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Abstract: In the context of escalating global temperatures and intensified heat waves, the Mediter-
ranean region emerges as a noteworthy hotspot, experiencing a surge in the frequency and intensity
of these extreme heat events. Nature-based solutions, particularly management of urban green
infrastructure (UGI) areas, have shown promising outcomes in adapting urban areas to the challenges
posed by heat waves. The objective of the current study is twofold: firstly, to identify the composi-
tional patterns of strategically distributed small public green spaces, demonstrating their enhanced
capacity to mitigate the impact of heat waves in the Mediterranean region; secondly, to assess the
association, direction, and explanatory strength of the relationship between the composition elements
of the UGI areas and area typology, specifically focusing on the variation in land surface temperature
(LST) values during heat wave episodes spanning from 2017 to 2023. The methodology involved
obtaining land surface temperature (LST) values from satellite images and classifying green areas
based on composition, orientation, and typology. Ordinal multiple regressions were conducted to
analyze the relationship between the considered variables and LST ranges during heat wave episodes
that occurred from 2017 to 2023. The findings indicate an increase in LST ranges across many areas,
emphasizing heightened thermal stress in a Mediterranean medium-sized compact city, Granada
(in the southeast of the Iberian Peninsula). Traditional squares, pocket parks and gardens, and
pedestrian areas with trees and impervious surfaces performed better in reducing the probability
of exceeding LST values above 41 ◦C compared to other vegetated patches mainly occupied by
herbaceous vegetation and grass. The study concludes by advocating for the strategic incorporation
of vegetation, especially trees, along with traditional squares featuring semipermeable pavement
with trees and shrubbery, as a potential effective strategy for enhancing resilience against extreme
heat events. Overall, this research enhances our understanding of LST dynamics during heat waves
and offers guidance for bolstering the resilience of urban green spaces in the Mediterranean region.

Keywords: climate change adaptation; small public urban green spaces; compact city; urban green
infrastructure; heat waves; urban cooling capacity; green spaces composition; Mediterranean
traditional squares; UGI design; green areas composition

1. Introduction

Escalating global temperatures and the heightened frequency and intensity of heat
waves (HWs) have become prominent focal points in climate change research, with signifi-
cant implications for health, energy, and ecological aspects [1–3]. Officially confirmed by
international datasets as the warmest year on record, 2023 underscores the urgency of ad-
dressing these climatic shifts [4,5]. The latest Intergovernmental Panel on Climate Change
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(IPCC) Sixth Assessment Report highlights the robust evidence of increased warm days
and extreme temperatures globally, with a particular emphasis on HWs in the southern
Mediterranean [6].

In this context, the Mediterranean region stands out as a heat hotspot, experiencing
a rising trend in the average intensity and frequency of HWs, along with an increase in
minimum temperatures [7–9]. In particular, this forecast has direct effects, especially in
urban areas, which, among other impacts, result in heat stress and related issues detrimental
to human well-being [10–12]. Notably, higher surface temperature values are associated
with increased risk of mortality and morbidity during heat waves [13–15]. In this context,
green areas can play a crucial role in outdoor environments, effectively mitigating high
temperatures and providing a protective shield against heat-related impacts [16]. The
significance of green spaces becomes particularly evident in Mediterranean climate cities,
as revealed by a health impact assessment conducted by Iungman et al. (2023). That study
showed how cities with low cooling index scores, such as Athens, Valencia, Seville, Palermo,
Málaga, and Madrid, experienced elevated mortality rates due to heat stress. Specifically,
the effect of summer on annual attributable deaths (95% CI) ranged from 12.39% in Málaga
to 14.82% in Barcelona. Moreover, an increase in tree coverage demonstrated its potential
to generate a notable decrease in summer preventable deaths, as seen in Murcia with a
reduction of 29.85% (95% CI) [17]. Additionally, previous research in the Mediterranean
region emphasizes effective and very specific strategies at different scales to face these
challenges. At the microscale level, establishing and promoting habitable spaces, such as
courtyards, and implementing shading strategies have demonstrated positive outcomes
during HW episodes [18,19]. Increasing green spaces with vegetation at a local level has
also been demonstrated as a successful measure [20]. Ultimately, applicable across all
scales within urban areas and serving as more comprehensive strategies to adapt and
mitigate the impacts of HWs, are nature-based solutions [21,22]. As a nature-based solution,
management of urban green infrastructure (UGI) areas provides highly effective outcomes
in adapting urban areas to the anticipated challenges posed by future HWs [23]. While
increasing vegetation and greening strategies in UGI areas represent a well-fitted adaptation
and mitigation strategy, additional research becomes crucial to determine the most suitable
UGI for specific urban areas to strengthen the buffer capacity against the impacts of warm
spells [24,25].

In a recent study conducted by Delgado et al. in 2023, an in-depth investigation
into the cooling capacity of green spaces during HW episodes was undertaken [26]. This
involved a meticulous examination of the correlation between land surface temperature
(LST) and the Normalized Difference Vegetation Index. Despite some existing pitfalls in
the literature that suggest a potential link between “warm surfaces” and “high air tem-
peratures”, particularly in urban heat-island-related studies, LST is considered a reliable
proxy for air temperature and thermal comfort [27–30]. In addition to the quantity, health,
and type of vegetation, LST values respond to urban land surface properties by detecting
variations in spectral reflectance between built-up or impervious surfaces and the bright-
ness of surface or bare soil cover [31]. Building upon this understanding, the premise of
the current study is grounded. It posits that small green spaces strategically distributed
across urban areas could play a pivotal role in mitigating the impacts of HW episodes, es-
pecially in medium-sized compact cities within the Mediterranean region. In Delgado et al.
(2023) [26], these smaller green spaces exhibited greater cooling capacity against extreme
temperatures during HWs compared to medium-sized patches (with extensions ranging
from 10,000 m2 to 100,000 m2), including small forests, dense shrubs, grasslands, or parks.
Additionally, they showed better cooling capacity compared to areas with linear spatial
distributions that connect larger-sized patches (with extensions exceeding 100,000 m2),
such as urban forests, to medium-sized ones. While it is commonly acknowledged that
larger urban parks exhibit a higher cooling effect intensity, as indicated by the temperature
difference compared to vegetation-free urban areas [32], smaller urban green spaces stand
out for their capability to extend cooling effects over a greater distance than some larger
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areas, which enhances benefits at the microsite level, such as within neighborhoods or
residential clusters [33,34]. These smaller green spaces have the potential to significantly
and effectively reduce the LST in their surroundings, contributing to the improvement
in the urban thermal environment, particularly in high-density urban settings [35]. With
this backdrop, optimizing the cooling effects of these small urban green spaces requires
a detailed understanding of their types and composition elements [36]. However, the
design and composition elements of these UGI assets poses challenges, encompassing
factors such as adaptability to extreme [37], sudden, and fluctuating weather conditions,
and considerations of the physical footprint [38,39], potential ecosystem disservices [40],
accessibility [41], or the influence of size and design on perceived well-being [42].

