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Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH) is involved in the activation of neu-
roanatomical systems that are also associated with the processing of natural and other artificial reward-
ing stimuli. Specific components of this behavior (hedonic impact, learning, and motor behavior) may
involve changes in different neurotransmitters, such as dopamine and opioids. In this study, quantitative
autoradiography was used to examine changes in mu-opioid and D1/D2-dopamine receptor expression in
various anatomical regions related to the motor and mesolimbic reward systems after intracranial self-
stimulation of the LH. Results of the behavioral procedure and subsequent radiochemical assays show
selective changes in D1 but not D2 or mu receptors in Accumbens-Shell, Ventral Pallidum, Caudate–
Putamen, and Medial Globus Pallidus. These findings are discussed in relation to the different psychobi-
ological components of the appetitive motivational system, identifying some dissociation among them,
particularly with respect to the involvement of the D1-dopamine subsystem (but not D2 or mu receptors)
in goal-directed behaviors.

� 2015 Published by Elsevier Inc.
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1. Introduction

Electrical brain self-stimulation has been used as a powerful
model for understanding appetitive motivated behaviors (De
Haan, 2010; Olds & Milner, 1954; White & Milner, 1992). Some
of its main anatomical reward systems pass through the medial
forebrain bundle (MFB) and the lateral hypothalamus (LH), a site
known to support robust self-stimulation behavior (Gallistel,
Leon, Lim, Sim, & Waraczynski, 1996; Marchant, Millan, &
McNally, 2012; Shizgal, 1989; Waraczynski, 2006; Wise, 1996;
Wise & Rompré, 1989; Yeomans, 1990).

Studies of electrical self-stimulation in the LH have commonly
focused on the mesolimbic system (Gallistel et al., 1996; Shizgal,
1989; Yeomans, Mathur, & Tampakeras, 1993) and the neurotrans-
mitters related to this pathway, including dopamine and opioids
(Sagara, Sendo, & Gomita, 2010; Salamone & Correa, 2012;
Schaefer, 1988; Smith, Berridge, & Aldridge, 2011; Vlachou &
Markou, 2011). The functions of these neural systems are likely
related to the processing of natural stimuli essential for survival
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(e.g., food, drink, sex), allowing individuals to learn to detect and
evaluate them and to generate responses aimed at achieving these
goals (Berthoud & Münzberg, 2011; Mogenson, Jones, & Yim, 1980;
Sagara et al., 2010; Waraczynski, 2006). However, these anatomi-
cal systems can also be artificially activated by intracranial electri-
cal stimulation and probably by the action of various drugs of
abuse (Berridge, 2012; Berthoud & Münzberg, 2011; Hyman,
Malenka, & Nestler, 2006; Kelley & Berridge, 2002; Marchant
et al., 2012; Sagara et al., 2010; Waraczynski, 2006).

It has been considered that the different components of appet-
itive motivation, i.e., hedonic impact, learning, and goal-directed
behavior, may be processed by distinct anatomical systems with
likely interactions and common elements. These systems may
therefore involve different neurotransmitters, including dopamine
and opioids, among others (Ikemoto & Panksepp, 1999; Salamone
& Correa, 2012; Smith et al., 2011; Waraczynski, 2006).

Although the specific functions of dopamine remains contro-
versial, it has been specifically associated with: reward predic-
tion, a concept related to the codification of unexpectedly
outcomes of a positive event (Garris et al., 1999; Minerowicz &
Schultz, 1996; Schultz, 2010); reinforcing processes, understood
as the attribution of incentive salience to a previously neutral
uctures
/dx.doi.
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stimuli (Berridge & Robinson, 1998; Hyman et al., 2006); and/or
goal-directed behaviors, an interface between motivation and
action including a purposive behavior aimed at achieving a partic-
ular goal (Hernandez, Breton, Conover, & Shizgal, 2010; Horvitz,
2000; Ikemoto & Panksepp, 1999; Koch, Schmid, & Schnitzler,
2000; Mogenson et al., 1980; Phillips, Stuber, Heien, Wightman,
& Carelli, 2003; Roitman, Stuber, Phillips, Wightman, & Carelli,
2004; Salamone, Cousins, & Snyder, 1997; Sokolowski, Conlan, &
Salamone, 1998; Stuber, Roitman, Phillips, Carelli, & Wightman,
2005).

Hence, this neurotransmitter is considered to be involved in
learning processes and sensorimotor integrations that facilitate
flexible approach responses (Berridge, 2012; Hernandez et al.,
2010; Salamone & Correa, 2012). Taken together, these results sup-
port the hypotheses of authors who have attributed to the
dopaminergic transmission in the mesoaccumbens system a key
role in the regulation or motivational modulation of seeking
behaviors (Brown, McCutcheon, Cone, Ragozzino, & Roitman,
2011; Roitman et al., 2004; Stuber et al., 2005) or who have related
it to downstream actions that enable these behaviors and, ulti-
mately, make intracranial self-stimulation (ICSS) possible
(Hernandez, Trujillo-Pisantry, Cossette, Conover, & Shizgal, 2012;
Hernandez et al., 2006).

In general, it has been reported that opioids are involved in
hedonic reactions of ‘‘pleasure” (Kelley & Berridge, 2002; Smith &
Berridge, 2007; Smith et al., 2011; Wassum, Ostlund, Maidment,
& Balleine, 2009). Authors using opioid antagonists (e.g., naloxone
or naltrexone) suggested that these opioid systems may modulate
ICSS behavior (Cazala, 1991; Easterling & Holtzman, 1997a;
Easterling & Holtzman, 1997b; Easterling & Holtzman, 2004). How-
ever, in our laboratory, administration of the opioid antagonist
naloxone blocked the rewarding effects induced by electrical stim-
ulation of regions such as the nucleus parabrachial lateral external
(LPBe) or insular cortex in a concurrent conditioned place prefer-
ence task (Garcia, Simon, & Puerto, 2013; Simon, Garcia, Zafra,
Molina, & Puerto, 2007) but not those induced by LH stimulation,
even at high naloxone doses (Simon, Garcia, & Puerto, 2011). These
later findings suggest that the rewarding effects observed after
activation of this hypothalamic region involve neurochemical sys-
tems that may in some way differ from those identified in previous
studies (Simon et al., 2011).

