
Supplementary materials for this article are available at https:// doi.org/ 10.1007/ s13253-023-00597-4.

Clustering and Geodesic Scaling of
Dissimilarities on the Spherical Surface
J. Fernando Vera , Ricardo Subiabre, and Rodrigo Macías

Spherical embedding is an important tool in several fields of data analysis, including
environmental data, spatial statistics, text mining, gene expression analysis, medical
research and, in general, areas in which the geodesic distance is a relevant factor. Many
data acquisition technologies are related to massive data acquisition, and these high-
dimensional vectors are often normalised and transformed into spherical data. In this
representation of data on spherical surfaces, multidimensional scaling plays an important
role. Traditionally, the methods of clustering and representation have been combined,
since the precision of the representation tends to decrease when a large number of objects
are involved, which makes interpretation difficult. In this paper, we present a model that
partitions objects into classes while simultaneously representing the cluster centres on a
spherical surface based on geodesic distances. Themodel combines a partition algorithm
based on the approximation of dissimilarities to geodesic distances with a representation
procedure for geodesic distances. In this process, the dissimilarities are transformed in
order to optimise the radius of the sphere. The efficiency of the procedure described
is analysed by means of an extensive Monte Carlo experiment, and its usefulness is
illustrated for real data sets.

Supplementary material to this paper is provided online.
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1. INTRODUCTION

Given a dissimilarity matrix between N objects, multidimensional scaling (MDS) aims
to estimate a configuration of points in a low-dimensional space p, such that the distances
between them, usually Euclidean, are as close as possible to the observed dissimilarities
between the objects. Since the seminal work of Sampson and Guttorp (1992), MDS plays
an important role in spatial deformationmodelling and estimation techniques, particularly in
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nonparametric approaches to the analysis of the covariance structure of the spatiotemporal
processes underlying environmental studies. However, in applications involving the problem
of estimating the covariance structure, the localisation of environmental phenomena on the
surface of the sphere rather than the planar representation is of increasing interest, allowing
us to capture both the spatiotemporal dependencies between observations, as well as the
development of accurate predictions about planet Earth (see, for example, Alegría et al.
2018).

Although one of the main goals of MDS is to facilitate the visual interpretation of rela-
tionships between objects, when the number of objects is large, this representation of the
results tends to be rather confusing, making it difficult to identify structures in the data. In
addition, the approximation error between the dissimilarities and the estimated distances
increases with the number of points, in particular in low dimensions. This problem is usually
addressed by the joint application of MDS and cluster analysis. However, while the latter
approach is optimal in the original space, this may not be the case in a reduced space, where
performing cluster analysis and then representing the objects in a low-dimensional space
can lead to interpretation errors (Heiser and Groenen 1997). To enhance the interpretation of
the MDS solution and/or to obtain an adequate fit of the model when the number of objects
is too large, cluster-MDSmodels have proven useful, both in the classical context and in the
least squares framework (Bock 1986, 1987; Heiser 1993; Heiser and Groenen 1997; Vera
et al. 2008). In a probabilistic framework, Vera et al. (2009a,b) have proposed latent class
multidimensional scaling models for dissimilarity data in Euclidean spaces.

In some experimental situations, it is desirable to impose constraints on the MDS config-
uration to best represent the singularities between the relations of objects, usually obtaining
a representation in a specific parametric space. In particular, constraints related to quadratic
surfaces such as the sphere arise, for example, in the analysis of data for dissimilarities
between geographical regions, or distances between cities (or countries), or in the measure-
ment of large-scale environmental phenomena and/or those affecting different locations on
the planet, and in general when the representation of the MDS solution in three dimensions
tends to have a spherical shape. Other applications related to quadratic surface embedding
have been proposed as parabolas or ellipses, but in the present case we are interested in
spherical surfaces. On the other hand, a different situation from the one we are dealing
with here is when the true configuration of the objects is known in high dimensionality
and the objective is to embed it in the surface of the sphere. In these cases, in addition to
local MDS, there are other very efficient procedures that allow the representation of points
while preserving local structures, such as SRCA (Luo et al. 2023), t-SNE (Van Der Maaten
and Hinton 2008) or UMAP (McInnes et al. 2018). However, it is important to note that
these methods do not perform clustering, and in general, are not designed to preserve global
structures (Wang et al. 2021).

Let us consider as a running example some study data concerning themonthlymean near-
surface air temperature dataset (Harris et al. 2020a,b) of the Climatic Research Unit of the
University of East Anglia (CRU TS 4.02). A random sample of 500 locations was analysed
from the total of 67,420 locations, during the T = 12months of 2017. The complete database
can be found at Harris et al. (2020a) Version 4 of the CRU TS monthly high-resolution
gridded multivariate climate dataset. Here we focus on the study of the spherical spatial
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representation of locations based on their dissimilarities related to temperature information
using MDS, in particular, on the combined use of clustering and spherical MDS to facilitate
the interpretation of the representation and reduce the number of parameters to be estimated.
In addition, the estimation accuracy of a spatial deformation procedure using spherical spline
interpolation is analysed in relation to the representation error in MDS.

Our analysis considers the situation in which the MDS configuration must fall on a
spherical surface. This case requires a more appropriate measure of the distance between
points in this framework than the Euclidean one, in order to approximate the dissimilarities.
One such measure is the geodesic distance, that is, the length of the shortest geodesic along
the surface. There exists a monotonic relation between Euclidean and geodesic distances,
and various approaches to this problem have been proposed (see, for example, De Leeuw
andMair 2009, for further details). One of themost usedmethods for this purpose consists of
applying MDS with quadratic restrictions in the configuration, with both Euclidean (MDS-
Q) and geodesic (geodesic MDS-Q) distances. This model can be viewed as a weakly
constrained MDS (Borg and Groenen 2005).