In this context, the primary objective of the current study is twofold. Firstly, it aims to
identify the compositional patterns of small public green spaces scattered heterogeneously
throughout the urban matrix, showcasing enhanced capacity to ameliorate the impact
of HWs in the Mediterranean region, as indicated by previous research [26]. Secondly,
this study aims to evaluate the association, direction, and explanatory strength in the
relationship between the composition elements of the UGI areas under study and the area
typology, concerning the variation of LST values during HW episodes spanning from 2017
to 2023. Finally, the research strives to elucidate which components of these smaller green
areas and what typology of green space enhance the buffer capacity against the impacts of
warm spells, thereby providing valuable insights into the ongoing discourse on urban heat
mitigation strategies.

2. Materials and Methods
2.1. Study Area

Granada is a representative medium-sized compact city of the Mediterranean region
located in the southeast of the Iberian Peninsula (37.179937, −3.603489; 680 m. a.s.l.). In
the urban area of Granada, an excessive coverage of built-up areas can be observed, with a
12.42% increase between 2002 and 2022 [20]. The average percentage of the built-up area in
2022 varied from 39.37% in areas characterized by high-density urban fabric to 87.28% in
the dense urban core [43]. It presents a Mediterranean–continental climate, with an average
annual temperature of 15.2 ◦C for the period of 1985–2014 (which is projected to increase to
16.8 ◦C by 2050) [44]. The Köppen–Geiger climate classification for Granada is Csa, which
corresponds to a Mediterranean climate characterized by dry and hot summers [45,46].
Since 1975, Granada has been significantly impacted by heat waves, exhibiting the highest
recurrence rate of these events since 2011 among Spanish cities [47].

Of the 341 areas within Granada’s urban green infrastructure (UGI), this study specifi-
cally concentrated on the analysis of smaller public urban green spaces classified as “Other”
areas [48]. It is important to note that a portion of these areas (14.07%) exceeds the charac-
teristic size limit set for a small public urban green space (SPUGS), which is defined as an
area below 5000 m2 [49] (Figure 1).

2.2. Heat Wave Identification and Land Surface Temeprature Retrieval

This research adopted the heat wave (HW) definition given by the Spanish Agency
of Meteorology (AEMET) as an episode lasting at least three consecutive days, during
which at least 10% of the considered weather stations record maximum temperatures above
the 95th percentile of their daily maximum temperature series for the months of July and
August during the 1971–2000 period [50].

Land surface temperature (LST) values in daylight hours for each target area were
obtained from a previous study by Delgado-Capel et al. (2023) [26] using Landsat 8 and 9
OLI/TIRS satellite images derived from the U.S. Geological Survey [51]. To address the
stated objectives, in this study, we selected maximum LST values based on the consid-
eration of the cumulative adverse impacts of higher temperatures during extreme heat
episodes [52,53]. The LST datasets were updated with the latest data corresponding to
the HWs identified in 2023 [54]. A total of 16 episodes were identified, among which
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LST retrieval was only possible in 11 of them. This limitation arose due to the absence of
Landsat images on required dates or cloud coverage obstructing the proper LST retrieval
over the target areas within the urban matrix (Table 1).
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Table 1. Heat wave episode information and Landsat image details.

HW 1 Episode Start–End Dates Duration Data Source 2 Date Acquired Scene Center Time (GMT + 1) 3

HW 1 13–21 June 2017 9 days Landsat 8
(OLI/TIRS) 19 June 2017 11:49:55

HW 2 12–16 July 2017 5 days Landsat 8
(OLI/TIRS) Not available on required dates

HW 3 28–30 July 2017 3 days Landsat 8
(OLI/TIRS) Not available on required dates

HW 4 2–6 August 2017 5 days Landsat 8
(OLI/TIRS) Cloud cover above the urban matrix

HW 5 31 July–7 August 2018 8 days Landsat 8
(OLI/TIRS) 9 August 2018 11:49:50

HW 6 26 June–1 July 2019 6 days Landsat 8
(OLI/TIRS) 25 June 2019 11:50:04

HW 7 20–25 July 2019 6 days Landsat 8
(OLI/TIRS) 18 July 2019 11:56:19

HW 8 25 July–2 August 2020 9 days Landsat 8
(OLI/TIRS) 29 July 2020 11:50:08

HW 9 6–8 August 2020 5 days Landsat 8
(OLI/TIRS) 5 August 2020 11:56:20

HW 10 11–16 August 2021 6 days Landsat 8
(OLI/TIRS) 17 August 2021 11:50:21

HW 11 12–18 June 2022 7 days Landsat 9
(OLI/TIRS) 9 June 2022 11:49:43

HW 12 9–26 July 2022 18 days Landsat 8
(OLI/TIRS) 19 July 2022 11:50:28

HW 13 9–12 July 2023 4 days Landsat 8
(OLI/TIRS) Not available on required dates

HW 14 17–20 July 2023 4 days Landsat 8
(OLI/TIRS) Cloud cover above the urban matrix

HW 15 6–13 August 2023 8 days Landsat 8
(OLI/TIRS) 7 August 2023 11:50:03

HW 16 17–25 August 2023 9 days Landsat 8
(OLI/TIRS) 23 August 2023 11:50:11

1: HW#: Heat wave episode; 2: OLI/TIRS: Operational Land Imager Thermal Infrared Sensor; 3: GMT: Global
Meridian Time.
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Land surface temperature (LST) values were recoded into specific ranges to facilitate a
comprehensive understanding of their distribution and their association with areas prone
to discomfort due to heat stress. To carry out this recoding, this study supported the
approach on the significant correlation between LST, air temperature, and the Physiological
Equivalent Temperature (PET) [55,56]. PET is among the most widely employed thermal
indices in urban settings, renowned for its ability to intricately consider complex urban
geometries and surfaces and its applicability in studies assessing the impact and perception
of heat waves in cities [57,58]. The adopted recoding of LST values was aligned with the
indicative PET thresholds for regions similar to our study area, in which temperatures
below 35 ◦C trigger a moderate heat stress (warm thermal sensation), while temperatures
exceeding 41 ◦C trigger extreme heat stress (very hot thermal sensation) [59–61]. Prior
research conducted in the Mediterranean region employed intervals of 2 degrees for setting
up the ranges [62,63]. Therefore, LST values were eventually recoded into 5 ranges, as
shown in Table 2.