Some authors have examined the expression of D1 and D2
dopaminergic receptors in operant behaviors for feeding
(Haberny & Carr, 2005; Narayanan, Land, Solder, Deisseroth, &
DiLeone, 2012) and in the selection of instrumental responses
related to reward (Koch et al., 2000); the expression of both DA
and opioid receptors have also been examined in the
self-administration of morphine and other drugs (Biscaia et al.,
2008; Higuera-Matas et al., 2010; Le Marec, Marie-Claire, Noble,
& Marie, 2011; Sanchez-Cardoso et al., 2007, 2009). There have also
been mapping studies of brain areas in which metabolic activity
was modified in response to unilateral rewarding self-stimulation
of the MFB and dopaminergic antagonist administration
(Gallistel, Gomita, Yadin, & Campbell, 1985), and which also
showed the involvement of endogenous opioid activity in different
rat strains (Gross-Isseroff, Cohen, & Shavit, 1992).

With this background, the objective of the present study was to
use quantitative autoradiography to examine the importance of
the opioid (centering on mu receptors) and dopaminergic (investi-
gating D1 and D2 receptor expression) systems in LH-induced self-
stimulation behavior, in which both are reportedly involved. The
high spatial resolution offered by the quantitative autoradiography
method allowed us to analyze the brain regions that could poten-
tially participate in this appetitive motivated behavior, determin-
ing and comparing the relevance of opioid and dopaminergic
neurotransmission systems.
Please cite this article in press as: Simon, M. J., et al. Changes in D1 but not D2 d
after lateral hypothalamus electrical self-stimulation: A quantitative autoradio
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2. Materials and methods

2.1. Subjects and surgery

The study used 31 male Wistar rats weighing 330–415 g from
Harlan Interfauna Ibérica S.A. (Barcelona, Spain). Upon arrival at
the laboratory, they were individually housed and maintained at
a constant temperature (22 �C) under a 12-h/12-h light/dark cycle
(lights on at 8:00 h), with free access to water and food (commer-
cial rodent chow A04/A03; Panlab, Barcelona, Spain). Every
attempt was made to minimize animal suffering. All experimental
procedures complied with guidelines established by the European
Union (86/609/EEC) and Spanish Law (1201/2005) and were
approved by the Ethics Board of the National Distance Education
University (UNED).

Surgery was performed under ketamine/diazepam anesthesia
(ketamine: 40 mg/kg, 1 mL/kg, Pfizer; diazepam: 10 mg/kg, 1 mL/
kg, Roche, intraperitoneally -i.p.- administrated) using a stereotac-
tic instrument (Narisighe, SR5R, Japan). Twenty-three animals
were chronically implanted in the LH with a 00 stainless steel
monopolar electrode insulated except at the tip (coordinates:
AP = +5.8; V = +2.8 and L = ±2.8 in the atlas of De Groot (1959)).
Eight additional rats were implanted only with the reference elec-
trode and served as a neurologically intact control group. As a pro-
phylactic measure, oxytetracycline powder was added to the water
(16 mg/mL; Pfizer) during the first post-surgery week.
2.2. Apparatus

Electrical stimulation was delivered by a CS220 two-channel
stimulator connected to two ISU-165 isolation units (both from
Cibertec, Madrid, Spain), monitoring the current on a BOAR oscillo-
scope (model 3502, Korea).

The self-stimulation procedure to test the rewarding effect of
electrical LH stimulation was conducted in six operant chambers
(Model E10-10RF, Coulbourn Instruments, Allentown, PA) with
two levers mounted on the front wall and a green stimulus light
located above the active lever. The active lever was connected to
the stimulator and oscilloscope, while the inactive lever presses
were recorded but had no programmed consequences. Metallic
grids on the floor and lateral walls of the operant chamber boxes
were covered with a thin wood panel to avoid short-circuits.
2.3. Behavioral procedure

After recovery, LH-implanted and neurologically intact animals
were subjected to a 4-session autoshaping procedure to accelerate
their learning of the operant lever-pressing behavior. Rats were
deprived of food for 22 h and submitted to a fixed ratio 1 (FR1)
daily schedule of food reinforcement in which a single press of
the lever turned on a stimulus light above the lever that signaled
pellet delivery (45 mg; Noyes Pellets, NH, USA).

After two days with free access to water and food, the animals
underwent exploratory current intensity tests and standard shap-
ing procedures to establish the optimal current parameters for
LH self-stimulation behavior. Low currents (<150 lA) were initially
applied and then raised, when necessary, until signs of interest
(sniffing and approach) or aversion were observed. Rats showing
signs of aversion were excluded from the experiment, while those
showing approach behavior were trained to press the lever in a
continuous schedule to elicit strong instrumental responses. The
fixed stimulation parameters were 0.25-s trains of rectangular
cathodic pulses at 0.1 ms and 66.6 Hz. The current ranged from
500 to 900 lA (Means = 755 lA). After seven days of shaping, ani-
mals showing a self-stimulation rate <2 presses/min were elimi-
opamine or mu-opioid receptor expression in limbic and motor structures
graphic study. Neurobiology of Learning and Memory (2015), http://dx.doi.
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nated, and the remainder underwent a behavioral procedure over
14 consecutive days. Each animal was placed for 1 h in the operant
chamber and was connected to the stimulator for self-stimulation
behavior in a 1FR schedule. Control animals were put in the same
operant chamber for a similar period of time, but lever presses
were not followed by electrical stimulation. The total number of
lever presses was recorded and stored in an IBM computer (Fig. 1).
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2.4. Histochemical analysis

