

REAL-TIME MONOCULAR 3D RECONSTRUCTION OF

SCENARIOS USING ARTIFICIAL INTELLIGENCE

TECHNIQUES

DOCTORAL DISSERTATION

presented to obtain the

DOCTOR OF PHILOSOPHY DEGREE

in the

INFORMATION AND COMMUNICATION TECHNOLOGY PROGRAM

by

Erick Patricio Herrera Granda

PhD Advisors

Juan C. Torres-Cantero & Diego H. Peluffo-Ordóñez

Granada, August 2023

Editor: Universidad de Granada. Tesis Doctorales
Autor: Erick Patricio Herrera Granda
ISBN: 978-84-1195-258-3
URI: https://hdl.handle.net/10481/90846

https://hdl.handle.net/10481/90846

I

This work was supported by the SDAS Research Group (www.sdas-group.com).

II

Dedicado a toda mi familia.

III

Agradecimientos

Llegar a este punto de mi vida ha sido una travesía sumamente larga y digna de ser vivida. Especial-

mente el estudio y desarrollo de mi programa doctoral ha ocurrido en medio de múltiples circunstan-

cias, empecé con este sueño en el año 2019 con muchas expectativas y planes, con la sensación de que

todo marcharía acorde a lo planificado. Sin embargo, nadie tenía previsto que lo tendría que realizar

en medio de una pandemia. el COVID-19. Esto sin duda marcó mi vida y la vida de todos quienes están

y quienes ya no están hoy en este mundo. Este suceso desencadenaría una serie de sucesos que no tenía

contemplados, pasar por múltiples ocasiones por el desempleo, la mudanza a nuevas ciudades donde

trabajar, el confinamiento, la crisis económica, alimentaria y de medicamentos; y sin duda todo esto

desembocó en la enfermedad a la que tuve que enfrentarme desde enero de 2022 hasta junio de 2023.

Sin duda alguna todos estos sucesos pudieron haber doblegado hasta al más fuerte guerrero, pero

con la bendición de Dios me encuentro aquí redactando estas palabras, dedicadas a mí mismo, a mi

familia, a mis descendientes y a todos mis amigos, para plasmar que lo he logrado y comprometerme

en seguir alcanzando todos mis sueños. En esta vida todo es posible si estamos dispuestos a hacer los

sacrificios que sean necesarios, creemos en nosotros mismos, y nos rodeamos de buenas personas. Por

esto, agradezco especialmente a mis tutores Juan Carlos Torres Cantero y Diego Hernán Peluffo Ordó-

ñez, quienes más allá de ser mis tutores se han convertido en los mejores amigos que la vida ha podido

colocar en mi camino, quienes no solo han estado ahí para transmitirme su invaluable conocimiento,

sino que han sido el soporte que necesitaba en medio de todas las adversidades que se me han presen-

tado durante estos últimos 4 años. De la manera más sincera, considero que, si no hubiese sido por sus

palabras de apoyo, su guía, su paciencia y sabiduría, no hubiese podido alcanzar ésta, que es mi más

grande meta académica. Que Dios bendiga el gran trabajo que realizan.

Además, agradezco a la vida, el haber crecido con la mejor familia del mundo, mi papá, mi mamá y

mis hermanos, quienes nunca dudaron que alcanzaría mi meta, quienes siempre han invertido todo lo

que han tenido en mí. A mis padres especialmente, que siempre han dejado todo de lado por la educa-

ción de sus hijos y son el más grande ejemplo y orgullo que tengo. Finalmente, agradezco a mi esposa

María José, a quien conocí a inicios de este doctorado, quien ha tenido que pasar junto a mi por todas

las adversidades y ha sido mi soporte y apoyo para aprender a crecer en medio de la tormenta.

Gracias, de todo corazón.

