences 
in positive selection (Enard et al. 2014). These results suggest 
that, indeed, a higher regulatory density can increase the 
probability for positive selection to occur, especially in some 
tissues. However, this signal is distorted by fine-scale patterns 
of recombination, which have to be carefully taken into 
account.

Discussion
We find several functional factors independently associated 
with recent positive selection. For instance, viral interactions 
along with gene expression and regulatory density in im
mune cells are strongly and positively associated with selec
tion. Viruses have acted as key drivers of adaptation in 
humans and VIPs show higher expression in lymphocytes 
compared with non-VIPs (Halehalli and Nagarajaram 2015; 
Enard et al. 2016; Enard and Petrov 2018). These results con
firm the existence of strong viral and immune selective pres
sures during recent human evolution (Enard and Petrov 
2018, 2020; Souilmi et al. 2021). We also detect a positive 
association between testis regulatory density and selection, 
which is congruent with the fact that reproduction-related 
functions show signals of positive selection (Nielsen et al. 
2005; Voight et al. 2006). Note, however, that this latter 

result has been more difficult to reveal in our analyses, as 
it is only visible after controlling for fine-scale patterns of re
combination around testis regulatory elements and after fo
cusing on high-recombination regions, thus it is more 
questionable. Finally, the density of conserved elements 
and GC content, which are related to overall (coding and 
noncoding) functional density (Lander et al. 2001; Siepel 
et al. 2005; Di Filippo and Bernardi 2008), also show a posi
tive association with selection. In summary, recent and posi
tive selection is associated with the distribution of functional 
regions across the human genome.

If sweep signals are false positives only reflecting genetic 
drift, the signatures of sweeps should occur randomly 
across the genome, being only influenced by the local pat
terns of recombination rate. In contrast, if selective sweeps 
were present during recent human evolution, we expect 
that other factors on top of recombination should inde
pendently associate with sweep signals across the human 
genome. In that case, we expect that selective sweeps 
should occur more frequently around functional (coding 
or noncoding) elements where adaptive mutations are ex
pected to take place (Enard et al. 2014), also around gen
omic regions associated with specific functions. We find 
strong evidence for the latter scenario, as multiple function
al factors are associated with recent positive selection. In 
other words, the distribution of sweep signals is not ran
dom relative to the distribution of functional elements 
and is associated with the functional characteristics of the 
human genome. That said, stochasticity still plays a role in 
the occurrence and establishment of advantageous muta
tions in the first place, and we still expect randomness 
when considering which specific loci of the human genome 
with equivalent functional characteristics have experienced 
positive selection. Our results thus support that selective 
sweeps were present during recent human evolution, gen
erating the observed associations between signals of posi
tive selection and functional factors.

