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Abstract—This work demonstrates laser-induced graphene
memristors, fabricated using a patterning-free, low cost and
simple process directly on a flexible polyimide substrate. The
fabricated memristors show repeatable non-volatile bipolar re-
sistive switching with state retention up to 103 seconds. A simple
perceptron network for the classification of black-and-white
images is later implemented using an experimentally extracted
compact model. Successful training of the network by integrating
SPICE model with MATLAB shows the possibility to emulate
the on-chip learning process. Further, by properly modulating
the applied voltage pulse amplitude and period, a reduction in
the energy consumed by training the neural network is achieved.

I. INTRODUCTION

Artificial Intelligent (AI) systems should be able to carry out
tasks similar to those routinely performed by living organisms.
Aiming at this ultimate goal, a neuromorphic system designed
to implement brain-like artificial neural networks (ANNs)
should sit at the intersection of the sensors and the computing,
providing massively parallel and robust computing ability
while operating at very low power [1]. Towards this end, two-
terminal memristors able to mimic the event driven synaptic
plasticity, are expected to become a crucial component in the
realization of the future ANNs. With the additional feature
of the extreme area scaling provided by the two-dimensional
materials (2DMs), ANNs based on memristive synapse im-
plemented in a cross-bar configuration could also be able to
achieve the massive high density of biological neural networks
[2].

Currently, considerable research efforts are directed towards
the experimental demonstration of 2DM-based memristors;
nevertheless, their fabrication routinely involves the use of
high-temperature, time consuming and multi-stepped chemical
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synthesis processes, constraining the experimental exploration
in this field to high-tech facilities [3]. Recently, Laser-Induced
Graphene (LIG) has emerged as a cost-effective alternative
technique for the production and patterning of graphene films
using commercial laser machines on flexible substrates [4].
LIG with high electrical conductivity (25 S·cm-1) and good
thermal stability (> 900 ºC) [4], [5] has already been demon-
strated for numerous flexible electronic applications such as
sensors and supercapacitors.

Here, we report a prototype of an LIG non-volatile memris-
tor on a commercial flexible polyimide substrate. The process
used here provides high-control of the fabrication and the in-
duced graphene parameters, while the absence of any precursor
and patterning mask provides a substantial simplification of
the process, reducing considerably the manufacturing time and
cost.

To further demonstrate the ability of the fabricated LIG
memristors to implement the weight of an ANN, we have
design the ANN crossbar in an SPICE-level simulation. In
more detail, by interfacing the SPICE of Pathwave Advanced
Design System (ADS)® with MATLAB®, it is possible to
emulate the real time on-chip learning of hardware ANNs.
Such a setup offers the possibility to further add the peripheral
components needed to implement the ANN circuitry, and
allows the estimation of the energy consumption of in-situ
training. We show that, by exploiting the inherent dependency
of the memristors conductance on both the frequency and the
amplitude of the applied voltage pulses, the energy require-
ments of the ANN training can be reduced.

II. METHODOLOGY

Figure 1a shows a schematic representation of the LIG
memristor fabrication process. A laser is used to engrave
a flexible polyimide substrate (Kapton® sheet, DuPont™
300HN). The highly localized heating, induced by the laser,
breaks and rearranges the polyimide bonds, producing a chain
of carbon atoms, resembling the 2D graphene. Both the top and
the bottom surfaces of the polyimide sheet are engraved, with
laser power tuned to keep a thin insulating layer in between,
as depicted in Fig. 1b. An Everbeing® C-4 Probe Station
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Fig. 1. (a) Schematic of the patterning process on Kapton® polyimide sheets, (b) Stack layer scheme of the proposed LIG memristor, (c) Measurment setup
of the fabricated devices with Al bottom and and Tungsten probes as top electrodes respectively, AFM image of the LIG morphology of the (d) top and (e)
bottom layer and (f) Raman spectra for top and bottom LIG region engraved with different laser intensity.

