
Citation: Gómez-Marín, E.; Parrilla,

L.; Tejero López, J.L.; Morales, D.P.;

Castillo, E. Toward Sensor

Measurement Reliability in

Blockchains. Sensors 2023, 23, 9659.

https://doi.org/10.3390/s23249659

Academic Editor: Xiangxue Li

Received: 23 October 2023

Revised: 30 November 2023

Accepted: 4 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Toward Sensor Measurement Reliability in Blockchains
Ernesto Gómez-Marín 1,2 , Luis Parrilla 2,* , Jose L. Tejero López 2 , Diego P. Morales 2

and Encarnación Castillo 2

1 Infineon Technologies AG, 85579 Neubiberg, Germany; ernestogm@correo.ugr.es
2 Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain;

joseluistejero@correo.ugr.es (J.L.T.L.); diegopm@ugr.es (D.P.M.); encas@ugr.es (E.C.)
* Correspondence: lparrilla@ditec.ugr.es

Abstract: In this work, a secure architecture to send data from an Internet of Things (IoT) device
to a blockchain-based supply chain is presented. As is well known, blockchains can process critical
information with high security, but the authenticity and accuracy of the stored and processed
information depend primarily on the reliability of the information sources. When this information
requires acquisition from uncontrolled environments, as is the normal situation in the real world, it
may be, intentionally or unintentionally, erroneous. The entities that provide this external information,
called Oracles, are critical to guarantee the quality and veracity of the information generated by them,
thus affecting the subsequent blockchain-based applications. In the case of IoT devices, there are no
effective single solutions in the literature for achieving a secure implementation of an Oracle that is
capable of sending data generated by a sensor to a blockchain. In order to fill this gap, in this paper,
we present a holistic solution that enables blockchains to verify a set of security requirements in order
to accept information from an IoT Oracle. The proposed solution uses Hardware Security Modules
(HSMs) to address the security requirements of integrity and device trustworthiness, as well as a
novel Public Key Infrastructure (PKI) based on a blockchain for authenticity, traceability, and data
freshness. The solution is then implemented on Ethereum and evaluated regarding the fulfillment of
the security requirements and time response. The final design has some flexibility limitations that
will be approached in future work.

Keywords: Internet of Things (IoT); blockchain; smart contract; hardware oracle; public key
infrastructure (PKI); trustworthiness

1. Introduction

Currently, the supply chain plays a fundamental role in modern industries [1]. Compa-
nies are undertaking significant efforts to update their supply chains with new technologies
to increase their competitiveness [2]. In order to establish modern supply chains, the
combination of blockchains and the Internet of Things (IoT) is being considered because the
integration of these technologies offers an array of benefits that can significantly enhance
overall performance [3].

Many studies have been researching their potential and analyzing their impacts. For
example, Vicenzo V. et al. illustrated in [4] that using reliable measurements from IoT
sensors can detect non-compliant products in supply chains, as well as economically
optimize product management by up to 63% (even for cheap and non-critical products).
Other investigations show that they can potentially reduce world hunger, [5], or they can
be used for legitimately selling users’ information [6]. Also, other publications have been
researching their limitations and improvements, like in [7], where it is explained how to
analyze the quality of the measured data in a coldchain. Also, the work of Hiu H. et al. [8]
explained how the reliable data obtained through blockchains and the IoT can be processed
with machine learning to obtain very valuable information. Moreover, the combination of
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the IoT and blockchains has proven to be extremely advantageous in numerous surveys in
the field [9–11].

This combination is fruitful due to the synergy of the two technologies in fulfilling
the requirements of the supply chain realm. Indeed, a supply chain involves multiple
stakeholders with diverse interests, and the products it oversees are subject to information
demands from various parties. In these complex scenarios, IoT sensors can provide exten-
sive real-world data. Furthermore, blockchains, which are decentralized and transparent
platforms, can corroborate the fact that there is no illegitimate data manipulation on the
cloud. They also propose a method for applying transparent and consensual logic oper-
ations over data on the cloud, called smart contracts. This symbiotic relationship offers
stakeholders traceable insights into the real-time dynamics of products; meanwhile, it
also enhances the reliability and accountability of the supply chain [9]. However, these
two technologies have important drawbacks that must be addressed. Even if the IoT
and blockchains are crucial to ensuring the viability and security of supply chains, their
combined implementation is not a trivial task.

Blockchains are a type of complicated infrastructure that require perfect synchroniza-
tion between multiple nodes. More importantly, the reliability of their data and operations
ultimately rely on the trustworthiness of those uploading the data, the Oracles, and the
reliability of their data [9]. This is a known blockchain drawback called “the Oracle prob-
lem” [12]. Essentially, it implies that blockchain operations and data are as trusted as the
Oracles themselves. Many proposals have been trying to address this problem and send
reliable information to blockchains like [13–16], but they were not originally designed for
implementation with the IoT. This limitation arises due to the inherent absence of trusted
relationships within IoT systems. It is very difficult to ensure the credibility of these devices,
the correct device status (trustworthiness), and no tampering with the data flow [17,18]
since these devices are inherently insecure [19]. The distrust of the IoT very negatively
impacts the motivations for blockchain and IoT adoption because the most predominant
reason for adopting blockchains in supply chains is trust [3]. This ultimately affects the
potential benefits that could bring the use of these technologies to supply chains.

Despite this, a limited number of studies are planning a solution for securely sending
data from IoT devices to blockchains. However, some have not even devised a mechanism
for blockchains to identify IoT devices like [20–22]. The work of Jonathan et al. [23] do
indirectly identify these devices, but it requires a huge setup effort per sensor enrollment.
In any case, none of them have proposed a solution for blockchains to corroborate the
trustworthiness of the sensor itself when the data were gathered.

In our proposed work, we propose a solution for all these problems. Firstly, we
propose the use of secure hardware architecture [24] that signs the data even before being
gathered by the IoT nodes, thus achieving the much sought after trustworthiness. Secondly,
we combine that secure sensor with a personalized blockchain-based PKI to enroll and
identify the IoT nodes quickly and cheaply. And, finally, we devise a new method for
ensuring the data are fresh when uploaded to a blockchain. This is groundbreaking solution
because it allows blockchains to efficiently validate the reliability of the data generated by
IoT devices before accepting it. By doing so, stakeholders in the supply chain can access
real-time information about the products with the sought after level of reliability.

The remainder of this paper is structured as follows: Section 2 defines the methodology
for analyzing the reliability of incoming data and explains the related state-of-the-art (SoA)
work on this topic. Section 3 details the information needed to understand the proposed
work. Section 4 presents the details and challenges of the cold chain used as the use case
for the proposed solution. Then, Section 5 explains, firstly, how the system works and,
secondly, explains the details of the design. Section 6 describes our real implementation in
a controlled environment. Section 7 analyzes our proposal using a detailed methodology,
as well as compares the results with the SoA works. Section 8 offers a comparison of our
work with the SoA works. Finally, Section 9 closes the paper by summarizing the results,
contributions, and future work.
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2. Related Work

For the implementation of trusted hardware, the Oracle requires a comprehensive
approach as each step in the data flow must be secured in order to trust the final data [25].

As a first step to analyzing the related work and later comparing them to our proposal,
we will establish the security requirements of the information to be processed in Section 2.1
based on the work of Dan Liu [26]. There, we will also discuss how to apply their secure
data analytics, which were originally oriented to edge computing, to IoT devices interacting
with blockchains. Later, we will use these security requirements to analyze the state-of-the-
art works and our development.