Gnanadesikan (1977) proposed a two-step method to impose constraints in MDS as a
form of nonlinear component analysis, and Bookstein (1979) and Fitzgibbon et al. (1999),
later proposed improvements to this method. In general, in the two-step procedure, first an
unrestricted MDS solution is found and then the best quadratic surface is fitted. In a direct
approach for Euclidean distances with spherical constraints on the configuration, Bentler
andWeeks (1978) applied Gauss–Newton methods with linear constraints, while De Leeuw
andHeiser (1980) developed a general theory ofMDSwith restrictions on the configuration.
For the geodesic distance, Cox and Cox (1991) proposed circular and spherical MDS non-
metric models, and Elad et al. (2005) solved the metric spherical MDS problem for geodesic
distances, minimising the stress by means of a gradient method with line search.

De Leeuw and Mair (2009) proposed a majorisation-based methodology for quadratic
surfaces in a least squared framework, based on two approaches, the primal or quadratic
multidimensional scaling (Q-MDS) method and the dual method. In the first, the quadratic
constraints are incorporated in parametric form directly into the loss function based on
Euclidean distances, while in the second, the constraints are imposed at convergence by
means of penalty or Lagrangian terms. Various dual methods have been proposed by Borg
and Lingoes (1980) in which the constraints are directly imposed on the distances.

However, regardless of the estimation procedure used, the problem of achieving visuali-
sation with a large number of objects is even more acute in the case of a spherical represen-
tation. This problem was addressed by Dzwinel et al. (2005), who used multi-resolutional
clustering and nonlinear MDS separately to cluster the time events in the feature space and
inspected the resulting clustering structures using three-dimensional MDS. For example, in
Lopes et al. (2014), dissimilarities were obtained between fifty subjectively chosen zones or
clusters, with the intention of investigating the behaviour of more than three million seismic
occurrences around the world, and the clusters were represented by MDS.

The usefulness of a model that enables clusters to be estimated while the centre of each
cluster is represented on the sphere is thus evident in a wide variety of practical applications.
This approach is interesting, for instance, for the problemof estimating non-stationary spatial
covariance when a broad domain of the spherical surface is involved (see for example Vera
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et al. 2008, 2009a). In this type of applications, reducing the representation to clusters while
preserving the structure between them also contributes to reducing the number of underlying
parameters to be estimated, in addition to facilitating interpretation. This also helps to avoid
known problems such as those of estimation in oversampled domains (Kovitz andChristakos
2004) or reduce the appearance of non-injective mappings as a result of a “nugget effect”
or folding problems (Sampson and Guttorp 1992; Vera et al. 2008, 2009a).

Additionally, since the dimensionality in this particular MDS model is fixed a priori, the
use of criteria to select the number of clusters directly from the dissimilarity matrix is also
advisable (see Vera and Macías 2017).

In the present paper, we propose a model that, given a dissimilarity matrix between a
set of objects, obtains its classification in homogeneous clusters while simultaneously, not
the objects themselves but the centres of the clusters are represented on a spherical surface
using the geodesic distance. The parameter estimation is performed using an alternating
estimation procedure for which, given a classification, the cluster centres are represented
using the well-knownmonotonic relation between the geodesic and the Euclidean distances.
For the representation step, we propose a Q-MDS approach for geodesic distances that
estimates the configuration in the sphere surface, in combination with a ratio transformation
that allows us to estimate the optimal radius of the sphere assuming that it is centred at the
origin.

In the next section, we formulate the combined clustering and spherical representation
model. Section3 then describes the alternating estimation procedure together with the cri-
terion applied to determine the number of clusters. In Sect. 4, we analyse the behaviour of
the model, based on a Monte Carlo experiment, and in Sect. 5 its performance for empirical
data is illustrated and compared with that of a two-step estimation procedure based on K -
means clustering and a quadratic constraints MDS algorithm. In addition, the adjustment of
a spatial deformation between the geographic configuration and that of the MDS by means
of spherical splines is illustrated, and the interpolation and location errors of the estimated
points on the sphere are compared, with or without clustering. Finally, we discuss the results
obtained and present the main conclusions drawn.

2. THE CLUSTERING SPHERICAL SCALING (CSS) MODEL

Let us denote by � a dissimilarity matrix between N objects oi , with entries δi j , i, j =
1, . . . , N . It is assumed that the objects are grouped into K disjoint clusters, and thus, we
denote by E a matrix of N × K binary eik entries, where eik = 1 if the i th object belongs
to the kth cluster, and zero otherwise.

We denote byX a configuration of K points representing the cluster centres on the surface
of a sphere of radius μ, and denote by dkl , the Euclidean distance between the points xk ,
xl ∈ S(μ), and by d̆kl , the related geodesic great-circle distance given by

d̆kl = d̆(xk, xl) = μ arccos

(
x′
kxl
μ2

)
= μ arccos

(
2μ2 − d2kl

2μ2

)
. (1)
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Like the Euclidean distance, the geodesic distance suffers from scale indeterminacy, since
for xk, xl ∈ S(μ), and b > 0, bd̆(xk, xl) = d̆(bxk, bxl), where bxk, bxl ∈ S(bμ), both
distances being monotonically related. Without loss of generality, we can consider weights
wi j for the dissimilarities, which also enables us to deal with missing data. The loss function
(stress) in this model is given by

σ≤ (X,E) =
∑
k≤l

N∑
i=1

N∑
j=1

eike jlωi j

(
δi j − d̆kl (X)

)2
, (2)

and our aim, hence, is to minimise Eq. (2) in terms of a classification E and a configuration
X on the surface of a sphere of radius μ.