After sacrifice of the animals, their brains were removed, frozen
in isopentane, cooled in dry ice, and stored until neurochemical
assays were performed. Coronal brain sections (20 lm thickness)
were obtained according to the Paxinos and Watson (2005) atlas
and were then mounted on gelatin-coated slides and stored at
�80 �C until they were assayed. Nine levels with 63 regions of
interest were chosen for opioid receptor expression: prefrontal
cortex (PFC, +3.20 mm from bregma), nucleus accumbens (NAC,
+1.70 mm from bregma), bed nucleus of the stria terminalis (BNST,
�0.30 mm from bregma), hippocampus (HC, �2.80 mm from
bregma), ventral tegmental area (VTA, �4.80 mm from bregma),
central grey area (CG, �5.80 mm from bregma), dorsal raphe (DR,
�7.80 mm from bregma), parabrachial area (NPB, �8.80 mm from
bregma), and locus coeruleus (LC, �10.04 mm from bregma). Six
levels and a total of 31 regions were analyzed for D1 and D2 dopa-
mine receptor expression: PFC (+3.20 mm from bregma), NAC
(+1.70 mm from bregma), BNST (�0.30 mm from bregma), HC
(�2.80 mm from bregma), VTA (�4.80 mm from bregma), and CG
(�5.80 mm from bregma). The choice of these regions was based
on the expression levels of D1 and D2 receptors reported in the
literature.
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2.5. Quantitative mu-opioid receptor autoradiography

The method described by Mansour, Khachaturian, Lewis, Akil,
and Watson (1987) was followed. Briefly, mounted brain sections
were pre-incubated in 100 mM Tris–HCl buffer (pH = 7.4) for
6 min, and then incubated at 25 �C with 3 nM 3H-DAMGO (Amer-
sham, Madrid, Spain) in 50 mM Tris–HCL buffer (pH 7.4) for 1 h.
Incubation was either in the presence or absence of 10 nM unla-
beled DAMGO (Sigma, Madrid, Spain) in order to determine the
non-specific and total binding, respectively. Subsequently, slides
were washed twice (2 � 6 min) in cold Tris–HCl buffer (50 mM,
pH = 7.4), briefly rinsed in the same buffer, washed twice in dis-
tilled water, and dried under a stream of cool air.
Fig. 1. Curve for ICSS rate in LH stimulated and control animals. The X axis shows
daily progression and the Y axis shows the mean of lever presses per minute.

Please cite this article in press as: Simon, M. J., et al. Changes in D1 but not D2 d
after lateral hypothalamus electrical self-stimulation: A quantitative autoradio
org/10.1016/j.nlm.2015.11.007
2.6. Quantitative D1-like and D2-like receptor autoradiography

Coronal brain sections adjacent to those used for mu-opioid
receptor autoradiography were obtained at different levels. Dupli-
cate tissue sections were incubated at room temperature with 1nM
3H-SCH-23390 (D1R antagonist; 85 Ci/mmol) or 1 nM 3H-YM-
09151-2 (D2R agonist; 71.4 Ci/mmol: Perkin Elmer, Madrid, Spain)
in 50 mM Tris–HCl buffer [pH 7.4] containing 120 mM NaCl, 5 mM
KCl, 1.5 mM CaCl2, and 4 mM MgCl2 for 60 min. Non-specific bind-
ing was determined in the presence of 10 lM SCH-23390 (D1
antagonist) or 10 lM (+)Butaclamol (D2 antagonist: Sigma, Spain).
Following these incubations, sections were quickly dipped into
50 mM Tris–HCl incubation buffer (0–4 �C) and then into distilled
water. Finally, the sections were blown dry under cold dried air.

2.7. Exposure, development, and quantification of autoradiographs

Slices were apposed to tritium-sensitive film ([3H]-Hyperfilm,
Amersham Biosciences/GE Healthcare, Spain) in standard X-ray
cassettes for 8–10 weeks at 4 �C. Films were developed for 5 min
at 20 �C in Kodak D-19 developer, fixed for 10 min with Agfa fixer,
and finally rinsed in water and air-dried. Autoradiographs were
digitized and analyzed using the public domain NIH Image pro-
gram (http://rsb.info.-nih.gov/nih-image), and tritium-labeled
standards were used to calibrate the non-linear response of the
film. Density measurements (calculated for each animal from 4
to 8 measurements in consecutive brain sections) were pooled
and the values averaged. Specific binding was determined by sub-
tracting non-specific binding (2–4 measurements per animal) from
the total binding.

2.8. Statistical analysis

Autoradiographic mu, D1, and D2 data were analyzed with a
two-tailed t-test. Square root transformations were applied when
appropriate to correct skewness in data distribution and lack of
homogeneity of variances. Statistical significance was set at
a = 0.05, and SPSS 15.0 (IBM plc, Chicago, IL) was used for the sta-
tistical analysis.
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3. Results

Three animals implanted with intracerebral monopolar elec-
trodes died after surgery and eight did not meet the behavioral cri-
terion for self-stimulation after shaping and were therefore
excluded from the experimental procedure. During the experimen-
tal phase, the electrode became detached in two animals, and one
animal died after the 8th experimental session. Finally, the exper-
imental procedure was completed by nine self-stimulated animals
and eight neurologically intact rats. Fig. 1 shows the mean press-
ings/min by the animals during the behavioral procedure. It can
be seen that the rate of pressings/min increased over the 14 days
of the procedure, suggesting a gradual improvement in instrumen-
tal learning by the animals.