connected to a Keithley ® 4200A-SCS parameter analyzer is
used for the electrical measurements. The bottom section of
the LIG is contacted using an Aluminium sheet, while the
tungsten electrode of the probe station acts as the top contact,
Fig. 1c. The laser power and velocity were modulated to adjust
the properties of the LIG, as can be seen from the measured
Raman spectra, Fig. 1f. The higher intensity applied to the top
surface results in LIG with D and G peaks narrower than the
bottom surface, where a lower laser intensity was used, while
the 2D peak increases in magnitude for the higher intensity
and lower velocity sample. This signifies a reduction of oxygen
content and structural defects, corresponding to the production
of few layer graphene [6].

III. RESULTS AND DISCUSSION

Figure 2a depicts the electrical characterization of the non-
volatile LIG memristors for 20 repeated I-V sweeps (grey
lines). A repeatable bipolar resistive switching is obtained
from the initial high resistive state (HRS) to a low resistive
state (LRS) after the voltage reaches a set voltage Vset ≈ 4.5
V. The memristor retains its state for the changing voltage
polarity, and switches back to the HRS after a negative reset
voltage Vreset ≈ -3 V. The resistive switching ratio (HRS/LRS),
calculated using the median I-V curve (red), is ≈ 5.56. Fig.
2b proves the capability of the LIG memristors to retain the
resistance value at least up to 103 seconds.

Next, the VTEAM compact model [7] is used to match the
experimental data (Figure 2c), showing an excellent agreement
between the model and experiments. The model parameters
are included in Figure 2d. The Verilog-A code of the model
is integrated into the SPICE of the Advance Design System
(ADS), to implement the memritive crossbar schematically
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Fig. 2. (a) I-V measurements for 20 consecutive cycles (gray line). The red
line shows the median data, (b) Measurements showing 103 s of retention
time for high- and low-resistance states and (c) VTEAM model fitting for the
median experimental data, with (d) the corresponding model parameters.

shown in Fig. 3a (the dots correspond to the memristor
position).

In the quest for potential applications of the fabricated LIG
memristor, circuit simulations are carried out to emulate the
in-situ learning process of an ANN. As a reference, one of
the earliest hardware implementation of memristor based ANN
[8], which implements a single-layer perceptron network with
10 inputs and 3 outputs, was selected. Despite its simplicity,
this ANN is able to classify 3×3 pixel black and white images
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Fig. 3. (a) Schematic of the memristive crossbar pair, activation function, and the input pulses scheme to change state of the memristors in the first column,
(b) Ideal and noisy input patterns, and (c) Flow chart of the algorithm for training the ANN using SPICE (Gray boxes) implemented in ADS, and Blue boxes
implemented in MATLAB.

into three different classes (k = 1, 2, 3). The input image set
consists of 1 correct and 10 noisy versions of Latin alphabets
C, X and I, making a total of N = 33 different input patterns,
as represented in Fig. 3b. Each image (n) is divided into 3×3
grid resulting into 9 pixels per image, which are coded into
9 voltage inputs (vi). A bias voltage is also applied, resulting
into a 10 rows (i) crossbar network.

A flowchart representing the network training is schema-
tized in Fig. 3c, where the blocks in grey are implemented in
ADS, while those in blue are implemented in MATLAB. At
each epoch of the training loop, one image of the set is applied
to the network, which performs the multiply and accumulate
operation:

ik =

10∑
i=1

Wkivi(n), Wki = G+
ki −G−

ki (1)

Here, each synaptic weight Wki is represented by a differential
pair of memristors with conductance (G+

ki and G−
ki), leading

to a total of 60 memristors. By measuring the current through
each column in ADS, the output of Eq. (1) is evaluated. The
output of the neuron corresponding to each class, k, is calcu-
lated using a nonlinear activation function, fk = tanh(βik),

where β is the scaling factor. Based on the gradient descent
optimization algorithm, the delta-rule weight increment, ∆ki,
is obtained for each image (n) as:

∆ki = δk(n)vi(n) (2)

with
δk(n) = [fk(n)

target − fk(n)]
∂f

di |i=ik(n)
(3)

Once the N patterns are applied, the synaptic weight modifi-
cation ∆Wki is calculated using the Manhattan update rule:

∆Wki = η · sgn
N∑

n=1

∆ki (4)

where η is the rate constant. Setting it to 1.6%, approximately
60 different resistance levels are achieved. Once the desired
∆Wki is calculated, the appropriate voltage pulse is generated
through MATLAB and fed into ADS. The memristor weights
are updated in two steps for each column. First, all the
memristors in a column whose weights need to be incremented
are simultaneously biased with a voltage difference of VS >
Vset and, in a second step, those memristors whose weights
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Fig. 4. Mean Square Error (MSE) averaged over each image class (a) as a
function of the scaling factor (β) and epochs and (b) as a function of epoch
for the optimum β of 3500 and (c) Matrix showing the resultant resistance
values after the final epoch. All results are for pulse width of T = 10 ms

(

Fig. 5. (a) Instantaneous power consumption for last epoch for pulse widths
of 10 ms (solid black) and 5 ms (red dashed) and (b) Energy dissipated at
each epoch until 100% of patterns are classified.

need to be decreased are biased with a voltage difference of
|VR| > |Vreset|. In order to isolate a column (such that all
other memristors remain unchanged) a fixed bias of ±VF is
applied respectively during the increment and the decrement
step such that the voltage difference i.e. |VF |, |VS − VF | and
|VR − VF |, is lower then both Vset and |Vreset| as shown in
Fig. 3. In order to reduce the computational cost, a pulse train
is generated so that the weight of the entire crossbar is updated
in a single ADS run.

Figure 4 represents the results achieved from the network
training for 250 epoch. First, an optimum β value is selected
so as to get an acceptably low mean square error (MSE =
1
N

∑N
n=1[fk(n)

target − fk(n)]
2. Accordingly, a β = 3500 is

chosen, which is marked by the vertical dashed line in Fig.
4a. An evaluation of the MSE averaged over k per epoch is
shown in Fig.4b. The resistance matrix of the crossbar after
250 epoch is also depicted in Fig. 4c. As demonstrated, the
ADS+MATLAB interface is able to emulate the in-situ training
of a memristor based ANN hardware.

As the conductance change of the memristor depends on

both the period (T) and the amplitude (VS , VR) of the applied
voltage input, this feature is exploited here in order to optimize
the ANN training power consumption. Two different sets of
parameters for the training pulse trains are considered: (a)
T = 10 ms, VS = 4.66 V, VR = −3.34 V ; and (b) T
= 5 ms, VS = 5.08 V, VR = −3.63 V . Since both pulse
trains produce the same conductance modification, there is
no difference in the network training and the same MSE is
achieved with both of them. However, they result into very
different amount of power consumed by the network. Fig.
5a shows the instantaneous power consumed by the network
during the final epoch. Calculating the energy consumed per
epoch proves that a reduction of the pulse width, which
demands only a slight increment of the applied voltage, results
into a shrinkage of the the total energy consumed by the
network during its training, emphasizing the relevance of the
proper selection of VS , VR and T .

IV. CONCLUSIONS

A laser-induced-graphene memristor, fabricated using a
patterning-free process on a flexible polyimide substrate,
was shown to have repeatable non-volatile bipolar resistive
switching characteristics. A compact model matched to the
experimental data was subsequently used to implement and
train an ANN, for black and white image classification. Inter-
facing SPICE model with MATLAB opens the possibility of
emulating the on-chip learning process. Further, by exploiting
the setup, and modulating the input pulse period and amplitude
a reduction in the energy consumption during the training
process is achieved.
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