IV

Table of Contents

Chapter I - PhD Dissertation .. 1

1. Title.. 2

2. Abstract ... 2

3. Introduction ... 2

4. Objectives ... 3

4.1. General objective. ... 3

4.2. Specific objectives ... 3

5. Methodology .. 4

Chapter II - Literature Review and Taxonomy ... 6

1. Introduction ... 7

2. Related works .. 8

3. Contributions and outline .. 9

4. Input modalities .. 9

4.1. Stereo setups ... 10

4.2. Omni-directional cameras ... 10

4.3. Monocular RGB-D .. 10

4.4. Monocular RBG .. 11

5. Basics and notation ... 12

5.1. Literature review process .. 12

5.2. Notation ... 13

5.3. Initial words and approaches ... 13

6. Classic methods ... 16

6.1. Classic + Indirect methods .. 17

6.1.1. Classic + Sparse + Indirect methods .. 17

6.1.2. Classic + Dense + Indirect methods... 25

6.2. Classic + Direct methods ... 28

6.2.1 Classic + Dense + Direct methods... 29

6.2.2. Classic + Sparse + Direct methods ... 33

6.3. Classic + Hybrid methods ... 37

6.4. General comments for classic approaches .. 38

7. Machine Learning methods ... 39

V

7.1. ML + Indirect methods .. 40

7.1.1. ML + Sparse + Indirect methods .. 40

7.1.2. ML + Dense + Indirect methods ... 46

7.2. ML + Direct methods ... 54

7.2.1. ML + Dense + Direct methods .. 54

7.2.2. ML + Sparse + Direct methods ... 60

7.3. ML + Hybrid methods ... 66

7.4. General comments for ML approaches ... 67

8. Discussion .. 71

8.1. Classic vs. Machine Learning ... 71

8.2. Direct vs. Indirect ... 72

8.3. Dense vs. Sparse ... 73

8.4. Complete taxonomy ... 74

9. Intermediate conclusions ... 75

Chapter III – Comparative Analysis and Selection ... 77

1. Introduction ... 78

1.1. Related Works ... 79

1.1.1. Sparse-Indirect Methods .. 79

1.1.2. Dense-Indirect Methods ... 80

1.1.3. Dense-Direct Methods .. 80

1.1.4. Sparse-Direct Methods ... 81

1.1.5. Machine-Learning-Based Approaches ... 81

1.1.6. Comparisons .. 82

2. Materials and Methods ... 83

2.1. Taxonomy .. 83

2.2. Selected Algorithms ... 83

2.3. Benchmarks ... 86

2.4. Metrics ... 87

3. Results ... 88

3.1. Hardware Setup ... 90

3.2. Comparative Analysis ... 91

4. Discussion .. 101

5. Intermediate conclusions ... 103

Chapter IV - Proposal .. 105

1. Introduction ... 106

2.1. Related works ... 107

2. Materials and Methods ... 107

2.1. Review of the DSO algorithm ... 107

VI

2.2. Review of NeW CRFs single image depth estimation .. 108

2.3. Improved point’s depth initialization for DSO .. 110

3. Results ... 112

4. Discussion .. 120

5. Intermediate conclusions ... 121

Chapter V – Conclusions .. 123

Published articles .. 126

References... 128

VII

Acronyms

ATE Absolute Trajectory Error

BA Bundle Adjustment

BoW Bag of Words

CNN Convolutional Neural Network

CRF Conditional Random Field

DF-ORB-SLAM Dense-Indirect ORB-SLAM

DSM Direct Sparse Mapping

DSO Direct Sparse Odometry

DROID-SLAM Differentiable Recurrent Optimization-Inspired Design SLAM

DynaSLAM Dynamic SLAM

EKF Extended Kalman Filter

FC-CRF Fully Connected Conditional Random Field

FOV Field of View

FPFDCNN Feature Point and CNN Feature Description

GPS Global Positioning System

GRU Gated Recurrent Unit

ICP Iterative Closest Point

IMU Inertial Measurement Unit

INS Inertial Navigation System

LDSO Loop-Closure Direct Sparse Odometry

LMedS Least Median of Squares

LMCW Local Map Covisibility Window

LORANSAC Local Optimization RANSAC

LS Least Squares

ML Machine Learning

MonoSLAM Monocular SLAM

MRF Markov Random Field

NeW Neural Window

OpenMVG Open Multiple View Geometry

ORB Oriented FAST and Rotated BRIEF

PBA Photometric Bundle Adjustment

PCL Point Cloud Library

PnP Perspective-n-Point

PTAM Parallel Tracking and Mapping

RANSAC Random Sample Consensus

REMODE Regularized Monocular Depth Estimation

RPE Relative Pose Error

RMSE Root Mean Square Error

SDF Signed Distance Function

SDFCNN Deep Semantic Fusion CNN

SFM Structure from Motion

SIDE Single Image Depth Estimation

VIII

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SSIM Structural Similarity Index Measure