3.1. Mu-opioid receptors

Fig. 2 depicts the autoradiographic results for mu receptors. The
highest mu-receptor binding levels were observed in the nucleus
accumbens shell (AcbSh), striosomas of the caudate putamen
(CPu-s), central medial thalamic nucleus (CM-T), and basolateral
amygdaloid nucleus (BL); however, results versus controls only
reached significance (2-tailed test) for the interpeduncular nucleus
(IP) (t = 2.485 14df, p < 0.026⁄). The number of mu opioid receptors
from the mediodorsal thalamic nucleus, medial part (MDM-T),
opamine or mu-opioid receptor expression in limbic and motor structures
graphic study. Neurobiology of Learning and Memory (2015), http://dx.doi.
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Fig. 2. Specific 3H-DAMGOmu-receptor binding in nine coronal sections of the rat brain in self-stimulated (n = 9) and control (n = 8) animals. Data were analyzed by means of
a two-tailed Student’s t-test for unrelated samples and expressed as means ± SEM. LH-ICSS animals showed significantly higher Mu receptor binding in the IP nucleus alone
(t = 2.485 14df, p < 0.026⁄). Abbreviations: Sections: PFC: prefrontal cortex, NAC: nucleus accumbens, BNST: bed nucleus of the stria terminalis, HC: hippocampus, VTA: ventral
tegmental area, CG: central grey area, DR: dorsal rafe, NPB: Parabrachial area, LC: locus coeruleus. Specific nuclei and subnuclei: AI: agranular insular cortex; O: orbital cortex;
Cg: cingulate cortex; L: limbic cortex; M1A-M1B: primary motor cortex; AcbSh: nucleus accumbens, shell; AcbC: nucleus accumbens, core; CPu1: caudate putamen, matrix;
CPu2: caudate putamen, striosomas; BNSTm: bed nucleus of the stria terminalis, medial part; BNSTl: bed nucleus of the stria terminalis, lateral part; LSI: lateral septal
nucleus, intermediate part; CA1-3: fields of hippocampus; LHb: lateral habenular nucleus; MDM-T: mediodorsal thalamic nucleus, medial part; MDC-T: mediodorsal thalamic
nucleus, central part; MDL-T: mediodorsal thalamic nucleus, lateral part; IML-T: intermediolateral cell column; CM-T: central medial thalamic nucleus; VPL-T: ventral
posterolateral thalamic nucleus; VPM-T: ventral posteromedial thalamic nucleus; STh: subthalamic nucleus; ZI: zona incerta; BLA: basolateral amygdaloid nucleus, anterior
part; Ce: central amygdaloid nucleus; ACo: anterior cortical amygdaloid nucleus; DM: dorsomedial hypothalamic nucleus; LH: lateral hypothalamic area; VMH: ventromedial
hypothalamic nucleus; PVP-T: paraventricular thalamic nucleus, posterior part; SN: substantia nigra; VTA: ventral tegmental area; LPAG: lateral periacueductal grey; SuG:
superficial gray layer of the superior colliculus; InG: intermediate gray layer of the superior colliculus; IP: interpeduncular nucleus; MG: medial geniculate nucleus; DR:
dorsal raphe nucleus; MnR: median raphe nucleus; LPBE: lateral parabrachial nucleus, external part; DCIC: dorsal cortex of the inferior colliculus; DTgN: Dorsal Tegmental
Nucleus; LC: locus coeruleus.
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mediodorsal thalamic nucleus, central part (MDC-T), ventral pos-
teromedial thalamic nucleus (VPM-T), zona incerta (ZI), and caudal
part of the anterior cortical amygdaloid nucleus (ACo) was lower in
the self-stimulated animals than in the control group, although the
differences were not significant.

3.2. D1R and D2R dopamine levels

In the self-stimulated animals, a significant decrease in the
number of D1 receptors (vs. controls) was observed in the most
rostral part of the AcbSh (t = �2.409, 6df, p < 0.05), whereas there
was a non-significant trend toward an increase in the most caudal
part (t = 2.047, 13df, p < 0.06). Significant differences were also
observed in rostral [+1.70 mm from bregma] (t = 2.429 15df,
p < 0.028⁄), intermediate [�0.30 mm from bregma] (t = 3.622,
5GL, p > 0.015⁄), and caudal [�2.80 mm. from bregma] (t = 2.264,
15df, p < 0.039⁄) sections of the caudate–putamen complex. We
highlight the change observed in the ventral pallidum (VP) region
(t = 4.309 11df, p < 0.001⁄) and, most notably, in the medial globus
pallidus (MGP) nucleus in caudal sections (t = 2.403, 11df,
p < 0.035⁄) (see Tables 1 and 2).

Fig. 3 depicts microphotographs of rostrocaudal sections from
an animal in the LH-ICSS group, corresponding to the regions
Please cite this article in press as: Simon, M. J., et al. Changes in D1 but not D2 d
after lateral hypothalamus electrical self-stimulation: A quantitative autoradio
org/10.1016/j.nlm.2015.11.007
showing the greatest differences in labeling with respect to the
equivalent sections from the control group animals.

Finally, no differences in D2 receptors were found in any stud-
ied region except for the dorsal endopiriform nucleus (t = �2.101
14df, p < 0.05⁄). Tables 1 and 2 summarize the main changes
observed in D1 and D2 dopamine receptors, respectively, after
15 days of LH-ICSS (see Fig. 4).
4. Discussion

The results of this experiment support the involvement of the
dopaminergic system, specifically the D1 receptor subtype, in
rewarding self-stimulation of the LH. In contrast, despite the highly
heterogeneous distribution of mu-opioid binding in the rat brain,
no significant differences in mu opioid receptors were found
between self-stimulated and control animals.

This study also demonstrates that ICSS of the LH selectively
activates certain dopaminergic brain regions, including the nucleus
accumbens shell, ventral pallidum, caudate–putamen, and medial
globus pallidus. These results are in line with previous reports on
the participation of these regions in eliciting dopamine-related
goal-directed behaviors (Berridge, 2012; Kelley & Berridge, 2002;
opamine or mu-opioid receptor expression in limbic and motor structures
graphic study. Neurobiology of Learning and Memory (2015), http://dx.doi.
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Table 1
Distribution of D1 dopamine receptors in LH self-stimulated and control rats.

Region LH-SS Mean ± SEM Control Mean ± SEM t df p (bilat)

Prefrontal Cortex (PFC)
PrL-IL 3.5648 0.3442[8] 2.9068 0.3687[8] 1.305 14 0.213
Cg 3.3559 0.5249[8] 2.6680 0.2923[8] 1.145 14 0.271
M2 2.5225 0.5203[8] 2.2080 0.3233[8] 0.513 14 0.616
M1 1.1703 0.2031[8] 1.0529 0.1639[8] 0.450 14 0.660
AI 2.8939 0.3543[8] 2.3759 0.2996[8] 1.116 14 0.283
LO 1.0546 0.1370[8] 1.0316 0.1310[7] 0.120 13 0.906
VO 1.0128 0.1282[8] 1.0743 0.1947[8] �0.264 14 0.796
DEn 1.6170 0.1867[8] 1.4329 0.1865[8] 0.698 14 0.497
AOP 2.6169 0.3428[8] 2.1846 0.2605[7] 0.981 13 0.345
AcbSh 1.6330 0.5501[4] 3.0500 0.2079[4] �2.409; 6 0.05⁄

N. Accumbens (NAC)
CPu 1 14.3401 0.8263[9] 12,3381 12.3381 0.8554[8] 1.681 15 0.114
CPu 2 13.8446 0.9076[9] 10.8055 0.8462[8] 2.429" 15 0.028⁄