Our MDR approach shows a good fit to the distribution 
of iHS across the human genome, with its two components 
showing a clear differentiation and the second being en
riched in positive selection. This suggests that the consider
ation of a more biologically meaningful model, which 
assumes two Gaussian distributions instead of one, works 
better to analyze recent adaptation than simple correla
tions. Given that the MDR approach represents more dir
ectly genome evolution, the associations detected by this 
approach are more informative than classic linear models 
and partial correlations. The associations detected by these 
classical approaches may be caused by a deficit of weak iHS 
values, not by an enrichment of high iHS values as shown in 
the second component of our MDR approach, a scenario 
more specifically expected under strong selection. Indeed, 
we cannot replicate our results using classic linear models 
and partial correlations in 1,000 kb windows. These classic 
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approaches show much lower correlations between iHS 
and functional factors expected to associate with positive 
selection (supplementary Results S1: tables S1 and S2, 
Supplementary Material online). For example, they are un
able to replicate the strong enrichment in positive selection 
around VIPs reported by previous studies (Enard and Petrov 
2020; Souilmi et al. 2021). This is also expected given the 
poor fit of a single Gaussian distribution to the whole iHS 
distribution compared with our approach assuming two 
Gaussian distributions (supplementary Results S1: fig. S1, 
Supplementary Material online). Additionally, we apply 
the classical outlier approach to our data, considering an ar
bitrary threshold (95th percentile of iHS) and a threshold 
based on the selection-enriched component of the MDRs 
(i.e., iHS value at the peak of that component). We find 
similar results for several genomic factors compared with 
the MDR approach (supplementary Results S7: tables S1– 
S4, Supplementary Material online). Note, however, that 
covariance between factors is not considered by these ap
proaches, thus they do not control for the fact that the as
sociation of a genomic factor could be caused by another 
factor that covaries with it. In this regard, the outlier ap
proaches do not replicate the strong and positive associ
ation of GC content found by the MDR, being negative in 
some cases. Regions with high GC content also tend to 
have high long-term recombination rates (Duret and 
Arndt 2008), which would predict a negative association 
between iHS and GC content, not positive. However, the 
MDR approach can control for recombination as a confoun
der by simultaneously analyzing recombination rate and 
other genomic factors. This can unravel new patterns, like 
the positive association between GC content and sweep 
signals. This association only emerged after adding recom
bination in the model, becoming even more significant 
after the removal of functional factors like coding density, 
gene number, or regulatory density. This supports the inde
pendence of this association from recombination and the 
role of GC content as a better proxy of overall functional 
density than individual factors. These results also explain 
the inability of outlier approaches to detect a positive asso
ciation for GC content in the same extent than the MDR ap
proach, as they do not control simultaneously for 
recombination rate and other genomic factors. This illus
trates how the detection of complex patterns between 
positive selection signals and genomic factors is hampered 
by the lack of control for the covariance between these fac
tors. In addition, it shows how the MDR approach enables 
easier testing of different hypotheses by modifying the set 
of predictors considered. Therefore, our results support the 
consideration of two distributions to model recent genomic 
adaptation within a framework that simultaneously con
sider multiple genomic factors.

We find other unexpected results using the MDR ap
proach. For instance, we do not find a positive association 

between selection and testis or immune regulatory density 
in the original model. This is an unexpected result given 
that a higher regulatory density would lead to a larger muta
tional target for adaptation through changes in expression 
and these tissues are expected targets of positive selection 
(Nielsen et al. 2005; Voight et al. 2006). As previously pos
ited, the adaptive signals associated with regulatory density 
could be eroded due to the higher tendency of transcription 
factors to bind DNA at recombination hotspots (Spruce et al. 
2020). This is supported by the higher recombination and 
lower iHS found closer to regulatory elements, along with 
the fact that the positive associations for immune and testis 
regulatory density only emerge when considering the 
fine-scale patterns of recombination. These results support 
the role of regulatory sequences as targets of positive selec
tion independently of other genomic features (Enard et al. 
2014), along with the relevance of testis and specially im
mune cells in recent human evolution (Nielsen et al. 2005; 
Voight et al. 2006). Our results also illustrate how the detec
tion of selection can be hindered by fine-scale characteristics 
of the genome, like the sharp increase of recombination we 
observe around regulatory elements. This might mask selec
tion signals around regulatory elements, but not only be
cause of the breaking of haplotypes caused by 
recombination. An additional mechanism might be the exist
ence of biased gene conversion in these recombinant re
gions, which could specifically favor GC mutations (gBGC; 
Galtier et al. 2001; Duret and Arndt 2008; Dutta et al. 
2018). This could lead to an increase in the frequency of 
GC mutations that are associated with short haplotypes 
(due to the eroding effect of recombination). gBGC might 
therefore make it even more difficult to detect recent posi
tive selection around regulatory regions, where it is expected 
to happen (Enard et al. 2014). Note, however, that the pre
sent study does not provide evidence about the implication 
of gBGC in the observed patterns. It can be difficult to disen
tangle the eroding effect of recombination from GC-biased 
gene conversion on haplotypes because gBGC is caused by 
and therefore very correlated with recombination. 
Distinguishing the specific effect of biased-gene conversion 
may require precise recombination maps for African popula
tions, where we find the largest selection-enriched second 
Gaussian distribution. Although we have not found evidence 
of the implication of gBGC yet, the fact that this hypothesis 
has emerged from implementing our model illustrates its 
utility to propose new hypotheses about the different pro
cesses that influence the detection and occurrence of posi
tive selection.