In order to analyze the SoA works, we divided this study into three sub-sections.
Thus, we firstly explored the research related to the design of a blockchain-based PKI
in Section 2.2. Secondly, we delved into studies that use the IoT in blockchains as data
providers without security mechanisms (Section 2.3). Lastly, we examined works that
designed a secure mechanism to upload general data to blockchains (Section 2.4).

2.1. Data Security Requirements

Liu et al. compared, in [26], different works based on edge computing regarding secu-
rity data. For this comparison, they defined a number of requirements that were divided
into three categories: security, privacy, and performance. Despite being a work focused on
edge computing, the security requirements were perfectly applicable to analyzing the IoT
as an Oracle in blockchains. In total, five security requirements were considered:

• Data Origin Authenticity (DOAu): The authenticity in the infrastructure of a device
that generates particular data. This is called authenticity (Au) in [26].

• Data Origin Traceability (DOTa): The capability of the backward identification of a
data generator from the data. This is called traceability (Ta) in [26].

• Data Origin Integrity (DOI): The capability of proving that the data generated in a
particular point was not manipulated in the course to its final point. This is defined as
integrity (I) in [26].

• Data Origin Trustworthiness (DOTu): The capacity to prove that the entity that gener-
ated a particular data was not manipulated or attacked, i.e., it was in a trusted status
when it generated the data. This is called trustworthiness (Tu) in [26].

• Data Origin Freshness (DOF): The capacity to prove that the data were generated in
an absolute timestamp. It is essential to avoid replay attacks and delay attacks (attacks
in which a measurement is taken at a particular time, detained, and then published
later). This is an additional property that was not included in [26].

2.2. PKI in Blockchains

In this section, we will focus on those works that developed specific PKIs for the IoT
in existing blockchains. There are many interesting works that have developed an IoT PKI,
thereby creating their own blockchain infrastructure or consensus protocol like [17,27–29].
However, those works cannot be applied to existing public blockchains such as Ethereum,
or to consortium blockchains such as Hyperledger Fabric. In our work, we want to integrate
IoT devices to existing blockchains. In this sense, these solutions are out of our scope, and
we will focus on those that can be applied to the well-known blockchains.

Stephanos M. and Raphael M. R. proposed IKP [30], a system designed to contribute
to the current Transport Layer Security (TLS) PKI. In their architecture, they provide
incentives to Certification Authorities (CAs) with correct behavior, while penalizing those
with inappropriate practices automatically. While this solution offers a flexible and robust
public key infrastructure, it lacks the specific focus on enabling smart contracts to actively
interact with the PKI to authenticate IoT devices.

Ankush S. and Elisa B. [31] proposed a system where the hash of the certificate is
stored in blockchains together with the ID of the device. In this solution, when an entity
needs to check the veracity of a received certificate, they ask a blockchain if the hash of the
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certificate is reliable or not. The advantage of this system lies in the dynamic revocation
and addition of certificates.

Alexander Y. et al. [32] proposed a system to implement the classic certificate chain
of trust in Solidity (the programming language of Ethereum’s smart contracts). Each CA
has its own smart contract, where it uploads its certificate and stores the hashes of the
certificates it issues. On the other hand, it requires modifying the X.509 standard [33] with
some minor additions.

All these systems require the use of X.509 certificates to identify devices. These
certificates are heavy (Google’s certificate is 1.13 KB, for instance), and are complex to
process in Solidity because of the absence of core libraries for string manipulation [32]. The
certificates would need to go along with each transaction to identify the device, as well as
be verified by the smart contract itself in each transaction, which would increase the cost in
each transaction.

To avoid this, we propose a system without certificates using what we define as a
Smart Certificate Authority (SCA). The SCA is deployed as a smart contract that checks
if an entity meets certain requirements, and, if so, instead of delivering a certificate, it
simply stores the address of the entity along with its attributes. Due to the qualities of
smart contracts, if an entity has been identified and authenticated by a smart contract, this
process is trusted by the rest of the blockchain and does not have to be repeated (verify
once, authenticate any-when). As a result, any smart contract that wants to authenticate
an entity simply has to query the SCA if the identity is stored, thus avoiding duplicate
certificate verification in each communication.

2.3. The IoT in Blockchains

In this section, we discuss those papers that use the IoT as a service for blockchains
and how they solve the identification problems posed by the IoT.

Little information on this topic can be found in the SoA works, as highlighted by the
study conducted by Mohamed Laarabi in [34] on March 2022. In their study, only two
articles were detailed with scenarios where smart contracts receive data gathered from
sensors [6,21].

In [21], the authors proposed a system for managing the energy consumption of IoT
actuators based on the measurements received by the IoT sensor. In this work, they did
not propose the identification method of the data in the smart contracts, but they stored
the public credentials and signatures along with the data in blockchains, as well as left the
actuators as responsible for somehow identifying the data. Thus, they used blockchains as
a database. In our work, we developed an infrastructure in which the smart contract itself
identifies the senders.

The main contribution of Carlos Molina-Jimenez et al. in [6] was highlighting that
conventional business contracts can be automated using centralized applications, decentral-
ized applications, or via combining both. Also, they focused on the complexity of the last
one. The work was presented using the example of selling to a customer Alice’s personal
information, which was obtained through her IoT sensors. Data security, however, is not
covered within the scope of this project.

Another work, proposed by Mohamed Ahmed et al. [7], focused on finding, defin-
ing, and proposing systems for measuring the quality dimensions relevant for IoT data
qualification. This work presents the context of a medical equipment cold chain, where
IoT nodes provide the smart contracts with qualification data. It is the same use case
where we will present our work, as detailed in Section 4. In this use case, Mohamed
Ahmed et al. defined four main data quality dimensions: accuracy, completeness, consis-
tency, and currentness. Also, they proposed a method to calculate them. But, as they
recognize, the IoT data sources’ security was a field that was not embarked upon in their
work and yet must be addressed. This is where our research comes in, i.e., ensuring the
non-manipulation of devices or their messages. However, it is outside of our scope to
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evaluate the quality dimensions of the messages. As such, we consider that work as
having a great synergy with our proposal.

The work from Zheng Zhang et al. [35] presented a framework for trustless data
sharing based on blockchains to reduce the risk of data tampering. It combined the layers
of IoT, fog computing, micro-services, and decentralized applications to offer services to
smart contracts on blockchains. They act as a platform as a service, and work as application
programming interfaces (API) for smart contracts. It is an interesting improvement for
blockchain applications. However, as they declare, the more crucial problem in their
solution is the lack of IoT security.

A more recent article from Faheem A. R. et al. [36] proposed a secure and manage-
able mechanism through which to share electronic health records. The solutions used
blockchains to protect the integrity of the electronic health record, including te health data
gathered by IoT devices. The work focused on developing an interoperable framework
to reliably share health records between systems and providers with patient authoriza-
tion. However, that work did not pay any attention to the security of the IoT devices or
their data.

2.4. Oracles

In this subsection, we will examine the research conducted on uploading trustworthy
information to blockchains. The purpose of this effort is to enable smart contracts to depend
on this data, thus ensuring stakeholders can confidently execute high-impact tasks.

There are several Oracles designed to upload specific information that are excluded
in the analysis since they cannot be directly applied to the IoT, like PriceGeth [15] used to
publish price pairs or Augur [16] for market prediction.

Some of the SoA works found in that field propose servers or clients to feed smart
contracts, never directly from IoT nodes, i.e., the smart contract never verifies the signa-
ture performed by the IoT device (edge-to-edge signature). Moreover, just one of them
considered the integrity of IoT nodes.