SVO Semi-Direct Visual Odometry

TSDF Truncated Signed Distance Function

VO Visual Odometry

VOLDOR VO using Log-logistic Depth Residuals

1

Chapter I - PhD Dissertation

2

1. Title

Real-time monocular 3D reconstruction of scenarios using artificial intelligence techniques.

2. Abstract

This research presents a comprehensive study on monocular 3D reconstruction of environments us-

ing only RGB images as input acquired through a monocular sensor. The objectives were to develop a

suitable taxonomy, review seminal algorithms, compare open-source methods, and develop a novel 3D

reconstruction system using the principal classic techniques combined with artificial intelligence to im-

prove the overall system performance. An exhaustive literature review led to a proposed taxonomy

with three classifications: direct vs indirect, dense vs sparse, and classic vs machine learning. This re-

sulted in 10 categories used to classify 42 notable monocular SLAM, SFM, and VO systems based on 11

identified criteria. Subsequently, through rigorous benchmarking, ten prominent open-source algo-

rithms were implemented across the taxonomy to discern each method's advantages and limitations.

The TUM-Mono dataset, considered the most complete benchmark comprising 50 outdoor and indoor

sequences, was used for evaluation. Statistical analysis revealed that sparse-direct methods signifi-

cantly outperformed others, with DSO excelling. In addition, it was evidenced that integrating machine

learning modules into the SLAM pipeline significantly contributes to the system performance and the

final reconstruction quality. Consequently, DSO was selected for enhancement by integrating the state-

of-the-art single image depth estimation NeW-CRFs CNN module. This module introduced depth prior

knowledge to refine DSO's depth initialization and tracking. Using the TUM-Mono dataset, the new

DeepDSO method was benchmarked against DSO and CNN-DSO. DeepDSO surpassed the others

across various metrics, including translation error, rotation error, scale error, alignment error, and

RMSE. Statistical tests confirmed DeepDSO's superiority, achieving an impressive RMSE of 0.0624,

which corresponds to an error reduction close to 13.35% with respect to the original DSO system.

DeepDSO pushes monocular VO boundaries by strategically integrating machine learning-based depth

estimation. In addition, the taxonomy and comparative analysis provide guidelines for appropriate

algorithm selection and implementation. This study validates the benefits of implementing artificial

intelligence within SLAM, VO and SFM systems and lays the groundwork for continued depth initial-

ization and point-tracking optimisations.

3. Introduction

In computer vision research, reconstructing a scene from images captured by a moving camera is

called "Structure from Motion" (SFM). In robotics, this challenge is recognized as "Simultaneous Local-

ization and Mapping" (SLAM) and "Visual Odometry" (VO). Despite numerous methodologies pro-

posed, such as multi-view devices, RGB-D monocular, and RGB monocular cameras [1], this area war-

rants further exploration. Multi-view devices consist of multiple cameras that triangulate images cap-

tured simultaneously from various angles. While they offer precision, they come at a higher cost and

implementation complexity. On the other hand, RGB-D devices utilize active or passive sensors to

measure depth, represented as a 3D point cloud, facilitating scene reconstruction [1]. However, their

limited measurement range confines them to smaller scenarios [2]. Moreover, depth sensors often un-

derperform in sunlight, making reconstructions less accurate [3]. Given these constraints, RGB monoc-

ular cameras have gained traction due to their versatility, cost-effectiveness, and adaptability to various

lighting conditions [3]–[6].

Recent research in this domain has spanned classic geometric-based methodologies employing prob-

abilistic tools [4], [5], [7] to the integration of Machine Learning (ML) approaches, given the significant

strides in artificial intelligence. Many traditional methods have been adapted to this evolving

3

paradigm, resulting in enhanced reconstruction quality, depth prediction, camera pose estimation, and

tracking [3], [8]–[12].