Although the MDR approach provides an excellent fit to 
the observed selection statistic, we may still not detect asso
ciations with specific factors because they do not have a 
simple linear relationship with recent selection. Although 
more biologically meaningful than a model assuming just 
one distribution, our approach is still linear, thus more 
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complex relationships may not be detected. For example, 
the weaker association of iHS with coding density in 
Yoruba could be explained not only by the consideration 
of better proxies of overall functional density, but also by 
the existence of nonlinear relationships with selection. 
Advantageous mutations are more likely to appear in re
gions with high coding density, thus a high density of cod
ing sequences should favor the appearance of selection 
(Enard et al. 2014). However, high coding density can 
also mean a higher frequency of deleterious mutations. 
These mutations can interfere with adaptation when they 
are in linkage disequilibrium with advantageous mutations. 
This would be especially relevant for genomic regions with 
low recombination, where the linkage disequilibrium be
tween deleterious and advantageous mutations is more 
likely (Hill and Robertson 1966; Di et al. 2021). Therefore, 
a higher coding density could favor or hinder positive selec
tion depending on the circumstances, complicating the de
tection of an association between coding density and 
selection with our approach. The existence of this genetic 
interference could also explain the different results ob
served across populations in relation to coding density. 
Despite having the largest selection-enriched component, 
the Yoruba population shows a weaker association be
tween selection and coding density compared with other 
populations. This association becomes visible only after re
moving proxies of overall functional density (i.e., density of 
conserved elements and GC content). A potential, but still 
speculative explanation at this point might be the fact 
that the bottleneck related to the migration out of Africa 
may have removed segregating recessive deleterious var
iants, which may reduce their interference over advanta
geous mutations, thus making it easier for positive 
selection to act on regions with a high coding density (Di 
et al. 2021). In contrast, there was no similar bottleneck 
to decrease the genetic interference in the Yoruba, and re
gions of the genome with high coding density may still ex
perience stronger interference from recessive deleterious 
mutations. Interestingly, despite this potential limitation 
of positive selection, we still see a larger selection-enriched 
component in the entire Yoruba genome, suggesting that 
selection might still be more abundant in this population. 
There are other possible explanations for this apparent 
contradiction. For example, the ability of iHS to detect se
lective variants could be more limited in African populations 
due to lower overall linkage disequilibrium, together with 
the larger genetic diversity in these populations, which 
could favor the existence of sweeps from standing genetic 
variants that are harder to detect with iHS (Hermisson and 
Pennings 2005; Ferrer-Admetlla et al. 2014). These poten
tial explanations are speculative at this point and will 
require further investigation. Our results nevertheless dem
onstrate that the complex and heterogeneous distributions 
of multiple genomic factors, together with summary 

statistics of hitchhiking robust to BGS, need to be used in 
order to quantify the determinants and importance of re
cent positive selection in the human genome.

