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Abstract
This paper addresses the estimation of the second-order structure of a manifold cross-
time random field (RF) displaying spatially varying Long Range Dependence (LRD),
adopting the functional time series framework introduced in Ruiz-Medina (Fract Calc
Appl Anal 25:1426–1458, 2022). Conditions for the asymptotic unbiasedness of the
integrated periodogram operator in the Hilbert–Schmidt operator norm are derived
beyond structural assumptions. Weak-consistent estimation of the long-memory oper-
ator is achieved under a semiparametric functional spectral framework in the Gaussian
context. The case where the projected manifold process can display Short Range
Dependence (SRD) and LRD at different manifold scales is also analyzed. The per-
formance of both estimation procedures is illustrated in the simulation study, in the
context of multifractionally integrated spherical functional autoregressive–moving
average (SPHARMA(p,q)) processes.

Keywords Connected and compact two-point homogeneous spaces · Ibragimov
contrast function · LRD multifractionally integrated functional time series · Manifold
cross-time RFs · Multifractional spherical stochastic partial differential equations

Mathematics Subject Classification 60G10 · 60G12 · 60G18 · 60G20 · 60G22
(primary) · 60G60

1 Introduction

The literature onweakly dependent functional time series has beenwidely developed in
the last few decades, allowing the statistical analysis, and inference on stochastic pro-
cesses under a Markovian framework (see, e.g., Bosq (2000), Horváth and Kokoszka
(2012)). Nowadays, spectral analysis of functional time series models constitutes an
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open research area. Under suitable functional cumulant mixing conditions, and the
summability in time of the trace norm of the elements of the covariance operator fam-
ily, in Panaretos and Tavakoli (2013a), a weighted periodogram operator estimator of
the spectral density operator is derived. Its asymptotic analysis is addressed. Partic-
ularly, the asymptotic normality of the functional discrete Fourier transform (fDFT)
of the curve data is proved (see also Tavakoli (2014)). In Panaretos and Tavakoli
(2013b), a harmonic principal component analysis of functional time series, based
on Karhunen-Loéve–like decomposition in the temporal functional spectral domain is
proposed, the so-called Cramér-Karhunen-Loéve representation (see also Rubín and
Panaretos (2020a), Rubín and Panaretos (2020b)). Some recent applications in the
context of functional regression are obtained in Pham and Panaretos (2018). Hypoth-
esis testing for detecting modeling differences in functional time series dynamics is
achieved in Tavakoli and Panaretos (2016) in the functional spectral domain.

Recently, an attempt to extend spectral analysis of functional time series to the
context of LRD functional sequences has been presented in Ruiz-Medina (2022), cov-
ering, in particular, some examples of the LRD functional time series family analyzed
in Li et al. (2019) in the temporal domain. The application of harmonic analysis in this
more general context entails important advantages as given in Ruiz-Medina (2022).
Particularly, under stationary in time, the temporal dependence range can be approxi-
mated from the behavior in a neighborhood of zero frequency of the spectral density
operator family at different spatial resolution levels. Moreover, a more flexible model-
ing framework can be introduced in this setting. Particularly, the projected process can
display LRD and SRD depending on the spatial scale, according to the support of the
spectral measure of the LRDoperator characterizing the distribution of its eigenvalues.
In Li et al. (2019), Functional Principal Component Analysis (FPCA), based on the
long-run covariance function, is applied in the consistent estimation of the dimension
and the orthonormal functions spanning the dominant subspace, where the projected
curve process displays the largest dependence range. Fractionally integrated functional
autoregressive moving averages processes constitute an interesting example (see Li
et al. (2019)). The multifractionally integrated version of this process family can be
analyzed under the modeling framework introduced in Ruiz-Medina (2022).

Connected and compact two-point homogeneous spaces constitute an example of
manifold, with isometrically equivalent properties to the sphere, locally resembles an
Euclidean space. Here, we will denote it as Md , with d being its topological dimen-
sion. The isotropy or invariance of a kernel with respect to the group of isometries
of Md allows its diagonal representation in terms of a fixed orthonormal basis given
by the eigenfunctions of the Laplace–Beltrami operator on L2(Md , dν). Thus, the
separable Hilbert space H = L2 (Md , dν) of square integrable functions on Md is
considered in our functional time series analysis. Here, dν is the normalized Rieman-
nian measure on Md . Particularly, this Hilbert space framework has been adopted by
several authors in the current literature for the special case of the sphere. That is the
case of Caponera and Marinucci (2021), where estimation and asymptotic analysis
of spherical functional time series is achieved, introducing new model families (see
Caponera (2021)). Also, in the LRD framework, sphere cross-time random fields are
analyzed in Marinucci et al. (2020), investigating the asymptotic behavior, under tem-
poral increasing domain, of the empirical measure of a excursion area at any threshold.
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Time-dependent RF solution to a fractional pseudodifferential equation on the sphere
is introduced in D’ Ovidio et al. (2016) (see also Anh et al. (2018)). The eigenfunc-
tions of the Laplace Beltrami operator on L2 (Md , dν) , and the corresponding zonal
functions play a crucial role in the analysis of manifold cross-time random fields (see,
e.g., Ma and Malyarenko (2020)). For example, Sobolev regularity and Hölder con-
tinuity of Gaussian RFs on a connected and compact two-point homogeneous space
are studied in Cleanthous et al. (2020) and Cleanthous et al. (2021), by exploiting
asymptotic properties of the pure point spectra of invariant kernels, and projection of
functions into the eigenfunctions of the Laplace Beltrami operator. Some motivating
real data applications can be found in the field of Cosmic Microwave Background
(CMB) radiation (see, e.g., Marinucci and Peccati (2011) and references therein). It
is well-known the interest of these RFs in climatic change analysis (see, e.g., Alegría
et al. (2021)).

The spectral domain allows to characterize LRD in functional time series in terms
of the unboundedness at zero frequency of the corresponding element of the family
of spectral density operators. Specifically, the divergence of the eigenvalues of the
elements of the spectral density operator family at a neighborhood of zero frequency
leads to different levels of singularity at this frequency depending on the spatial scale
(see, e.g., Ruiz-Medina (2022)). The case of SRD and LRD at different spatial scales
can also be analyzed, in the case of non-trivial null space of the LRD operator. Thus,
the projected process displays SRD in this subspace, and LRD in the eigenspaces
associatedwith the elements of the support of the spectralmeasure of theLRDoperator.