Table 2. Summary of variable recoding: ranges of land surface temperature values, intervals of cover
percentage for composition elements, and orientation assigned to the target areas based on their
major axis.

Land Surface Temperature (LST) Percentage Coverage of Composition Elements Orientation

LST Interval
(◦C) LST Range Variables

Intervals of
Cover

Percentage

Major Axis
Orientation Assignation 6

<35.00 LST Range 1 Tree Imp. Surf. 4 1: 0–20.00

35.01–37.00 LST Range 2 Shrub Build 2: 20.01–40.00 45.01◦ to
135.00◦
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2.3. Composition and Orientation of Target Areas

The composition of elements within the target areas, included trees, shrubs, surfaces
with herbaceous species and grasses, bare soil, pervious surfaces (such as sands or silts),
impervious surfaces (such as asphalt, concrete, construction tiles or rubberized surfaces),
buildings, and water surfaces (mainly found in square fountains). In addition, semiperme-
able pavement was included as a structural component, as it is a type of surface widely
found in parks and squares of compact medium- and small-sized cities in the Mediter-
ranean region due to its historical heritage [64]. This type of surface mainly combines
rounded pebbles, cobblestones, or gravel with permeable interstitial spaces.

The identification of composition elements was performed by calculating the per-
centage coverage for each composition element in every target area with ARCGIS 10.6
software. This process involved visualizing and identifying each composition element
within each target area using high-resolution aerial orthophotography coverage from the
National Aerial Orthophotography Plan [65]. This exhaustive and manual identification
allowed us to overcome the existing challenges in land cover mapping and processing
at this resolution [66], including accuracy limitations in distinguishing certain categories
(e.g., dry grass or bare soil vs. concrete, trees vs. irrigated grass, or roofs vs. asphalt) [67]
and potential issues with supervised learning techniques not providing fully ground-truth
labels [68,69]. Subsequently, each target area was assigned a range of coverage percentage
for each composition element, to enhance data simplicity and control over variability, and
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to improve overall manageability and interpretability of results. The percentage coverage
of elements was recoded into 5 ranges: 1 = 0%–20%, 2 = 20.01%–40%, 3 = 40.01%–60%,
4 = 60.01%–80%, and 5 = 80.01%–100% (Table 2).

Finally, the orientation of the target areas was determined based on the position
of the major axis of each area. Thus, areas with their major axis oriented between 45
and 135 degrees, and from 225 to 315 degrees, were assigned an East–West orientation.
Conversely, areas with their major axis oriented from 315 to 45 degrees, and from 135 to
225 degrees, were assigned a North–South orientation (Table 2).

2.4. Statistical Analysis

Ordinal regressions were computed for analyzing the effect of SPUGS components,
orientation, and type (as independent variables) on LST ranges (as dependent variables). To
test the association, direction, and strength of each composition and orientation variables
in the explanatory power of the LST range reached in each event, 12 multiple ordinal
regressions were modeled, one for each HW episode with available data and another one
with the mean value of all episodes.

In each case, the dependent variable was the LST value collected in each HW episode
recoded in segments and the independent variables were the recoded percentages of cover
composition element and orientation. To test the levels of explanatory power of each model
with respect to the null model, the Cox and Snell, and Nagelkerke and McFadden pseudo
R-squared were used [70,71].

Subsequently, the composition element variables were grouped into type of SPUGS
using the K-means clustering technique. To determine the number of clusters to extract,
the elbow method was used, observing the loss of internal heterogeneity as the number
of retained clusters increases. Where the slope decreases steeply, it is determined as the
number of clusters to be obtained. Subsequently, the means of the variables in each cluster
were analyzed, as well as the relationship of the clusters with the rest of the variables using
chi-square and Haberman’s corrected standardized residuals analysis, in order to name
and interpret the type of SPUG under assessment.

Finally, with the intention of providing aggregate information on what type of SPUG
reduces or increases to a greater extent the probability of reaching higher LST ranges,
12 new multiple ordinal regressions were performed in which the independent variables
were each cluster, and each of the dependent variables comprised the LST values recoded in
segments. The statistical analysis for this research was conducted using IBM SPSS Statistics
software, version 28.0.0.0 (190).

3. Results
3.1. Land Surface Temperature Assessment

Data on land surface temperature (LST) were collected for 11 episodes spanning from
2017 to 2023, along with the overall mean for all episodes. The least intense HW episode
was the latest recorded in 2019 (HW7), with a mean LST value of 32.53 ◦C across all areas.
The highest mean LST value occurred in the first episode of 2020 (HW8), reaching 41.10 ◦C.
Following this episode, LST mean values surpassed those of the initial episodes from 2017
and 2018 (HW1, HW5, and HW6), ranging from 39.12 ◦C in episode HW12 to 39.85 ◦C in
the last episode recorded in 2023 (HW16). The overall mean LST across all episodes was
37.94 ◦C (Figure 2).
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Figure 2. Average of retrieved LST values per heat wave (HW) episode and all episodes over the
target areas.