Zhang et al. [13] proposed a system to feed smart contracts with information from
reliable web pages using HyperText Transfer Protocol Secure, which was achieved by
assuming that if these web pages are reliable for non-blockchain applications with high
impact, then blockchain applications can also use them. The system is called Town Crier.
In this system, Intel SGX is used to guarantee the correct operation of the Oracle, which is
not responsible for the reliability of the data but the correct data source. The correctness of
the data is guaranteed under the assumption of the validity of the data source, i.e., reliable
web pages. In their paper, DOAu, DOTa, and DOI are guaranteed through the use of
off-chain TLS certificates and Intel SGX-based remote attestation. In the case of DOTu, it
was achieved through the confidence that resides in the websites, and, finally, the DOF
is provided using SGX clocks and a public timestamp verification. This infrastructure is
complete, but it can not be applied to the IoT since DOAu and DOTu are achieved by the
general knowledge and trust in the data generators, i.e., the websites, which cannot be
applied to the IoT. The same problem was found in Chainlink [37].

DiOr-SGX [20] has similarities to Town Crier [13] because it uses Intel SGX to ensure
the correct functioning of the Oracle, but it differs by creating a decentralized system
to ensure availability, as well as adds a voting system and prestige rewards to choose
the leader of the Oracles with the best response time. In this system, the smart contract
generates an event to request data. Then, this event is read by the Oracle leader, who
requests the data from other Oracles (Oracle nodes). These Oracles collect data from IoT
nodes and send it to the leader along with proof of their correct operation through Intel SGX.
This system is focused on promoting the best self-organization for acquiring the shortest
response time. Also, the leader performs a remote attestation process on the other Oracles
to make sure that they did not manipulate the data. But nothing verifies the leader, and it
does not provide any mechanism through which to ensure the veracity of the data, i.e., it
does not offer any mechanism for DOAu, DOTa, DOI, DOTu, or DOF because, although
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there is a mechanism to check the correct status of the Oracles nodes, none of them can
identify the origin of the data received by the Oracle nodes. On the other hand, there was
no penalty mechanism found for those who deliver data different from the average. Finally,
this system, due to its decentralized nature of distributed data collection, where many
nodes shall obtain the same data from different sources, can be applied in use cases such as
the temperature of a city, but it can hardly be applied to a cold chain where all the nodes
that measure the temperature belong to the same entity.

Astraea [14] is a mechanism for contributing binary information (true or false) to
blockchains. The information is provided through a system of voting and certification. All
“players” have to contribute an amount of money to vote or certify, and they lose money or
are rewarded according to the data provided, which motivates them to behave honestly.
It is impossible to know where the data ultimately come from in this solution; therefore,
it there are no DOAu and DOTa. The DOIO, DOTu, and DOF are guaranteed through
economic rewards and penalties. Also, the solution can easily enroll new players, which
makes the solution scalable. The problem with this system is that it is only applicable to
decidable and verifiable information that is accessible to a high number of players from
different sources. However, this condition is not applicable in all scenarios. The same
problem was found on other Oracles based on reputation or a voting system [38].

In Jonathan Heiss’ work [23], they proposed two different systems to gather signed
data from a sensor through a gateway that processes and sends it to blockchains. The smart
contract itself can check the correct processing of the incoming data using ZoKrates in
the first solution, and the Intel SGX-based remote attestation in the second solution. In
both of them, the gateways process the IoT data, which is achieved by considering the
verification of the IoT signature as part of the data processing. Then, the smart contract
attests the correctness of the data processing, and, because the IoT signature verification is
included in data processing, the smart contract then indirectly verifies the IoT signature.
This system provides DOAu, DOTa, and DOI. However, both mechanics require a trusted
and critical setup that is not explained in their proposal. They assume the existence of a
trusted setup in every enrollment that can be verified by each stakeholder, thus making its
real implementation very complex. Moreover, there was no process outlined to probe the
non-manipulation of the IoT node (DOTu). Finally, with no further details, the gateway
accepts any signed data from the sensor so that old signed data can be accepted (DOF).

The work of Alia Al Sadawi et al. [22] is the only SoA work that claims being the
first study that alone detailed a entire process for the integration of the IoT in blockchains.
This was achieved through the use of a hardware Oracle with cryptographically attestable
and anti-tampering properties. This secure IoT device measures CO2 levels and signs the
outgoing data with a nonce. The information is sent to a fetching script that writes it on a
blockchain through a transaction. At the end of the document, the authors performed a
detailed security and vulnerability analysis to ensure the robustness of the smart contracts
but not of the full system. Additionally, there were no details for a public attestation proce-
dure of the hardware Oracle, so there was no mechanism for proving to the infrastructure
the trustworthiness of the attestable IoT device (DOTu). On the other hand, they did not
provide details of any PKI or a similar system to authenticate the IoT nodes; therefore,
there was no DOAu. Additionally, the measured data passed through a fetching script
(e.g., a Python script), which sends it to a blockchain, and the owner or an attacker could
manipulate it to send any arbitrary data, thus losing DOI. Finally, even when using a nonce
to avoid digital signature repetition, the data could have been gathered and signed at any
moment, thus they were vulnerable to delay attacks (DOF).

Even though hardware Oracle is a known category [39,40] with its own standard
and qualification analysis [7,25], and which is included in surveys such as [41,42], to the
best of our knowledge, there is just one SoA implementation that lacks some important
details like the PKI and does not meet several security requirements. To the best of our
knowledge, our paper presents the only infrastructure capable of providing IoT-generated
data directly to the smart contract with an edge-to-edge signature, where a blockchain can
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verify DOAu, DOTa, DOI, DOTu, and DOF with a dynamic enrollment process, and is
applicable to Ethereum.

3. Background

In this section, we will provide some background for a better understanding of the
proposal developed in this work. Thus, we will introduce the concept of a Secure Sensor,
some details regarding Ethereum, and how smart contracts are implemented through a
blockchain.

3.1. Secure Sensor

Dominic Pirker et al. [24] presented four novel solutions for achieving unquestionable
trust in the measurements obtained by an IoT device. We will consider their solution
“Concept A” for our work, and, in the following, it will be referred to as Secure Sensor (SS).
In an SS, we have to differentiate three different elements:

• Controller: the core of the IoT node itself that, through a Turing machine, can perform
any task.

• Sensor: the hardware extension connected physically to the controller that—through
SPI, I2C, or buses—receives commands and sends the measured data.

• Hardware Security Module (HSM): a hardware module secured by design with the
capacity to create private–public key pairs, as well to store and use them.

Thus, a SS is an IoT device with a controller, a sensor, and a HSM. The distinctiveness
of a SS from other IoT device architectures is the fact that the controller cannot communicate
directly with the sensor but the communication is done through the HSM. As is shown in
Figure 1, the Oracle controller can interact with the HSM through a limited API. The HSM
is in charge of gathering the data from the sensor, signing that data using a nonce, and
forwarding it to the controller together with the digital signature. The private key used
for this digital signature is a sealed key, which means that it cannot be used for any other
purpose. Because the element that generates the data is hardware-protected (shown green
in Figure 1), this device provides DOTu.

HSM

Data objects
ECDSA key pair

Nonce
x.509 certificate

…
Mapped registered

Sensor

Oracle
Controller

API
Sensor 

Configuration
Get Public Key

Store nonce
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Get measurement
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Register n
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Figure 1. High-level schematic of a Secure Sensor. The controller can only interact with the HSM
through a limited API. The measurements gathered by the sensor and a nonce are signed with a
sealed key before they are sent to the controller.

The downside of this work is the complexity of distributing the public keys required
for DOAu, as well as in implementing a verifiable random nonce for introducing the DOF
into measurements.