Cg 3.4542 0.5078[9] 2.8744 0.3848[8] 0.892 15 0.387
Motor Cx 1.6453 0.1518[8] 1.2816 0.1908[8] 1.491 14 0.158
AcbSh 15.3044 0.6619[7] 11.9556 1.4108[8] 2.047 13 0.061
AcbC 11.8858 1.1195[9] 10.8705 1.2931[8] 0.597 15 0.560
LS 2.0509 0.4051[8] 2.3250 0.2488[7] �0.566 13 0.588
VP 15.4002 0.5334[6] 11.7014 0.6482[7] 4.309" 11 0.001⁄

CI 5.5199 0.4770[9] 4.8214 0.4572[8] 1.050 15 0.310
DEn 6.9818 0.5884[9] 5.7784 0.3935[8] 1.655 15 0.119

Bed Nucleus of the S.T.
CPu 1 15.4548 0.6920[4] 14.3648 1.9308[4] 0.531 6 0.614
CPu 2 15.7757 0.3927[3] 9.3680 1.4693[4] 3.622" 5 0.015⁄

VP 6.0032 2.0809[4] 8.3490 1.1718[4] �0.982 6 0.364
LS 4.4262 0.5125[4] 4.5817 0.5412[4] �0.209 6 0.842
Tu 14.1955 2.8757[4] 13.1795 1.9859[4] 0.291 6 0.781

Hippocampus (HC)
CA1 0.3157 0.0741[7] 0.3850 0.0804[8] �0.627 13 0.542
CA2 0.4489 0.1307[8] 0.4065 0.0639[8] 0.291 14 0.775
CA3 0.5061 0.1021[7] 0.5860 0.1091[7] �0.534 12 0.603
Hb 1.3512 0.2263[8] 1.3721 0.1908[8] �0.071 14 0.945
CPu 9.6223 0.7178[9] 7.3274 0.7094[8] 2.264" 15 0.039⁄

BLA 3.6578 0.4419[9] 3.2495 0.3734[8] 0.696 15 0.497
PRh 3.3864 0.4064[9] 3.2199 0.2125[7] 0.347 13 0.734
DEn 5.1263 0.4804[9] 5.0561 0.5386[8] 0.098 15 0.924
MGP 5.6228 0.6344[8] 3.5752 0.3194[5] 2.403" 11 0.035⁄

Ventral Tegmental Area (VTA)
PiRe 5.0768 0.5367[6] 4.0284 0.5251[7] 1.390 11 0.192
Hbc 0.8012 0.2337[5] 0.5158 0.1768[5] 0.974 8 0.359
CA1 0.6170 0.1024[9] 0.7003 0.1351[7] �0.501 14 0.624
DG 0.8784 0.1306[9] 0.9379 0.1993[7] �0.259 14 0.799
PRh 2.8596 0.3096[9] 3.0530 0.3411[7] �0.418 14 0.682
DEn 5.3478 0.5073[9] 5.2283 0.6411[7] 0.148 14 0.884
SNR 8.0253 1.3169[9] 9.4864 1.1697[7] �0.803 14 0.435
SNC 5.8686 0.8237[9] 7.9521 0.9926[7] �1.629 14 0.126
VTA 0.4750 0.0855[9] 0.5170 0.1080[5] �0.299 12 0.770
V2MM 1.0343 0.1694[9] 1.0137 0.1657[7] 0.085 14 0.933

Central Grey (CG)
SNR 16.1446 1.1206[9] 14.3919 1.2454[8] 1.049 15 0.311
SuG 2.3823 0.2030[9] 1.9960 0.2427[8] 1.230 15 0.238
PRh 3.8061 0.3127[9] 3.1169 0.3300[8] 1.515 15 0.150
DEn 4.6502 0.3611[9] 4.0002 0.4431[8] 1.147 15 0.269

This table shows means ± SEM of specific 3H-SCH-23390 (D1R antagonist) binding in brains (number in brackets) in LH-SS experimental and control groups, as determined by
quantitative autoradiography. [t – value of t in a Student’s t-test for unrelated samples, df – degree of freedom; p – probability of t in a two-way Student’s t-test. Results are
expressed as nCi].
Abbreviations:
Sections: PFC: prefrontal cortex, NAC: nucleus accumbens, BNST: bed nucleus of the stria terminalis, HC: hippocampus, VTA: ventral tegmental area, CG: central grey area, DR:
dorsal rafe, NPB: Parabrachial area, LC: locus coeruleus.
Specific nuclei and subnuclei: PrL-IL: prelimbic-infralimbic cortex; Cg: cingulate cortex; M2: secondary motor cortex; M1: primary motor cortex; AI: agranular insular cortex;
LO: lateral orbital cortex; VO: ventral orbital cortex; DEn: dorsal endopiriform nucleus; AOP: anterior olfactory nucleus, posterior part; CPu1: caudate putamen, matrix; CPu2:
striosomas of the caudate putamen; AcbSh: accumbens nucleus, shell; AcbC: accumbens nucleus, core; LS: lateral septal nucleus; VP: ventral pallidum; CI: claustrum; Tu:
olfactory tubercle; CA1-3: fields of hippocampus; Hb: habenular nucleus; BLA: basolateral amygdaloid nucleus, anterior part; PRh: perirhinal cortex; MGP: medial globus
pallidus; PiRe: pineal recess; hbc: habenular commissure; DG: dentate gyrus; SNR: substantia nigra, reticular part; SNC: substantia nigra, compact part; VTA: ventral
tegmental area; V2MM: secondary visual mediomedial cortex; SuG: superficial gray layer of the superior colliculus.
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Sagara et al., 2010; Smith et al., 2011; Stuber, Britt, & Bonci, 2012;
Waraczynski, 2006).