3D reconstruction has garnered significant attention due to its diverse applications, including:

• Robotics: scene recognition, autonomous driving, and Unmanned Aerial Vehicles (UAV) pi-

loting (Engel et al., 2014; Pizzoli et al., 2014; Tateno et al., 2017).

• Augmented Reality: scene and body reconstruction (Czarnowski et al., 2020; Mur-Artal et

al., 2015; Tateno et al., 2017).

• Film Industry: facial puppetry, face replacement, speech-driven animation, and more

(Zollhöfer et al., 2018).

• Medical Field: 3D reconstruction of surgical cavities and virtual endoscopy (Shallik et al.,

n.d.; Su et al., 2020).

The challenge of 3D reconstruction has persisted for over two decades, evolving through various

techniques such as place recognition and matching. Historically, solutions were categorized into direct

and indirect methods. Direct methods work directly with pixel information. An example from this cat-

egory is LSD-SLAM [4], which leverages probabilistic and odometry techniques, focusing on semi-

dense depth maps. Indirect methods use preprocessing techniques to reduce the amount of input in-

formation. An example from this category is ORB-SLAM [7], which utilizes ORB-type features for track-

ing, mapping, and loop-closing tasks. ML approaches also extend the classic pipelines, adding neural

networks, like CNN-SLAM [3], that represent a fusion of traditional and modern approaches, demon-

strating the potential of convolutional neural networks in 3D reconstruction.

Despite advancements, 3D reconstruction using SFM, VO or SLAM remains a formidable challenge.

Integrating 3D computer vision with probabilistic mechanisms, optimization, and artificial intelligence

seeks to enhance reconstruction accuracy while addressing issues related to camera pose, depth esti-

mation, and more. A growing aspiration is to achieve real-time system operation. However, the com-

putational demands of 3D reconstruction often necessitate high-performance hardware, prompting re-

searchers to explore hybrid approaches like [3], [6], [13]. In addition, one primary objective for many

researchers is enhancing depth map accuracy, a critical component of monocular 3D reconstruction,

where state-of-the-art methods have reached accuracy levels lower than 70% [3].

In brief, this research field presents numerous challenges, including global shadow analysis, robust

reconstruction during intense rotational movements, and the fusion of machine learning with optimi-

zation. Consequently, this research aims to develop a framework to integrate the best components and

advancements of SLAM, VO, SFM and ML to contribute to the state of the art regarding precision,

speed of execution, robustness or flexibility.

4. Objectives

4.1. General objective.

Propose a framework for real-time monocular 3D reconstruction of scenarios using artificial intelli-

gence techniques in conjunction with classic SLAM tools.

4.2. Specific objectives

1. Identify the main techniques of classic SLAM and artificial intelligence applicable in the 3D

reconstruction of scenarios and sufficient to carry out this task.

4

2. Implement prototypes in various configurations to identify the benefits and limitations of

the various methodologies and their ability to integrate with existing ones.

3. Validate the performance of the 3D reconstruction prototypes in various scenarios under the

metrics, allowing for a comparison with the state of the art.

5. Methodology

This section delineates the methodological design employed to achieve the research objectives. Fig-

ure 1 provides a graphical representation of the key research components utilized in this study.

Figure 1. Graphical Illustration of the Key Research Components

The methodological design of this investigation was structured in phases, detailed as follows:

Chapter 2: Literature Review and Taxonomy

• Phase 1: Bibliographic Review - An in-depth systematic review was conducted on special-

ized topics such as monocular 3D reconstruction, odometry, SLAM, optimization, and arti-

ficial intelligence applied to depth map estimation, camera pose estimation, tracking, and

other components of dense and sparse SLAM, SFM and VO.

• Phase 2: Technical Study and Observation - An exploration of monocular SLAM, SFM, and

VO methodologies proposed by researchers to date was undertaken. This facilitated the de-

lineation of the necessary hardware and software tools for this research. A taxonomy pro-

posal was also presented.

