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A class of cosmological models with spatially
constant sign-changing curvature

Miguel Sánchez

Abstract. We construct globally hyperbolic spacetimes such that each slice ¹t D t0º of the
universal time t is a model space of constant curvature k.t0/ which may not only vary with
t0 2R but also change its sign. The metric is smooth and slightly different to FLRW spacetimes,
namely, g D �dt2 C dr2 C S2

k.t/
.r/gSn�1 , where gSn�1 is the metric of the standard sphere,

Sk.t/.r/ D sin.
p
k.t/r/=

p
k.t/when k.t/� 0 and Sk.t/.r/ D sinh.

p
�k.t/r/=

p
�k.t/when

k.t/ � 0.
In the open case, the t -slices are (non-compact) Cauchy hypersurfaces of curvature k.t/� 0,

thus homeomorphic to Rn; a typical example is k.t/ D �t2 (i.e., Sk.t/.r/ D sinh.t r/=t ). In
the closed case, k.t/ > 0 somewhere, a slight extension of the class shows how the topology
of the t -slices changes. This makes at least one comoving observer to disappear in finite time t
showing some similarities with an inflationary expansion. Anyway, the spacetime is foliated by
Cauchy hypersurfaces homeomorphic to spheres, not all of them t -slices.

1. Introduction

Friedman–Lemaître–Robertson–Walker (FLRW) spacetimes constitute the standard
class of cosmological spacetimes, supported by hypotheses of isotropy of the “spatial”
part of the spacetime, which imply that each spacelike slice ¹t D t0º of the universal
time t will have constant curvature k.t0/. These hypotheses may be somewhat tricky
because, depending on how they are formulated, they will imply whether the sign
of k.t/ must be constant or not (see Remark 2.4). The aim of the present paper is
to describe a simple class of cosmological spacetimes whose metrics are constructed
from g D �dt2 C dr2 C S2

k.t/
.r/gSn�1 where such a sign change occurs for the t -

slices, the latter being the restspaces of the (freely falling) comoving observers at @t .
As far as the author knows, this specific class is not taken into account in classical
textbooks on Relativity (such as [4, 8, 15, 22, 26, 32, 33]) nor in standard Cosmology.
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This is not the unique way to obtain a spatial curvature change, at least locally (recall
that different smooth families of spaces of constant curvature with non constant sign
can be constructed and its t -parameterization will make the job), and an independent
systematic study is being carried out in [21].

Our models will be globally hyperbolic and diffeomorphic either toR �Rn (open
models, when k.t/ � 0 everywhere) or R � Sn (closed models, when k.t/ > 0 some-
where). This suggests some possibilities in Cosmology and, so, its interest may go
beyond the academic one. Here, we focus on a rigorous geometric exposition of the
spacetimes, in order to show how the smooth curvature sign change occurs every-
where. In particular, full technical details prove that the spacetime metric is smooth
at the points where spherical coordinates are not, that is, at the origin and its cut
locus at each t -slice, the latter case being subtler and necessary for the closed model.
Here, we focus on a geometric description with no care on the stress-energy tensor.
However, we emphasize that the additional assumptions to ensure differentiability in
the closed model (including the somewhat more general expression of the metric in
Definition 4.8) may affect the stress-energy only in a small region around a singular
observer, see Remark 4.7; thus, it might be acceptable in settings such as the infla-
tionary one.

The open models are very simple geometrically, because each slice ¹t D t0º be-
comes a Cauchy hypersurface of constant non-positive curvature k.t0/. The closed
models are more involved, as a topological change must occur in the (constant cur-
vature) t -slices; in particular, not all the t -slices can be Cauchy. However, a Cauchy
slicing by spacelike topological spheres (not all of them with constant curvature) can
be found. This case is more involved, as one has to impose additional hypotheses
to ensure smoothability at the spacelike cut locus. We will take a somewhat more
general metric depending on a function ' and make an illustrative specific choice
(Remark 4.7, Definition 4.8) which will allow us to find the Cauchy slicing in a rather
explicit way. Noticeably, a singular comoving observer will emerge. This shows how
spacetime inhomogeneities blowup in order to permit the smooth topological change
of the t -slices, in spite of the constancy of their curvatures.

When n D 3, our local models lie in a subclass of the Stephani Universes [29],
which was rediscovered by Krasiński [18, 19] by assuming O.3/ symmetry on the
spatial slices. It was also studied systematically by Sussman [30, 31]. The possibility
of a change of sign for certain spacelike foliations appears in some of these references
(see the detailed exposition in [20, Chapter 4], especially § 4.10 and the historical note
at p. 148), even though in a less restrictive sense than above, see our discussion at the
end of Section 4.3.

This paper is organized as follows.
In Section 2, we start giving a technical unified expression for the Riemannian

model spaces of constant curvature k. Such an expression depends on some functions
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Sk.r/ (involving sines and hyperbolic sines) which are shown to be smooth also in
the parameter k (Lemma 2.1, Remark 2.2). This technical result allows us to obtain
local variations of the spatial curvature k.t/, including its sign (Theorem 2.3).

In Section 3, we show that the local model can be extended globally to provide a
change between flat and negative curvature (k.t/ � 0), giving rise to the open mod-
els (Theorem 3.1). A technical question for this global extension is to check that
the metric expressions in spherical coordinates are smooth even when r D 0, con-
sistently with the O.n/ invariance of the model. Indeed, it is worth pointing out
that a privileged centered comoving observer appears at r D 0 (Definition 3.3). This
observer shows explicitly the existence of spacetime anisotropies between comoving
observers, in spite of the intrinsic isotropy of their restspaces (i.e., the t -slices). In
fact, the anisotropies are apparent when the second fundamental form of the slices
are computed (Proposition 3.2). The simple case k.t/ D �t2 is considered explicitly
(Example 3.4) and, in general, the simplicity of all these open models might make
them useful for several purposes.