The distribution of LST values within the adopted recoding ranges illustrates that LST
Range 3 (values between 37.01–39.00 ◦C) and LST Range 4 (values between 39.01–41.00 ◦C)
accumulated the highest percentage of areas falling within these ranges. In alignment
with the average LST values per episode, 96.19% of the studied areas exhibited values
below 35 ◦C in the latest HW episode recorded in 2019 (HW7). Conversely, in the hottest
episode (HW8), 95.01% of the areas registered LST values above 39.01 ◦C, with 43.40%
falling within LST Range 4 (values between 39.01–41.00 ◦C) and 56.61% within LST Range 5
(values above 41 ◦C). Considering all episodes, most of the studied areas (65.40%) recorded
values between 37.01 and 39.00 ◦C (LST Range 3) (Table 3).

Table 3. Percentage of areas within the adopted land surface temperature (LST) ranges.

LST Range 1 LST Range 2 LST Range 3 LST Range 4 LST Range 5

HW1 1.76% 17.89% 65.10% 10.85% 4.40%
HW5 6.16% 53.37% 35.48% 2.93% 2.05%
HW6 17.89% 64.22% 13.78% 2.93% 1.17%
HW7 96.19% 2.64% 0.59% 0.59% 0.00%
HW8 0.00% 1.17% 3.81% 43.40% 51.61%
HW9 2.64% 24.63% 57.77% 10.56% 4.40%

HW10 0.59% 3.81% 56.89% 32.84% 5.87%
HW11 0.88% 23.46% 62.46% 9.38% 3.81%
HW12 0.29% 2.05% 37.54% 52.79% 7.33%
HW15 0.29% 3.52% 46.04% 42.82% 7.33%
HW16 0.29% 2.05% 24.63% 54.84% 18.18%
All Ep. 0.88% 20.23% 65.40% 11.44% 2.05%

LST Range 1: <35.00 ◦C; LST Range 2: 35.01–37.00 ◦C; LST Range 3: 37.01–39.00 ◦C; LST Range 4: 39.01–41.00 ◦C;
LST Range 5: >41.01 ◦C.
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3.2. Information on Composition Elements and Clustering Result

In the identification of composition elements within the target areas, the most prevalent
element was the impervious surface, with an average coverage percentage of 39.24% across
all areas. Over 50% of areas with impervious surface presence exhibited less than 40.00%
coverage. Trees showed a mean coverage of 27.25%, with 42.52% of areas having up to
20.00% tree coverage and 35.48% with coverage between 20.01% and 40%. The rest of
the vegetated composition elements, shrub and herbaceous species/grasses, had average
coverages of 7.47% and 9.78%, respectively, with 87.89% and 81.52% of areas having up to
20% coverage for shrubs and herbaceous species/grasses. Pervious surface had a mean
coverage of 9.32%, with 79.77% of areas having up to 20% coverage. Semi-impermeable
surfaces (cobblestone, gravel, pebble) averaged 4.34% and their presence in all areas was
under 20.00% coverage. Bare soil had a mean coverage of 2.12%, present in 97.65% of
areas with less than 20% coverage. Buildings showed a limited presence (0.44% average
coverage), and water had a negligible presence (0.06% average coverage) in 100% of areas,
with water presence not exceeding 3% of the total green area in any case (Table 4).

Table 4. Composition element assessment.

Composition
Element 1 Tree Shrub Herb./Grass Soil Perv. Surface Imp. Surface Build C/G/P Water

Avg. All 2 27.25% 7.47% 9.78% 2.12% 9.32% 39.24% 0.44% 4.34% 0.06%

Intervals of
cover% % of areas within each interval

1: 0–20.00 42.52% 87.98% 81.52% 97.65% 79.77% 35.78% 99.41% 100.00% 100.00% 3

2: 20.01–40.00 35.48% 9.09% 9.97% 0.59% 12.90% 15.25% 0.59% 0.00% 0.00%
3: 40.01–60.00 13.49% 2.64% 2.93% 0.59% 3.81% 19.65% 0.00% 0.00% 0.00%
4: 60.01–80.00 3.81% 0.29% 1.76% 0.59% 2.93% 17.30% 0.00% 0.00% 0.00%
5: 80.01–100% 4.69% 0.00% 3.52% 0.59% 0.59% 11.73% 0.00% 0.00% 0.00%

1: Composition elements: Herb/Grass: herbaceous species and grasses; Soil: soil and bare ground; Perv. Surf.:
pervious surfaces; Imp. Surf.: impervious surfaces; C/G/P: cobblestone, gravel, and pebble; 2: Cover average of
each composition element in all areas. 3: Presence of water in only 16 areas, under 3% of the total area surface and
less than 100 m2 in all cases.

The clustering of target areas resulted in four distinct types defined by their composi-
tion elements (Figure 3, Table 5):

• Traditional squares and parks (TSQ) typically formed by a semipermeable pavement
composed of light-colored cobblestones, gravel, or pebbles and with the presence of
trees and small scattered garden areas with shrubbery.

• Parks and garden areas (PPG) mainly occupied by trees with hedge gardens and a
combination of impervious and pervious pavements. This type includes pocket parks,
walking paths, playgrounds, or sports fields.

• Pedestrian and transit areas (PIT) distributed throughout the city characterized by
a combination of trees and predominantly impervious pavements like tails, asphalt,
concrete, and in some cases, rubberized surfaces.

• Vegetated patches and public areas (HVP) for ornamental or structural purposes, with
scattered trees and shrubs, mainly occupied by herbaceous vegetation and grass.
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Table 5. Percentage average of composition elements per defined area type.

Composition Element
Defined Area Type after Clustering

TSQ PPG PIT HVP

Tree 14.52% 42.07% 18.95% 10.55%
Shrub 5.72% 9.19% 6.09% 8.08%

Herbaceous/Grass 0.27% 6.77% 2.17% 73.43%
Soil 0.17% 4.48% 0.47% 1.27%

Pervious surface 0.68% 18.95% 3.34% 2.05%
Impervious surface 5.64% 17.41% 67.92% 3.97%

Build 0.04% 0.14% 0.69% 0.67%
Water 0.04% 0.09% 0.11% 0.00%

Cobblestone/gravel/pebble 72.93% 0.98% 0.22% 0.00%
TSQ: Traditional squares; PPG: Pocket Parks and gardens; PIT: Pedestrian areas mainly covered by impervious
surfaces and trees; HVP: herbaceous and grass vegetated patches.