From a theoretical point of view, this paper contributes providing a sufficient con-
dition for the asymptotic unbiasedness of the integrated periodogram operator, in the
Hilbert–Schmidt operator norm, for the class of zero-mean, stationary and isotropic,
mean-square continuous Gaussian, or elliptically contoured, spatiotemporal RFs on
Md . This result provides a suitable setting for applying the LRD spectral functional
time series framework introduced in Ruiz-Medina (2022), where the weak–consistent
estimation of the second-order structure in the functional spectral domain is achieved
under a Gaussian scenario. Our scenario is a bit different, since the Hilbert–Schmidt
operator scenario has been considered.Note that this scenario has usually been adopted
in the current literature on functional time series (see Bosq (2000), Caponera and
Marinucci (2021)). The case where SRD and LRD are displayed at different manifold
scales is also addressed, combining semiparametric estimation of the spectral den-
sity operator based on minimum contrast at manifold scales where LRD is displayed,
and a nonparametric estimation based on the weighted periodogram operator in the
remaining manifold scales where SRD is observed. The preliminary result derived
in the Supplementary Material on spatiotemporal Karhunen–Loéve expansion of the
restriction to a bounded closed temporal interval of a zero-mean, stationary in time
and isotropic in space, mean-square continuous Gaussian spatiotemporal RF on Md

has been applied.
From a practical point of view, the simulation study undertaken in Sect. 5 illus-

trates the performance beyond the Gaussian scenario of the two proposed estimation
approaches in the functional spectral domain, in the context of multifractionally inte-
grated SPHARMA(p,q) processes. Two cases are analyzed respectively corresponding
to a decreasing and increasing positive bounded eigenvalue sequence of the LRD oper-
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ator. Particularly, we study the scenario where the projected process displays SRD and
LRD at different spherical scales. This last case is illustrated when the eigenvalues of
the LRD operator vanish at high discrete Legendre frequencies. Details on the imple-
mentation of both estimation methodologies, and some conclusions on the results
obtained beyond the Gaussian scenario are also included in Sects. 5–6 (see also the
Supplementary Material).

The outline of the paper is the following. Section2 introduces notation, technical
tools and preliminary elements. Asymptotic unbiasedness of the integrated peri-
odogram operator, and weak consistent minimum contrast estimation are studied in
Sect. 3.An extended formulation of this estimationmethodology to the casewhere tem-
poral LRD and SRD are displayed at different manifold scales is proposed in Sect. 4. A
simulation study is undertaken in Sect. 5 to illustrate the performance of the proposed
estimation methodologies. A summary of conclusions about the simulation study is
given in Sect. 6. The Supplementary Material complements the theoretical material
about the paper, and provides the results of the simulation study in the remaining
scenarios analyzed that are not displayed in the paper.

2 Preliminaries

The family of manifold cross-time RFs analyzed in this paper is introduced in this sec-
tion. The connected and compact two-point homogeneous spaces are briefly described,
providing some preliminary algebraic notions, with reference to the invariant proba-
bilistic measure, and the Laplace Beltrami operator.

Let X = {X(x, t), x ∈ Md , t ∈ T} be a wide sense stationary in time and
isotropic in space zero-mean, and mean-square continuous Gaussian, or elliptically
contoured, RF on the basic probability space (Ω,A, P).Here,T denotes the temporal
domain, which usually is Z or R (see also the Supplementary Material for the case
of a bounded temporal interval [0, T ]). Assume also that the map ˜Xt : (Ω,A) −→
(

L2(Md , dν),B(L2(Md , dν))
)

is measurable, with ˜Xt (x) := X(x, t) for every t ∈ T

and x ∈ Md .Here,B(L2(Md , dν)) denotes the σ–algebra generated by all cylindrical
subsets of L2(Md , dν).

Let dMd be the geodesic distance induced by the isometry with the unit sphere,
preserving the spherical distance ρ(x, y) = cos−1(〈x, y〉), x, y ∈ Sd , and let ωd =
∫

Md
dν(x). In the following, R(α,β)

n
(

cos
(

dMd (x, y)
)) = P(α,β)

n

(

cos
(

dMd (x,y)
))

P(α,β)
n (1)

, with

P(α,β)
n being the Jacobi polynomial of degree n with a pair of parameters (α, β) (see,

e.g., Andrews et al. (1999)). For each n ∈ N0, {Sd
n,1, . . . , Sd

n,δ(n,d)} is the orthonormal
basis of eigenfunctions of the eigenspace Hn of Laplace–Beltrami operator Δd on
L2(Md , dν), associatedwith the eigenvalueλn = −nε(nε+α+β+1).The dimension
δ(n, d) of Hn is given by

δ(n, d) = (2n + α + β + 1)Γ (β + 1)Γ (n + α + β + 1)Γ (n + α + 1)

Γ (α + 1)Γ (α + β + 2)Γ (n + 1)Γ (n + β + 1)
.

123



LRD manifold multifractional functional time series

Note that α = (p + q − 1)/2, β = (q − 1)/2, and ε = 2 if Md = P
d(R), the

projective space over the field R, and ε = 1, otherwise. Parameters q and p are the
dimensions of some root spaces connected with the Lie algebras of the groups G and
K , with Md � G/K , being G the connected component of the group of isometries
of Md , and K the stationary subgroup of a fixed point o in Md (see, e.g., Table 1 in
Ma and Malyarenko (2020)).

The next lemma is applied along the paper.

Lemma 1 (See ( Giné (1975), Theorem 3.2.) and ( Andrews et al. (1999), p 455)) For
every n ∈ N0, the following addition formula holds:

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y) = δ(n, d)

ωd
Rα,β

n

(

cos(dMd (x, y))
)

, x, y ∈ Md . (2.1)

Let C(dMd (x, y), t − s) = E
[

X(x, t)X(y, s)
]

, for x, y ∈ Md , and t, s ∈ T, be
the covariance function of X . Assume that C(dMd (x, y), t) = C(dMd (x, y),−t). The
following diagonal series expansion holds under the conditions of Theorem 4 in Ma
and Malyarenko (2020):

C(dMd (x, y), t − s) =
∑

n∈N0

Bn(t − s)
δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y)

=
∑

n∈N0

δ(n, d)

ωd
Bn(t − s)R(α,β)

n

(

cos
(

dMd (x, y)
))

, x, y ∈ Md , t, s ∈ T.

(2.2)

3 Operator-basedminimum contrast parameter estimation of LRD

This section adopts the semiparametric spectral LRD functional time series frame-
work introduced in Ruiz-Medina (2022) (see Condition C1 below), for inference on
an LRD manifold cross-time RF, constructed from a zero-mean, stationary in time,
and isotropic in space, mean-square continuous Gaussian, or elliptically contoured
spatiotemporal RF X = {X(x, t), x ∈ Md , t ∈ T = Z} (see, e.g., Marinucci et al.
(2020) for sphere cross-time RFs).