Materials and Methods

Window Sizes and Genes Coordinates

All analyses were performed using hg19 genomic coordi
nates and protein-coding gene annotations from Ensembl 
v99 (Yates et al. 2020). We selected hg19 instead of 
GRCh38 mainly because this was the assembly used by 
the 1000 Genomes consortium to generate and phase 
the genetic variants considered in our analysis. Note that 
the assembly selection should not influence our results as 
we performed genome-wide scale analyses, thus avoiding 
focusing on specific regions where the assembly could 
change after hg19. We considered windows of different 
sizes (50, 100, 200, 500, and 1,000 kb). Each window 
was centered at the genomic center of a gene, in the middle 
between the most upstream transcription start site and the 
most downstream transcription end site. We used a fixed 
window size to avoid biases related to gene length, as lar
ger genes are more likely to overlap with high local iHS va
lues just by chance compared with shorter genes. This 
would bias power in favor of larger genes, increasing the 
probability to detect sweeps in them just because of their 
length. In addition, the consideration of different window 
sizes provides the opportunity to detect different types of 
sweeps as larger windows are specifically sensitive to strong 
selective sweeps compared with smaller windows (Enard 
and Petrov 2020).

Genomic Features

Multiple genomic factors were calculated inside the gene 
windows. We considered the following factors that are like
ly to influence the frequency of sweeps: 

• Length of the gene at the center of each window.
• Number of genes overlapped with each window. We 

used this value as an estimate of gene density.
• Recombination rate: For each window, we calculated the 

genetic distance between the edges of the window and 
then divided it by the physical distance between them. 
Genetic position of each window edge was obtained 
from the deCODE 2019 genetic map (Halldorsson et al. 
2019). In case no data was available for a window 
edge, we selected the closest genetic position data 
points within 50 kb at each side of the window edge to 
estimate its genetic position. We used linear interpol
ation to this end, considering the genetic and physical 
position of the two points around the window edge. In 
other words, we assumed that genetic distance increased 
linearly between the two selected data points, and hence 
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we can estimate the genetic position of the window edge 
based on its physical position with respect to the other 
two positions. If no genetic position data was available 
at 50 kb or closer to the window edge, no genetic pos
ition was calculated and the whole window was dis
carded for recombination calculations and subsequent 
analyses. Note that we searched for genetic position 
data points only up to 50 kb from each window edge 
to avoid that the total distance between points at each 
edge could be too large (especially for larger windows). 
In that scenario, linear interpolation could be inappropri
ate because we would use very distant data to calculate 
recombination rate. For example, if a 1,000 kb window 
had no genetic position for any of its edges and we looked 
for genetic positions up to 1,000 kb at each side, it would 
possible that the selected data points of genetic position 
downstream and upstream of the window were separated 
by 3,000 kb. In addition, the recombination rate would 
not correspond with the size of the window.

• Density of coding sequences: We used Ensembl v99 cod
ing sequences. The density was calculated as the propor
tion of coding bases respect to the whole length of the 
window without considering gaps (gap locations ob
tained from the UCSC Genome Browser; https:// 
genome.ucsc.edu/; http://hgdownload.cse.ucsc.edu/ 
goldenPath/hg19/database/). A similar approach was 
used for the rest of density estimates.

• Density of mammalian phastCons conserved elements 
(Siepel et al. 2005), also downloaded from the UCSC 
Genome Browser. Given that each conserved segment 
had a score, we considered as conserved only those seg
ments above a given threshold. In order to minimize the 
inclusion of nonconserved elements, we used a threshold 
that only considers 4.17% of the genome as conserved, 
as it is unlikely that much more than that is strongly con
strained (Siepel et al. 2005).

• Density of regulatory elements: We calculated several vari
ables related to the density of binding sites for transcription 
factors. In all cases, we calculated the proportion of se
quences that are considered binding sites within a win
dow. The data were also obtained from the UCSC 
Genome Browser (The ENCODE Project Consortium 2012). 

– Density of DNaseI hypersensitive sites 
(wgEncodeRegDnaseClusteredV3 track). We con
sidered as binding sites those segments with a 
score higher than a given threshold. The selected 
threshold was a score value according to which 
only 10% of the genome is considered accessible 
to DNaseI, and hence a binding site for transcrip
tion factors. In this way, we minimize the probabil
ity to consider nonbinding sites (i.e., false positives).

– Density of binding sites according to the technique 
of chromatin immunoprecipitation followed by se
quencing (ChIP-seq; encRegTfbsClustered track). 