Indeed, some studies on the functional organization of the lim-
bic reward circuit suggest that distinct neural circuits could be
Please cite this article in press as: Simon, M. J., et al. Changes in D1 but not D2 d
after lateral hypothalamus electrical self-stimulation: A quantitative autoradio
org/10.1016/j.nlm.2015.11.007
activated during goal-directed behaviors (Carelli & Wightman,
2004), as in the case of the ventral striatopallidal circuit, which car-
ries information from the nucleus accumbens to the ventral pal-
lidum (Kalivas & Nakamura, 1999; Mingote et al., 2008; Panagis
opamine or mu-opioid receptor expression in limbic and motor structures
graphic study. Neurobiology of Learning and Memory (2015), http://dx.doi.
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Table 2
Distribution of D2 dopamine receptors in LH self-stimulated rats.

Region LH-SS Mean ± SEM Control Mean ± SEM t df p (bilat)

Prefrontal Cx. (PFC)
PrL-IL 2.2737 0.1694[9] 2.1499 0.1944[8] 0.482 15 0.637
Cg 2.2096 0.1255[9] 2.4725 0.2675[8] �0.924 15 0.370
M2 2.0999 0.1272[9] 2.0575 0.1143[8] 0.245 15 0.810
M1 1.4280 0.0642[8] 1.4000 0.1843[8] 0.143 14 0.888
AI 1.8893 0.1361[9] 1.9106 0.1930[8] �0.092 15 0.928
LO 1.7918 0.2172[9] 1.7786 0.1567[8] 0.048 15 0.962
VO 1.6366 0.1080[8] 1.5637 0.1172[7] 0.458 13 0.655
DEn 0.8527 0.0623[8] 1.0946 0.0965[8] -2.10-2.10002.1012.101; 14 0.05⁄

AOP 1.9750 0.2133[9] 1.8214 0.1874[8] 0.535 15 0.601
AcbSh – – – – – – –

N. Accumbens (NAC)
CPu 1 9.9370 0.7519[9] 8.7708 0.7647[8] 1.085 15 0.295
CPu 2 8.9455 0.4534[8] 7.8201 0.5099[8] 1.649 14 0.121
Cg 2.5077 0.5974[9] 2.1204 0.5163[8] 0.484 15 0.635
Motor Cx – – – – – – –
AcbSh 6.5078 0.8528[9] 5.4521 0.5640[7] 0.967 14 0.350
AcbC 6.6466 0.7747[9] 6.4134 0.8207[8] 0.207 15 0.839
LS – – – – – – –
VP 7.1226 0.4353[7] 5.9148 0.0.8173[8]] 1.249 13 0.234
CI – – – – – – –
DEn – – – – – – –

Bed N. of the S.T.
CPu 1 – – – – – – –
CPu 2 – – – – – – –
VP – – – – – – –
LS – – – – – – –
Tu – – –

Hippocampus (HC)
CA1 2.6104 0.4745[9] 1.8608 0.4681[8] 1.120 15 0.280
CA2 2.7966 0.4283[9] 1.8479 0.4448[8] 1.534 15 0.146
CA3 2.1642 0.2895[9] 1.5065 0.3763[8] 1.403 15 0.181
Hb – – – – – – –
CPu 9.9950 0.7566[9] 8.2873 0.8338[8] 1.520 15 0.149
BLA – – – – – – –
PRh – – – – – – –
DEn – – – – – – –
MGP 0.4371 0.0754[9] 0.4094 0.1362[7] 0.189 14 0.853

V. Tegm. Area (VTA)
PiRe – – – – – – –
Hbc – – – – – – –
CA1 2.6740 0.3197[9] 1.9309 0.5285[8] 1.235 15 0.236
DG 3.3972 0.4927[9] 2.8520 0.9450[8] 0.529 15 0.605
PRh – – – – – – –
DEn – – – – – – –
SNR 0.7257 0.1503[9] 1.9309 0.5285[8] 1.692 15 0.111
SNC – – – – – – –
VTA 1.4832 0.2387[6] 2.8043 1.0219[4] �1.534 8 0.164
V2MM – – – – – – –

Central Grey (CG)
SNR 2.2396 0.1495[9] 1.9005 0.3154[8] 1.009 15 0.329
SuG 4.0121 0.3735[9] 3.0521 0.5695[8] 1.441 15 0.170
PRh – – – – – – –
DEn 2.9711 0.3098[7] 2.2840 0.5745[6] 1.097 11 0.296

This table shows means ± SEM of specific 3H-YM-09151-2 (D2R agonist) binding in brains (number in brackets) in LH-SS experimental and control groups, as determined by
quantitative autoradiography. [t – value of t in a Student’s t-test for unrelated samples, df – degree of freedom; p – probability of t in a two-way Student’s t-test. Results are
expressed as nCi].
Abbreviations:
Sections: PFC: prefrontal cortex, NAC: nucleus accumbens, BNST: bed nucleus of the stria terminalis, HC: hippocampus, VTA: ventral tegmental area, CG: central grey area, DR:
dorsal rafe, NPB: Parabrachial area, LC: locus coeruleus.
Specific nuclei and subnuclei: PrL-IL: prelimbic-infralimbic cortex; Cg: cingulate cortex; M2: secondary motor cortex; M1: primary motor cortex; AI: agranular insular cortex;
LO: lateral orbital cortex; VO: ventral orbital cortex; DEn: dorsal endopiriform nucleus; AOP: anterior olfactory nucleus, posterior part; CPu1: caudate putamen, matrix; CPu2:
striosomas of the caudate putamen; AcbSh: accumbens nucleus, shell; AcbC: accumbens nucleus, core; LS: lateral septal nucleus; VP: ventral pallidum; CI: claustrum; Tu:
olfactory tubercle; CA1-3: fields of hippocampus; Hb: habenular nucleus; BLA: basolateral amygdaloid nucleus, anterior part; PRh: perirhinal cortex; MGP: medial globus
pallidus; PiRe: pineal recess; hbc: habenular commissure; DG: dentate gyrus; SNR: substantia nigra, reticular part; SNC: substantia nigra, compact part; VTA: ventral
tegmental area; V2MM: secondary visual mediomedial cortex; SuG: superficial gray layer of the superior colliculus.
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et al., 1997; Smith et al., 2011; Stuber et al., 2012; Waraczynski &
Demco, 2006). Recent investigations in the nucleus accumbens
suggest that neuroadaptations of medium spiny interneurons in
the ventral pallidum, which express D1/D2 receptors, do not influ-
Please cite this article in press as: Simon, M. J., et al. Changes in D1 but not D2 d
after lateral hypothalamus electrical self-stimulation: A quantitative autoradio
org/10.1016/j.nlm.2015.11.007
ence basal locomotor activity but may have activating/inhibiting
effects on locomotion in animals receiving repeated cocaine injec-
tions (Stuber et al., 2012; Unterwald, Rubenfeld, & Kreek, 1994).
These results suggest that NAC-VP connections may be involved
opamine or mu-opioid receptor expression in limbic and motor structures
graphic study. Neurobiology of Learning and Memory (2015), http://dx.doi.
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Fig. 3. Coronal sections showing significant changes in D1 receptor expression in an
animal (13E) from the LH-ICSS group. Abbreviations: Sections: PFC: prefrontal cortex,
NAC: nucleus accumbens, BNST: bed nucleus of the stria terminalis, HC: hippocampus,
VTA: ventral tegmental area, CG: central grey area, DR: dorsal rafe, NPB: Parabrachial
area, LC: locus coeruleus. Specific nuclei and subnuclei: PrL-IL: prelimbic-infralimbic
cortex; Cg: cingulate cortex;M2: secondary motor cortex;M1: primarymotor cortex;
AI: agranular insular cortex; LO: lateral orbital cortex; VO: ventral orbital cortex; DEn:
dorsal endopiriform nucleus; AOP: anterior olfactory nucleus, posterior part; CPu1:
caudate putamen, matrix; CPu2: striosomas of the caudate putamen; AcbSh: accum-
bens nucleus, shell; AcbC: accumbens nucleus, core; LS: lateral septal nucleus; VP:
ventral pallidum; CI: claustrum; Tu: olfactory tubercle; CA1-3: fields of hippocampus;
Hb: habenular nucleus; BLA: basolateral amygdaloid nucleus, anterior part; PRh:
perirhinal cortex; MGP: medial globus pallidus; PiRe: pineal recess; hbc: habenular
commissure; DG: dentate gyrus; SNR: substantia nigra, reticular part; SNC: substantia
nigra, compact part; VTA: ventral tegmental area; V2MM: secondary visual medio-
medial cortex; SuG: superficial gray layer of the superior colliculus.