3.2. Ethereum Addresses

Ethereum is the most popular blockchain for IoT applications, as well as for smart
contracts in general [9]. Ethereum uses the Elliptic Curve Digital Signature Algorithm
(ECDSA) with a 256-bit-long private key and, consequently, a 512-bit public key. The
Ethereum address associated with this private key is composed of the last 160 bits of the
Keccak [43] hash of the public key. Therefore, a key pair has the following elements: a
private key (Priv), a public key (Pub), and an address. In this way, from a signature or
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a public key, the address can be easily derived, and we do not have to store 512-bit long
public keys. Thus, in our approach, which was developed over the Ethereum platform,
we used the Ethereum addresses as identifiers of the entities. Following Hilarie Orman’s
words [44]: “Who am I? you are your Blockchain address”.

3.3. Blockchains and Smart Contracts

As was commented in Section I, blockchains are a system developed by Shatosi
Nakamoto at Bitcoin in 2008. They serve as a distributed consensual peer-to-peer database [45],
a perfect environment that includes “smart contracts”. It is a concept that was defined by Nick
Szabo in 1997 [46] to formalize and secure relationships over computer networks. But, it was
not until 2014 that smart contracts were implemented in Ethereum [47], thereby allowing one
to execute scripts in a public blockchain that is similar to Bitcoin and satisfies the definition of
Nick Szabo, thus implementing real smart contracts.

Data in Ethereum are organized in blocks. The blocks are identified by the block’s
number or the block hash. The last is generated through the hash of all the data in the
block. The nodes add new blocks to update the database without deleting previous ones.
Every block is known as the “father” of the next one. The time interval between the blocks’
generation is called block time. The consensus protocol defines the entity that adds new
blocks to the chain. Bitcoin’s consensus protocol is Proof of Work (PoW) [48], just like
what Ethereum’s was initially. In PoW, each new block proposes a mathematical problem
that takes an average time equal to the block time to be solved. The first node to solve
the problem (the miner) publishes the new block, where it includes the solution and the
time at which the generation of the block started (the block timestamp). In PoW, the
miner has some freedom in setting the block timestamp, which makes the block timestamp
unreliable [49,50].

In September 2022, Ethereum migrated through a complex process known as “The
Merge” [51] to a different consensus protocol named Proof of Stake (PoS) [52]. To participate
in this consensus protocol, the interested entities have to stake Ethers, the crypto-coin used
in Ethereum. In this way, only these entities, named validators, can propose and validate
blocks. For a particular block, these validators are randomly selected by “The Beacon
Chain” [53]. In this new consensus protocol, blocks can be added every 12 s, and the block
timestamp is strictly defined by the slot in which the block is published, thus avoiding any
subsequent alteration by the validator. However, the slots may not contain blocks if the
selected proposer does not propose one.

Smart contracts executed on PoS provide the confidence of knowing that 2/3 of the
network has validated its execution. However, the features provided by smart contracts
under PoS have not been updated from previous versions of Ethereum, which were based
on PoW to ensure backward compatibility. Smart contracts use addresses as identifiers, like
in the case of the users. In order to ease the management of smart contracts, it is normal to
define a user with special privileges, thus allowing them to modify some of the settings
and data involved in them. This user is called the owner. Figure 2 shows the abstraction
diagram of our smart contracts following the Unified Modeling Language (ULM) where
the ∼ symbol denotes that the method is only accessible to the owner.

SmartContract

+ID: address

+Owner: address

~setOwner(Address):

Figure 2. Abstract class “Smart contract” following the Unified Modeling Language.
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The operation with smarts contracts is based on triggering logical operations through
signed transactions [54]. The execution of these logical operations implies a computational
cost that, in Ethereum, is measured in specific units named gas [55]. Due to consensus
and verification mechanisms, smart contracts are executed in a huge number of nodes
simultaneously; thus, the gas required by them can be very expensive. As a consequence,
optimization of the computation costs of smart contracts is a priority. Multiple transactions
are grouped in a block that is then stored on a blockchain. Regarding the modifications
on the ledger, which are called transactions, they are grouped into blocks, which are later
stored in a blockchain. All transactions follow the same structure, and the more relevant
fields when working with smart contracts include the following:

• Raw transactions:

– Sender: address of the transaction’s signer.
– Addressee: address of the transaction recipient.
– Data: name of the calling functions and variables.

• Signature: signature of the raw transaction.

3.4. Assumptions

In order to use Secure Sensors as the source of trusted data, it is required to make
some assumptions, which are the following:

• Trusted manufacturer: The manufacturer of SSs is well known and public. In this way,
it can certify the correct manufacturing of the device. It is a common assumption in
HSMs, e.g., the endorsement certificate in Trusted Platform Module 2.0 [56], which is
a standard for crypto processors.

• Trusted smart contract: The smart contracts, being part of our solution, shall be free
of bugs and verified by all the stakeholders before and after they are deployed in a
blockchain.

• No undetectable attacks to SSs: The HSM included in a SS is secure by design, thus it
will avoid any software attack. Additionally, physical attacks will trigger hardware
protection mechanisms, thus leading the device to become useless.

It is unnecessary to assume an invulnerable or reliable microcontroller in a SS. Our
solution will not be at risk even if an attacker can control it fully.

4. Use Case: Ensuring the Respect of the Cold Chain Through Smart Contracts

As a use case for presenting our proposal, we will use the scenario of a cold chain,
where the transported goods must maintain strict temperature conditions. In this scenario,
also used by Ahmed et al. [7], the correct fulfillment of these conditions is essential for the
product value. Furthermore, in the cited work, due to its proximity to a real business, the
authors were provided with the actual strict temperature conditions of a medical product
for blood testing. The non-accomplishment of this compliance requirement could lead to a
breakage of the product. Therefore, in this scenario, not only the product distributor, but
also the complete supply chain is responsible for the quality of the product.

There are at least four stakeholders in our scenario: the shipper (the originator of
the transport request), the carrier, the receiver, and the IoT manufacturer (in charge of
manufacturing the temperature sensors). The transported goods have temperature sensors
with internet access (IoT nodes).

In this context, the process is started by the receiver, who requests a product with
quality requirements. Then, the shipper accepts the request by offering a product that
meets the rates if it stays within the threshold temperature during transport. Next, the
carrier accepts the thresholds, and, finally, the three agree on the penalties for infringement
and choose a manufacturer for the IoT nodes.

However, if there is not enough confidence in the reliability of the system, there will
be no interest in the infrastructure. The following are the risks we identified in the use case:
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• Sensor replacements with other IoT devices that could generate invalid data (DOAu).
• The origin of all valid data has to be identified by the unique data generator (DOTa).
• Manipulation of the data collected by the sensors (DOI).
• Software manipulations of the sensors (DOTu).
• Time modifications with which the IoT nodes collected the measurements (DOF).

In summary, such a use case essentially requires the DOAu, DOTa, DOI, DOTu, and
DOF of the IoT nodes so that the stakeholder can trust the system and they can set a smart
contract for the enforceable agreement.

5. Design of the Proposed System

We firstly explain a high-level view of our solution in Section 5.1. Secondly, the details
of the PKI required for the system are explained in Section 5.2; next, the proposed solution
to guarantee the freshness of the measurements is detailed in Section 5.3. Section 5.4 shows
how to insert reliable information in the blockchain, and, finally, the complete process is
presented in Section 5.5.