Note that under the conditions assumed in Sect. 2, X = {X(x, t), x ∈ Md , t ∈ T =
Z} defines a functional time series {˜Xt (·), t ∈ Z}. In Sect. 3.1 below, we will work
under this scenario to implement minimum contrast parameter estimation under Con-
dition C1 (providing the semiparametric functional spectral framework introduced in
Ruiz-Medina (2022)).

Condition C0 below establishes a sufficient condition for the asymptotic unbiased-
ness of the integrated periodogram operator of X in the Hilbert
-Schmidt operator norm beyond structural assumptions (see Theorem 1). The weak–
consistency of the minimum contrast estimator of the LRD operator is then obtained in
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Theorem 2, under new Condition C0 and Condition C1, adopting the L2(Md , dν)–
valued time series framework.

The following condition will be assumed in the subsequent development.
Condition C0. The elements of the temporal coefficient sequence {Bn(τ ), n ∈ N0}
in Eq. (2.2) are such that

∑

n∈N0

δ(n, d)
∑

τ∈Z
B2

n (τ ) < ∞. (3.1)

Under condition (3.1) (see Eq. (3.3) below), one can define almost surely (a.s.) in
ω ∈ [−π, π ], i.e., ω ∈ [−π, π ]\D0,

∫

D0
dω = 0, the spectral density operator Fω

in the space S(L2(Md , dν;C)) of Hilbert–Schmidt operators on L2(Md , dν;C) as
follows:

Fω =
S(L2(Md ,dν;C))

1

2π

∑

τ∈Z
exp (−iωτ)Rτ , (3.2)

where Rτ = E[˜Xs ⊗ ˜Xs+τ ] = E[˜Xs+τ ⊗ ˜Xs], for τ, s ∈ Z.

Note that Parseval identity leads to

∫ π

−π

‖Fω‖2S(L2(Md ,dν;C))
dω =

∑

n∈N0

δ(n, d)

∫ π

−π

| fn(ω)|2dω

=
∑

n∈N0

δ(n, d)
∑

τ∈Z
B2

n (τ ) =
∑

τ∈Z
‖Rτ‖2S(L2(Md ,dν;R))

< ∞. (3.3)

From Eqs. (2.2) and (3.3), Fω has kernel fω(x, y), x, y ∈ Md , admitting
for ω ∈ [−π, π ]\D0, the following diagonal series expansion in the space
S(L2(Md , dν;C)) ≡ L2(Md × Md , dν ⊗ dν;C) : For x, y ∈ Md ,

fω(x, y) =
L2(Md×Md )

1

2π

∑

n∈N0

fn(ω)

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y)

= 1

2π

∑

n∈N0

[

∑

τ∈Z
exp(−iωτ)Bn(τ )

]

δ(n, d)

ωd
R(α,β)

n

(

cos
(

dMd (x, y)
))

.

(3.4)

The convergence to zero in the Hilbert–Schmidt operator norm of the integrated
bias of the periodogram operator also holds under (3.1).

Theorem 1 Under condition (3.1),

∥

∥

∥

∥

∫ π

−π

[

Fω − F (T )
ω

]

dω

∥

∥

∥

∥S(L2(Md ,dν;C))
→ 0, T → ∞,
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where F (T )
ω denotes the mean of the periodogram operator

p(T )
ω = ˜X (T )

ω ⊗ ˜X (T )
ω , ω ∈ [−π, π ],

with ˜X (T )
ω (·) =

L2(Md ,dν;C)

1√
2πT

∑T
t=1

˜Xt (·) exp (−iωt) , ω ∈ [−π, π ], being the

functional Discrete Fourier Transform (fDFT), based on a functional sample ˜Xt ,

t = 1, . . . , T , of spatiotemporal RF X . Here, as before, for each t = 1, . . . , T ,
˜Xt (x) := X(x, t), for every x ∈ Md .

Proof The proof follows from Eq. (3.3) implying Lemma 1 in Ruiz-Medina (2022)
holds in our context. Hence, Eqs. (4.6)–(4.8) in the proof of Theorem 1 inRuiz-Medina
(2022), and the remaining steps of the proof of this theorem can be obtained in a similar
way. �


3.1 Minimum contrast parameter estimation

For the implementation of the minimum contrast parameter estimation of the spatial-
varying LRD parameter of X , in the L2(Md , dν)–valued time series framework
introduced in Ruiz-Medina (2022), the following condition is assumed:
Condition C1. The elements of the function sequence of Fourier transforms
{ fn(·), n ∈ N0} in (3.4) admit the following semiparametric modeling: For every
ω ∈ [−π, π ]\{0},

fn,θ (ω) = Bη
n (0)Mn(ω)

[

4(sin(ω/2))2
]−α(n,θ)/2

, θ ∈ Θ, n ∈ N0, (3.5)

where lα(θ) ≤ α(n, θ) ≤ Lα(θ), for any n ≥ 0, and θ ∈ Θ, for certain lα(θ), Lα(θ) ∈
(0, 1/2). The elements of the function sequence {Mn, n ∈ N0} are strictly positive
continuous functions on [−π, π ], slowly varying at zero frequency in the Zyg-
mund’s sense (see, e.g., Definition 6.6 in Beran (2017)). For every ω ∈ [−π, π ],
{Mn(ω), n ∈ N0} are the eigenvalues of operator Mω ∈ S(L2(Md , dν;C)), and
‖Mω‖S(L2(Md ,dν;C)) ∈ L2([−π, π ]). The operator family {Mω, ω ∈ [−π, π ]}
defines the SRD spectral family. The associated kernel family satisfies

KMω
(x, y) =

∑

n∈N0

Mn(ω)

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y)

=
∑

n∈N0

Mn(ω)
δ(n, d)

ωd
R(α,β)

n

(

cos
(

dMd (x, y)
))

, x, y ∈ Md .

The parameter space Θ is assumed to be compact with non-null interior. For
each θ ∈ Θ, {α(n, θ), n ∈ N0} is the system of eigenvalues of the parameterized
long–memory operator Aθ with kernel KAθ

admitting the following diagonal series
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expansion:

KAθ
(x, y) =

∑

n∈N0

α(n, θ)

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y)

=
∑

n∈N0

α(n, θ)
δ(n, d)

ωd
R(α,β)

n

(

cos
(

dMd (x, y)
))

, x, y ∈ Md .

Hence, for every θ ∈ Θ, Aθ has isotropic kernel and defines a strictly positive self–
adjoint operator on L2(Md , dν), with norm in the space L(L2(Md , dν)) of bounded
linear operators less than 1/2. Note that, since sin(ω) ∼ ω, ω → 0,

|1 − exp (−iω)|−Aθ = [4 sin2(ω/2)]−Aθ /2 ∼ |ω|−Aθ , ω → 0, (3.6)

where the frequency varying operator |1 − exp (−iω)|−Aθ /2 is interpreted as inChara-
ciejus and Räckauskas (2014), Rackauskas and Suquet (2011). In particular, Eq. (3.1)
in Assumption II in Ruiz-Medina (2022), characterizing LRD of functional time
series in the spectral domain, holds.