According to least squares orthogonality (Heiser and Groenen 1997), the stress function
Eq. (2) can be decomposed considering geodesics distances as follows:

σ≤ (X,E) =
∑
k≤l

N∑
i=1

N∑
j=1

eike jlωi j
(
δi j − δ̃kl

)2 +
∑
k≤l

ω̃kl

(̃
δkl − d̆kl (X)

)2
(3)

where δ̃kl is the Sokal–Michener dissimilarity (Sokal and Michener 1958) given by

δ̃kl =
N∑
i=1

N∑
j=1

eike jl
ωi jδi j

ω̃kl
, whith ω̃kl =

N∑
i=1

N∑
j=1

eike jlωi j . (4)

The first term in Eq. (3) depends only on the classification E, while the last term depends
on both the classification and the representation. Therefore, the parameter estimation in this
model can be performed in an alternating least squares procedure.

3. PARAMETER ESTIMATION

The algorithm consists of two stages that alternate iteratively between an allocation
step and a representation step, until the convergence criterion holds. The iterative cycle
continues until the difference between two consecutive values of the stress function Eq.
(2) is below a small value previously set by the investigator. The algorithm starts with an
initial classification (allocation step). This can be set by the investigator, or taken randomly.
Then, the Sokal–Michener dissimilarities are calculated, and the related configuration in a
sphere for the cluster centres is estimated (representation step). The alternating procedure
continues iteratively until the loss function is minimised (see Fig. 1). The two estimation
phases are described in detail below.

3.1. ALLOCATION STEP

Given an estimated value forX ∈ S(μ), we classify each object into the cluster to which
the corresponding dissimilarities are nearest to the related geodesic distances between the
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corresponding cluster centres. To this end, the following loss function is minimised (Heiser
and Groenen 1997),

min
E

κ2 (E |X,�) =
∑
i

∑
k

eik‖ai − b(i)
k ‖2, (5)

where ||ai − b(i)
k ||2 denotes the squared Euclidean distance between the i th row of the

matrix A = {
ai j

}
of order N × (N − 1) and the kth row of the matrix B(i) =

{
b(i)
kr

}
of

order K × (N − 1), and with elements of A and B(i), i = 1, . . . , n, which is specified as
air = δ∗

ir and b(i)
kr = d̆∗

kr , where δ∗
ir = δis and d̆∗

kr = ∑
l esl d̆kl (X), for r = 1, . . . , N − 1,

with s = r if r < i , and s = r + 1 if r ≥ i and where elk is a binary variable which is equal
to one if object i is an element of cluster k in the matrix E.

The optimal classification stage consists of a nested iterative cycle of NK iterations,
after which a new classification matrix E is obtained, from which the weights ω̃kl , and the
Sokal–Michener dissimilarities δ̃kl are updated. Heiser and Groenen (1997) have shown that
the assignment step can be viewed as a K-means clustering procedure. A simple convergent
algorithm is possible if we proceed row by row finding

min
ei

∑
k

eik‖ai − b(i)
k ‖2, (6)

being ei = (ei1, . . . , eiK )′, the i th row of matrix E and maintaining the allocation of the
other objects j �= i , fixed. The minimum value is achieved in some row κ of B(i) such that if
κ does not change the assignment, the algorithm moves to the next object, otherwise object
i is reallocated and the i th row of E is adjusted first; then the next object is considered until
the position of all objects have been examined, concluding the allocation phase.

3.2. GEODESIC MDS-Q STEP

For a given classification E, the corresponding Sokal–Michener dissimilarities δ̃kl are
calculated, and the configuration for the cluster centres is estimated in a geodesic MDS-Q
step by minimising,

min
X,μ

∑
k<l

ω̃kl

(̃
δkl − μd̆kl (X)

)2
, with X ∈ S(1). (7)

The configuration X is estimated using Euclidean distances in the smacof framework using
the Guttman transform, after which the points are projected onto the surface of a sphere
for an optimal radius μ (De Leeuw and Mair 2009). Here, we present a refinement of the
MDS-Q algorithm, considering the estimation of the optimal radius of the sphere, not in
terms of the projection from Euclidean space to the surface of the sphere, but to minimise
the stress function Eq. (2) at each step. This task is performed by an alternating estimation
procedure in theMDS-Q step that estimates the radius as the slope of a linear transformation
of the MDS-Q geodesic distances, given its linear invariance property. The algorithm at this
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representation step can be summarised as follows (see also De Leeuw and Mair 2009, for
further details).

1. Given E(s) at the sth iteration in the geodesic step, take Z = Y(s) the classical MDS
solution in three dimensions for the Sokal–Michener dissimilarities.

2. Calculate the Guttman transform which improves the configuration in terms of
Euclidean distances minimising the second terms in (2). Y(s) = V+B(Z)Z, where
V+ is the Moore–Penrose inverse of V, V+ = (

V + N−111′)−1 + N−111′, where
V is given by V = ∑

k<l w̃klMkl , with Mkl = (mk − ml) (mk − ml)
′, with ele-

ments mkk = mll = 1, mkl = mlk = −1, and 0 elsewhere, and B is given
by B (Z) = ∑

k<l w̃kl skl (Z)Mkl with skl(Z) = δ̃kl/dkl (Z) if dkl (Z) > 0 and
skl(Z) = 0 if dkl (Z) = 0.