We calculated a threshold to consider a given seg
ment as a binding site following the same approach 
used for DNaseI hypersensitive sites. This database 
includes 1,264 experiments representing 338 tran
scription factors in 130 cell types. We calculated 
the density of binding sites using the whole data 
set, but also considering two subsets, one for ex
periments performed on cell lines of testis, and an
other for experiments performed on immune cells 
(lymphocytes in most cases). Note that the threshold 
was calculated considering the 1,264 experiments, 
being then applied to the whole data set and the 
two subsets.

• GC content, calculated as a percentage per window. It 
was also obtained from the UCSC Genome Browser.

• Gene expression: We used the log (base 2) of transcripts 
per million for the gene at the center of each window, 
which was obtained from GTEx (GTEx Consortium 
2015; https://www.gtexportal.org/home/). We not only 
considered the average gene expression across 53 GTEx 
v7 tissues, but also expression in immune cells (lympho
cytes) and testis.

• Number of PPIs in the human protein interaction network 
(Luisi et al. 2015). We used the log (base 2) of the number 
of PPIs of the gene at the center of each window. We 
summed 1 to the original data set to avoid problems ap
plying the logarithm to genes with no interactions (i.e., 
PPI = 0).

• Distance to the closest gene coding for a VIP. We used a 
previously published data set (Enard and Petrov 2020) 
that includes around 4,520 VIPs with evidence of physical 
interaction with viruses. About 1,920 of these VIPs were 
manually curated from the virology literature, while the 
remaining 2,600 VIPs were identified using high- 
throughput methods and retrieved from the VirHostnet 
2.0 database and additional studies. See the original 
publication for further details (Enard and Petrov 2020). 
The variable included in the model was calculated as 
the distance between the gene at the center of each win
dow and the closest gene that interacts with viruses.

iHS Calculation

In order to calculate iHS, we used polymorphism data from 
the 1000 Genomes Project phase 3 (The 1000 Genomes 
Project Consortium 2015). We calculated iHS for five popu
lations: Yoruba, Utah residents with Northern and Western 
European ancestry, Toscani, Han Chinese and Peruvians. 
We used the hapbin software (Maclean et al. 2015) in order 
to perform fast scans of iHS across the genomes of these 
populations. We considered only those polymorphisms 
with a minor allele frequency >0.05. Note that the genetic 
maps used as input in hapbin were calculated using the 
deCODE 2019 genetic map (Halldorsson et al. 2019). In 
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case that no data was available for the focal variant, we 
again used linear interpolation to estimate its genetic pos
ition. We followed the same approach used to calculate 
the genetic position of window edges during recombin
ation calculations. In this case, we searched for genetic pos
ition data points at both sides of the focal variant until 
1,000 kb. We discarded variants with no data points 
around, as they were present in genomic regions with 
low density of recombination data. The genetic maps based 
on the deCODE 2019 map were used as an input in order to 
calculate the iHS for the five populations.

The raw iHS values obtained with hapbin were standar
dized by frequency. For each population, we divided var
iants in 50 bins of frequency (from 0 to 1) considering the 
whole genome. We then calculated the mean and standard 
deviation of raw iHS within each bin, using them to stand
ardize raw iHS values: (raw iHS − mean iHS)/sd iHS. The 
mean of standardized iHS was calculated per window, con
sidering the absolute value of iHS. In our case, large positive 
iHS values can be caused by unusually long haplotypes car
rying the derived or the ancestral allele, in the case the an
cestral alleles hitchhiked together with the actual, selected 
derived allele. Therefore, high iHS can be interpreted as se
lection in favor of the derived or ancestral haplotype. We 
also obtained the number of iHS values per window to 
have an estimate of data density. Mean iHS in windows 
with low number of iHS values can be more influenced by 
outliers (very low or very high iHS values). Therefore, we in
cluded the number of iHS values per window as a predictor 
in the models to control for this.