5.1. Proposed System

In our secure system for achieving reliable measurements from IoT nodes, the process
starts with a setup phase where the stakeholders agree on the conditions of the smart
contracts. In the use case that was used as an example, this setup phase will imply the
agreement on the cold-chain conditions by generating the qualification smart contract. In
this smart contract, the stakeholders stipulate who will be the manufacturer of the sensors,
the sensor model to be used, and other legal information about the sensor (recalibration,
digital certificate, or digital certificate by accreditation institution [25]). Then, they generate
the SCA smart contract. The proposed framework is depicted in Figure 3. This figure shows
the lifecycle of a SS that was used to track the temperatures of a medical supply, starting at
the manufacturer and finishing with the final customer. Each of the steps, one through six,
is explained in more detail below.

1

2

4

6

3

5
SCA Qualification

Smartcontract

Figure 3. High-level scheme of a SS installed in a package of a supply chain sending data to a blockchain.

1. First, the sensor manufacturer generates, signs, and delivers a certificate to each device
manufactured. This is the manufacturer certificate.

2. The shipper receives the sensor and prepares the package with the device, which
will have to maintain a specific temperature throughout the entire cold chain. Then,
the shipper pre-registers the package on the blockchain with the package ID and the
SS address.
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3. The sensor then asks to be publicly identified and published in the SCA, thus creating
a transaction that includes the manufacturer certificate. The SCA then initiates the
verification process with a moderate gas cost. It will check that the identification
request and the manufacturer certificate meet all the requirements, and, if the request
is valid, the SCA will then store the SS address as a trusted address along with
important information data about the sensor. Therefore, if an address is stored in
the smart contract, it means it has passed successfully through the verification. This
completes the registration in the PKI needed for DOAu.

4. When the SS uploads a data package to a blockchain, it will first read a recently
published nonce, which is explained in more detail in Section 5.3. Then, the SS will
sign the measured data together with the nonce. Data and signatures are added
inside the transaction, and then signed again and sent to a smart contract called a
Qualification Smart Contract (QualificationSC).

5. Upon receipt of the transaction, the QualificationSC will check that the KeyPair that
signed the transaction has its address stored in the SCA (thus obtaining the DOAu). If
yes, it will verify other elements, such as the following: the SS that was used to sign
the data (DOI and DOTu), and whether the nonce included in the data signed was
fresh (DOF). There is no need to verify any certificate in this step.

6. Finally, the receiver, when receiving the package, reads the address of the sensor in
the package and looks for the package’s qualification data in the blockchain.

5.2. Public Key Infrastructure Used

The goal of our system is to make smart contracts that are capable of checking the
origin of received data. In our scenario, these data come from a SS, as described above.

As detailed in Section 3.1, the SS had a particular architecture, as shown in Figure 1,
where three modules were specified: the Oracle controller, HSM, and sensor. The device
generates a public–private key pair (KeyPair) with special features, the secure element
KeyPair (SeKP). The private key (Priv) is always stored in the HSM, and it can only be used
to sign the data coming from the sensor and the nonce delivered from the microcontroller.
The DOTu and DOI of the signed data can be verified by verifying a signature that is
generated using this key.

The device will interact with a blockchain by sending and signing its transactions. The
transaction structure is generated in the Oracle controller, which performs the transaction
hash and sends it to the HSM that signs it. However, due to the previously explained
security limitations, SeKP cannot be used to sign hashes that are generated externally.For
this reason, a second KeyPair is needed to sign them. This second KeyPair without
limitations is called the owned KeyPair (OKP), and it is used exclusively to sign the
hashes of the transactions for a blockchain. Finally, these two KeyPairs are linked to each
other and to the manufacturer through a certificate called the manufacturer certificate. The
three data components, SeKP, OKP, and the certificate, are stored by the device SS, as can
be observed in Figure 4.

The manufacturer certificate contains the device model (ModelDevice), the SeKP.Pub
and OKP.Pub keys, and its signature. The manufacturer will keep the address of its signing
key (ManKP.Address) updated in a smart contract, i.e., the manufacturer smart contract
(ManSC) , as can be observed in Figure 4. Note that the ManKP.Address can be updated
only by the manufacturer (who is the owner of the ManSC).

The final part of our blockchain-based PKI is the Smart Certificate Authority (SCA).
In this smart contract, the shipper can preregister its devices. Later, the SS can request
an identification from the SCA. The last one will check the requestor’s information upon
receiving a transaction. Then, the SCA will transparently verify the manufacturer’s certifi-
cates and other information about the sensor. If, and only if, the requestor satisfies all the
requirements will the SCA automatically store a copy in the smart contract of the validated
and trusted cryptodata: the OKP.Address and the SeKP.Address. Later, any smart contract
like the QualificationSC can consult the SCA for the cryptodata to assert if a SS passed
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through identification or not. All these actions and the data are graphically detailed in
Figure 4. This mechanism has several advantages versus the classic certificate system:

• Due to the features provided by smart contracts, they are as reliable as a certificate
signed and validated by all of the blockchain infrastructure that follow the SCA’s
stipulated rules.

• Any entity with blockchain access can verify an identity, including the smart contracts
themselves.

• Because of blockchain decentralization, this method has a very high availability.
• There is no need to keep an updated revocation list because the address stored in the

smart contract can be dynamically removed.
• There is no need to verify a certificate because the response of a SCA is always trusted.

It reduces the computer processing consumption, which is essential in smart contracts.

SmartContract 

+Address: address

+Owner: address

~setOwner(Address): 

ManSC SCA 

getCryptoData() 

QualificationSC 

+ManKPAddress: address

~setManKPAddress(address): 

setManAddress() preregister() 

Shipper 

Manufacturer 

+DevModel: uint

-certificateCreation(uint,

pub,pub):

+PA[]: address

+ManSC.ID: address

+DevModel: uint

~preregister(address): 

~setManSCAddress( 

address): 

+identification(Certificate):

+getCryptoData(address):

n 

CryptoData 

+ID OK.address: address

+SeKP.address: address

+SCA.Address:address

+receiveData(Data,

signature, Nn, τn−θ)

Identification() receiveData() 

SS 

+SeKP: keypair

+OKP: keypair

+Certifcate: certificate

CertificateCreation() 

getManKP.Address() 

Figure 4. Class diagram of the complete infrastructure following the UML.

The SCA receiving a certification request will check the following:

1. The manufacturer certificate was signed by the manufacturer.
2. The OKP.pub was preregistered by the shipper.
3. The model device (IDmodel) of the Secure Sensor was the one selected in the setup

phase.
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5.3. Freshness

This subsection will detail the method designed to guarantee the freshness of the
actual data. As explained in Section 3.1, an SS includes a nonce in the signature when it
gathers data. To guarantee the data freshness, the nonce must be unknown until it becomes
publicly known at a time τl . When the actual data i is made public at a time τr, including
the nonce data signed, it is guaranteed that the data were generated in the uncertainty
interval ∆τi:

∆τi = τr − τl (1)

In our infrastructure, we use the block hash as a nonce. In the Ethereum PoS, the
blocks can be published in any slot. A new slot is available every ∆τb = 12 s, which is
called block time. On the other hand, the block hash is generated from the hash of the data,
which isincluded in each block. It is important to note that one of the elements that form
the block data is a random variable named RANDAO mix (Rmn). Rmn is included in the
computation of the block hash, and it replaces the variable mixHash, which is deprecated
after the merge [57]. Notice that using PoS as a consensus protocol implies that the block
hash of the blocks cannot be considered random anymore because the proposer can generate
several blocks internally and publish the one that interests them the most. This means that
smart contracts cannot use the block hash for use cases such as lotteries; instead, they have
to directly use Rmn. However, even if the block hash is not a random number anymore,
it is still an unknown number until the moment the Rmn, which belongs to the previous
block, is published. For this reason, the block hash can be used as a public nonce for the SS.
Nevertheless, analyzing the predictivity of Rmn is important before using a block hash as a
nonce. In the following, we will present an analysis of the variable Rmn because its reveal
time has the same uncertainty interval as the block hash.