3. Obtain the projection X(s) ∈ S(λ(s)) of Y(s),

min
λ(s),X(s)∈S(λ(s))

tr(X(s) − Y(s))′V(X(s) − Y(s)).

Then consider X(s) = X(s)/λ(s) ∈ S(1) (see De Leeuw and Mair 2009 for details on
convergence).

4. Calculate d̆(X(s)) the geodesic distances Eq. (1), and estimate μ(s) (see Appendix)
by minimising (7), at the fixed value of X(s).

5. Set X(s) = μX(s), and evaluate the stress σ (s)(X(s)|E).

6. For s > 0, and ε > 0 small enough, if (σ (s−1) −σ (s)) ≤ ε, thenX = X(s) ∈ S(μ(s))

is found and the algorithm stop. Otherwise, update the iteration index and return to
2.

Finally, the geodesic distances d̆(X) are calculated and the algorithm continues with the
allocation step, minimising Eq. (2). The overall alternating estimation procedure converges
to a local minimum. The allocation step is a nested iterative loop of N assignments (a total
of NK iterations), while the MDS step is essentially a K-order ratio MDS procedure, for
which theGuttman transformation can be seen as a steepest descent stepwith a fixed stepsize
parameter (see de Leeuw 1988, for details on the convergence of smacof).

3.3. SELECTING THE NUMBER OF CLUSTERS

Several criteria can be employed to select the number of clusters for a dissimilaritymatrix
(see Vera and Macías 2017, 2021). Here, we consider the adapted version of Hartigan’s
criterion H∗ proposed by Vera and Macías (2017), which has been experimentally shown
to obtain good results even when some degree of overlap is present. Since the clustering is
optimal in the entire space, the criterion is used directly on the original dissimilarity matrix
without imposing geometric restrictions. This is defined by

H∗ (K ) =
[

W ∗(K )

W ∗(K + 1)
− 1

]
(([N (N − 1) − K (K + 1)]/2) − 1), (8)
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Input values: Dissimilarity matrix ΔN×N and K

Initialise parameters: t1 = 0, X(t1)
K×3 ∈ S(1), E(t1), 1

Calculate: σ2
≤(X

(t1)) by Eq. (2)
Repeat:

(t1 = t1 + 1)
Allocation Step:
update E(t1) by Eq. (6)
MDS-Q Step:
Initialise parameters:
t2 = 0, cluster dissimilarity matrix Δ(t2)

K×K ← E(t1), X(t2) ∈ S(μ(t2)), 2

Calculate: σ2(X(t2)) by Eq. (7)
Repeat:

(t2 = t2 + 1)
Calculate: X̄(t2) = V+B X(t2−1) X(t2−1)

and obtain: X(t2) ∈ S(λ(t2)) of X̄(t2) by Projection step (see Appendix).
Normalise: X(t2)∗

= X(t2)/λ(t2) ∈ S(1)
Radius adjustment:
Adjust: X(t2)∗

and μ(t2) by Eq. (7)
and update: X(t2) ← μ(t2)X(t2)∗

Evaluate: σ2(X(t2)) by Eq. (7)
Until: |σ2(X(t2)) − σ2(X(t2−1))| 2

Update: X(t1) = X(t2) ∈ S(μ(t2))
Evaluate: σ2

≤(X
(t1)) by Eq. (2)

Until: |σ2
≤(X(t1−1)) − σ2

≤(X
(t1))| 1 or (t1 = t1max)

Figure 1. Pseudocode of the CSS Model algorithm.

where,

W ∗ (K ) =
∑
k≤l

N∑
i=1

N∑
j=1

eike jlwi j
(
δkl − δ̃kl

)2
, (9)

and where δ̃kl is given by Eq. (4). According to the selection rule proposed by Vera and
Macías (2017), the values of H∗(t) are calculated for t = 1, . . . , T , where T is usually
predetermined by the investigator. Then, the estimated number of clusters is the smallest
value K ≤ T such that H∗(K ) ≤ 5N .

4. MONTE CARLO EXPERIMENT

To test the performance of the proposed model, artificially clustered data sets were gen-
erated in the unit sphere, with mixtures of the well-known von Mises–Fisher distribution
(Banerjee et al. 2005). To this end, we used the rmixvfm function of the Directional R
package (v.6.0; Tsagris et al. 2022). All statistical analyses were performed in R v.4.1.3
(R Development Core Team 2023), working on an Intel(R) Core(TM) i5-6200U CPU 2.40
GHz computer with 6 GB of RAM.

The data sets were generated considering a structure of K = 4, 6, 8, 10 clusters with
equal prior probabilities in the unit sphere. The distribution of points within each cluster was
selected considering different concentration indices kc = 6, 3, 1.5, 0.75 for the mixtures of
von Mises–Fisher distributions, taking into account that the higher the concentration value,
the more separated the clusters will be from each other, and the lower this value, the more
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Table 1. Average values of ARI, congruence coefficient (CC) and CPU time (T) from simulation experiment
with equal probability for each cluster, these being well separated (kc = 6) and moderately separated
(kc = 3)

K N kc = 6 kc = 3

50 100 250 500 50 100 250 500

4 ARI 0.983 0.982 0.983 0.981 0.868 0.858 0.895 0.879
CC 0.945 0.952 0.932 0.955 0.950 0.946 0.946 0.953
T 0.196 0.797 0.634 2.665 0.402 0.839 0.665 3.135

6 ARI 0.991 0.995 0.984 0.989 0.891 0.895 0.916 0.926
CC 0.950 0.953 0.942 0.958 0.953 0.954 0.946 0.953
T 0.290 0.259 1.030 2.387 0.610 0.265 1.441 3.581