In Section 4, we consider the closed models, when k.t/ > 0 somewhere. Being
more involved, this case is developed in three steps. In Section 4.1, the toy model
with slices of dimension n D 1 is considered. Of course, such slices are necessarily
flat, but one can still model a topological transition from the circle S1 to the line R,
so that the globally hyperbolic spacetime matches .�1; 0/ � S1 with Œ0;1/ � R.
As a working definition to give an illustrative idea, this is called a basic cosmolog-
ical topological change model (BCTCM), see Definition 4.3, Proposition 4.4. From
the technical viewpoint, we introduce a function '.t; �/ which will permit both, the
smooth extension to the whole cylinder when t < 0 and the smooth matching when
t � 0. Then, a noticeable object emerges under these choices, namely, the singu-
lar comoving observer � at .�1; 0/ � ¹ei�º (in addition to the previous centered
comoving observer). That observer is inextendible to t D 0, anyway, all the Cauchy
hypersurfaces must intersect it. Indeed, an explicit foliation by Cauchy hypersurfaces
of the spacetime can be found using � (Proposition 4.5, Remark 4.6). In Section 4.2,
we consider higher spatial dimensions n � 2 and show that the basic causal proper-
ties of our example for n D 1 still hold; in particular, both the centered and singular
comoving observers appear consistently with theO.n/ invariance of the model. How-
ever, now the topological change is also a true curvature change from k.t/ > 0 when
t < 0 to kD 0when t � 0 (this is called a basic cosmological topological and curvature
change model, BCTCCM, in Definition 4.8, Theorem 4.9). Finally, in Section 4.3, we
show that such a change can be easily adapted to more general situations, so that, in
particular, one can construct transitions from k.t/ > 0 to k.t/ < 0. Some conclusions
are given in the last section.
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2. Local change of the spatial curvature sign

2.1. Unified expression of the Riemannian model spaces Mk

Consider the functions

Sk.r/ WD

8̂̂<̂
:̂

sin.
p
kr/

p
k

if k > 0;

r if k D 0;
sinh.
p
�kr/

p
�k

if k < 0;

Ck.r/ WD

8̂̂<̂
:̂

cos.
p
kr/ if k > 0;

1 if k D 0;

cosh.
p
�kr/ if k < 0;

r 2 R, with derivatives S 0
k
D Ck , C 0

k
D �kSk and C 2

k
C kS2

k
D 1.

Let Mk be the n-Riemannian model space of curvature k (n � 2/, i.e.,

Mk.r/ WD

8̂̂̂<̂
ˆ̂:
Sn.rk/

�
n-sphere of curvature k D 1

r2
k

�
if k > 0;

Rn (n-Euclidean space) if k D 0;

Hn.rk/
�
n-hyperbolic space of curvature k D �1

r2
k

�
if k < 0:

The metric gk of Mk can be written using normal spherical coordinates as1

gk D dr
2
C S2k .r/gSn�1 ; r 2 .0; dk/; with dk WD �=

p
k (1)

(under the convention 1=
p
k D 1 if k � 0), where gSn�1 is the metric of the stan-

dard unit .n� 1/-sphere. Recall that gk is always smoothly extensible to r D 0. When
k > 0, gk is also extensible to dk D �=

p
k on a topological sphere, so that Mk can

be seen extrinsically as a sphere of radius rk WD 1=
p
k in RnC1; intrinsically, how-

ever, the diameter of this sphere (i.e. the supremum of the distance between each two
points) is dk D �=

p
k. When k � 0, expression (1) is defined for r 2 .0;1/ (the

intrinsic diameter dk is infinity) and gk becomes a metric on the whole Rn.

2.2. Smoothness of the variation with k and local transition model

For k D " D 1; 0;�1, one has the elementary Maclaurin series

S".r/ D

1X
mD0

.�"/m
r2mC1

.2mC 1/Š
D r � "

r3

3Š
C "2

r5

5Š
� "

r7

7Š
C � � � (2)

where ." D 0/0 WD 1. This can be used to prove the smoothness of Sk.r/ with k and,
then, to construct a local transition model of curvature.

1This type of expressions for functions Sk ; Ck with a prescribed k are well known in
Riemannian comparison theory, see for example [9, §3.1] or [1].
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Lemma 2.1. The function R2 3 .k; r/ 7! Sk.r/ is analytic. Thus, for any smooth
function R 3 t 7! k.t/, the following function is also smooth:

R2 3 .t; r/ 7! S.t; r/ WD Sk.t/.r/: (3)

Proof. Let ".k/ be the sign of k, using (2) (with �".k/jkj D �k),

Sk.r/ D
1p
jkj
S".k/

�p
jkjr

�
D

1X
mD0

.�".k//m
.
p
jkjr/2mC1p
jkj.2mC 1/Š

D

1X
mD0

.�".k//mjkjm
r2mC1

.2mC 1/Š
D

1X
mD0

.�k/m
r2mC1

.2mC 1/Š
; (4)

which is norm convergent for jkj < 1 and, then, analytic everywhere (see for example
[25, Lemmas A1, A2]).

Remark 2.2. (1) Notice that the functions above are smooth even if jkj or
p
jkj

(eventually regarded as functions of t ) are not smooth at 0. Indeed, the deriva-
tives can be obtained by derivating directly the terms in the series (4). In
particular, for k smooth in t with derivative k0,

@tS.t; r/ D k
0.t/@k.Sk.r//kDk.t/;

@k.Sk.r// D �

1X
mD1

m.�k/m�1
r2mC1

.2mC 1/Š
:

(5)

Thus, @tS.t; r/ D 0 whenever k0.t/ D 0 and @k.Sk.r//jkD0 D �r3=6.

(2) The previous observation should be taken into account even when k � 0, as
in the open models below. Indeed, taking into account (4), define

f .z/ D

1X
mD0

z2m

.2mC 1/Š
;8z 2 R; so that Sk.r/ D rf

�p
�kr

�
; (6)

for all k � 0 and r 2 R. Even though f is smooth the chain rule should not
be used in (6). In fact, take a function R 3 t 7! k.t/ � 0 and put

S.t; r/ . D Sk.t/.r// D rf
�p
�k.t/r

�
:

Then, t 7! �k.t/ D jk.t/j may be smooth but
p
�k.t/ may be non-smooth

(say, k.t/ D �t2,
p
�k.t/ D jt j).

(3) A shortcut to avoid such subtleties later would be to choose k.t/ such that,
whenever k.t0/ D 0, then all the derivatives of k vanish at t0. However, this
would not be a big simplification and would exclude simple choices as above
(used in Example 3.4 below).
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Now, let us construct a spacetime in an open set ofRnC1 with a change of the sign
of the spatial curvature for any choice of k.t/.