We considered that Rmn, when published at block number Nn at the slot n with a
timestamp τn, can be publicly computed in the moment its parent block is published.
Normally, the parent block Nn − 1 is published in the previous slot at slot n− 1, i.e., at
τn−1. However, as explained in Section 3.3, slots can be empty if the proposer does not
propose any block on time. As such, we defined θ as the difference of the slots between the
slot containing the block Nn and the slot containing its parent block Nn − 1. That means
that Rmn is revealed at time τn−θ (i.e., R(Rmn) = τn−θ). Therefore, using the block hash
of block Nn at slot n as a nonce in a SS when gathering data would mean that τl = τn−θ .
Inserting it in a block at slot n + β, where β ∈ N > 0, would leave τr = τn+β, thus obtaining
a uncertainty interval that was defined in Equation (2). Figure 5 shows a practice example
of this equation, where a SS uses the block hash of block 104 as a nonce to sign gathered
data. Then, the data signed are inserted in block 106. The parent of block 104, which is
block 103, is inserted into slot 10.

∆τi = τn+β − R(Rmn) = τn+β − τn−θ = (θ + β)∆τb (2)

 τ15

N7  101 N9  102 N10  103 N14  105N13  104

7 8 9 10 13 1411 12

Rm13

 

 τ13 τ10

θ = 3

N16  107N15  106

15 16

 β = 2

Data

Slot

Block Block Block Block Block Block Block

Slot Slot Slot Slot Slot Slot Slot Slot Slot

Parent

Figure 5. Graphic representation of the variables in Equation (2).
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However, this uncertainty interval is insecure because Rmn is known in advance by the
block proposer of slot n. Coordination between the carrier and the proposer can lead to a
timestamp attack, thereby allowing for the use of a measurement that was gathered at a time
∆τA before revealing Rmn, which is what we call the PrevTime Attack (PTA). The proposer
can be elected for several blocks in a row, thus increasing ∆τA. Also, there can be accidental
empty slots that would help to predict Rmn with a probability of ξ. The probability of
being a proposer depends on the amount of money staked in the infrastructure. As µ is the
probability of the attacker to be chosen as the proposer of the next block, the probability of
knowing Rmn with a time τA in advance is equal to the following:

Pr(∆τA) = (µ + ξ)
(d ∆τA

∆τb
e)

(3)

For an attacker investing USD six billion, 16.3% of all the Ether staked, and a 2.9%
of the total ether supply at 22 July 2023 [58], µ = 0.163 [52]. Also, between 22 July 2023
and 15 April 2023, 1.3% of the slots were empty slots, where ξ = 0.013. With this values,
a Pr(48) = 0.0009 was obtained. With sufficiently low probability, ∆τA can be infinite.
Assuming that the carrier always succeeds in performing PTA by obtaining an assumable
time ∆τAA such that ∃γ ∈ N : ∆τAA = γ · ∆τb, then the new minimum uncertainty interval
is as follows:

∆τi = τn+β − (R(Rmn)− ∆τAA) = (θ + β + γ)∆τb (4)

where τl = τn−1 − ∆τAA and τr = τn+β. Secondly, we assume that the carrier always tries
to avoid sending a faulty measurement by using a measurement that takes ∆τNA time
longer than ∆τAA, such that ∆τNA ∈ R > 0, ∆τA = ∆τNA + ∆τAA:

Pr(∆τNA) = (µ + ξ)
(d ∆τA

∆τb
e)
= (µ + ξ)

(d ∆τNA
∆τb
e+γ)

(5)

Thus, with µ = 0.163, ξ = 0.013, and γ = 4 (48 s of ∆τAA), in order to perform the
simpler 12 s attack of ∆τNA, we require Pr(12) = 0.0002. Although low, this probability is
still too high to ignore, but it is easily indemnifiable. To compensate for the probability of
0.02% in terms of performing a successful PTA, each time the carrier inserts an incorrect
measurement in the smart contract, it is considered to have attempted an unsuccessful PTA.
Then, it shall pay an additional penalty for those times it was successful, equivalent to
0.02% of the package price.

Finally, with this mechanism, QualificationSC can estimate a highly reliable uncertainty
interval of the timestamp of the measurements. Each time a SS sends measurements using a
block hash as a nonce, i.e., belonging to Nn, the smart contract will obtain the timestamp of
the block Nn − 1 (τn−θ); in addition, subtracting 48 s from estimating that the measurement
was generated in some moment between the calculated time and the current time, obtains
a probability of 99.98%. Still, this solution has a drawback for smart contracts in Ethereum;
thus, in the majority of blockchains, it cannot access the timestamp of previous blocks. As
such, it cannot access τn−θ . To solve this problem, and to avoid using Oracles to provide
this data, we developed a novel optimistic approach that is explained in the next section.

5.4. Inserting Reliable Information to the Previous Blocks to a Smart Contract

During the execution, a smart contract can access the current time, which in PoS is
accurate. Additionally, a smart contract can access the block hash of the last 256 blocks, but
it cannot collect any additional data about these blocks like the timestamp. The timestamps
of previous blocks cannot be derived using the block numbers because even if the blocks
are published in 12 s slots as some slots can be empty without a proposed block. Thus, the
time gap between consecutive blocks can be higher than 12 s. An attacker investing USD
six billion could easily exploit it to sign at measure at block Nn and send it at block Nn + k
with a real-time gap major than k ∗ ∆τb.
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Nevertheless, a smart contract can recreate the block hash of block Nn in an execution
if all the needed data are provided. All the variables that make up a block hash are as
follows: ParentHash, UncleHash, Coinbase, Root, TxHash, ReceiptHash, Bloom, Difficulty,
Number, GasLimit, GasUsed, Time, Extra, MixDigest, and Nonce. Through using all of
these variables and comparing the resulting hash with the block hash Nn collected inside
the execution, a smart contract can rely on the provided data, i.e., what is in the timestamp.
The problem with this method is that the verification process requires high gas consumption
(221,570 gas). To reduce gas taxes, we have applied an optimistic approach similar to the
one used in the optimistic roll ups [59]. In this approach, all the functions necessary to verify
the results of a call are integrated in the smart contract, but this verification is not executed
as a general rule to reduce costs. When a function of a smart contract is called externally,
the caller directly provides the result, and it is considered valid without going through
further on-chain verifications. Then, a time is given for anyone to verify the result off-chain
verifications and to denounce the invalidity of the provided value. If this occurs, the smart
contract itself verifies the result, reverses the transaction if necessary, and performs the
stipulated penalties.

By implementing this approach in our smart contract QualificationSC, the SS itself can
provide a timestamp of the parent of block Nn, in which block hash is used as a nonce in the
signing process, where n is the slot from where the block hash was gathered. Its parent block
was published at slot n− θ. The smart contract relies at first in this value when using it to
calculate ∆τi. Then, 3 min (15 slots) is provided for any claimer to claim the invalidity of the
timestamp provided by the SS and to propose a new one. If someone does this, the person
in charge of the sensor (SensorResponsible) can accept the new timestamp, thus avoiding
the necessity of reconstructing the block hash and obtaining a significantly reduced penalty.
If the SensorResponsible refuses the new timestamp, the claimer can process a “judgment”
that provides all the needed information to the smart contract so it can recreate the block
hash of Nn−θ . If the smart contract can successfully recreate the block hash, meaning that
the new timestamp proposed by the claimer was correct, the SensorResponsible has to
pay all the expenses transactions and a small penalty. The judgment is a very unlikely call
because the SensorResponsible will accept the new timestamp proposed by the claimer
if it is correct without the need to go through the judgment process. The judgment costs
240,510 gas, which is equivalent to less than $10 as of 24 July 2023.