8 ARI 0.910 0.952 0.960 0.962 0.811 0.880 0.902 0.886
CC 0.928 0.929 0.931 0.933 0.925 0.930 0.936 0.929
T 0.330 0.246 1.240 3.169 0.594 0.495 0.981 6.048

10 ARI 0.815 0.846 0.875 0.898 0.715 0.734 0.763 0.768
CC 0.886 0.888 0.897 0.897 0.897 0.900 0.887 0.894
T 0.568 0.662 1.201 6.190 0.549 0.729 3.349 9.079

the clusters will overlap (see, for example, Chevallier et al. 2022 for alternative distributions
on the sphere surface. For each combination of the above factors, ten clustered sets of points
were generated in the unit sphere, for each of the sizes N = 50, 100, 250, 500. Hence, a
total of 640 data sets were analysed with the proposed model for the true number of clusters,
and the results obtained were compared to the original ones in terms of the classification
using the Adjusted Rand Index (ARI) of Hubert and Arabie (1985). The Tucker congruence
coefficient (Tucker 1951) was calculated between the simulated data sets and the outcome
of the Procrustes transformation on the estimated configuration. For both indices, a value
close to one indicates good performance.

Table 1 shows the averaged values for each set of ten simulated matrices, for the ARI,
the congruence index and the CPU time in seconds, according to the sample size, number of
clusters and the larger concentration index values of kc = 6, 3 producing non-overlapping
clusters. Almost all of these averaged values indicate excellent performance by the proposed
procedure, both in terms of the quality of the classification obtained (ARI) and of recov-
ering the cluster centres (CC). In general, as the size increased and the number of clusters
decreased, the model performed better, as expected. In terms of CPU time, the procedure
was very efficient for all data sets analysed, with the time increasing as the size of the data
set and the number of clusters grew.

Since the performance of K -means clustering is known to decrease for overlapping
clusters, we investigated the performance of the proposed procedure when a degree of
overlapping was present. Table 2 shows the corresponding averaged results for the lower
concentration index values of kc = 1.5, 0.75, which are related to clusters that are somewhat
overlapping. In general, the average ARI values decreased as the number of clusters K
increased, and the concentration index kc decreased, as expected. However, the congruence
coefficient (CC index) values remained high, since the average values of dissimilarities
between clusters did not seem to be greatly altered by the misclassified points.
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Table 2. Average values of ARI, congruence coefficient (CC) and CPU time (T) from simulation experiment with
equal probability for each cluster, these being somewhat overlapping (kc = 1.5) and very overlapping
(kc = 0.75)

K N kc = 1.5 kc = 0.75

50 100 250 500 50 100 250 500

4 ARI 0.645 0.644 0.630 0.653 0.345 0.330 0.392 0.361
CC 0.958 0.959 0.959 0.947 0.968 0.953 0.965 0.967
T 0.257 0.970 3.171 6.254 2.097 0.359 4.388 6.898

6 ARI 0.643 0.682 0.738 0.716 0.421 0.381 0.399 0.383
CC 0.957 0.956 0.954 0.959 0.947 0.957 0.963 0.945
T 0.352 0.375 2.954 3.797 3.064 0.365 0.945 15.028

8 ARI 0.601 0.670 0.714 0.702 0.379 0.366 0.364 0.411
CC 0.929 0.933 0.932 0.928 0.941 0.939 0.940 0.937
T 0.287 0.399 1.301 4.804 0.403 0.424 4.372 6.654

10 ARI 0.511 0.555 0.556 0.556 0.334 0.337 0.366 0.349
CC 0.911 0.901 0.907 0.900 0.906 0.912 0.908 0.907
T 0.561 0.912 2.467 8.405 0.284 3.690 8.733 7.852

Table 3. Average values of ARI, congruence coefficient (CC) and CPU time (T) from simulation experiment with
unequal probabilities for each cluster, these being well separated (kc = 6) and moderately separated
(kc = 3)

K N kc = 6 kc = 3

50 100 250 500 50 100 250 500

4 ARI 0.953 0.984 0.978 0.971 0.838 0.863 0.834 0.840
CC 0.950 0.947 0.955 0.959 0.953 0.944 0.948 0.953
T 0.155 0.264 0.675 2.305 0.152 0.400 4.138 3.365

6 ARI 0.908 0.965 0.988 0.989 0.831 0.887 0.903 0.930
CC 0.950 0.950 0.956 0.949 0.945 0.965 0.954 0.955
T 0.145 0.335 0.733 2.947 0.402 2.008 1.092 4.327

8 ARI 0.828 0.901 0.935 0.927 0.734 0.769 0.849 0.848
CC 0.928 0.935 0.939 0.930 0.920 0.925 0.925 0.929
T 0.339 0.664 1.939 4.896 1.206 0.832 2.891 9.676

10 ARI 0.779 0.860 0.871 0.835 0.653 0.653 0.714 0.708
CC 0.888 0.884 0.885 0.893 0.892 0.899 0.882 0.885
T 0.625 2.300 4.073 8.100 0.884 0.938 2.365 5.341

We have also investigated the performance of the model when the groups are unbalanced,
for which the two previous experiments were carried out but now considering unequal
probabilities for the simulation of the data. For each value of k, the kth group (k = 1, . . . , K )
was weighted using the values pk = k/

∑
k k. Tables 3 and 4 show the given results. As can

be appreciated, in general, the performance of the procedure was good when the clusters
are well separated, without much influence of the different sizes of the clusters, becoming
poorer for the ARI coefficient as the degree of overlap increases, as expected.