Theorem 2.3. Let k W R! R be any smooth function and consider the open subset
U � R �Rn defined taking spherical coordinates in Rn as

U D
®
.t; x/ W 0 < r.x/ < dk.t/ WD �=

p
k.t/

¯
; .dk.t/ WD 1 if k.t/ � 0/

endowed with g D �dt2 C dr2 C S2
k.t/
.r/gSn�1 .

Then g is a smooth Lorentzian metric on U and each slice ¹t D t0º has constant
curvature k.t0/.

Proof. Given the function k.t/, U is chosen so that the spherical coordinates are
smoothly well defined in each slice ¹t D t0º and the continuity of dk with k as a
function on .0;1� implies that U is open. Thus, the smoothness of the tensor g is just
a consequence of the smoothness of S.t; r/ D Sk.t/.r/ in (3), ensured by Lemma 2.1.
As S2

k.t/
.r/ > 0 on U , g is Lorentzian, and the curvature k.t0/ of each slice follows

from (1).

Remark 2.4. (1) Being each slice ¹t D t0º of constant curvature, it is locally isotropic,
that is, each p in the slice admits some neighborhoodW � ¹t D t0º such that for each
two tangent directions v; w of the slice at p there exists an isometry of W which
maps v in w.2 However, a local isometry of the spacetime mapping the direction v
into w and preserving the slices will not exist in general. Indeed, such a property
would forbid the change of sign for k.t/, see [23, p. 342, Prop. 6] (compare with [33,
§5.1])3. This stronger condition has not been always taken into account in the standard
literature (see for example [10, p. 112–113]) and, thus, our metrics in Theorem 2.3
might have been considered then; a detailed study is carried out in [3].

(2) Our metrics above lie in a particular case of spherical symmetry; indeed,
S.t; r/ corresponds with the standard function Y.t; r/ in the book by Stephani et
al. [17, formula (15.9)]. In the regions where the gradient of Y is timelike or space-
like, sometimes it is used as a canonical “t” or “r” coordinate; however, the gradient
of our S.t; r/ may be lightlike (recall (5)). We emphasize that, when working with
such a Y.t; r/, the study is not global (even if Y.t; r/ is smooth everywhere). In fact,
one has to check whether g matches smoothly with the spherical coordinates at r D 0

2The slice is also locally homogeneous (i.e. any two points p; q in ¹t D t0º, admit neigh-
borhoods Wp; Wq � ¹t D t0º and a local isometry of the slice which maps p into q), which is
also a usual assumption for convenient spatial slices.

3Compare also with the intrinsic characterization of generalized Robertson–Walker space-
times in [27] (the metric of these spacetimes was introduced more directly in [2]).
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or r D dk.t/, which will be a posteriori the boundary of U in the whole spacetime.
Typically, the case r D 0 comes from a direct computation (as in our open model
below); however, the case r D dk.t/ <1must be carefully taken into account, as we
will do in the closed case.

(3) The metric g can be regarded as a warped product with base .UB ;�dt2 C
dr2/, where UB D ¹.t; r/ 2 R2 W 0 < r < dk.t/º, fiber the sphere Sn�1 and warping
function S.t; r/ D Sk.t/.r/; so, O’Neill’s formulas for geodesics and curvature [23,
Ch. 7] apply. In particular, the leaves U � ¹u0º, u0 2 Sn�1, are totally geodesic and
the integral curves of @t are geodesics in the whole spacetime, that is, the comoving
observers are freely falling. The Ricci curvature and, then, the Einstein tensor with
arbitrary cosmological constant, can also be computed by using the warped structure
(see Appendix). However, their properties depend strongly on the choice of k.t/ and
physical applicability would be analyzed elsewhere.

3. Open cosmological spacetimes

Next, let us go from the local to the global model for curvature sign change starting at
the open model, dk.t/ D1 for all k.t/. This corresponds to the continuous extension
of the metric g in Theorem 2.3 from U D RnC1 n ¹r D 0º (i.e., RnC1 n .R � ¹0º/)
to the whole RnC1. We will check that this extension is also smooth as well as other
announced properties.

Theorem 3.1. For any smooth non-positive function R 3 t 7! k.t/ � 0,

g D �dt2 C dr2 C S2k.t/.r/gSn�1 (7)

is a smooth Lorentzian metric on the whole RnC1 D R �Rn with slices ¹t D t0º

isometric to the model space of curvature k.t0/ � 0 (an Euclidean or hyperbolic
space). Moreover, each slice ¹t D t0º is a Cauchy hypersurface.

Proof. Theorem 2.3 reduces the first assertion to prove that the spherical expression
becomes smooth at r D 0. With this aim, we will rewrite the metric using cartesian
coordinates xi in Rn. Indeed, using the function S.t; r/ in (3), it is enough to prove
the smoothness at r D 0 of g C dt2 in (7), that is,

dr2 C
S2.t; r/

r2
r2gSn�1 D dr

2
C
S2.t; r/

r2

� nX
iD1

.dxi /2 � dr2
�

D
S2.t; r/

r2

nX
iD1

.dxi /2 C
�
1 �

S2.t; r/

r2

�
dr2: (8)
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Let us analyze the last two terms. For the first one, S.t; r/=r is the composition of the
smooth function .t; r/ 7! .k.t/; r/ and the function Sk.r/=r . Using (4) for the latter,

Sk.r/

r
D

1X
mD0

.�k/m
r2m

.2mC 1/Š
D

1X
mD0

.�k/m
�Pn

iD1.x
i /2
�m

.2mC 1/Š
; (9)

which is analytic for all .k; xi / 2 R�Rn. For the last term in (8), as r2dr2 is always
smooth, the problem is reduced to the smoothness of

1

r2

�
1 �

S2.t; r/

r2

�
D

1

r2

�
1 �

S2
k.t/
.r/

r2

�
D

1

r2

�
1 �

Sk.t/.r/

r

��
1C

Sk.t/.r/

r

�
:

Reasoning as above, the result follows from the analyticity of

1

r2

�
1 �

Sk.r/

r

�
D �

1

r2

1X
mD1

.�k/m
�Pn

iD1.x
i /2
�m

.2mC 1/Š

D �

1X
mD0

.�k/mC1
�Pn

iD1.x
i /2
�m

.2mC 3/Š
: (10)

The Cauchy character of the slices follows because Sk.t/.r/ � r (use (4) notic-
ing �k � 0) and, thus, the cones of g are narrower than those of LnC1 (see [28,
Prop. 3.1] for background and a more general result).