Remark 1 Condition C1 restricts the eigenvalues ofAθ to the interval (0, 1/2), lead-
ing to a shorter range of spectral singularity at zero frequency at any spatial scale,
allowing (3.3) holds. In particular,

∫ π

−π

‖Fω‖2S(L2(Md ,dν;C))
dω =

∑

n∈N0

δ(n, d)

∫ π

−π

| fn(ω)|2dω

≤
{[∫ −1

−π

+
∫ π

1

]

|ω|−2l(θ) +
∫ 1

−1
|ω|−2L(θ)

}

‖Mω‖2S(L2(Md ,dν;C))
dω < ∞.

(3.7)

The sequence
{

Bη
n (0) ≥ 0, n ∈ N0

}

in Eq. (3.5) defines the eigenvalues of the trace
integral autocovariance operator Rη

0 = E [ηt ⊗ ηt ] = E [η0 ⊗ η0] , t ∈ Z, of the
zero–mean innovation process {ηt , t ∈ Z} , with kernel rη satisfying

rη(x, y) =
∑

n∈N0

Bη
n (0)

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y), ∀x, y ∈ Md ,

where Bn(0)
Bη

n (0)
= ∫ π

−π
Mn(ω)

[

4(sin(ω/2))2
]−α(n,θ)/2

dω, for each n ∈ N0.

Assume that the true parameter value θ0 lies in the non-empty interior of compact
set Θ, and α(·, θ1) �= α(·, θ2), for θ1 �= θ2, and θ1, θ2 ∈ Θ, ensuring identifiability.
Let

{

α̂T (n, θ) = α(n,̂θT ), n ∈ N0
}

be the parametric estimators of the eigenvalues
of Aθ by minimum contrast. The computation of the minimum contrast parametric
estimator̂θT requires the introduction of some operator families in the spectral domain
as now briefly describe.
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Operator integrals are understoodhere as improper operator Stieltjes integralswhich
strongly converge (see, e.g., Sect. 8.2.1 in Ramm (2005)). Specifically, in the defini-
tion of our loss function, integration in the temporal spectral domain with respect to
weighting operatorWω is achieved. For each ω ∈ [−π, π ], the invariant kernel KWω

of Wω on Md × Md admits the following series expansion:

KWω
(x, y) =

∑

n∈N0

W (ω, n, γ )

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y)

=
∑

n∈N0

˜W (n)|ω|γ
δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y), γ > 0, x, y ∈ Md , (3.8)

where the eigenvalues {W (ω, n, γ ), n ∈ N0} factorize as W (ω, n, γ ) = ˜W (n)|ω|γ ,

for every n ∈ N0, with
{

˜W (n), n ∈ N0
}

defining the eigenvalues of a self–adjoint
positive bounded operator ˜W, such that, for certain m

˜W > 0, M
˜W > 0

m
˜W ≤

∥

∥

∥

˜W1/2(ψ)

∥

∥

∥

2

L2(Md ,dν;C)
≤ M

˜W , ψ ∈ L2(Md , dν;C); ‖ψ‖L2(Md ,dν;C) = 1.

Under Condition C1, define the normalizing self–adjoint integral operatorNθ by the
kernel

KNθ
(x, y) =

∑

n∈N0

˜W (n)

[

∫ π

−π

Bη
n (0)Mn(ω)

[

4(sin(ω/2))2
]−α(n,θ)/2

|ω|−γ
dω

]

×
δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y), x, y ∈ Md , θ ∈ Θ, γ > 0. (3.9)

Hence, for each θ ∈ Θ, and ω ∈ [−π, π ], ω �= 0, the kernel KΥω,θ of the density
operator

Υω,θ = [Nθ ]−1Fω,θ = Fω,θ [Nθ ]−1 (3.10)

satisfies
∫ π

−π

∫

Md
KΥω,θ (x, y)KWω

(y, z)dν(y)dω = δ(x − z), for x, z ∈ Md , in the

weak sense, meaning that, for every �,ψ ∈ L2(Md , dν;C),

∫ π

−π

Υω,θWω(�)(ψ)dω = 〈�,ψ〉L2(Md ,dν;C) , ∀θ ∈ Θ. (3.11)

Here, δ(x − y) denotes the Dirac Delta distribution. Equivalently,
∫ π

−π
Υω,θWωdω

defines the identity operator IL2(Md ,dν;C) on L2(Md , dν;C) for all θ ∈ Θ, having
unitary eigenvalues, i.e.,

∫ π

−π
Υ (ω, n, θ)W (n, ω, γ )dω = 1, for n ∈ N0, θ ∈ Θ.
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Given the candidate set constituted by the parametric operator families
{

Υω,θ , ω ∈ [−π, π ]} , θ ∈ Θ, the theoretical loss function L(θ0, θ) to be minimized
is defined as

L(θ0, θ) := ‖Uθ − Uθ0‖L(L2(Md ,dν;C))

=
∥

∥

∥

∥

∫ π

−π

Fω,θ0 ln
(

Υω,θ0Υ
−1
ω,θ

)

Wωdω

∥

∥

∥

∥L(L2(Md ,dν;C))

=
{

sup
n≥0

∣

∣

∣

∣

˜W (n)

∫ π

−π

fn,θ0(ω)

|ω|−γ
ln

(

Υ (ω, n, θ0)

Υ (ω, n, θ)

)

dω

∣

∣

∣

∣

}

, (3.12)

where the theoretical contrast operator Uθ has kernel

KUθ (x, y) = −
∑

n∈N0

Uθ (n)

⎡

⎣

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y)

⎤

⎦

= −
∑

n∈N0

⎡

⎣

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y)

⎤

⎦

∫ π

−π

Bη
n (0)Mn(ω)

[

4(sin(ω/2))2
]α(n,θ0)/2

× ln (Υ (ω, n, θ)) |ω|γ ˜W (n)dω, x, y ∈ Md , θ ∈ Θ.