With this solution, the SS itself can send the timestamp of the parent’s block, in which
block hash is used as a nonce to QualificationSC. Then, the smart contract can trust it
without increasing the on-chain costs.

5.5. Detailed Process

In this subsection, we will include a detailed explanation of the PKI in a cold-chain
scenario. The flow chart on Figure 6 represents the actors, the phases, and the actions,
which are explained step-by-step below.

In the setup phase, the stakeholders must detail the characteristics of the cold chain.
They stipulate the manufacturer, the SS model (DevModel), the sensor certificates [25], the
assumable time ∆τAA, and the qualification requirements. With these data, they can deploy
the smart contracts SCA and QualificationSC. Next, the manufacturer deploys its own
smart contract, the manufacturer smart contract (ManSC), where it dynamically updates
its key used (ManKP) to sign the manufacturer certificates (Cert). Any entity (including
smart contracts) can consult the manufacturer’s address in ManSC. After the setup phase,
the process sequence starts. Notice that the complete sequence is graphically described in
the sequence diagram shown in Figure 7, which details the smart contracts and the actors
together with their functions and relationships.
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5.5.1. Certificate Creation (Manufacturer→ SS)

The first phase of the sequence is certification creation in which, once an SS is man-
ufactured, the manufacturer reads its public keys, SeKP.pub and OKP.pub, and creates a
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certificate including DevModel. Next, the raw certificate is signed using the manufacturer’s
private key, MK.priv. Finally, the signature is attached to the raw certificate, thus creating
the certificate. It is the only phase that must be performed in a controlled environment, and
it is detailed in Algorithm 1.

Algorithm 1 Certificate Creation

Internal Inputs MaK_priv
External Inputs OKP.pub, SeKP.pub, DevModel

Certraw ← (DevModel||OKP.pub||SeKP.pub)
Signat← sign(MaK_priv, Certraw)
Cert← (Certraw||Signat)

return Cert

5.5.2. Preregistration (Shipper→ SCA)

The SS device is sent to the shipper, who installs it in the package to be shipped and
prepares it to start the cold chain. Additionally, the shipper preregisters the OKP.Address
in SCA, thereby adding it to a sheet of Preregistered Addresses (PA).

5.5.3. Identification (SS→ SCA)

Then, the SS request is identified in SCA. A SS uses its OKP.priv to sign a blockchain
transaction, which contains its manufacturer certificate. When the SCA receives it, the
smart contract first checks that the transaction sender address (Tx.sender address) is in the
PA. Secondly, it validates that the manufacturer certificate was signed with the Priv of the
manufacturer, whose address is indicated in ManSC. Next, it asserts that the model defined
in the certificate, DevMode, is the same model defined in SCA. Then, the SCA generates the
OKP.Address from the OKP.Pub specified in the manufacturer certificate. Further, the smart
contract verifies that the OKP.Address is equal to the Tx.sender address, and, if everything is
correct, SCA will store the OKP.Address linked to the SeK.Address defined in the certificate
as trusted addresses. This way, there is no need to perform this process any more when
identifying the SS in the future. It is also not needed to show the ownership of the SeK.Priv
because the manufacturer certificate is proof enough that the owner of OK.priv is the only
owner of SeK.priv. The pseudocode of the function identification() is shown in Algorithm 2.

Algorithm 2 SCA identification

Internal Inputs DevModel
External Inputs Tx.sender, Cert

if !(Tx.sender ⊂ PA)
return No valid
Certraw, Signat← Cert
AddressSigner ← recoverAddress(Certraw, Signat)
ManKP.Address← getManKP.Address()
if (AddressSigner! = ManKP.Address)
return No valid
if (Cert.DevModel! = DevModel)
return No valid

OKP.Address← getAddress(Cert.OKP.pub)
if (Tx.sender! = OKP.Address)
return No valid
SeKP.Address← getAddress(Cert.SeKP.pub)
addCryptodata(OKP.Address, SeKP.Address)

return
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5.5.4. Sending Qualification Data (SS→ QualificationSC)

When a SS’ certificate is validated, the SS can start transferring qualification data.
Firstly, it will read the last block hash at slot n and will provide it to the Hardware Security
Module (HSM) as a nonce. The HSM gathers real data from the sensor and signs it using the
SeKP.priv together with the nonce. Then, the HSM sends the result to the Oracle controller.
The last one generates a transaction to trigger the SCA’s function receiveData(), which is
described in Algorithm 3 with the following inputs: real data, the signature, the number
Nn, and the timestamp of the parent block of Nn, τn−θ . Then, the SS signs the transaction
with OKP.priv and sends it to QualificationSC.

Algorithm 3 QualificationSC receiveData

Internal Inputs TAA
External Inputs data, Signat, Nn, τn−θ

SeKP.Address← getCryptoData(Tx.sender)
if !(SeKP.Address)
return No valid
nonce← blockhash(Nn)
Content← (data||nonce)
Addresssigner ← recoverAddress(Content, Signat)
if (Addresssigner! = SeKP.Address)
return No valid
τn+β ← currenttime
∆τi = τn+β − (τn−θ − ∆τAA)
processData(Data, ∆τi)

return

QualificationSC receives the transaction and authenticates it by checking the sender
address (OKP.Address) in the SCA. If the SS is a trusted device, QualificationSC will receive
a SeKP.Address from SCA. Then, from Nn, the smart contract obtains the block hash used
as a nonce and verifies the SeKP signature. Finally, through using the time τn−θ , the time
of the current block τn+β and ∆τAA are defined in the setup phase, and QualificationSC
can calculate the uncertainty interval ∆τi (4), as well as estimate, when the measurement is
gathered with a high reliability.

If the result is successful, the data would have proved to have DoA, DOI, DOTu, and
DOF, and QualificationSC can process the data with all of the guarantees. Finally, the
package receiver can read the qualification data and track it back to the data generator, thus
obtaining DOTa.

6. System Implementation

In this section, we implement the infrastructure in a real use case. A packet in a
cold chain must maintain a temperature between Th and Tl within a safety margin ω.
Additionally, we identified τu and τd as the times required to climb from the “Secure Zone”
to the “Dangerous Zone” and vice versa, respectively, as seen in Figure 8. To ensure that
the packet never enters the “Dangerous Zone”, we must take samples with a period less
than τp.

τp = τu + τd (6)

From Mohamed Ahmed in [7], we take Tl = +2 ◦C and Th = +8 ◦C, and we consider
a safety margin of ω = 1 ◦C. From [60,61], we set a continuous temperature change velocity
(VT) of a non refrigerated package of 0.1 ◦C/min.
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Figure 8. Graphical representation of the “Dangerous Zone”, “Margin Zone”, and “Secure Zone” of
the temperature of a product in a cold chain.

With these data, we calculated τp = 20 min = 1200 s; therefore, we set 1200 s as the
measurement period and 3 ◦C and 7 ◦C as the temperature limits in the qualification data.
We considered 48 s as our assumable time ∆τAA (i.e., γ = 4). Also, we set 120 s as the
maximum time for our transaction to be accepted (β = 10) [62], and we set θ as equal to
1 because skipped slots are very unlikely [58]. From (4), we obtained a minimum ∆τi of
72 s with β = 1, as well as a maximum of 180 s with β = 10, which is much lower than the
measurement period of 1200 s.