Each slice ¹t D t0º is isometric to a model space and, thus, it is globally isotropic
and homogeneous (recall Remark 2.4). However, the way how the slice is embedded
in the spacetime does not satisfy these properties, as checked next.

Proposition 3.2. The second fundamental form IIt0 (with respect to the future direc-
tion given by @t ) of the slice ¹t D t0º satisfies

IIt0 D S.t0; r/@tS.t0; r/gSn�1 : (11)

In particular: (a) if the slice ¹t D t0º of the open model is flat then it is totally geodesic,
and (b) IIt0 vanishes on the point r D 0.

Proof. As @t is unit and normal to the slices, the expression follows from IIt0D
1
2
@tg.

The assertions (a) and (b) follow from the expression of these derivatives in Re-
mark 2.2 (for (a), recall that necessarily k0.t0/ D 0).

Notice that the integral curves of @t can be regarded as comoving observers, and
r D 0 determines one of them, namely, R 3 t 7! .t; r D 0/). Taking into account the
assertion (b), this observer is privileged for the intrinsic geometry of the spacetime,
up to trivial case k � 0 (i.e., LnC1). The following definition allows us to summarize
the introduced notions and results.
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Definition 3.3. The spacetime .R �Rn; g/ defined in Theorem 3.1 is the open cos-
mological model of spatial curvature function4 t 7! k.t/. The integral curve of @t at
r D 0 will be called the centered comoving observer.

Even though the geometry of the spacetime privileges the centered comoving
observer (except in LnC1), we emphasize that it cannot be determined by using only
the intrinsic geometry of each slice (indeed, we have used the extrinsic one).

Example 3.4. The simple choice k.t/ D �t2, that is5,

g D �dt2 C dr2 C
sinh2.t r/

t2
gSn�1 ; (12)

has slices ¹t D t0º with intrinsic curvature �t20 . The slice ¹t D 0º is flat and totally
geodesic. The comoving observers at @t will find a bouncing, that is, a contraction
(they approach each other) before this slice and an expansion after it6. Using (11), the
other slices have the second fundamental form

IIt0 D
sinh.t0r/
t20

�
r cosh.t0r/ �

sinh.t0r/
t0

�
gSn�1 :

Clearly, this expression is anisotropic, as IIt0 vanishes in the radial directions (in par-
ticular, along the centered comoving observer r D 0) but grows with r in the directions
orthogonal to the radial ones.

4. Closed cosmological spacetimes

The case when k > 0 somewhere becomes subtler, as Mk is a sphere with intrinsic
diameter dk D �=

p
k. From the local viewpoint, we handled this case with no special

caution. However, from the global one, if k changes from positive to 0 (and eventually
negative) then a topological change will occur. Thus, in order to highlight the relevant
global ideas, we will start by focusing on the case of a smooth function k satisfying

k.t/

´
> 0 if t < 0;

D 0 if t � 0:
(13)

4With more generality, one can consider (here and later, in the case of closed models) the
possibility I �Rn, with I � R an open interval. The simplification I D R is essentially nota-
tional and enough for the properties to be considered here.

5More precisely, Sk.t/.r/ D sinh.jtjr/
jtj

D
sinh.tr/
t

.
6 With obvious modifications, these properties are shared by the flat slices ¹t D t0º of all

the open cosmological models, whenever k is not constant in Œt0 � ı; t0� or Œt0; t0 C ı� for some
ı > 0.
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The strictly topological subtleties of the change appear clearly in the toy model
n D 1 (so that the curvature k.t/ of all the slices is necessarily 0), which will be
studied first in Section 4.1. Then we will check that this extends to a true curvature
change from positive to 0 curvature when n � 2 in Section 4.2 and, finally, arbitrary
curvature changes will be achieved in Section 4.3.

4.1. Spatial dimension n D 1

In this case, the curvature of the slices is not taken into account but the extrinsic
radius R will play the role of 1=

p
jkj in higher dimensions. In order to achieve the

topological change, we will have to make an involved construction by distinguishing
a pair of comoving observers.

We will consider � as the natural coordinate of � � �; �Œ; this interval, eventually,
will be identified with a circle but a point, namely S1 n ¹ei�º (� C). Next, consider
the following metric:

gB D �dt
2
C '2.t; �/d�2; .t; �/ 2 R � � � �; �Œ (14)

where ' will be a suitable function such that gB is extensible to .t; ei�/ for t < 0 but
not for t D 0. Specifically, ' is any smooth function satisfying

(a) '.t; �/ � 1 and non-decreasing with t 2 R, for each � 2 � � �; �Œ;

(b) for each m 2 N (positive integer)8̂<̂
:
'.t; �/ � mem; if t � �

1

m
; � 62

h
� � C

1

m
; � �

1

m

i
;

t 7! '.t; �/ is constant; if t � �
1

2m
; � 2

h
� � C

1

m
; � �

1

m

i
I

(15)

(c) '.t; �/D '.t;��/;8� 2 ���;�Œ and ' can be smoothly extended to .t; ei�/
when t < 0. Moreover7, '.t; �/ is locally equal to 1 around � D 0 and, for
each t < 0, '.t; �/ is locally constant in a small neighborhood of ei� of radius
".t/& 0.