Hence, Uθ ∈ L (L2(Md , dν;C)
)

(see also Remark 7 in Ruiz-Medina (2022)).
For every θ ∈ Θ, the eigenvalues {Ln(θ0, θ), n ∈ N0} of the loss operator Uθ −

Uθ0 satisfy Ln(θ0, θ) = ˜W (n)
∫ π

−π

fn,θ0 (ω)

|ω|−γ ln
(

Υ (ω,n,θ0)
Υ (ω,n,θ)

)

dω ≥ 0 (see Ruiz-Medina

(2022) for more details). Hence,

L(θ0, θ) = sup
n≥0

Ln(θ0, θ) > 0, θ �= θ0

L(θ0, θ) = sup
n≥0

Ln(θ0, θ) = 0 ⇔ θ = θ0. (3.13)

From (3.13),

θ0 = arg min
θ∈Θ

sup
n≥0

Ln(θ0, θ) = arg min
θ∈Θ

sup
n≥0

Uθ (n). (3.14)

The empirical contrast operator UT ,θ

UT ,θ = −
∫ π

−π

p(T )
ω ln

(

Υω,θ

)Wωdω, θ ∈ Θ, (3.15)

then provides the empirical loss function, and̂θT can be computed as

̂θT = arg min
θ∈Θ

∥

∥

∥

∥

−
∫ π

−π

p(T )
ω ln

(

Υω,θ

)Wωdω

∥

∥

∥

∥L(L2(Md ,dν;C))

. (3.16)
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The following result providesweak–consistencyof theminimumcontrast parameter
estimator A

̂θT
of the long-memory operator.

Theorem 2 Let {˜Xt , t ∈ Z} be a Gaussian L2(Md , dν)–valued sequence satisfying
Conditions C0–C1, as well as the conditions imposed through Eqs. (3.8)–(3.11) with
γ > 1. Assume that the slowly varying functions Mn(ω), ω ∈ [−π, π ], n ∈ N0 in

Eq. (3.5) are such that, for any ξ > 0, limω→0

[

supn∈N0

∣

∣

∣

Mn(ω/ξ)
Mn(ω)

− 1
∣

∣

∣

]

= 0. Then,

the following limit holds:

E

∥

∥

∥

∥

∫ π

−π

[

p(T )
ω − Fω,θ0

]

Wω,θ dω

∥

∥

∥

∥S(L2(Md ,dν;C))

→ 0, T → ∞, (3.17)

where, for (ω, θ) ∈ [−π, π ]\{0}×Θ, Wω,θ = ln
(

Υω,θ

)Wω. The minimum contrast
estimator (3.16) then satisfies ̂θT →P θ0, as T → ∞, where →P denotes conver-
gence in probability.

Proof The proof follows as in Theorem 2 in Ruiz-Medina (2022). �

Global analysis. Condition (3.1) is a key condition in our approach, leading to Eq.
(3.3) introducing the Hilbert–Schmidt operator setting, usually considered in func-
tional time series analysis. Note that, under this setting, LRD still can be displayed
(see Eq. (3.7)). Furthermore, Eq. (3.3) allows to apply the spectral analysis of LRD
functional time series introduced in Ruiz-Medina (2022) for inference on manifold
cross-time RFs. Specifically, Eq. (3.1) ensures Lemma 1 in Ruiz-Medina (2022) holds
under alternative conditions for this RF family. Then, asymptotic unbiasedness of the
integrated periodogram also holds, beyond the Gaussian scenario under non-structural
assumptions (seeTheorem1). Furthermore, Sect. 3.1, and, in particular,ConditionC1,
provides the semiparametric functional spectral scenario introduced in Ruiz-Medina
(2022) to be applied for minimum contrast estimation, when a functional sample of a
manifold cross-time RF can be observed. Theorem 2 ensures weak-consistency under
a Gaussian scenario as given in Ruiz-Medina (2022).

4 SRD–LRD estimation in the spectral domain

This section has a double, theoretical and practical, motivation. Specifically, on the
one hand a wider family of spatiotemporal RF models is analyzed displaying SRD
and LRD at different manifold scales, in the spirit of the LRD framework introduced
in Li et al. (2019), but extended to the multifractional context. On the other hand,
this manifold-scale varying memory behavior can be observed in some stochastic
fractional or multifractional pseudodifferential in time evolution equations, defined
from a local spatial differential operator, where the decay velocity of the temporal
correlation function is accelerated by the decay of the spatial pure point spectrum,
modifying the temporal LRD level of the model at the smallest spatial scales. The
reverse situation canbe observed in processes definedby evolution equations givenby a
local differential operator in time, and a fractional ormultifractional pseudodifferential
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operator in space. Thus, the solution to thesemodels displays a spatial fractal behavior,
reflected in a slow decay of its spatial pure point spectrum, slowing down the decay
velocity of the temporal correlation function, leading to a stronger dependence at small
spatial scales. Both behaviors can be observed within the model family introduced in
Anh et al. (2018), Anh et al. (2016a); Anh et al. (2016b).

Let us now consider inConditionC1, lα(θ) = 0, andα(n, θ) = 0, for n ∈ DSRD ⊂
N0, meaning that the process projected into the eigenspaces Hn, n ∈ DSRD ⊂ N0, of
the spherical Laplace Beltrami operator displays SRD. While LRD is observed at the
remaining eigenspaces. Without loss of generality let DSRD = {0, . . . n0}, for certain
n0 ≥ 1. (The reverse situation where the eigenvalues of the LRD operator vanish at
large n has been analyzed in the simulation study in Sect. 5.2). The projected SRD
process then admits the following expansion (see Theorem 1 in the Supplementary
Material):

˜X (n0)
t (x) =

n0
∑

n=0

δ(n,d)
∑

j=1

Vn, j (t)Sd
n, j (x), x ∈ Md , t = 1, . . . , T .

For ω ∈ [−π, π ], the fDFT projected into ⊕n0
n=0Hn is expressed as

˜X (T ,n0)
ω (x) =

n0
∑

n=0

δ(n,d)
∑

j=1

[

1√
2πT

T
∑

t=1

Vn, j (t) exp (−iωt)

]

Sd
n, j (x), x ∈ Md .

The corresponding projected periodogram operator p(T ,n0)
ω = ˜X (T ,n0)

ω ⊗ ˜X (T ,n0)
ω then

involves the tensorial product of the eigenfunctions of the Laplace Beltrami operator
up to order n0. For ω ∈ [−π, π ], the kernel estimator

̂f (T ,n0)
ω (x, y) =

[

2π

T

]

∑

t∈[1,T −1]
W (T )

(

ω − 2π t

T

)

p(T ,n0)
2π t/T (x, y), x, y ∈ Md ,

of Fω projected into ⊕n0
n=0Hn, based on the weighted periodogram operator, is com-

puted. Here, W (T )(x) = ∑

j∈Z 1
BT

W
(

x+2π j
BT

)

,with BT being the positive bandwidth

parameter. Function W on R is real, and such that W is positive, even, and bounded
in variation, with W (x) = 0 if |x | ≥ 1,

∫

R
|W (x)|2 dx < ∞, and

∫

R
W (x)dx = 1

(see Panaretos and Tavakoli (2013a)).
Under Condition C1, the minimum contrast estimators α̂T (n, θ0) =

α(n,̂θT ), n > n0, are computed as given in Eqs. (3.8)–(3.16). Hence, the mixed
SRD–LRD kernel estimator of the spectral density operator is given by