Fig. 4. Representative image of the localization of the electrode tip in ICSS-LH
implanted animals (3V: third ventricle; f: fornix; opt: optic tract; LH: lateral
hipothalamus).
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in linking reward to responding rather than to detecting or com-
puting reward value (Leung & Balleine, 2013; Waraczynski &
Demco, 2006).

Mingote et al. reported changes in adenosine A2A receptors of
neurons that connect the Nucleus Accumbens with the Ventral Pal-
lidum in a high effort-related choice task (Mingote et al., 2008).
However, the retrograde labeling of fibers from the VP terminated
in the ‘‘core” region of the NAC in their study, whereas it was pro-
duced in the shell region of the NAC in the present study of ICSS of
the LH, a behavior also characterized by its vigor and persistence.

Finally, The role of the ventral pallidum as a link between
expected reward and the regulation of subsequent motor activity
has also been suggested by results obtained in other species, e.g.,
primates (Tachibana & Hikosaka, 2012) and even in humans
(Fitzgerald, Schwartenbeck, & Dolan, 2014).

Various authors have shown long-lasting increases in NAC
dopamine that remain stable during the self-stimulation period
(Hernandez et al., 2006, 2010, 2012), suggesting a stimulation-
induced neural signal responsible for maintaining performance.
They conducted a three-dimensional analysis of intracranial elec-
tric self-stimulation behavioral parameters and the effect on these
of drugs of abuse such as cocaine, and they suggested that changes
observed in the dopaminergic system may be attributable to a
trans-synaptic activation of dopaminergic neurons in the NAC
(Hernandez et al., 2010; Yeomans et al., 1993). Thus, taking into
account the experimental procedures employed in the present
study, our results may possibly be explained by a change in tonic
dopamine that might regulate goal selection over long time peri-
ods, e.g., by energizing or depressing decision-making under
appetitive or aversive/stressing conditions (Hernandez et al.,
2010, 2012; Leung & Balleine, 2013; Mannella, Gurney, &
Baldassarre, 2013; Tachibana & Hikosaka, 2012).

Several studies have also described dopaminergic receptors of
the NAC as being involved in the selection of neuronal ensembles
that encode specific goal-directed behaviors (Carr, Cabeza de
Vaca, Sun, & Chau, 2009; Nicola, Surmeier, & Malenka, 2000;
Ranaldi & Beninger, 1994; Shen, Frajolet, Greengard, & Surmeier,
2008). Thus, recent studies using fast scan cyclic voltammetry
demonstrated that, in the case of ICSS, dynamic changes in dopa-
mine release in the NAC shell can take place over multiple time
scales, e.g., a transient release that rapidly declines and, at the
same time, a transient increase prior to operant behavior (during
learning acquisition by animals), which persists during the
maintenance-delay phase (Owesson-White, Cheer, Beyene,
opamine or mu-opioid receptor expression in limbic and motor structures
graphic study. Neurobiology of Learning and Memory (2015), http://dx.doi.
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Carelli, & Wightman, 2008). Thus, Carelli’s group observed a tran-
sient but significant increase in NAC dopamine levels before oper-
ant behavior that resulted in the receipt of food or the self-
administration of cocaine (Brown et al., 2011; Carelli &
Wightman, 2004; Roitman et al., 2004; Stuber et al., 2005).

The present findings on D1 dopaminergic involvement in vari-
ous anatomical structures related to the mesocorticolimbic path-
way are consistent with previous reports that self-stimulation of
the VTA is facilitated by administering D1-receptor agonists (but
not D2 agonists) into the NAC (Ranaldi & Beninger, 1994). Likewise,
the direct injection of SKF-82958 (D1 agonist) into the medial
AcbSh reduced the threshold for ICSS of the LH, more markedly
in food-restricted animals, and increased the locomotor activity
of animals (Carr et al., 2009). These results suggest that the action
of dopamine on medium spiny cell D1-receptors may enhance the
activity of cells that receive highly convergent excitatory inputs
while decreasing both the background activity and the activity of
cells receiving less temporally coherent inputs (Nicola et al., 2000).