Chapter 3: Comparative Analysis and Selection

• Phase 3: Replication of Previous Studies - Prior studies with sufficient information for repli-

cation were identified, serving as a comparative foundation for selecting techniques and

structuring the developed framework. The chosen studies were open-source, enabling their

proper implementation for comparative purposes.

• Phase 4: Comparison of Replicated Models - After replicating the foundational research un-

der the parameters set by their authors, their performance and the performance of their con-

stituent tools were compared. This provided a pool of potential components for integration

into the subsequent prototypes.

5

• Phase 5: Identification of Various Configurations - Upon identifying the standout compo-

nents from previous studies, the performance of various configurations in open-source

methods was analyzed, considering compatibility and relevance criteria.

Chapter 4: Proposal

• Phase 6: Development of Complementary Algorithms - The amalgamation of methodologies

and components from various sources necessitated algorithms that facilitate their integra-

tion. Hence, this phase saw the development of algorithms and structures that enabled the

integration of methodologies and the creation of complementary codes.

• Phase 7: Preliminary Performance Verification - After prototyping the proposal, its behav-

iour was verified using relevant evaluation metrics regarding accuracy and error, serving as

a foundation for enhancing the prototype's performance.

• Phase 8: Proposal for Scientific Contribution - Experimentation with the developed proto-

type delineated avenues for potential improvements in methodologies proposed in the liter-

ature. This phase involved the integration of algorithms or neural structures that enhanced

prototype performance.

• Phase 9: Real-time Execution - Upon finalizing the prototype, adjustments or adaptations

were made to facilitate its real-time execution by reducing computational costs and optimiz-

ing the code.

• Phase 10: Prototype Accuracy and Execution Time Validation - The developed framework

was compared with leading models from the literature regarding reconstruction accuracy

and depth map acquisition precision using the TUM-MONO database. This facilitated the

computation of comparative metrics against the state of the art.

• Phase 11: Documentation - Throughout the research development, a documentation protocol

was maintained, recording results and findings via a website, articles, and the final thesis

report.

Chapter 4: Results and conclusions

6

Chapter II - Literature Review and Taxonomy

7

1. Introduction

In recent years, there has been growing interest in using computer vision and cameras to obtain key

information that allows machines to interact with their surroundings. This is done by using motion

cues to improve navigation, tracking, and manipulation tasks [14]. To address this need, solutions have

emerged under the umbrella terms Simultaneous Localization and Mapping (SLAM) in robotics and

Visual Odometry (VO) or Structure from Motion (SFM) in computer vision [2]. Many researchers, like

[15] and [16], define SLAM as the ability of a mobile robot to start in an unknown environment and

incrementally build a map using information acquired from camera observations. At the same time, it

can estimate its trajectory using single or multiple cameras. SFM algorithms have been referred to as

Monocular SLAM [17] due to their similarity in generating sparse or dense world models to obtain a

geometric representation. This is done using direct or indirect techniques to generate and track the

models.

Similarly, VO aims to determine the position and orientation of a robot using camera images. Many

solutions can perform odometry tasks, such as wheel odometry, global positioning systems (GPS),

global navigation satellite systems (GNSS), inertial navigation systems (INS), laser sensors, ultrasonic

sensors and VO [18]. Wheel odometry uses low-cost encoders but is prone to drift due to wheel slip-

page. INS calculates position and orientation along three axes using accelerometers and gyroscopes.

The position is obtained by integrating acceleration, which can cause drift from minor acceleration er-

rors accumulating into significant position errors. GPS/GNSS obtain the position by trilateration of sig-

nals from multiple satellites, avoiding long-term error accumulation. However, GPS/GNSS can have

meter-level inaccuracies and cannot be used indoors or underwater. Laser and ultrasonic sensors pro-

vide scalar distance measurements to objects using time of flight or phase shift principles. However,

they can have issues with reflective materials or surface orientations.

In contrast, VO offers a low-cost, more accurate solution than GPS, INS, ultrasonic sensors, and

wheel odometry. This is due to VO's low position error range from 0.1 to 2% [19]. As an odometry

technique, VO balances cost, reliability, and complexity [20]. Moreover, researchers like [2] and [13]

found that VO performs better by generating geometric maps of the environment for robot localization.