Finally, the convergence rates of the model were tested for three large data sets to also
analyse the scalability of the model, considering the values of K = 15, kc = 2 and
N = 500, 1000, 2000, 4000, 6000. Figure2 shows the convergence plots in terms of the
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Table 4. Average values of ARI, congruence coefficient (CC) and CPU time (T) from simulation experiment
with unequal probabilities for each cluster, these being somewhat overlapping (kc = 1.5) and very
overlapping (kc = 0.75)

K N kc = 1.5 kc = 0.75

50 100 250 500 50 100 250 500

4 ARI 0.504 0.606 0.518 0.540 0.251 0.293 0.260 0.268
CC 0.971 0.956 0.956 0.951 0.960 0.964 0.951 0.950
T 5.873 0.470 3.098 4.766 2.666 6.302 15.899 4.689

6 ARI 0.638 0.631 0.691 0.657 0.404 0.403 0.370 0.404
CC 0.945 0.947 0.950 0.952 0.956 0.957 0.953 0.945
T 0.167 0.379 2.639 12.844 0.357 0.619 1.321 4.500

8 ARI 0.634 0.606 0.616 0.612 0.326 0.415 0.425 0.396
CC 0.927 0.923 0.929 0.924 0.934 0.933 0.938 0.930
T 0.562 1.130 12.171 6.608 2.002 1.411 2.125 6.486

10 ARI 0.527 0.504 0.522 0.539 0.375 0.376 0.410 0.371
CC 0.895 0.897 0.903 0.901 0.902 0.918 0.905 0.902
T 1.072 1.157 1.532 7.577 0.445 3.741 3.864 24.357

normalised stress value given for each main iteration, starting from the second iteration to
better appreciate the differences. In terms of iterations, the stress value decreased rapidly for
the overall iterative procedure, even for the largest data sets, indicating that most of the work
is done in each of the stages of the alternating estimation process. The above experiment
was repeated ten times, and the average execution times (rounded) were of 14, 42, 189, 1094
and 2932s, respectively. In terms of CPU time, the cost increases as data size increases,
as expected, although this is still competitive for large data sets. It seems evident that part
of the efficiency of the procedure is due to the well-known speed of convergence towards
a local minimum of the smacof procedure (see, for example, De Leeuw and Mair 2009),
which also here is performed only for K << N points.

5. ILLUSTRATIVE EXAMPLE

We now analyse the time series data of temperature measured at 500 locations introduced
in Sect. 1. We first show the results of our new approach, the CSS model. We then show
the results obtained using a two-step procedure that first performs clustering and then plots
the cluster centres on the sphere. Finally, we illustrate the fitting behaviour of the spatial
deformation estimation procedure using smoothing spline regression between geographic
locations and the MDS spherical representation.

To performMDS, the dissimilarities between time series within the samplewere obtained
using the cosine correlation-based dissimilarity measure. Considering the Pearson correla-
tion coefficient between two time series xi = {xi1, . . . , xiT } and x j = {x j1, . . . , x jT },

ρ
(
xi , x j

) =
∑T

t=1 (xi t − x̄i )
(
x j t − x̄ j

)
√∑T

t=1 (xi t − x̄i )2
√∑T

t=1

(
x j t − x̄ j

)2 , (10)
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Figure 2. Convergence plots for each iteration for the normalised stress of the simulated data sets, considering
K = 6, kc=2 and N = 500, 1000, 2000, 4000, 6000.

with x̄i and x̄ j the averaged temperature values of the time series realisations respectively,

the dissimilarities are calculated as δi j =
√
2

(
1 − ρ

(
xi , x j

))
(see, for example, Golay et al.

1998; Montero and Vilar 2014).
The number of clusters was selected from the dissimilarity matrix using the H∗ index

(Vera and Macías 2017), for values of K = 1, 2, 3, 4, ..., 20. For each value of K , the
partitionwas estimatedwithout imposing geometric constraints, using the allocation step and
the Sokal–Michener dissimilarities between the clusters instead of the Euclidean distances,
and the value of Eq. (8) was calculated. The lowest value of the H∗(K ) index was found
for K = 15 clusters (see Vera and Macías 2017, for further details).

In view of these considerations, the CSS model was run for K = 15 clusters, obtaining
a normalised stress value of σ 2 = 0.02235079. The top panel of Fig. 3 shows the config-
uration for the cluster centres given by the CSS model, except an invariant deformation
for geodetic distances. Although related to the geographical location, the CSS configura-
tion is not expected to exactly match the location of the geographic centres of the clusters.
The bottom panel of Fig. 3 shows the geographic locations of the cluster centres together
with the CSS configuration after applying the Procrustes transformation in three dimensions
(CC = 0.955686), and projecting the optimally transformed configuration on the surface
of the sphere. Despite the differences in some locations, in general the spatial relationship
of the clusters of temperature time series can be appreciated.

The relationship is best appreciated for clusters in which the related stations are in the
same hemisphere and therefore the centre is not deformed by curvature. For example, Fig. 4
shows the temperature time series for stations in groups 1 and 11. Although the average
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Figure 3. Cluster configuration on the sphere for the real data (top panel). The geographical coordinates of the
cluster centres (blue) together with the CSS configuration after Procrustes (red) are shown in the bottom panel.

geographic location of the station locations in each cluster may be affected by the longitude
effect, the averaged time series of both clusters are well related to their geographic centre.