Upon defining the area types through clustering, additional analysis included calcu-
lating the average LST value for each cluster across all episodes. The lowest average LST
was observed in TSQ areas (36.75 ◦C), whereas PIT and PPG areas exhibited quite similar
values (37.44 ◦C and 37.43 ◦C, respectively). Finally, HVP areas showed the highest average
LST values across all episodes, with a value of 37.63 ◦C (Figure 3).

3.3. Regression Results

The ordinal regression analysis examining the relationship between ranges of maxi-
mum LST values and composition elements demonstrated statistically significant (p < 0.05)
model fitting information across most episodes, except for episode 8. Estimates with a
significance level of <0.05 showcased distinct relationships between these two variables
accordingly (Table 6).

Composition elements such as trees, shrubs, impervious surfaces and cobblestone,
and gravel and pebble surfaces were identified as significant factors in predicting the
variability in LST ranges. For every one-unit increase in any of these variables, a de-
crease in the ordered log odds of reaching the highest LST range (maximum values above
41 ◦C) was expected. The presence of trees exhibited a negative directional relationship
in episodes HW1 (estimate: −0.51), HW6 (estimate: −0.57), HW7 (estimate: −1.83), HW9
(estimate: −0.54), HW15 (estimate: −0.38), and HW16 (estimate: −0.40). There was a
predicted decrease of −0.40 in the logarithmic probability of reaching the highest LST range
considering all episodes. Similarly, the presence of shrubs demonstrated a negative direc-
tional relationship in episodes HW9 (estimate: −0.65), HW15 (estimate: −0.66), and HW16
(estimate: −0.67). The presence of impervious surfaces exhibited a negative direction in
episodes HW7 (estimate: −1.23) and HW9 (estimate: −0.41). Furthermore, presence of
cobblestone, gravel, and pebble surfaces showed a consistent negative direction in episodes
HW1 to HW6 (estimates: −0.49, −0.43, −0.57), HW9 (estimate: −0.47), and HW15 (es-
timate: −0.41), as well as a predicted decrease in the logarithmic probability (estimate:
−0.41) of reaching the highest LST range in consideration of all episodes (Table 6).

In contrast, herbaceous vegetation and grass presence showed a positive directional
relationship in episode HW11, indicating that for every range increase in herbaceous
vegetation and grass as the area surface, there is a predicted increase of 0.55 in the relative
probability of the LST range considered exceeding 41 ◦C. Estimates for the rest of the
independent variables (bare soil, pervious surface, and building) did not show statistical
significance in any of the models (Table 6). Water was excluded as a composition element
in the regression models due to its virtually negligible presence in the study areas. Water
was only present in 16 out of the 341 areas under investigation, and in none of these cases
did the surface coverage percentage exceed 3% or 100 m2.
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Table 6. Ordinal regression analysis: estimates for LST range prediction based on composition elements.

Episode; MFI Sig. HW1 ** HW5 ** HW6 ** HW7 *** HW8 HW9 ** HW10 * HW11 ** HW12 * HW15 *** HW16 *** All Ep. **

T
hr

es
ho

ld LST Range 1 −8.16 −2.60 −6.31 −35.13 −9.19 −5.85 −1.50 −4.36 −8.89 −9.58 −7.36
LST Range 2 −5.54 0.66 −3.05 −33.88 −4.33 −6.54 −3.79 2.11 −2.26 −6.29 −7.47 −3.93
LST Range 3 −2.15 3.34 −1.33 −33.17 −2.84 −3.62 −0.14 5.30 1.11 −2.94 −4.70 −0.51
LST Range 4 −0.58 4.21 0.18 0.12 −2.20 2.45 6.76 4.16 −0.19 −1.99 1.54

Lo
ca

ti
on

Tree

M
od

el
Pa

ra
m

et
er

s
(β

) −0.51 * 0.00 −0.57 * −1.83 * −0.08 −0.54 * −0.26 0.00 0.06 −0.38 * −0.40 * −0.40 *
Shrub −0.51 −0.37 −0.53 −1.77 −0.39 −0.65 * −0.24 −0.26 −0.29 −0.66 * −0.67 * −0.59

Herb/Grass 0.01 0.15 −0.08 −0.65 0.32 −0.06 0.27 0.55 * 0.36 0.22 0.24 0.16
Soil −0.55 0.07 −0.52 −9.29 0.38 −0.26 −0.16 0.15 0.00 −0.43 −0.17 −0.32

Perv. Surf. −0.04 0.37 −0.06 −0.70 0.17 −0.08 0.14 0.29 0.23 0.05 0.11 0.16
Imp. Surf. −0.35 0.00 −0.35 −1.23 * −0.02 −0.41 * −0.11 0.16 −0.02 −0.14 −0.23 −0.25

Build −0.35 0.41 −0.64 −11.52 0.04 −1.62 0.28 1.96 1.28 −0.47 −1.42 −0.05
C/G/P −0.49 * −0.43 * −0.57 * −7.44 −0.24 −0.47 * −0.21 −0.04 −0.22 −0.41 * −0.29 −0.37

MFI: Model fitting information. * Sig. < 0.05; ** Sig. < 0.01; *** Sig. < 0.001.

Table 7. Ordinal regression analysis: estimates and model parameters for LST range prediction based on area type.

Episode; MFI Sig. HW1 HW5 ** HW6 * HW7 HW8 * HW9 HW10 * HW11 ** HW12 ** HW15 ** HW16 ** All Ep. *

Th
re

sh
ol

d LST Range 1 −4.92 −2.88 −2.20 2.16 −4.25 −6.18 −6.05 −6.63 −6.87 −7.02 −5.56
LST Range 2 −2.29 0.38 0.92 3.38 −5.28 −1.61 −4.12 −2.43 −4.52 −4.26 −4.92 −2.14
LST Range 3 0.94 2.97 2.62 4.07 −3.79 1.16 −0.50 0.74 −1.14 −0.96 −2.17 1.09
LST Range 4 2.49 3.89 4.12 −0.84 2.57 2.05 2.17 1.87 1.65 0.41 3.12

Lo
ca

ti
on

TSQ

M
od

el
Pa

ra
m

et
er

s
(β

) −1.67 −1.79 ** −1.70 * −20.13 −1.94 ** −1.44 −1.86 ** −2.16 *** −1.99 ** −2.22 *** −1.93 *** −1.68 **

PPG −0.88 0.11 −0.60 −0.75 −0.79 −0.55 −0.99 * −1.47 *** −0.60 −1.06 * −1.10 * −0.74

PIT −0.91 0.04 −0.67 −1.79 −0.78 −0.67 −1.09 * −1.18 ** −0.80 * −0.88 * −1.27 ** −0.88 *
HVP 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a

MFI: Model fitting information. * Sig. < 0.05; ** Sig. < 0.01; *** Sig. < 0.001. a: parameter is set to zero because it is redundant.
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The models relating ranges of maximum LST values and type of area values exhibited
model fitting statistical significance (p < 0.05) for every episode, except for episodes HW1,
HW7, and HW9. In consideration of all episodes, statistical significance (p < 0.05) was also
observed for the whole model. In this ordinal regression analysis, estimates for areas TSQ,
PPG, and PIT showed statistically significant explanatory strength with the variability of
LST ranges, compared to area type HVP (Table 7).