Thus, many VO systems like [2], [13], [21]–[28] incorporate 3D reconstruction to generate maps for es-

timating vehicle location. A key difference from SLAM is that VO typically discards points once they

leave the camera's view, whereas SLAM enables reusing previously triangulated points when they re-

enter the field of view during loop closures [18].

Another major difference is that SLAM concurrently builds a map while using it to estimate camera

pose. In contrast, SFM focuses more on scene reconstruction, while VO focuses on estimating ego-mo-

tion (camera translation and orientation) [19]. It should be noted that SLAM systems are more complex,

aiming to provide orientation, trajectory, loop closure, and other information for navigation and scene

understanding. The geometric maps generated by SLAM are also often optimized. Thus, the final 3D

reconstructions from SLAM tend to be superior to those from purely VO or SFM, although these tech-

niques inspire SLAM. In all cases, camera sensors acquire visual information to reconstruct the envi-

ronment map. When using a single camera, these are called Monocular SLAM [18], Monocular VO, or

Monocular SFM. Despite the different names, all these techniques share the common goal of 3D scene

reconstruction and camera pose estimation from imaging sensors (Aqel et al., 2016; Engel et al., 2017;

Tateno et al., 2017).

In this overview, we are particularly interested in exploring techniques to generate 3D geometric

environment representations (reconstruction) from a single moving RGB camera. Thus, approaches like

Visual-Inertial (using INS), RGB-D (using depth sensors), omnidirectional, and stereo techniques are

out of scope.

8

2. Related works

Within academic circles, monocular 3D reconstruction is a complex challenge, often addressed by

merging various strategies and algorithms from realms like computer vision, robotics, and machine

learning. To date, only select studies delve into this realm in depth. [18] crafted an exhaustive explora-

tion of visual odometry, shedding light on its types, methodologies, obstacles, and practical uses. Their

study highlighted diverse input methods and the driving forces behind investigating the VO challenge,

leading to an initial classification distinguishing feature-based from appearance-based methods. Our

study diverges by diving into the trifecta of SLAM, VO, and SFM. Conversely, the prior work empha-

sized solely the VO aspect, sidelining the monocular input angle. Fast forward to 2021, Servières et al.

[29] tabled an intricate breakdown of contemporary classification and practical testing of visual and

visual-inertial SLAM methods, sketching out the fundamental framework of SLAM and its progressive

evolution. Their empirical analysis incorporated systems such as DSO, LSD-SLAM, and ROVIO. Yet,

our research angle contrasts with that of Servières et al. Beyond spotlighting SLAM, our focus pivots

towards 3D reconstruction, weaving in SLAM, VO, and SFM. Rather than merely cataloguing historical

data or method descriptions, our chief aim is to formulate a precise taxonomy and elaborate on pivotal

algorithms, offering readers a clear framework that aids in discerning the optimal techniques for their

scholarly endeavours and projects.

Within the domain of survey articles, only a handful of works exclusively focus on the pure visual

monocular methodology. Taketomi et al. [30] have elaborated on a study covering the period between

2010 and 2016 specifically tailored for the visual SLAM (vSLAM) approach. This piece highlights the

vSLAM problem's chief components and employs feature-based and direct classification to encapsulate

the core SLAM systems from 2016 to 2010. Feature-based methodologies like MonoSLAM [31], PTAM

[32], and ORB-SLAM [33] were explored, while direct formulations included systems like DTAM [17],

LSD-SLAM [4], SVO [13], and DSO [2]. Further, Taketomi et al.'s survey dissected the RGB-D tech-

niques, spotlighting KinectFusion [34] and other notable systems. Another important survey to note is

Chahine & Pradalier's (2018) piece [35], focusing on monocular SLAM algorithms suitable for outdoor

scenarios, particularly those environments rich in natural elements that demand longer-range capabil-

ities unaffected by direct sunlight, adept at handling textured visuals filled with lush greenery. Their

selection highlighted algorithms up to 2018, with a concentration on systems like DSO, ORB-SLAM,

and LSD-SLAM. These were analyzed and juxtaposed based on the RMSE of translational error across

eight sequences curated by the authors. Their findings accentuated DSO's superiority for exterior ap-

plications, though they also highlighted the scope for refinement in reconstruction and tracking quality.