̂f (T )
ω (x, y) = ̂f (T ,n0)

ω (x, y) + ̂f (T ,(n0+1,∞))
ω (x, y,̂θT )

=
[

2π

T

]

∑

t∈[1,T −1]
W (T )

(

ω − 2π t

T

)

p(T ,n0)
2π t/T (x, y)
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+
∞
∑

n=n0+1

Bη
n (0)Mn(ω)

[

4(sin(ω/2))2
]α(n,̂θT )/2

δ(n,d)
∑

j=1

Sd
n, j (x)Sd

n, j (y). (4.1)

5 Simulation study

This section illustrates the results derived in the context of multifractionally integrated
SPHARMA(p,q) processes (see, e.g., Example 1 in Sect. 3.3 in Ruiz-Medina (2022),
and Li et al. (2019) in the particular case of fractionally integrated functional autore-
gressive moving averages processes). See also Caponera et al. (2022) and Caponera
and Marinucci (2021) for the case of SPHARMA(p,q) processes.

Considering the unit sphere S2 in R3, and hence, the separable Hilbert space H =
L2(S2, dν), a multifractionally integrated SPHARMA(p,q) process

{

˜Xt , t ∈ Z
}

is
defined by the following state space equation:

(IL2(S2,dν) − B)Aθ /2(Φ p(B)˜Xt )(x) = εt (x) + (Ψ q(B)εt )(x), x ∈ S2, t ∈ Z.

(5.1)

Condition C1 holds, since this model constitutes a particular case H = L2(S2, dν)

of the more general formulation given in Sect. 3.3 in Ruiz-Medina (2022) in the func-
tional time series framework. Then, as before, Aθ is the LRD operator satisfying
lα(θ), Lα(θ) ∈ (0, 1/2). In particular, Eq. (3.7) holds. Here, operator (IL2(S2,dν) −
B)Aθ /2 is interpreted as in Characiejus and Räckauskas (2014), Rackauskas and
Suquet (2011), and B is a difference operator satisfying E‖B j

˜Xt − ˜Xt− j‖2H = 0, for
t, j ∈ Z.

Here, Φ p(B) = 1−∑p
k=1 Φk Bk, and Ψ q(B) = ∑q

l=1 Ψl Bl , where operators Φk,

k = 1, . . . , p, and Ψl , l = 1, . . . , q, are assumed to be invariant positive self-adjoint
bounded operators on L2(S2, dν) admitting the representation:

Φk =
∑

n∈N0

λn(Φk)

δ(n,d)
∑

j=1

Sd
n, j ⊗ Sd

n, j , k = 1, . . . , p

Ψl =
∑

n∈N0

λn(Ψl)

δ(n,d)
∑

j=1

Sd
n, j ⊗ Sd

n, j , l = 1, . . . , q. (5.2)

Here, d = 2, δ(n, 2) = 2n + 1, M2 = S2, ω2 = |S2| = 4π. Also, Φp,n(z) =
1−∑p

k=1 λn(Φk)zk and Ψq,n(z) = ∑q
l=1 λn(Ψl)zl , n ∈ N0, have not common roots,

and their roots are outside of the unit circle (see Corollary 6.17 in Beran (2017)). By
similar arguments, as justified in Sects. 3.3 and 6 in Ruiz-Medina (2022), conditions
(3.8)–(3.11) are satisfied by this model family. Hence, the results given in Theorems
1 and 2 hold.

Theorem 1 and Sect. 1.1 of the Supplementary Material have been applied in the
simulation methodology adopted in the generations of some special cases within
the family of multifractionally integrated SPHARMA(p,q) processes. In particular,
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Fig. 1 The first 30 eigenvalues α(n, θ0), n = 1, . . . , 30 of the LRD operator Aθ0 (dotted blue–green
line), and the set of 100 parametric candidates α(n, θi ), n = 1, . . . , 30, i = 1, . . . , 100, for decreasing
LRD operator eigenvalues (left–hand side). The first 30 eigenvalues α(n, ϑ0), n = 1, . . . , 30 (dotted blue–
green line) of the LRD operator Aϑ0 , and the set of 100 parametric candidates α(n, ϑi ), n = 1, . . . , 30,
i = 1, . . . , 100, for increasing LRD operator eigenvalues (right–hand side)

a spherical uniform pole U = u0 (see Fig. 2) in the involved zonal functions (defined
from the Legendre polynomials {Pn, n ∈ N0}) has been independently generated of
the L2(S2, dν)–valued Gaussian strong–white noise innovation process with vari-
ance σ 2

ε = ∑

n∈N0
[σε

n ]2. Table 3 of the Supplementary Material provides the specific
parametric scenarios considered. Under such scenarios, Sect. 3 of the Supplementary
Material displays generations of some special cases of multifractionally integrated
SPHARMA(p,q) processes, for p = 1, 3 and q = 0, and p = 1, 3, and q = 1 in
Eq. (5.1). The particular cases analyzed of LRD operator eigenvalue sequences can be
found inTable 1 of the SupplementaryMaterial. In the implementation of theminimum
contrast estimation methodology, we consider 100 candidate systems of parametric
eigenvalues for the LRD operator (see Table 2 in the Supplementary Material). These
candidate sets are displayed in Fig. 1 jointly with the true eigenvalue sequence.

The functional spherical values at different times of the generated multifractionally
integrated SPHAR(3) process are displayed for M = 10 under decreasing eigenvalue
sequence of the LRD operator in Fig. 3. As commented, the remaining special cases
are plotted in Sect. 3 of the Supplementary Material. Additionally, generations under
LRD operator with eigenvalues vanishing for n ≥ n0 = 16, i.e., the LRD–SRD case,
is showed in Sect. 3.1 of the Supplementary Material for multifractionally integrated
SPHARMA(1,1) process.

It can be observed in all generations, displayed on a spherical angular neighborhood
of the selected pole (see Fig. 2), that persistent in time of the local spherical behavior
is stronger when a positive bounded non-decreasing sequence of eigenvalues of LRD
operator is considered, since the highest positive eigenvalues are displayed at high dis-
crete Legendre frequencies. For decreasing eigenvalue sequence of the LRD operator,
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Fig. 2 The selected pole in the
zonal functions
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0
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1

1

the opposite LRD effect is observed through spherical scales. One can also observe
a symmetry in the evolution in time of the spherical patterns, under both, decreasing
and increasing LRD operator eigenvalue sequences, when spatial spherical SRD is
observed. An increasing level of local linear correlation in space at intermediate times
is displayed when autoregression of order 3 is considered.