For TSQ areas, a negative directional relationship was observed, indicating a significant
predicted decrease in the logarithmic probability of reaching the highest LST range in
episodes HW5 (estimate: −1.79), HW6 (estimate: −1.70), HW10 (estimate: −1.86), HW11
(estimate: −2.16), HW12 (estimate: −1.99), HW15 (estimate: −2.22), and HW16 (estimate:
−1.93). In episode HW8, a negative estimate (−1.94) showed a decrease in the relative
probability of reaching the minimum LST range (up to 35 ◦C) and surpassing the highest
one (over 41 ◦C). For PPG areas, results showed statistically significant negative estimates
in episodes HW10 (−0.99), HW11 (−1.47), HW15 (−1.06), and HW16 (−1.10), indicating
a decrease in the log odds of attaining Range 5 of maximum LST values compared to the
reference area type. Results with statistical significance for PIT areas displayed negative
estimates in episodes HW10 (−1.09), HW11 (−1.18), HW12 (−0.80), HW15 (−0.88), and
HW16 (−1.27), indicating the association with the variability in the LST ranges explored in
this analysis. In consideration of all episodes, a predicted decrease in the relative probability
of reaching the highest LST range was observed for areas TSQ and PIT compared to HVP
areas. The result for TSQ areas (estimate: −1.68) showed higher explanatory strength and
stronger significance than that for PIT areas (estimate: −0.88) for decreasing the relative
probability of exceeding the highest threshold set within the LST ranges (above 41 ◦C)
(Table 7).

Finally, the regressions performed between orientation as the independent variable
and LST ranges as the dependent variable did not show statistical significance for any of
the episodes or for all episodes combined (model fitting information sig. > 0.05 in all cases).
Therefore, the results have not been included in this article.

4. Discussion

This study carried out an investigation into the variability of land surface temperature
(LST) values during different heat wave (HW) episodes from 2017 to 2023 in the city
of Granada. The analysis focused on target areas within the urban green infrastructure
(UGI), specifically on smaller public urban green spaces (SPUGS), characterized by varying
percentages of different compositional elements. To address the existing challenges in
the interpretation of LST values and the relationship with the capability of UGI assets to
mitigate heat stress derived from higher surface temperatures [72], the study considered
spatio-temporal scales and thermal comfort aspects.

The observed trend in the intensity and duration of HW in our study area aligns with
the findings of existing research in the Mediterranean region [73]. Following the most
intense HW episode (25 July to 2 August 2020), where 98.83% of areas recorded values
above 39.01 ◦C, a slightly upward trend was observed thereafter. The last three episodes
recorded in July 2022 and August 2023 registered LST values for all areas that fell into the
upper ranges, surpassing the 39.01 ◦C threshold. (Figure 2, Table 3). In addition to the
increased intensity, the affected area during HW tended to expand, consistent with similar
findings in the Mediterranean region [74]. While most target areas recorded LST values
below 39.01 ◦C in the initial episodes (2017–2019), more than 75% of the areas registered
values above 37.01 ◦C from episodes in August 2020 onwards, reaching this proportion
in over 96% of the last episodes during the years 2022 and 2023 (Table 3). Specifically, the
average extent of HWs in the Iberian Peninsula is expected to range from 6% to 8% per
decade in the near future [75]. This increasing trend in spatial extent of HWs under future
climate conditions implies heightened human exposure among other associated effects
such as ecological, natural risk, and energy impacts [76,77].
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Regarding the statistical analysis of the relationship between reached LST ranges and
composition elements, the ordinal regression models did not yield statistically significant
results for episode HW8, the most intense one. Episode HW8, spanning from 25 July to
2 August 2020, presented the highest land surface temperature (LST) values during the
study period. In comparison to the year 2023, the year 2020 had the highest average temper-
atures recorded in the months leading up August [78]. Exploring further the particularity
of HW8, it is noteworthy to acknowledge that previous analyses conducted in the Mediter-
ranean region underscored the significant role of variables predicting and influencing LST,
especially solar radiation at the same geographical point and elevation [79]. Solar radiation,
especially during the hours for which we retrieved data for this study, is affected not only
by climate factors, such as temperature, relative humidity, wind direction, precipitation,
wind speed, and cloud cover, but also by the presence of air pollutants [80]. In this context,
considering the most intense heatwaves, HW8 (July 2020) and HW16 (August 2023), the air
quality in July 2020, preceding HW8, was worse than that in August 2023, preceding HW16.
Specifically, and for indicative purposes, 45.2% of days in July 2020 exhibited regular or
poor air quality (based on the European Air Quality Index) [81], whereas the percentage of
days with regular or poor air quality was 29% in August 2023 [82]. This observation might
suggest that air quality and pollution levels preceding a heat wave may exacerbate LST
values. Furthermore, the role of smaller green spaces in their interactions with air quality
becomes even more relevant [83,84]. Additionally, it would be interesting to investigate
if, under extreme heat conditions like those of this episode, thermal stress is so severe
that only strategies like shading [85] or ventilation [86] prove to be the most effective in
mitigating the impacts of warm spells.