7 These two additional conditions here will be used only in the case n � 2 later. Notice,
however, that both of them will be satisfied by the explicit ' in Example 4.1 (in particular, the
auxiliary y'.t; �/ therein will be equal to 1 in .�� C 1;� � 1/). The second condition implies the
previously required smooth extendability of ' to .t; ei� /, t < 0 (in fact, '.t; �/ depends only on
t close to .t; ei� /, t < 0). Of course, this independence of � can be weakened by assuming other
more accurate conditions, such as the vanishing of enough partial derivatives for � on .t; ei� /.
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Notice that the first condition in (15) yields

`.t/ WD

Z �

��

'.t; �/d� > 2em; if t � �
1

m
.thus, `.t/ D1;8t � 0/: (16)

The second condition in (15) ensures the existence of a smooth function '0 W
� � �; �Œ! Œ1;1/ such that

'.t; �/ D '0.�/ � 1; 8t � 0; (17)

indeed, this is valid also in a neighborhood of the closed half strip t � 0. Using again
the first condition (recall (16)),Z 0

��

'0.�/d� D

Z �

0

'0.�/d� D1: (18)

Example 4.1 (Explicit '). In order to give a construction of ', start with

y'.t; �/ WD 1C

mDIntŒ�1=t�X
kD1

ek����;��C 1
k
�[Œ�� 1

k
;�Œ.�/; 8t < 0; � 2 � � �; �Œ;

where IntŒ�1=t� denotes the integer part of �1=t and � is the characteristic function
of the corresponding set (equal to 1 on �� �;�� C 1

k
�[ Œ� � 1

k
; �Œ and 0 otherwise),

see Figure 1. This function satisfies all the requirements but smoothness in its domain.
In particular, y' can be continuously extended to .t; ei�/ when t < 0 and to the region
t � 0 as in (17).

Figure 1. Function y'.t D 0; �/ � 1 in .� � 1; �/ and in .��;�� C 1/ (it would have infinite
“steps” do that it diverges in � D ˙�). For t D �1, only the first step would appear, and a new
m-th step would be included at each t D �1=m, m 2 N.
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So, ' can be chosen by smoothing y', ensuring: (a) it is non-decreasing with t ,
(b) it satisfies, say, y' � ' � y' C 1 and (c) it remains invariant under � 7! �� . These
properties can be ensured by using a natural bump function to smooth each new sum-
mand, whenever8 t D �1=m.

Remark 4.2. It is worth emphasizing that the conditions imposed for ' are sufficient
for our purposes but they are not optimized (recall the discussion in Footnote 7).
Indeed, the different approach in [21] implies that, for any function `.t/ which is
smooth and satisfies 0 < `.t/ < 1 for t < 0 and joins continuously `.t/ D 1 for
t � 0, the choice

'.t; �/ D
1C tan2.�=2/

1C 4�2

`.t/2
tan2.�=2/

will also work9, even if it does not fit exactly under our conditions. Although such an
optimization is possible, our hypotheses may be enough to understand the qualitative
behavior of the model or to make rough estimates on cases such as the inflationary
one.

Definition 4.3. A basic cosmological topological change model (BCTCM) is the
manifold

B D .R � S1/ n ¹.t; ei�/ W t � 0º

endowed with a metric gB as in (14) with ' satisfying the hypotheses (a), (b) and (c)
therein, and continuously (then, smoothly) extended to ei� when t < 0.

Recapitulating, we have:

(1) From the topological viewpoint,B is a cylinder, i.e., homeomorphic toR�S1.

(2) The metric gB is smooth on the whole B .

(3) Each slice ¹t D t0º is isometric to R when t0 � 0 and to a cylinder of length
`.t0/ <1 when t0 < 0, being limt0!0 `.t0/ D1.

(4) For t � 0 one has (recall (17) and (18))

g D �dt2 C '20.�/d�
2
D �dt2 C dx2; x 2 R; (19)

the latter taking as a new coordinate x.�/ D
R �
0
'0. N�/d N�;8� 2 � � �; �Œ.

8Recall also that y' can be easily approximated by a continuous function satisfying (a), (b)
and (c) (replace the vertical segments in its graph by slightly inclined ones which are chosen
symmetrically with respect to ei� ). Then, one can use general results of approximation of con-
tinuous functions by smooth ones (see [28, §2.3.5] for background, even in the analytic case).

9The author acknowledges Marc Mars for suggesting this idea.
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Proposition 4.4. Any BCTCM is globally hyperbolic, with Cauchy hypersurfaces
homeomorphic to S1. The slices t D t0 are Cauchy for ¹t0 < 0º (and they are not
for t � 0).

Proof. As t is a time function, global hyperbolicity follows by proving that JC.p/\
J�.q/ is compact for any p; q 2 B . This is trivial if p; q lie either in the region t � 0
(as it is isometric to the closed half-plane t � 0 in L2 by (19)) or in the cylinder t < 0,
whose slices are Cauchy (apply for example [28, Prop. 3.1]). If t .p/ < 0 and t .q/� 0,
necessarily J�.q/ \ ¹t D 0º is compact and, thus, lies in a compact subinterval of
� � �; �Œ for � . Thus, the problem is reduced again to the case of a cylinder.

Even though the proof of this theorem has been obtained from general simple
arguments, it is illustrative to find explicit Cauchy hypersurfaces of B . The comoving
observer 0.t/D .t; � D 0/; t 2 R can also be called the centered comoving observer
as it plays a similar role as in the open cosmological case. However, the singular
comoving observer �.t/ D .t; � D �/, t < 0 becomes specially interesting from the
causal viewpoint10. For each t0 < 0, let


t0
˙
.t/ D .t; �

t0
˙
.t//; t � t0

be the two lightlike t -parameterized pregeodesics starting at �.t0/, where � t0C .t0/D�
and � t0C .t/ decreases with t towards 0, while � t0� .t0/D �� and � t�.t/ increases with t
towards 0. Notice that, once these pregeodesics abandon a small neighborhood of
�.t0/, their coordinate � must decrease/increase until reaching the value 0 (as ' is
bounded inR� Œ�� C ";� � "� for any " > 0). Moreover, they must arrive at the same
point in the centered comoving observer 0.t 00/ because of the invariance of ' under
� 7! �� . Notice that the topological circle given by these two lightlike segments is
EC.�.t0//, i.e., the future horismos of �.t0/. This is composed by the points in
the causal future �.t0/ not included in the chronological one11. The causal future
JC.�.t0// can be obtained as the union of all the comoving observers starting at

10Notice that this observer � becomes clearly distinguished in our construction. Moreover,
the invariance under reflections (c) (below (15)) made the comoving observer 0 distinguished,
too. This invariance can be regarded as the O.n D 1/ invariance of the 2-spacetime, which
will be generalized to n � 2 later. Dropping this invariance and the additional requirements
in (c) (see Footnote 7), one could try to redefine 0 at each circle t D t0 < 0 as the unique
point 0.t0/ ¤ � .t0/ equidistant of � .t0/ from both sides in the circle. This would permit a
more intrinsic characterization of the centered comoving observer. However, in general, the so-
constructed 0 might not be timelike (it would be only guaranteed that t would grow along it)
and our choice rules out this possibility.