We found changes in D1 dopaminergic receptors in the cau-
date–putamen, and some authors have proposed that this system
might facilitate the response selection process (Balleine, Delgado,
& Hikosaka, 2007) and that its injury impairs habit formation
(Yin, Knowlton, & Balleine, 2004). Thus, both unpredicted reward
and rewarding predictive cues evoked phasic dopamine in the dor-
sal striatum in rats trained in a discriminative stimulus paradigm
that predicted the appearance of a lever-press to obtain food, pos-
sibly due to the recruitment of additional dopaminergic neurons
during the acquisition of greater experience of the task (Brown
et al., 2011).

Some studies have identified fibers from the nucleus accum-
bens that connect with the internal segment of the MGP
(Mogenson et al., 1980), the main skeletomotor output region of
the basal ganglia, which has shown autoradiographic changes in
our study and may modulate the vigor of performance according
to motivational factors or contribute to motor learning (Da
Cunha et al., 2009; Turner & Desmurget, 2010; Wickens, 2008).

With regard to D2 receptors, different authors have reported
changes in their density after intermittent morphine administra-
tion and have described tolerance and sensitization after a chronic
administration regime that induced changes in D2, D1, and Mu
receptors (Le Marec et al., 2011). Animals can self-administer a
mixture of D1–D2 agonists but not D1 or D2 agonists separately
(Ikemoto, Glazier, Murphy, & McBride, 1997).

The present results, obtained by electrical stimulation of the LH,
appear to differ in part from the rewarding effects reported by
some fellow researchers using self-administration techniques with
drugs of abuse such as cocaine or cannabinoids (Higuera-Matas
et al., 2010; Sanchez-Cardoso et al., 2007, 2009). This discrepancy
may be attributable to subtle differences between reward-
seeking behaviors generated by electrical self-stimulation (the pre-
sent case) and those produced by the self-administration of drugs,
as described by Cameron, Wightman, and Carelli (2014), Carelli
(2002), Carelli, Ijames, and Crumling (2000). Electrophysiology
and voltammetry studies by Carelli’s group have repeatedly shown
small differences in the pattern and dynamics of rapid dopamine
release between goal-directed behaviors for cocaine versus food
(natural reward) (Cameron et al., 2014; Carelli, 2002; Carelli
et al., 2000), which may involve particular interactions with dis-
tinct types of post-synaptic receptor and the induction of specific
patterns of synaptic plasticity (Jung & Shim, 2011; Kravitz, Tye, &
Kreitzer, 2012; Surmeier, Ding, Day, Wang, & Shen, 2007). Further
research is required to explore these issues.

In addition, various studies have behaviorally, anatomically,
and neurochemically dissociated between pleasant effects and
the activation of dopamine-related or goal-directed behaviors
(Berridge, 2012; Kelley & Berridge, 2002; Sagara et al., 2010;
Please cite this article in press as: Simon, M. J., et al. Changes in D1 but not D2 d
after lateral hypothalamus electrical self-stimulation: A quantitative autoradio
org/10.1016/j.nlm.2015.11.007
Smith et al., 2011; Stuber et al., 2012; Waraczynski, 2006). Thus,
the activation of dopaminergic receptors in our study is compatible
with reports of a selective behavioral activation by dopamine
(Sagara et al., 2010; Salamone, Correa, Farrar, & Mingote, 2007).
In fact, Cannon & Palmiter found a deficit in goal-directed behav-
iors in genetically manipulated animals unable to synthesize dopa-
mine, but they still demonstrated preferences for rewarding
stimuli such as sucrose or saccharin (Cannon & Palmiter, 2003).
Likewise, studies from our laboratory evidenced that administra-
tion of the opiate antagonist naloxone blocks reward but does
not prevent subjects from selecting the compartment in which
they had previously learned to receive rewarding electrical stimu-
lation of the parabrachial-insular axis (Garcia et al., 2013; Simon
et al., 2007, 2011).

We found a weak labeling of mu opioid receptors, which was
strongest in the NAC and caudate–putamen, in line with findings
by Gross-Isseroff et al. (1992), although the comparison with con-
trols was significant in their study but not in ours. Other authors
observed no significant changes in [3H]-DAMGO binding of the
ventral tegmental area after intermittent morphine administration
(Le Marec et al., 2011), whereas it significantly decreased after
chronic administration, a reinforcing effect that may theoretically
be compatible with LH stimulation.

In contrast, other studies found that the administrationofmuand
delta opioid agonists lowered the threshold for brain stimulation
reward of the ventral tegmental area, which was explained as an
increase in the sensitivity of animals to rewarding brain stimulation
(Duvauchelle, Fleming, & Kornetsky, 1996). Bielajew et al. also
reported that naloxone specifically blocked the rewarding electrical
stimulation of the VTA, which is considered an essential part of the
mesoaccumbens system (Bielajew, Diotte, & Miliaressis, 2003).

However, in agreement with our results for mu receptors, pre-
vious experiments in our laboratory showed that naloxone, even
at high doses, did not block the CPP induced by electrical stimula-
tion of the LH (Simon et al., 2011). Likewise, other authors
observed that, although activation of mu opioid receptors in the
nucleus accumbens or ventral pallidum generated ‘‘wanting” for
food reward and hedonic pleasure or their ‘‘liking” (Smith &
Berridge, 2007; Smith et al., 2011), food intake was not inhibited
by the administration of naloxone in the VP (Smith & Berridge,
2007; Smith et al., 2011).

In summary, the results of this study on the biological bases of
ICSS of the LH evidence a significant involvement of the dopamin-
ergic activity of D1 receptor but not of D2 or mu opioid receptors.
These findings suggest that the neural activation induced by
rewarding electrical self-stimulation of the LH is selectively
reflected in certain anatomical structures related to the mesolim-
bic dopaminergic system. These include the CPU and MGP and
especially the AcbSh and VP, which are involved in the selection
of neuronal ensembles that encode specific goal-directed behaviors
(Surmeier et al., 2007). Finally, the present finding of a lack of sig-
nificant changes in mu receptors may explain why naloxone is
unable to block the rewarding effect of LH stimulation (Simon
et al., 2011) and contributes neurochemical evidence of dissocia-
tions among different components or subsystems of the brain
reward system.
5. Uncited reference
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