However, the regression model based on the percentage of composition elements did
provide significant information for the remaining episodes (Table 6). Vegetation compo-
sition elements, represented by the independent variables trees and shrubs, contributed
significantly to explaining the avoidance of reaching the highest LST range. This highlights
the effective role of trees and shrubs in mitigating extreme LST values [87]. The observed
capability of trees to decrease the logarithmic probability of reaching the highest LST range
(above 41.01 ◦C) is particularly effective in Mediterranean regions [88,89]; this is also the
case for shrubs and other smaller-sized species [90], which showed a statistically significant
capacity to decrease the log odds of reaching the highest LST range in our study, albeit
in fewer episodes. This capacity reached its peak strength in the least intense episode
(HW7), where trees and impervious surfaces showed significant results. This association of
variables might, on occasion, generate this negative direction in the relative probability of
reaching higher LST values [91].

The presence of cobblestone, gravel, and pebbles (C/G/P) pavements as a composition
element showed significant coefficients with a negative direction in episodes HW1, HW5,
HW6, HW9, and HW15. The significance and directional relationship observed for the
variable “C/G/P” in the model considering all episodes suggest that the presence of this
type of surface might favor a decrease in the relative probability of falling within the LST
range of maximum values, corresponding to the hottest one (above 41 ◦C), and could help
counteract warming and the impact of hot extremes [92,93]. Aggregates of light-colored
C/G/P have intrinsic high albedo and emittance [94], which are key characteristics for
maintaining lower surface temperatures when exposed to solar radiation and reducing
surface and air temperatures [35,95]. In this study, this outcome aligns with findings
obtained in the Mediterranean region, where highly reflective materials have demonstrated
effectiveness in reducing surface temperature and mitigating the impacts of heat waves [96].
However, pavements of C/G/P may not be the most suitable in terms of usability, physical
barrier management, and coverage guidelines of universal urban green area design [97,98].

The only composition element that presented a positive coefficient, and therefore
a predicted increase in the log odds of reaching the highest LST range, was herbaceous
species and grass in the HW11 episode (June 2022). According to the official regional
environmental information network for the study area (Environmental Information Net-
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work of Andalusia—REDIAM), within the years under consideration in the study, 2022 in
Granada exhibited, on the on hand, the highest vegetation water stress index (ratio between
stressed and non-stressed vegetation) and, on the other hand, one of the lowest monthly
average precipitations for the month of June (1.3 L/m2) [99]. Herbaceous vegetation and
grass can reach very high temperatures in the absence of evapotranspiration, and their
positive impact on air temperature and, consequently, pedestrian heat stress, strongly rely
on irrigation, so when this type of land cover becomes dry, the surface temperature can
increase, negating its positive impact [100,101].

Composition elements, such as soil and buildings, both with the lowest average
coverage percentages (Table 4), were found to be not significant predictors of LST variation.
Specifically, concerning the soil composition element, the outcomes differed from potentially
expected results, as dry and heat-stressed soil typically contributes to a positive feedback
of increased air and surface temperatures [102,103]. Regarding buildings, the types found
in the target areas are mainly kiosks or small maintenance infrastructures, and the lack
of significance could be related to, besides their limited presence, the specific types of
buildings identified, as low-height structures might not contribute significantly to heat
stress [104]. Similarly, pervious surfaces were also identified as not significant predictors
of LST variation. In this case, the relatively low presence in the target areas might explain
the lack of significance, as their effects become more noticeable when larger extensions
are present [105] or in climates with milder temperatures than the Mediterranean region,
featuring limited seasonal variations and more evenly distributed precipitation throughout
the year [106].

The identified area types resulting from clustering exhibit similarities with other stud-
ies that classify green infrastructure typologies based on impervious, pervious, and mixed
pavements combining different vegetation types (trees, grass, and shrubs) with irrigated and
non-irrigated surfaces [107], studies where urban green areas categories are based on usage
(commercial, residential, or mixed-use) [108], or studies using local climate zones characterized
by building typology and the amount of vegetated surface as drivers for heat-stress-related
research [109]. However, the area types obtained after clustering in this study are more specific
to the study area, which enhances the granularity and accuracy of the study, aligning it more
closely with the actual conditions and features of the local UGI.

The regression models exploring the relationship between LST values and the type
of area defined after clustering demonstrated statistical significance (sig. model fitting
information < 0.05) for all episodes (except HW1, HW7, and HW9) and for all episodes as a
whole. Using areas defined as “Vegetated patches and public areas with scattered trees and
shrubs, mainly occupied by herbaceous vegetation and grass” (HVP) as a reference, which
exhibited higher average LST values (Figure 3), all other area types consistently performed
better in terms of reducing the relative probability of reaching LST Range 5 (over 41 ◦C)
(Table 7). Thus, this result could be interpreted as indicating a lower cooling effectiveness
of the HVP areas. This may be attributed to their heavy reliance on substantial irrigation for
herbaceous and grass covers, which is often challenging in climates like that of the study
area, where soil water availability is frequently a limiting factor [110].

Consistent with previous research, among the technologies for reducing both air and
surface temperatures and consequently improving outdoor thermal comfort, including
cool pavements, greenery, solar control, shading, or spray systems, the combination of
these technologies provides better outcomes than the use of technologies individually in
terms of thermal comfort improvement [111]. In particular, urban greenery, especially trees,
as well as the combination of trees and hedges, have a high potential for mitigating heat
stress. However, non-vegetated surfaces, such as reflective pavements, also have a cooling
effect, and combined with greening strategies, the capacity to reduce the effect of extreme
temperatures can be enhanced [112].