Modeling

We modeled the association between genomic factors and 
iHS in each population and window size by combining a 
Gaussian mixture distribution with linear regression. 
Mixture distributions are useful to model data that cannot 
be fully described by a single distribution and that are likely 
generated by multiple processes. In this case, a mixture of 
two Gaussian distributions could fit better a scenario where 
selection influences some genomic regions but not others, 
and hence a bimodal distribution of iHS would be observed 
across the genome. Therefore, we posit that sweep signals 
in the human genome may have components differentially 
influenced by positive selection. According to this, we as
sumed that observed log iHS followed a mixture of two 
Gaussian distributions representing two components, one 
more influenced by drift and a second one enriched in posi
tive selection. Because selective sweeps often result in ele
vated iHS, we assumed that the Gaussian distribution for 
the selection-enriched component had a higher mean than 
that for the first component. Furthermore, to model the as
sociation of genomic factors with the selection-enriched 
component of iHS, we assumed that the probability of the 

selection-enriched component was a linear combination of 
genomic factors followed by a sigmoid transformation. 
Specifically, for each factor, we calculated the product of 
its observed value with a slope indicating its association 
with the selection-enriched component of iHS. A positive 
slope indicates that the probability of the selection-enriched 
component increases with the increasing value of a factor, 
whereas a negative slope indicates the probability decreases 
with the factor. Then, we summed the product over all fac
tors for a given gene to model the cumulative effect of gen
omic factors on the probability of the selection-enriched 
component. Then, we added an intercept indicating the 
baseline level of selection when all genomic factors are equal 
to 0 and transformed the result to a probability (0 to 1) using 
a sigmoid function. This probability was obtained for 
each gene and can be regarded as the overall influence 
of all genomic factors on the frequency of recent selective 
sweeps. These steps are described by the equation 
p = σ

􏽐
bi × xi + a

( 􏼁
= 1

1 + exp −
􏽐

bi × xi − a
( 􏼁, where p is a 

probability summarizing the influence of all studied genomic 
factors on the selection-enriched component of iHS, σ is the 
sigmoid function, bi and xi are the slope and the observed 
value for genomic factor i in a given gene, respectively, 
and a is the intercept.

To obtain the likelihood of log iHS in each gene, we cal
culated a weighted sum of Gaussian density functions, 
P(Y ) = p × f (Y|μ1, σ1) + (1 − p) × f (Y|μ0, σ0), where Y and 
P(Y) are the observed log iHS and its likelihood in a given 
gene, respectively, p is the probability of the selection- 
enriched component calculated in the previous step, 
f (Y|μ1, σ1) is the Gaussian density function with mean µ1 

and standard deviation σ1 describing the selection-enriched 
component, and f (Y|μ0, σ0) is the Gaussian density func
tion with mean µ0 and standard deviation σ0 describing 
the first component. Finally, we summed the logarithm of 
P(Y) over all genes to obtain the log likelihood of the entire 
data set.

We estimated model parameters by maximizing the log 
likelihood of the entire data set (L-BFGS-B optimization). 
These parameters included the mean and standard devi
ation of each Gaussian distribution, along with the inter
cept and the slopes representing the association between 
the selection-enriched component of iHS and each genom
ic factor. For each genomic factor, we tested the signifi
cance of its slope by comparing the log likelihood 
between the full model with all genomic factors and a 
nested null model without the selected factor. We assumed 
that two times the difference in log likelihood between the 
two models followed a chi-square distribution with one de
gree of freedom. Besides the log transformation of iHS, we 
standardized both iHS and the genomic factors, that is, 
data centered to the mean and unit standard deviation. 
The script and input data needed to run the MDR are 
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publicly available at https://github.com/dtortosa/Mixture_ 
Density_Regression_pipeline.