Figure5 shows the MDS-Q solution on the unit sphere surface, obtained using geodesic
distances for all the sampling series (without clustering). Different colours and numbers
represent the classification provided by the CSS model for K = 15. In general, the different
cluster structures can be appreciated, some of which are quite close together, while others
are sparse, but in general a clear interpretation is difficult due to the large number of points
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Figure 4. Time series for groups 1 and 11.

represented. As an example, let us now illustrate how the representation error with orwithout
clustering can influence the estimation of a spatial interpolator.

Mapping between geographic locations and the MDS representation is a widely used
procedure, which, for example, allows interpolation in the context in which the covariance
structure, expressed in terms of spatial dispersion, is stationary and isotropic, since theMDS
representation only depends on distances. This is a very useful procedure in this framework,
for example, when the aims is estimate the spatial covariance in a non-stationary process,
although this aspect is beyond the scope of this paper (see Sampson and Guttorp 1992 for
further details). Denote by g ∈ S(1), the geographic location of a station, and consider
0 ≤ θ ≤ 2π , and −π/2 ≤ φ ≤ π/2, the longitude and the latitude of g, respectively. Let
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Figure 5. MDS in the sphere with a geodesics distance solution for the 500 real data points, with colours assigned
according to the classification provided by the CSS model.

denote by W 2
2 the model space for the spherical spline f of order 2 given by

W 2
2 =

{
f :

∣∣∣∣
∫
S(1)

f dg

∣∣∣∣ < ∞, J ( f ) < ∞
}

, (11)

where J ( f ) = ∫ 2π
0

∫ π/2
−π/2(� f )2 cos(φ)dφdθ , and � f is the surface Laplacian on the unit

sphere (see Wang 2011 for further details). Then, denoting by ϑi and ψi the longitude and
latitude of a point xi , i = 1 . . . , N in the MDS configuration on S(1), two smoothing
spherical spline regression functions are estimated f = ( fϑ , fψ), for the longitude and
for the latitude values, respectively. For each component v = ϑ,ψ , fv is estimated by
minimising

1

N

N∑
i=1

(vi − fv(gi ))
2 + λJ ( f ), (12)

where gi = (θi , φi ) are the geographical coordinates, and vi = ϑi or vi = ψi , i = 1, . . . , N
for the MDS configuration. We analyse here the location error (LE) in terms of the average
of the squared geodetic distances between the interpolated geographic locations and the
MDS representation given by

LE = 1

N

N∑
i=1

d̆(xi , x̂i )2, (13)

where x̂i = f (xi ) = ( fϑ(θi ), fψ(φi )), is the image of f for the i th geographical location.
The analysis has been performed using the ssr function at the assist R package (v2.1.8;
Wang et al. 2022). A value of LE of 2.482347 was obtained using the CSS model, while
this was of 6.11973 when the interpolation process was performed using the MDS spherical
representation for the N = 500 stations. In addition, we consider the mean squares error
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(MSE) of the fit for each component (longitude, latitude) after Procrustes, given byMSEv =∑
i (vi − fv(gi ))

2/N . For the longitude component, the MSE values of 0.4730863 and
0.8416269where obtained for the CSS and sphericalMDS (without clustering) respectively,
while for the latitude, the values were of 0.8057067 and 1.262198, respectively. The results
obtained show that the performance of the interpolation procedure is better with the CSS
model, as expected.

Finally, we investigated whether a two-step procedure, consisting of an independent
classification and representation stage, offered an adequate solution to the problem. Using
the correlation-based dissimilarity matrix for the time series based on 500 locations, we first
performed classicalMDS in full dimension (dimension 499). Then, K -means clustering was
performed for K = 15 using this configuration (see Vera and Macías 2021). The Sokal–
Michener dissimilarity matrix was calculated, and the configuration of the cluster centres
was estimated using the representation step described in Sect. 3.2. The normalised value of
the total stress (2) given for the two-step procedure was 0.02449717, which is higher than
that obtained with the proposed CSS model (0.02235079), as was hoped. In addition, the
normalised value of the first term in (3) was of 0.009104791 for the two-step model and
0.006082755 for the CSSmodel, while the normalised stress values in (7) were 0.01077115,
and 0.009900273, respectively, reflecting the good performance of the proposed CSSmodel.

6. DISCUSSION

This paper proposes a spherical-constrained cluster-MDS model for two-way one-mode
dissimilarity data using geodesic distances. One of the main advantages of this model is that
it enables us to address clustering and representation problems presenting a large number of
points, particularly on a spherical surface, all based on any dissimilarity measure. Instead
of a two-step procedure, and using only the information given by a dissimilarity matrix
between a set of objects, the proposed model obtains a classification into homogeneous
clusters while simultaneously, not the objects themselves but the centres of the clusters
are represented on a spherical surface of optimal radius, using geodesic distances. Hence,
for any partition, the dissimilarities are assumed to vary randomly within a cluster, while
the corresponding distance is constant within the same cluster, whereas between clusters,
differences in distance will reflect the tendency of the corresponding dissimilarities to vary
systematically. Furthermore, when the representation of the points in high dimensionality
is also known, any measure of dissimilarity can be used, and the proposed procedure, in
addition to grouping, facilitates interpretation by preserving the global structure between
the groups, unlike other spherical embedding-only procedures.

The parameter estimation is performed in an alternating step procedure which consists of
a dissimilarity-based assignment step using geodesic distances, and a double representation
step in which a ratio transformation is considered in aMDSmodel for a configuration that is
constrained to the sphere surface using geodesic rather than Euclidean distances, in a metric
approach. The search for the optimal object classification is formulated using a minimum
distance procedure (Heiser and Groenen 1997), together with geodesic distances, which
can be seen as a generalised K -means clustering procedure on the dissimilarity matrix in
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terms of geodesic (instead of Euclidean) distances. For the representation step, the search
for the overall optimal radius is performed introducing a ratio transformation in the primal
quadratic constraints MDS algorithm proposed by De Leeuw and Mair (2009), also using
an alternating estimation procedure.