11See [28, footnote 48] for additional background specific of the 2-dimensional case.
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Figure 2. BCTCM, with the singular comoving observer � in red. For t0 < 0, EC.� .t0//
(in green) is a Cauchy hypersurface homeomorphic to S1 which separates the spacetime in two
connected open subsets. One of them is equal to IC.� .t0//. The region ¹t � 0º is isometric
to a closed half of L2, and ¹t � 0º n IC.� .t0// is compact.

EC.�.t0//. As a consequence, IC.�.t0// includes the region t � 0 except at most
the compact subset K D J�.EC.�.t0// \ ¹t � 0º (which is included in Œ0;1/ �
Œ�� C "; � � "� for some " > 0).

Summing up, from the previous discussion (see also Figure 2):

Proposition 4.5. In a BCTCM, the future horismos EC.�.t0// is a Cauchy hyper-
surface for any point �.t0/, t0 < 0, of the singular comoving observer.

Moreover, the chronological future IC.�.t0// includes the region t � 0 except
a compact subset and it is foliated by the Cauchy hypersurfaces EC.�.t// with
t0 < t < 0.

Remark 4.6. By a Cauchy hypersurface S we mean a subset which is crossed exactly
once by any inextendible timelike curve (then, it is necessarily a topological hypersur-
face but perhaps non-smooth); indeed, EC.�.t0// lies exactly under these minimal
hypotheses. Once such a hypersurface is obtained, general results ensure the existence
of an acausal one (i.e., causal curves cannot intersect S in more than a point) [13],
then a smooth spacelike one [5] and, finally, a foliation of the whole spacetime by
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this type of Cauchy hypersurfaces12 [6]. Moreover, as the t -slices t < 0 are Cauchy
by Proposition 4.4, one can choose one of them † as the initial data for the Cauchy
problem13. Following [7], † can also be included in a Cauchy slicing (see also [24]).

However, the readers can convince themselves that all this can be done directly
in the very particular case of a BCTCM; in fact, the explicit constructions above may
allow one to understand better how the model works. Notice also that the slicings
are consistent with Geroch’s theorem [14] which asserts that, in any causally well-
behaved compact region of a spacetime limited by two disjoint compact spacelike
hypersurfaces (with no boundary) S and S 0, these two hypersurfaces, as well as any
other compact spacelike one therein, must be homeomorphic.

Remark 4.7. (1) The curvature of the metric (14) is K D 1
'
@2'

@t2
(see for example

[23, Ch. 3, Prop. 44]). Taking into account that, essentially, ' is required to grow
fast with t for every � is close to ˙� and, eventually, “stabilize” (being constant) at
some t < 0 (but not at the limit � D ˙�), then ' can be chosen so that the timelike
convergence condition (i.e.,K � 0 in the case of surfaces) holds everywhere but close
to the comoving singular observer � and small t < 0.

(2) One could extend the definition of BCTCM by permitting that all the observers
�0.t/ D .t; �0/, t < 0 are singular (in the sense of inextensible to t D 0) for �0 in
an interval around ei� (i.e., �0 2 .� � ı0; �� [ Œ��;�� C ı0/, for some ı0 > 0). In
principle, this case would be straightforward from the studied one, anyway, other
weakenings of the hypotheses on ' are possible (recall Remark 4.2) and might deserve
a further study.

4.2. Spatial dimension n � 2

This case will be a direct extension of the previous one by using spherical coordinates
s 2 .0; �/, gSn�1 in Sn as in (1) (notice that, here, we start using s instead of r for the
unit sphere Sn). However, now the topological change will imply a curvature change.

Recall that, for nD 1, s D j� j plays the role of the radial spherical coordinate and
the pairs ˙� play the role of a sphere, which is identifiable to gSn�1 when s D 1 and
collapses to a single point when s D 0; � . We will use either ei� or s D � to denote
the antipodal point of s D 0 for our choice of spherical coordinates in Sn.

12This foliation is also endowed with a global orthogonal splitting type .R � S;�ƒdt2 �
gt /, which is not used here, see also the review [28] for background.

13In the case n� 2, the corresponding slices will have positive constant curvature, which can
be regarded as an extra hypothesis for the Cauchy problem.
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Definition 4.8. A basic cosmological topological and curvature change model
(BCTCCM) is the manifold

R � Sn n ¹.t; ei�/ W t � 0º

endowed with the metric

g D �dt2 C '2.t; s/ds2 C S2k.t/.r.t; s//gSn�1 ; .t; s/ 2 R � �0; �Œ; (20)

extended naturally to s D 0, as well as to ei� when t < 0, where

• ' satisfies the hypotheses (a), (b), (c) below formula (14) (including the part of (c)
mentioned in Footnote 7),

• r is defined on R � Œ0; �� as

r.t; s/ D

Z s

0

'.t; Ns/d Ns;

• we define k.t/ D �2=r.t; �/2, in particular, k.t/ D 0 for t � 0, in agreement
with (13).

Theorem 4.9. Any BCTCCM is a smooth spacetime satisfying

(1) all the slices t D t0 have constant curvature isometric to the sphere of extrinsic
radius r.t0; �/=� , if t0 < 0 and to Rn otherwise;

(2) it is globally hyperbolic, with Cauchy hypersurfaces homeomorphic to Sn. In
particular, the slices t D t0 < 0 are Cauchy.