Population Simulations to Recreate the Expectations in 
the Absence of Positive Selection

We used SLiM (Haller and Messer 2019) to simulate the null 
expectations in our analyses and assess in that way if our re
sults could be explained by processes other than positive se
lection. First, we randomly selected 100 genomic segments 
of 20 mb each one, totaling 2,000 mb. We recreated the 
functional (coding and regulatory) elements observed in 
the human genome using the same coordinates considered 
in the calculation of functional densities for the main analyses 
(see Genomic Features section). We also considered the same 
recombination map (deCODE 2019) to recreate the actual re
combination heterogeneity in these segments. Therefore, we 
simulated 2,000 mb using the observed distribution of 
functional elements and recombination rate. The popula
tion size was set to 10,000 individuals. We first run a 
burn-in period of 100,000 generations, running then 100 
independent simulations with 2,000 additional genera
tions. We repeated this schema two times, that is a total 
of 200 independent simulations. The first set of simulations 
included only neutral mutations, while the second included 
both neutral and deleterious mutations, that is, we recre
ated the impact of negative and BGS. In the second set, 
we selected a distribution of deleterious fitness effects 
(DFEs) with a relatively flat profile across orders of magni
tude for “s,” as found by recent DFE estimates (Kim et al. 
2017). Specifically, we considered four types of deleterious 
mutations with different selection coefficients (s = −0.002, 
−0.02, −0.1, −0.5) having all of them the same frequency, 
that is, equal proportion of mutations. The total frequency 
of deleterious mutations was 50% and 20% for coding and 
regulatory elements, respectively. For each of the 200 inde
pendent simulations, we calculated iHS using the same ap
proach than in the actual genomes. As the simulated 
segments had direct correspondence with the human gen
ome, we extracted the genes included in each segment, 
and calculated 1,000 kb windows centered around them. 
Inside each window, we calculated the average of iHS 
and the number of iHS data points, along with recombin
ation rate and functional density as done in the actual gen
omes. Finally, we used the MDR to model iHS as a function 
of recombination rate, functional density and the number 
of iHS data points measured all in 1,000 kb windows. 
Therefore, we modeled iHS in the absence of positive selec
tion across 200 independent runs simulating each one 
2,000 Mb. In addition to the genomic factors already men
tioned, we also included the GC content observed for each 
gene window in the actual genome. It can be useful to 
simulate GC to control for varying mutation rates; however, 
we used a uniform mutation rate across the simulated 

regions, so we did not include it in the simulations. We still 
added it as a predictor using the GC content in the actual 
gene windows because this factor is associated with both 
functional density and long-term recombination (Lander 
et al. 2001; Di Filippo and Bernardi 2008; Duret and 
Arndt 2008). This can help to make visible more local 
patterns of recombination. In addition, it makes fairer the 
comparison between the simulations and the observed 
genomes, as in the latter iHS was also modeled using GC 
content.

From the model of each independent run, we obtain the 
slope for the association between functional density and 
iHS, while controlling for the rest of genomic factors calcu
lated. We also took p, that is, the cumulative effect of all 
genomic factors on the probability of the second component 
of iHS (see Modeling section). We calculated its average 
across all genes within each independent simulation, using 
it as a measure of the magnitude of the second component 
of iHS. We compared the functional associations and the 
magnitude of the second Gaussian component between 
the actual genomes and the expectations in the absence 
of positive selection. Note that in the latter comparison, 
we only considered Yoruba. As previously noted, the distri
bution of iHS seems to be more influenced by drift in 
non-African populations due to their greater exposure to 
bottlenecks. This explains the reduction of the second 
Gaussian component in these populations. Indeed, the 
population that suffered the most extreme bottlenecks is 
the one showing the smallest second component, that is, 
Peruvians. Our simulations reproduce a constant population 
size of 10,000 individuals and no bottlenecks, thus it is fairer 
to compare the magnitude of the second Gaussian compo
nent in the simulations with the African Yoruba population, 
which was not exposed to bottlenecks in the same degree 
than the rest of studied populations.

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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