The performance of the CSSmodel was analysed considering 640 artificial clustered data
sets, in an extensive Monte Carlo experiment with different sizes, numbers of clusters, sizes
of clusters and degrees of overlap. Among other aspects, we determined the quality of the
classification obtained using the ARI (Hubert and Arabie 1985), and the degree to which
the true configuration of the cluster centres was recovered using the congruence coefficient
(Tucker 1951) after the Procrustes transformation. Regardless of whether the groups were
balanced or not, the model showed good performance in all data sets considered with non-
overlapping clusters. For somewhat overlapping groups, the ARI values worsened as the
number of clusters increased, while for fairly overlapping groups, the ARI values were poor
for both clusters of equal or different sizes. In all situations, the congruence coefficient
values remained high, as the average values of the differences between the groups did not
appear to be greatly altered by misclassified points.

To illustrate the performance of the model for real data sets, we analysed the monthly
mean near-surface air temperature for 500 locations, worldwide. The results obtained were
compared with those given by a two-step procedure in which first, K -means clustering was
performed using the dissimilarity matrix (Vera and Macías 2021), after which the cluster
centres were represented using the primal quadratic constraint MDS algorithm proposed by
De Leeuw andMair (2009), and implemented in the smacof package in R (Mair et al. 2021).
As expected, our procedure outperformed the two-step algorithm. In addition to facilitating
interpretation and reducing the number of parameters, the proposed procedure improves the
fit when the interpolation procedure based on spherical spline is used on the centres of the
clusters instead of on the complete data set.

The proposed model performs clustering based on any dissimilarity measure, but does
not take into account the spatial proximity between objects, which may be a limitation for
some practical applications. Clustering with constraints is necessary, for example, when we
wish stations and clusters to retain their spatial relationships, and in this situation, additional
spatial contiguity constraints are required (see Vera et al. 2008). Another limitation of the
model is related to the assumption that the scale of the dissimilarities ismetric. Inmany cases,
dissimilarities aremeasured on an ordinal scale, that is, only the order between dissimilarities
is preserved by distances, so in these cases a transformation based on monotonic regression
must be considered when approximating them by geodesic distances. This results in a more
flexible but imprecise clustering and representation model, more appropriate when it is not
required to strictly preserve the global structure, but only the order of dissimilarities across
the distances between group positions.

Spherical embedding is an important tool for data analysis in diverse areas of interest.
Clustering and/or a planar representation using MDS have been considered for the problem
of non-stationary spatial covariance structure estimation (Sampson and Guttorp 1992; Vera
et al. 2008, 2009a; Vera et al. 2017). The model we present allows the extension of this
procedure when the dissimilarities are determined by the location of the points on the
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surface of a sphere. This model, together with the spatiotemporal processes defined on the
sphere surface is currently being investigated by the authors.
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APPENDIX: PROJECTION STEP

At each iteration of the geodesic representation step, the Guttman transform in
terms of Euclidean distances X̄(s) is projected onto the sphere surface by minimising

tr
(
X(s) − X̄(s)

)′
V

(
X(s) − X̄(s)

)
, with V defined in Section (3.2) and X(s) = λ(s)Z(s),

diag Z(s)Z(s)′ = I. Then, for fixed Z(s), minλ(s) tr
(
λ(s)Z(s) − X̄(s)

)′
V

(
λ(s)Z(s) − X̄(s)

)
is

given by λ(s) = trX̄(s)′VZ(s)/trZ(s)′VZ(s), and Z is estimated by maximising ρ(Z(s)) =
(trX̄(s)′VZ(s))2/trZ(s)′VZ(s) (Further details can be found in De Leeuw and Mair 2009).
Finally, the configuration X(s) ∈ S(λ(s)) obtained from the primal MDS-Q procedure is
normalised on the sphere or radius one, simply by dividing X(s) by the radius λ(s), which
produces X(s)∗ ∈ S(1). Then, for the parameter estimates, the radius is again adjusted for
the geodesic distances to minimise (2).

RADIUS ADJUSTMENT

Given the monotonic relation between Euclidean and geodesic distances (1), at each
iteration, the radius of the sphere is globally optimised in terms of Eq. (2) in an alternating

http://creativecommons.org/licenses/by/4.0/
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estimation procedure. Expanding

σ 2
(
b(s)(Xs)∗

)
=

∑
k<l

ω̃kl

(
δ̃kl

λ(s)
− b(s)d̆kl

(
X(s)∗

))2

=
∑
k<l

ω̃kl
δ̃2kl

λ(s)2
+ b(s)2

∑
k<l

ω̃kl d̆
2
kl

(
X(s)∗

)
− 2b(s)

∑
k<l

ω̃kl
δ̃kl

λ(s)
d̆kl

(
X(s)∗

)
,

(A.1)

and setting the derivative of Eq. (A.1) with respect to b(s) equal to zero, we obtain

b(s)∗ =
∑

k<l ω̃kl
δ̃kl

λ(s)
d̆kl

(
X(s)∗

)
∑

k<l ω̃kl d̆2kl
(
X(s)∗) .

Thus, μ(s) in Eq. (7) is given by μ(s) = λ(s)b(s)∗ , and the coordinates of X(s)∗ are
multiplied by μ(s) such that the update solution X(s) is optimal for Eq. (2) in terms of the
geodesic distances.
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