Proof. (1) By construction, '.t; s/ was smooth; then, so is r.t; s/, as well as k.t/, the
latter when t ¤ 0. To check smoothness at t D 0, notice that, from (16),

p
k.t/ D

2�=`.t/ and, whenever 1=jt j � m then `.t/ � 2em. Thus,

lim
t%0

k.t/

jt js
D .2�/2 lim

t%0

1

jt js`.t/2
� �2 lim

m%1

ms

e2m
D 0;

for all s 2 N, which implies that all s-th derivatives of k.t/ vanish. To analyze g,
consider first the function '0 in (17) and change the coordinates .t; s/ by .t; r/ in a
neighborhood of the region t � 0 so that dr D '0.s/ds and

g D�dt2C '20.s/ds
2
C S2k.t/.r.t; s//gSn�1 D�dt

2
C dr2C S2k.t/.r/gSn�1 : (21)

This is a smooth metric as in Theorem 2.3 and so, the smoothness of g in the whole
region .t; s/ 2 R � �0; �Œ is straightforward. The required constant curvature of the
t0-slices follows from (21) when t � 0 and, otherwise, by changing the coordinate s
by r.t0; s/ at each slice with t0 < 0. For the smoothness of the extension to s D 0, the
proof of Theorem 3.1 works with no modification as ' is constantly equal to 1 around
s D 0 (even though this could be relaxed, recall Footnote 7).
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Next, let us check the smoothness of the extension of g to s D � when t < 0.
Essentially, this will also be reduced to the proof of the case s D 0 in Theorem 3.1.
For this purpose, choose t1 < 0 and let "0 > 0 such that '.t; s/ is independent of s
around .t1; �/, that is,

'�.t/ WD '.t; �/ D '.t; s/; 8t 2 Œt1 � "0; t1 C "0�;8s 2 Œs0 WD � � "0; ��:

Then, in this region define

r.t; s/ D

Z s

0

'.t; Ns/d Ns D r.t; �/ � '�.t/.� � s/; when s0 < s � �: (22)

Let us introduce the functions Ns D � � s and Nr.t; s/ D r.t; �/� r.t; s/. We just have
to prove the smoothness g (given by (20)) in coordinates .t; Nr/ at Nr D 0 (i.e., Ns D 0).
Using (22),

Nr.t; s/ D '�.t/.� � s/ D '�.t/Ns; d Nr D '�.t/d Ns C P'�.t/Nsdt;

where P'� denotes the derivative, and we have

'.t; s/2ds2 D '�.t/
2d Ns2 D d Nr2 C

P'�.t/
2

'�.t/2
Nr2dt2 �

P'�.t/

'�.t/
2 Nrd Nrdt: (23)

As Ns2 is a smooth function in our region, so is Nr2 as well as Nrd Nr D d. Nr2=2/. Sub-
stituting (23) in (20), the last two terms in (23) become irrelevant for the smoothness
of g. So, the problem reduces to check the smoothness at Nr D 0 of the terms

d Nr2 C Sk.t/.r.t; s//gSn�1 (24)

where the function Sk.t/.r.t; s// must be expressed in the coordinates .t; Nr/. Using
the expressions of Sk , k.t/ for a BCTCCM and Nr.t; s/ above,

Sk.t/.r.t; s// D
r.t; �/

�
sin
�
�
r.t; s/

r.t; �/

�
D
r.t; �/

�
sin
�
�
�
1 �
Nr.t; s/

r.t; �/

��
D
r.t; �/

�
sin
�
�
Nr.t; s/

r.t; �/

�
D Sk.t/. Nr.t; s//: (25)

That is, Sk.t/.r.t; s// becomes Sk.t/. Nr/ and the smoothness of (24) follows from The-
orem 3.1.

(2) All the arguments in Proposition 4.4 can be applied for this part. In particular,
applying (21), (13), the metric in the region t � 0 becomes

g D �dt2 C '20.s/ds
2
C r2.s/gSn�1 D �dt

2
C dr2 C r2gSn�1 (26)

with r.s/ D
R s
0
'0.Ns/d Ns 2 �0;1Œ, which is isometric to the standard half space t � 0

in LnC1. So, for any point q with t .q/ � 0, necessarily J�.q/ \ ¹t D 0º is compact.
Then, the slices t D t0 < 0 (which are homeomorphic to a sphere) are Cauchy, and
those with t0 � 0 (homeomorphic to Rn) are not.
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Remark 4.10. Recall that the BCTCCM metric (20) is more general than the original
one in Theorem 2.3, because if the coordinate s is replaced by r.t; s/ on the whole
spacetime then additional cross terms (as in (23)) may appear. However, this can be
done just around the comoving singular observer, Remark 4.7.

4.3. Further transitions

Once the BCTCCM has been constructed, one can combine it directly with the open
model to obtain a smooth transition from positive to negative curvature, namely:
(i) choose a smooth function k.t/ with, say, k.t/ > 0, if t < 0, and k.t/ < 0 if t > 0,
(ii) in the region t � 0 choose the metric of the BCTCCM in Definition 4.8, (iii) in the
region t > 0 choose the metric of the open cosmological model in Theorem 3.1 with
the following caution: rewrite this metric by using the coordinate s and the function
'0 in (26) (so that it will match smoothly with the BCTCCM at t D 0). The following
is worth pointing out about this procedure:

(1) The change of coordinates in step (iii) relabels the comoving observers, but
these observers are not modified by such a change (simply, the coordinate r is
changed into s, and the coordinate t is not involved in such a change).

(2) Such a model with strict transition from k.t/ < 0 to k.t/ > 0 is again globally
hyperbolic with compact Cauchy hypersurfaces. Indeed, one can reason this
as in the proof of Theorem 4.9 and Proposition 4.4.
However, the following more straightforward reasoning holds. As argued in
the proof of Theorem 3.1, the cones of the constructed model in t > 0 are
narrower than those of LnC1 spacetime (in the chosen coordinates) and, more-
over, LnC1 is the metric of the original BCTCCM in this region. Thus, the
Cauchy hypersurfaces and foliations obtained for the BCTCCM in Section 4.2
remain Cauchy for the strict transition here.

(3) The fact that each slice ¹t D t0º was a Cauchy hypersurface for t0 < 0 but it is
only a partial Cauchy one for t0 > 0 becomes geometrically evident. However,
this might not be evident for the comoving observers. In fact, these slices
are associated with their restspaces. The infinitesimal and, eventually, local
measures of these spaces may be achieved as a consequence of the principle of
equivalence, but it is not straightforward how to make global measurements.
Recall that the “disappearance” of the singular comoving observer cannot be
seen directly by any (comoving or not) observer, as the spacetime is globally
hyperbolic and, thus, free of naked singularities.