In the implementation, we used a real HSM, the same that was used by Dominic et al.
in [24], the Blockchain Security 2Go starter kit R2 [63]. Moreover, it was connected to a low-
price system on chip, Raspberry Pi 4B: Broadcom BCM2711, Quad core Cortex-A72 (ARM
v8) 64-bit SoC @ 1.5 GHz 8 GB LPDDR4-3200 SDRAM. Through using a non optimized
code, we obtained the results shown in Table 1, where Get block hash is the time needed
to ask for the block hash of the latest block, Data generation represents the hash of the data
and the signing operation by the SS, and Tx generation is the time taken to build the raw
transaction and signing it for second time. Finally, the verification of the incoming data in
QualificationSC has a cost of 21,830 gas, which, as of 22 July 2023, is equivalent to USD 0.86.

Table 1. Measurements of a non-optimized SS.

Operation Time

Get block hash 140 ms

Data generation 303 ms

Tx generation 638 ms

7. Security Analysis

In this section, we provide an analysis following the indications of the security require-
ments presented by Dan Liu et al. in [26] and explained in Section 2.1.

• DOAu: Every IoT node has a unique, irreplaceable, and irreplicable private key, which
provides the IoT node with a unique address. Before accepting any data, the smart
contract confirms that the sender address belongs to an accepted IoT node with a valid
HSM (owner, manufacturer, and type).

• DOTa: Blockchains store all transaction histories with their sender address. Any entity
with access to the blockchain can track the data back to the origin.

• DOI: Thanks to the use of a IoT device with hardware-based security, the SS and the
measurements gathered from the environment are signed in the HSM even before
they can be accessed by the controller of the IoT device. Then, these data and their
signatures are verified by a smart contract thanks to our blockchain-based PKI. In this
way, we achieve an end-to-end integrity protection of the data.
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• DOTu: Once the identity is confirmed, QualificationCA receives the validated SeKP
from SCA, and the smart contract verifies that the signature on the data was generated
by SeKP before accepting the data, thus ensuring that the generator was a HSM in
a SS. As indicated in Section 3.1, knowing the HSM in a SS that generates the data
guarantees its trustworthiness.

• DOF: Guaranteeing data freshness is essential to avoid delay attacks and replay attacks.
In delay attacks, the attacker generates a collection of correct measurements at time τ
and uses them as measurements of other posterior times. Through using block hashes
as nonces in the signatures, we can estimate a time slot where the data was generated
over 72 s minimum and 180 s maximum with a probability of 99.98% in Ethereum
(when considering an attacker investing USD six billion). The error margin can be
divided by six by extending the assumable time τAA by 12 s.

8. Comparisons

In Table 2, we compare our work to the other solutions proposing Oracles to securely
send data to blockchains. Notice that those works that do not consider the security of data
origin, like [6,7,21,35,36], and they are no included in the comparison. As can be observed,
Town Crier [13] and Astrea [14] have good security properties that make them good options
for feeding smart contracts with trusted data, but they are not applicable to the IoT. The
solution proposed by Jonathan [23] also has good security properties, and it does apply
to the IoT; however, they were not capable of providing trustworthiness guarantees for
the sensors gathering the data or the freshness of the data. Additionally, their solution
requires a high-cost effort to enroll each IoT node. Our solution is the only one achieving
this level of information security. Neither DiOr-SGX [22] or Alia Al S. et al. [20] provided
mechanisms for blockchains to authenticate the IoT by sending the data, nor did they
validate the IoT trustworthiness and the data freshness. Our proposed solution, in contrast
to those previously discussed, not only successfully addresses all the security requirements,
but it is also scalable and can be applied to IoT devices.

Table 2. Comparison of Oracle protocols.

Oracle Hardware Oracle Requirements

Protocols DOAu DOTa DOI DOTu DOF Scalable IoT Applicable

Town Crier [13] X X X X X X 7

Astraea [14] X 7 X X X X 7

DiOr-SGX [20] 7 7 7 7 7 X X

Jonathan [23] X X X 7 7 7 X

Alia [22] 7 X X 7 7 X X

Our solution X X X X X X X

9. Conclusions

This paper presents a set of Ethereum smart contracts that performs the authentication
and attestation of IoT devices and recognizes the timestamps of data collection. Usually, any
IoT device’s owner controls the data collected. However, there are several use cases where
a blockchain depends on sensor measurements, like blockchain-based supply chains, thus
meaning the sensor owner could mislead the involved smart contracts. In our solution, the IoT
device owner does not have any control over the IoT data. To achieve this, we developed an
infrastructure where smart contracts receive measurements directly from sensors, the senders
are authenticated, the hardware-based secure sensors are attested, and the data freshness is
calculated before it is accepted for a low gas cost. In order to accomplish this, we measured the
temperature using a hardware-protected IoT device, as well as designed a novel PKI to quickly
authenticate IoT devices and their hardware-protected data on public blockchains without
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certificates. Moreover, we developed and analyzed the tools to demonstrate the freshness
of the IoT data. In this research, we proved that it is possible to send non-manipulable data
from IoT devices to smart contracts, and this is non-manipulable data even when controlling
the IoT device. Thus, it paves the way for the creation of several new apps based on smart
contracts, and it allows for the use of Ethereum in a variety of new scenarios involving IoT.

Still, the operation of our solution is closely dependent on the Ethereum blockchain,
the mechanism of its operations, and it requires the use of a novel IoT sensor with a
particular hardware architecture. Further investigation is needed to apply it to other
blockchains like Hyperledger Fabric (where confidentiality can be added), or to Arbitrum
(to achieve a better response time). On the other hand, the required IoT device implies
more research in developing Secure Sensors before our solution can be applied to multiple
and varied scenarios. Finally, our solution limits the sending data to raw measurement
data. In the future, IoT remote attestation could be investigated to allow for some basic
data preprocessing before uploading it to a blockchain.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
HSM Hardware Security Module
PKI Public Key Infrastructure
DOAu Data Origin Authenticity
DOTa Data Origin Traceability
DOI Data Origin Integrity
DOTu Data Origin Trustworthiness
DOF Data Origin Freshness
TLS Transport Layer Security
CA Certification Authority
SCA Smart Certificate Authority
SS Secure Sensor
API Application Programming Interfaces
ECDSA Elliptic Curve Digital Signature Algorithm
Priv Private Key
Pub Public Key
PoW Proof of Work
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PoS Proof of Stake
UML Unified Modeling Language
QualificationSC Qualification Smart Contract
KP Ke Pair
SeKP Secure Element KeyPair
OKP Owned KeyPair
ManKP Manufacturer KeyPair
ManSC Manufacturer Smart Contract
τl Time left. When a nonce becomes publicly known
τr Time right. When data is made publicly known
∆τi Uncertainty interval of data i generation
∆τb Block time. Time interval between two slots in Ethereum
Rmn RANDAO mix, random variable included in the block Published at slot n
τn Timestamp of slot n
Nn Number of the blocks published at slot n
θ Difference of the slots between the block Nn and

its parent block Nn − 1
β Number of slots between the one containing Rmn

and the one containing the signed data
PTA PrevTime Attack to get Rmn before it is revealed
∆τA Quantity of time an attacker get Rmn in advance

as a result of PTA
ξ Probability of accidentally empty slots
µ Probability of an attacker to be chosen as block proposer
∆τAA Quantity of time the solution assumed

as a result of a possible PTA
γ Number of slots intervals for reaching ∆τAA
∆τNA Difference between ∆τAA and a higher ∆τA
Cer Manufacturer Certificate
Tx.sender Sender of a transaction
Th Highest secure temperature limit of a package
Tl Lowest secure temperature limit of a package
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