5.1 Minimum contrast estimation results

We now display the minimum contrast estimation results referred to the multifraction-
ally integrated SPHAR(3) process, when LRDoperatorAθ has decreasing sequence of
eigenvalues as plotted at the left-hand side of Fig. 1, under a truncation order M = 30.
See Sect. 4 of the Supplementary Material, for the remaining cases of multifraction-
ally integrated SPHAR(1), SPHAR(3), SPHARMA (1,1), SPHARMA(3,1) processes.
Specifically, Fig. 4 displays, for i = 1, . . . , 100 frequency nodes, operator |Mωi |1/2
(left-hand side), and

∣

∣4(sin(ωi/2))2
∣

∣

−Aθ /4 |Mωi |1/2 (right–hand side), projected into
Hn, n = 1, . . . , 30. These factors have been computed in the implementation of the
minimum contrast estimation methodology in the functional spectral domain. Figure5
provides the projected spectral density operator kernel at temporal Fourier frequen-
cies ω = −π + 0.0628(10)i, i = 1, 3, 7, 10 in the interval [−π, π ]. Its empirical
counterpart is given in Fig. 6 where the modulus of the projected fDFT, and tapered
periodogram operator kernel of the generated data at temporal Fourier frequency zero
are displayed. The last one over a grid of 30×30 Legendre frequencies. The projected
empirical contrast operator UT ,θ in Eq. (3.15) is then computed. Its minimization is
performed in the bounded operator norm.

Under the LRD operator scenario plotted at the left-hand side of Fig. 1 (see also
Table 1 of the Supplementary Material), Fig. 7 displays the histograms of the tem-
poral mean of the empirical absolute errors from R = 100, 2000, 5000 independent
generations of a functional sample of size T = 1000 of multifractionally integrated
SPHAR(3) process. The empirical analysis performed for the remaining cases under

123



D. P. Ovalle–Muñoz, M. D. Ruiz–Medina

Fig. 3 Generations of multifractionally integrated SPHAR(3) process ˜X at times t =
9, 19, 29, 39, 49, 59, 69, 79, 89, projected into the direct sum ⊕10

n=1Hn of eigenspaces of the spheri-

cal Laplace Beltrami operator on L2(S2, dν) under decreasing eigenvalue sequence of the LRD operator

-4 -3 -2 -1 0 1 2 3 4
0

2000

4000

6000

8000

10000

12000

14000

Fig. 4 The square root (s.r.) of the modulus of the projected regular factor of the spectral density operator
(left-hand side), and the product of this factor with the s.r. of the modulus of the singular factor of the
spectral density operator (right-hand side) at Legendre frequencies n = 1, . . . , 30

decreasing LRD operator eigenvalue sequence, from R = 100, 2000, 5000 indepen-
dent generations of each one of the functional samples of size T = 50, 500, 1000
considered, are given in Sects. 4.1, 4.3, 4.5, and 4.7 of the Supplementary Material
(see alsoSects. 4.2, 4.4, 4.6 and4.8 of theSupplementaryMaterial for the sameanalysis
under increasingLRDoperator eigenvalue sequence as plotted at the right–hand side of
Fig. 1). The results are displayed for the eigenspaces Hn, n = 1, 5, 10, 15, 20, 25, 30.
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Fig. 5 Kernel of spectral density operator Fω,θ0 projected into Hn ⊗ Hn , n = 1, . . . , 30, for temporal
Fourier frequencies ω = −π + 0.0628(10)i, i = 1, 3, 7, 10
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Fig. 6 The modulus of the projected fDFT of the data, 30 spectral curves corresponding to 30 discrete
Legendre frequencies (left-hand side). Tapered periodogram kernel at zero temporal Fourier frequency over
a 30 × 30 grid of discrete Legendre frequencies (right-hand side). Both, fDFT and tapered periodogram
kernel, are displayed at the logarithm scale

The empirical probabilities

̂P (‖ fn,θ0(·) − fn,̂θT
(·)‖L1([−π,π ]) > εi

)

, i = 1, . . . , 100, (5.3)

are computed under decreasing and increasing LRD operator eigenvalue sequence,
for the multifractionally integrated SPHAR(3) model in Fig. 8, considering R =
100, 2000, 5000 independent generations of each one of the functional samples of
size T = 50, 500, 1000. In all scenarios displayed in Sect. 4 of the Supplemen-
tary Material, the empirical probabilities (5.3) are computed from projection into the

123



D. P. Ovalle–Muñoz, M. D. Ruiz–Medina

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

5

10

15

20

25

30

35

(a) R = 100, scales 1–5
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

0

20

40

60

80

100

120

140

160

180

200

(b) R = 2000, scales 1–5
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

0

50

100

150

200

250

300

350

400

450

500

(c) R = 5000, scales 1–5
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(f) R = 5000, scales 10–15

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
0

5

10

15

20

25

30

(g) R = 100, scales 20–25
0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095

0

50

100

150

200

250

300

(h) R = 2000, scales 20–25
0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095

0

50

100

150

200

250

300

350

400

450

500

(i) R = 5000, scales 20–25
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(l) R = 5000, scales 25–30

Fig. 7 Histograms of the temporal mean of the empirical absolute errors from a functional sample of size
T = 1000 (LRD operator decreasing eigenvalue sequence)

eigenspaces Hn, n = 1, . . . , 30 of the Laplace Beltrami operator, and for a grid of
100 thresholds in the interval (0, 0.1).

When the number of repetitions increases, the tails of the empirical distribution of
the temporal mean of the empirical absolute errors become lighter, being the shape of
the empirical distribution closer to a Gaussian distribution. This effect associated with
the increasing of the sample size ismore pronounced at highest spatial resolution levels
(i.e., at high discrete Legendre frequencies). In particular, the empirical distribution
of the temporal mean of the empirical absolute errors becomes more concentrated
around its mean faster at higher than at coarser resolution levels. A similar behavior is
observed in the asymmetric empirical distribution of quadratic error temporal mean,
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(f) T = 500, R = 5000
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Fig. 8 Empirical probabilities in Eq. (5.3), LRD operator decreasing eigenvalue sequence (plots a–i), and
LRD operator increasing eigenvalue sequence (plots j–r)
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Fig. 9 Eigenvalues ofAθ0 for
the case of SRD–LRD models
(dotted blue–green line), and the
eigenvalues of the 100
parametric candidates Aθi ,

i = 1, . . . , 100, considered
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displaying a larger degree of dispersion, due to the stronger effect of the functional
spectral singularity at zero frequency.

Regarding the empirical probability analysis, one can observe that the increasing
of R has a strong effect by spherical scales on the gradually decay of the empirical
probabilities to zero over the smallest threshold values in the grid in the interval
(0, 0.1),while increasing parameter T enlarges the dark blue area, in the contour plots
displayed, where empirical probabilities become zero over the largest threshold values
in the grid analyzed. Note that the opposite effects of parameter R by spherical scales,
in the increasing and decreasing LRD operator eigenvalue scenarios, are observed. All
the results displayed are affected by a numerical integration error.