As commented in the Introduction and Remark 2.4, the possibility of the existence
of a spacetime in which the topology of certain geometrically preferred sections is
changing in time have been considered some times in the literature. The starting point
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was Stephani’s study of the class of spacetimes embeddable in a flat five-dimensional
space [29] (see also [17, Chapter 15]), which included the now so-called Stephani
Universes [20]. Especially, Krasiński and later Sussman developed both the local [18,
30] and the global viewpoints [19,31] (see also the short overview in [19, p. 675] and
the book [20]). However, their viewpoint is different to ours.

In the case of Krasiński [18, 19], de Sitter 4-spacetime serves as the qualitative
model for the curvature sign changing foliations (see [19]). The leaves of the folia-
tion are not the slices of the original universal time t in (7) (which is generically a
privileged time function, in a similar way as the FLRW case); thus, the leaves are not
orthogonal to the comoving observers at @t . Moreover, the coordinate r is considered
globally and, as pointed out in Remark 2.4 (2) (see also the Appendix), this may intro-
duce smoothability issues. Sussman [30,31] considered an expression of the 4-metric
which separates the cases of positive, negative and zero spatial curvature (see formu-
las (1) and (2) in these references) and he studied systematically the cases of one,
two or zero comoving centers permitted byO.3/ symmetry. In comparison, our direct
approach gives a straight geometric picture where both global hyperbolicity and an
explicit Cauchy slicing emerge naturally.

Other topological transitions between spatially compact and non-compact uni-
verses as those in [16, §5.2] are quite different to ours.

5. Conclusions

We have carried out a direct study of a class of simple cosmological models (related
to a more general class of spacetimes studied in dimension 4 by Stephani [17, 29])
with a universal time function t giving rise to freely following comoving observers
whose restspaces ¹t D t0º have constant curvature k.t0/ and vary with t0, this variation
including its sign. We have focused on a rigorous mathematical presentation of the
models, which permit a direct comparison with usual hypotheses on isotropy and
homogeneity. From the local viewpoint, this includes a detailed study of the regularity
of the metric. From the global one, our models are globally hyperbolic spacetimes
and we have found two natural classes. The open models (k.t/ � 0 everywhere) have
a simple intuitive global structure. They distinguish a centered comoving observer
which, in certain sense, is the center of the spatial expansion or contraction governed
by k.t/. The closed models (k.t/ > 0 somewhere) are much subtler globally. This
happens because the t -slices must present a topology change (from Sn when k.t/ > 0
toRn), which has to be compatible with the rigid product topological structure of any
globally hyperbolic spacetime (that is, the topology R � †, where † is any Cauchy
hypersurface). In a natural way, this leads to the existence of a singular comoving
observer � (in addition to the previous centered one). From the global viewpoint,
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this is the truly privileged observer, as it makes apparent the Cauchy splitting; in fact,
the centered observer can be regarded only as the “farthest” one at each t -slice (see
Footnote 10).

These models release some possibilities which might fit in current Cosmology.
For example, the open models are consistent with a flat space at some “universal
instant” ¹t D t0º and a bouncing therein (Example 3.4, Footnote 6). The closed ones
might apply to inflationary processes along the singular comoving observer � , which
become the key for both, the spatial topology change and the center of the expansion.
In fact, � lies in the region t < 0 of the time function t associated with the con-
stant curvature slices, but the spacetime has no naked singularities. So, the singular
comoving observer will “live” for every instant of any Cauchy time function, as any
other (inextendible) observer. These features might attract the attention of the com-
munity and give rise to observational issues (recall [11, 12]) to be studied further.

Appendix: expression of the Ricci tensor

The computation of the Ricci tensor of the fundamental metric in Theorem 2.3 can
be carried out by using its warped structure as in [23, Corollary 7.43]. Indeed, for
X; Y 2 Span¹@t ; @rº one has

Ric.X; Y / D �
n

Sk.t/.r/
Hess.S.t; r//.X; Y /

with S.t; r/ as in (3) with Hessian expressible in terms of the one of Sk.r/,

@rSk.r/ D Ck.r/; @kSk.r/ D
1

2k
.rCk.r/ � Sk.r//;

@2rSk.r/ D �kSk.r/; @2rkSk.r/ D �
r

2
Sk.r/;

@2kSk.r/ D
1

4k2

�
� 3rCk.r/C .3 � kr

2/Sk.r/
�
;

(notice @kCk.r/D�rSk.r/=2, limk!0 @kSk.r/D�r
3=6, limk!0 @

2
k
Sk.r/Dr

5=60).
Thus, @tS.t; r/ D k0.t/@kSk.t/.r/ and

@2rS.t; r/ D �k.t/Sk.t/.r/; @2rtS.t; r/ D �
k0.t/r

2
Sk.t/.r/;

@2ttS.t; r/ D
2k.t/k00.t/ � 3k0.t/2

4k.t/2

�
rCk.t/.r/ � Sk.t/.r/

�
�
k0.t/2

4k.t/
r2Sk.t/.r/:
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So, the Ricci tensor for the base of the warped product is

Ric.@r ; @r/ D nk.t/; Ric.@r ; @t / D
n

2
k0.t/r

Ric.@t ; @t / D �n
2k.t/k00.t/ � 3k0.t/2

4k.t/2

� r

Tk.t/.r/
� 1

�
C n

k0.t/2

4k.t/
r2

Now, if V;W are vectors tangent to the fiber .Sn�1; gSn�1/ one has Ric.X; V / D 0
(as in any warped product) and

Ric.V;W / D
�
.n � 1/ � S�S C .n � 2/dS.grad.S//

�
gSn�1.V;W /

where �S , grad.S/ denote, respectively, the Laplacian and gradient of S.t; r/ for the
metric �dt2 C dr2, thus

dS.grad.S// D�
k0.t/2

4k2
.rCk.r/ � Sk.r//

2
C Ck.r/

2;

�S D�
2k.t/k00.t/ � 3k0.t/2

4k.t/2
.rCk.t/.r/ � Sk.t/.r//

C
k0.t/2r2 � 4k.t/2

4k.t/
Sk.t/.r/:
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