Notably, traditional squares and parks, characterized by semipermeable pavements
made of cobblestones, gravel, or pebbles, along with the presence of trees and small
scattered garden areas with shrubbery (TSQ), exhibited statistically significant associations
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with attained temperatures compared to HVP areas. The coefficients displayed by TSQ areas
showed a consistently negative relationship in each HW episode (except HW1 and HW9)
and when considering all episodes. This negative relationship suggests their potential
capacity to decrease the relative probability of surpassing LST values of 41 ◦C. These areas
feature surfaces composed of high-albedo reflective pavements with porous interstitial
spaces, representing a structural coverage type that has a significant influence in reducing
heat stress, at both surface and air levels, by increasing cooling effectiveness [113,114].
Furthermore, the stronger direction of the relationship observed for TSQ areas compared
to areas with more vegetation, such as PPG areas, highlights how the cooling potential of
urban trees may not be that high during warm spells, particularly in the Mediterranean
region, where projected drying summers can potentially reduce vegetation benefits, making
the influence of high-albedo materials, like C/G/P pavements, more relevant in this
region [115]. In this context, it is noteworthy that, while the regression model does not yield
significant parameters in the variation of LST for individual composition elements during
HW8 (the most intense episode) (Table 6), it does so for traditional square (TSQ) areas in
that specific warm spell (Table 7). The distinctive behavior of TSQ areas, compared to others
during this particular episode, could be attributed to two main factors. On the one hand,
the presence of reflective pavements on urban ground surfaces has been demonstrated to
significantly reduce surface temperatures and convective heat release into the surrounding
air so they have can offer widespread cooling benefits [116,117]. On the other hand, for
effective heat stress reduction, a combination of greenery strategies and the use of cool
building materials, such as urban paving with heat-resistant designs, can contribute to
the cooling capacity of urban settings during heat wave episodes [118]. The synergistic
integration of highly reflective materials with street trees, as observed in our study in TSQ
areas, appears to be a highly effective approach for ambient air cooling and managing
increased reflected solar radiation [119]. Additionally, combining street trees with cool
pavements is demonstrated to be an efficient method for preserving pedestrians’ outdoor
thermal comfort, particularly in the Mediterranean climate [104].

Compared to HVP areas, parks and garden areas mainly occupied by trees with hedge
gardens (PPG) and pedestrian and transit areas with presence of trees and impervious pave-
ments (PIT) showed similar results and were more likely to indicate a decrease in the relative
probability of exceeding LST ranges over 41 ◦C from episode HW10 onwards (with an ex-
ception in episode HW12 for PPG). Regarding PPG areas, results of this study are consistent
with previous research proving the capacity of vegetation in the Mediterranean dense urban
matrix to mitigate the impacts of HW episodes’ heat stress conditions [17,120,121]. However,
considering all episodes, only in PIT areas did the coefficients indicate a statistically significant
negative direction in the log odds probability of surpassing 41 ◦C (LST range 5). Despite the
capacity of PPG areas to ameliorate the impact of warm spells, mainly due to the presence of
trees, they may not fully compensate for the effects of impervious surfaces in reducing LST.
These effects can persist beyond the night hours (note that the retrieved Landsat images were
acquired in the morning hours), and the determination of a location’s LST and, consequently,
its microclimate conditions, may not solely depend on the extent of tree cover but also on the
presence of shade [110,122]. Additionally, the presence of plastic-based impervious surface
coatings (rubber and cast rubber) in PPG areas excessively increases LST values, generating
extreme surface temperatures [123]. Furthermore, the combination of pavements found in
PIT areas, along with the inclusion of trees, can create highly effective conditions to alleviate
the effects of episodes of extreme heat in certain urban geometries [124]. These considera-
tions would indicate the importance of planning new UGI areas and rethinking the designs
of existing ones, to enhance well-being conditions during extreme heat episodes [125].
Furthermore, the significance of strategically placing vegetation in heat-exposed areas
seems to be more effective in mitigating the impacts of HW than merely aiming for an
increase in the percentage of green coverage [126].

Finally, the regression models based on the orientation of the areas suggests that this
variable is not a significant predictor in the variability of LST values during the recorded
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HW episodes, despite orientation being a condition that can potentially influence the im-
pacts of warm spells due to its influence on the duration of shading periods and urban
ventilation [57]. The lack of significance in this study could be attributed to the fact that
orientation tends to be more influential in linear geometries, such as street canyons or
connectors between UGI patches [127,128]. It is indeed important to acknowledge cer-
tain limitations in this study. Firstly, ventilation and shade effects were not considered
as independent variables in the regression models. The absence of these factors might
introduce some level of incompleteness to the assessment, as both ventilation and shading
can significantly influence local microclimates and subsequently impact LST values. Future
studies could benefit from incorporating these variables to provide a more comprehen-
sive understanding of the thermal dynamics in urban green spaces during HW episodes.
Furthermore, there are additional variables that warrant further investigation for a more
nuanced analysis. Among these, the typology and phenology of plant species emerge as
crucial factors influencing their adaptability and resilience to present and future climatic
conditions. A more detailed exploration of these aspects could contribute valuable insights
into the effectiveness of different vegetation types in mitigating HW impacts throughout
UGI areas in Mediterranean urban environments [129–131]. Additionally, it is worth not-
ing that nighttime conditions provide complementary information for a more exhaustive
evaluation of the urban green spaces’ cooling effects across the entire diurnal cycle. In
subsequent research, examining the impact of external factors beyond UGI management,
such as meteorological conditions (e.g., atmospheric circulation and cloudiness) and air
quality, and considering urban planning and architecture for both existing and newly
developed areas, could offer valuable insights into the influence on LST.

5. Conclusions

In conclusion, from the heat wave (HW) episodes analyzed since 2017, this study
revealed how LST ranges increased across numerous areas, highlighting heightened thermal
stress in a Mediterranean medium-sized compact city. Trees played a crucial role in lowering
the log odds of reaching higher LST range (above 41 ◦C). Cobblestone, gravel, and pebble
(C/G/P) pavements also showed potential in decreasing this probability. Herbaceous
species and grass cover, however, exhibit a positive coefficient in one of the episodes,
indicating higher relative probability of reaching higher surface temperatures. Orientation
and certain composition elements, like soil and buildings, did not significantly influence
LST variation.

Among area types, traditional squares and parks (TSQ), pocket parks and gardens
(PPG), and pedestrian areas with trees and impervious surfaces (PIT) performed better
than vegetated patches (HVP) in reducing the probability of exceeding LST Range 5 (above
41 ◦C). The study advocates for strategically placing vegetation in heat-exposed areas,
coupled with pavements like C/G/P, as an alternative strategy to simply increasing green
coverage. Therefore, UGI areas´ design, combining trees with reflective pavements, proved
its potential effectiveness in mitigating HW impacts.

Future research should explore granular aspects like pavement types, shading, ven-
tilation, and plant resilience to refine our understanding of these relationships at smaller
spatial scales.

In summary, this study not only advances our understanding of LST dynamics during
HW episodes, but also guides strategies for enhancing the resilience of urban green spaces
during extreme heat events.
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