5.2 SRD–LRD estimation results

In this section, we study the case where the projected spherical functional process
displays LRD at discrete Legendre frequencies n = 1, . . . , 15,while SRD is observed
at discrete Legendre frequencies n = 16, . . . , 30. The eigenvalues {α(n, θ), n =
1, . . . , 15} of Aθ are displayed for θ = θ0 in Fig. 9. The 100 candidate eigenvalue
systems {α(n, θi ), n = 1, . . . , 15, i = 1, . . . , 100}, θi ∈ Θ, i = 1, . . . , 100,
involved in the implementation of the minimum contrast estimation procedure are
also showed in Fig. 9. These eigenvalue systems are computed from sampling a scaled
beta distribution with parameters 2 and 5i

i+1 , i = 1, . . . , 100.
For multifractionally integrated SPHARMA(1,1) process, the modulus of the fDFT

projected into the eigenspaces Hn, n = 1, . . . , 15, of the spherical Laplace Beltrami
operator, where LRD is displayed, is showed at the left–hand side of Fig. 10. The
modulus of the fDFT projected into the eigenspaces Hn, n = 16, . . . , 30, where
SRD is displayed, can be found at the right-hand side of Fig. 10. In the last case,
its weighted kernel operator estimator, based on the Gaussian kernel and bandwidth
parameter BT = 0.2, is given at the right–hand side of Fig. 11. For the minimum
contrast parametric estimator ̂f (T ,n0)

ω (·,̂θT ) with n0 = 15, minimizing over the 100
candidate parametric models the bounded linear operator L norm (L2(S2, dν;C)) of
the empirical contrast operatorUT ,θ in (3.15), Fig. 12 displays the empirical probabili-

ties ̂P
(

‖ fn(·) − ̂f (T ,(n0))
n (·,̂θT )‖L1([−π,π ]) > εi

)

, for n = 1, . . . , 15, and thresholds

εi = i(0.016) ∈ (0, 0.8), i = 1, . . . , 50.
The performance of the SRD–LRD estimation methodology is also analyzed for

the remaining multifractionally integrated spherical functional processes generated as
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Fig. 10 Modulus of the projected LRD fDFT for discrete Legendre frequencies n = 1, . . . , 15 (left–hand
side), and modulus of the projected SRD fDFT for discrete Legendre frequencies n = 16, . . . , 30 (right–
hand side)

Fig. 11 The modulus of the fDFT projected into the eigenspaces Hn , n = 16, . . . , 30, (left-hand side), and
its weighted kernel operator estimator (right-hand side)

displayed in Fig. 13. Specifically, in this figure, results in terms of the empirical mean
quadratic errors, associated with SRD functional spectral estimation (left hand-side),
and in terms of the histograms of the temporal mean of the empirical absolute errors
(right hand-side), associated with LRD spectral estimation, are respectively showed
from R = 300 independent generations of a functional sample of size T = 500.
Results for T = 50, T = 100, T = 500, T = 1000, and R = 100 are displayed in
Sect. 5 of the Supplementary Material.

One can observe since T = 500 the order of magnitude of the empirical mean
quadratic errors is 10−4 for the bandwidth parameter BT = 0.2 in the SRD estima-
tion. It is well-known that the bandwidth parameter affects precision of the weighted
periodogram operator estimator, and the impact of parameter T is very strong. This
fact can also be observed in Sect. 5 of the Supplementary Material, looking at differ-
ences in the magnitude of empirical mean quadratic errors, based on 100 repetitions,
associated with the weighted periodogram operator for T = 50 and T = 100, con-
sidering bandwidth parameter BT = 0.1, as well as for T = 500, and T = 1000,
considering bandwidth parameter BT = 0.2, since a substantial reduction in such
magnitudes occurs when increasing the functional sample size T (see, e.g., Theo-
rem 3.6 in Panaretos and Tavakoli (2013a)). Similar results as in previous section are
obtained in terms of the empirical distribution of the temporal mean of the empirical
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Fig. 12 The empirical probabilities ̂P
(

∥

∥

∥ fn(·) − ̂fn(·,̂θT )(T ,n0)
∥

∥

∥

L1([−π,π ]) > εi

)

, for n = 1, . . . , 15,

and εi = i(0.016) ∈ (0, 0.8), i = 1, . . . , 50, based on 100 independent generations of a functional sample
of size T = 100 (surface and contour plot left to right-hand side)

absolute errors in the implementation of minimum contrast estimation methodology
for n = 1, . . . , 15.

6 Final comments

Results displayed in Sects. 5.1 and 5.2 (see also Sects. 4 and 5 of the Supplementary
Material) are based on the computation of the empirical distribution of the temporal
mean of the absolute errors, and the empirical probabilities. The interaction between
parameters n, R and T in the asymptotic analysis of the two estimation method-
ologies proposed is illustrated beyond the Gaussian scenario in the simulation study
undertaken. Specifically, from the empirical distributions plotted, one can conclude
that their rate of convergence is a function of the spherical scale n, the functional
sample size T , and the number of repetitions R. Differences between empirical dis-
tributions of absolute errors by scales are more pronounced for decreasing sequence
of LRD operator eigenvalues than in the case of increasing LRD operator eigenvalue
sequence. As expected (see also Supplementary Material), the effect of the element
of SPHARMA(p,q) process family considered is negligible for the minimum contrast
estimation methodology. Namely, a slightly increasing of the concentration rate of
the empirical errors when the parameter of autoregression p increases is observed.
Additionally, the empirical probability analysis also reflects the interaction of these
three parameters through the rate of converge to zero. Under nondecreasing eigenvalue
sequence of the LRD operator, a smoother decay to zero of the empirical probabilities
than in the case of decreasing eigenvalue sequence of the LRD operator is observed.
A new battery of limit results will be investigated beyond the Gaussian scenario in a
subsequent paper for the asymptotic analysis of the proposed estimators of the second–
order structure of the LRD manifold cross–time RFs studied here.
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(h) M.I. SPHARMA(1,1).
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Fig. 13 The empirical mean quadratic errors (E.M.Q.E.s) associated with the projected weighted peri-
odogramoperator (P.W.P.O.) estimator (eigenspaces Hn , n = 16, . . . , 30, of theLaplaceBeltrami operator),
are displayed at the left–hand side. The remaining plots provide the histograms of the temporal mean of
the empirical absolute errors, associated with the minimum contrast parameter estimation of LRD oper-
ator defining multifractional integration (M.I), for eigenspaces Hn , n = 10, 15. All the results displayed
are based on R = 300 independent generations of a functional sample of size T = 500. The bandwidth
parameter BT = 0.2 has been chosen in all the cases
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