Similarly, a 2018 work by Chen et al. [36] delves deep into primary visual SLAM systems, giving weight

to those that left a mark before 2018. This research encapsulates the narrative of SLAM, its synergy with

SFM and VO issues, SLAM categorization, pertinent challenges, and future trajectories. While several

SLAM systems were acknowledged, the study notably assessed PTAM and ORB-SLAM as feature-

based methodologies and platforms like DTAM, SVO, LSD-SLAM, and DSO as direct classifications.

More recently, a 2020 investigation by M. He et al. [37] predominantly navigated the waters of the

monocular visual odometry challenge, elucidating the VO dilemma, its structural formulation, and its

parallels with emergent SLAM suggestions. The authors highlighted numerous systems, including

MonoSLAM, PTAM, and RGB-D methodologies. In juxtaposition with the abovementioned studies,

our efforts culminated in a detailed, coherent survey encompassing 42 algorithms. We didn't restrict

ourselves to a single problem type (SLAM, SFM, or VO) or a unique classification category. Our expan-

sive approach was underpinned by a holistic extended classification that encompassed all monocular

pure visual systems that play a part in the monocular 3D reconstruction domain.

The study closest to this approach is the research penned by Macario et al. [38]. This article serves as

an exhaustive survey tailored for visual SLAM algorithms. In it, the authors elucidate foundational

concepts, proffer a taxonomy rooted in direct and indirect classifications, and comprehensively de-

scribe eight pure visual SLAM techniques, six visual-inertial SLAM methods, and five RGB-D SLAM

9

strategies. Moreover, the article delves into unresolved issues and potential future directions. The dis-

course was meticulously articulated, with each algorithm being systematically overviewed and system-

atized. Our trajectory mirrored theirs in many respects. However, our exploration predominantly

zoomed in on the monocular input modality. Consequently, we delved deeper into this modality, es-

tablishing and implementing a taxonomy that more aptly encapsulates each algorithm's nuances. Fur-

thermore, we meticulously examined 42 of the most prominent available algorithms, integrating a com-

prehensive exploration of the latest Machine Learning (ML) paradigms that remained untouched in the

abovementioned studies.

3. Contributions and outline

This study provides the first comprehensive review explicitly tailored to the monocular 3D recon-

struction issue, amalgamating SLAM, VO, and SFM solutions under a singular taxonomy. In essence,

the prime hallmarks of our investigation encompass:

1. A crafted taxonomy that encapsulates the entirety of contemporary literature methodolo-

gies. This taxonomy is structured upon three distinct classifications, melding them into a

spectrum of ten meticulously detailed categories.

2. An exhaustive exploration of 42 emblematic monocular SLAM, VO, and SFM algorithms,

comprising 18 traditional monocular strategies and 24 approaches harnessing machine

learning modalities. Each dissected methodology delineates its algorithmic configuration,

highlighting mathematical tenets for those methods pioneering alterations in their blue-

prints—particularly in areas of depth map assessment or refinement, given the 3D recon-

struction emphasis of this research.

3. Eleven distinct criteria have been delineated to provide the readers with the foundational

components needed to implement, select, or devise a 3D reconstruction system. Of these,

nine pertain to traditional systems, whereas an additional two are solely relevant to machine

learning methodologies. Details for each algorithm based on these criteria can be found in

Tables 2 and 3. The specified criteria encompass: algorithm type (SLAM, VO, or SFM), track-

ing approach (direct vs. indirect), map density (dense vs. sparse), pixel utilization method-

ology, estimation technique (about the depth map estimation), global refinement, relocaliza-

tion, loop closure (indicating the algorithm's incorporation of optimization, relocalization,

or loop closure phases), software accessibility (open-source repositories where the algorithm

is hosted), CNN framework (widely-recognized employed CNN architectures), and the

principal operations for which a CNN is utilized.

4. An exploration into prevailing challenges, extant solutions, and prospective trajectories for

each classification is offered, accompanied by a temporal analysis of the citation scores gar-

nered by each category within the taxonomy. This is intended to give readers insights into

the impact and reception that each classification, technique, and category has garnered in

this field of study.

The structure of this manuscript is as such: Section 4 sheds light on input modalities, section 5 elu-

cidates foundational concepts, terminologies, and the taxonomy, section 6 ventures into a review of the

most representative classic techniques, section 5 addresses the methods that infuse machine learning,

section 6 delves into a discussion concerning the comprehensive taxonomy, and the paper culminates

with conclusions in section 7.

4. Input modalities

Creating a 3D visual depiction of an environment is a challenging task, made possible through cam-

era sensors. Historically, cutting-edge systems relied on intricate camera arrangements and specific

10

lighting designs, mainly tailored for indoor settings. In contemporary times, equipment choices span

from high-priced multi-view and stereo configurations to more affordable single-lens sensors. Follow-

ing this, a concise summary of various techniques for 3D reconstruction will be provided.

4.1. Stereo setups

In multi-view configurations, a collection of pairwise stereo cameras is organized to permit the con-

current capture of multiple perspectives of the same entity [1]. Notably, systems employing a pair of

cameras are designated as stereo systems [18]. Such binocular systems integrate two distinct camera

sensors, enabling the immediate calculation of depth and image scale through triangulation, given their

pre-defined and recognized stereo baseline dimension. Nonetheless, compared to monocular sensors,

these binocular cameras generally come at a higher cost and demand a greater calibration commitment.

Furthermore, for consistent results, these sensors must capture images within identical time frames, a

feat accomplished by coordinating the shutter speeds via an external triggering mechanism [39]. Nota-

bly, preserving a steady calibration baseline between two cameras often entails more diligence than its

monocular counterpart. If the baseline diminishes significantly compared to the distance from the sub-

ject to the camera, stereo configurations are compromised to a monocular status [40]. Consequently,

their application is predominantly confined to small or indoor applications.

4.2. Omni-directional cameras

Numerous researchers, including Ke et al. [41][25], [41]–[43], have opted to employ omnidirectional

cameras owing to their expansive field of vision (FOV). Valiente García et al. [41] noted that these cam-

eras offer an information yield surpassing conventional cameras. Furthermore, image features persist

longer, facilitating the derivation of meticulously detailed 3D landscape models. Nonetheless, the de-

ployment of omnidirectional cameras is not without challenges. They are not only costly but also ne-

cessitate significant setup efforts and lack compatibility with mobile devices. Some of these devices

employ mechanical rotation for incremental scene scanning, positioning them as best suited for static

settings and potentially unsuitable for dynamic environments [3]. An important challenge faced during

3D reconstruction tasks with these devices is image distortion stemming from the equirectangular rep-

resentation. This distortion arises when the spherical pixels, once projected onto a plane, undergo sub-

stantial warping, potentially leading to errors in depth estimation [44].

4.3. Monocular RGB-D

RGB-D sensors are equipped with an auxiliary active or passive sensor, facilitating real-time depth

determinations of the environment for each pixel in the image. Such depth data provides a solution to

the depth and scale uncertainty encountered in monocular reconstructions, approximating the envi-

ronmental geometry. These instruments can be categorized into active and passive classes. Unlike their

stereo counterparts, passive RGB-D devices often incorporate a projector instead of an additional cam-

era, casting a pattern onto the image to identify corresponding points. These devices predominantly

operate within the infrared (IR) domain to ensure the projected pattern remains imperceptible to the

human gaze. RGB-D devices employing infrared projectors are labelled as active. It's imperative to note

that active RGB-D devices might yield inaccurate readings under sunlight [3], which is attributable to

the sun's overpowering IR radiation. Consequently, certain RGB-D cameras amalgamate both active

and passive sensors, which toggle based on sunlight exposure, though this adaptation can amplify the

device's cost substantially. One pervasive drawback of these light instruments is their inability to re-

construct entities smaller than the illumination pattern [1].

The Time of Flight (ToF) methodology offers an alternative approach for active RGB-D cameras.

Depth determinations are estimated by releasing a light pulse and calculating the duration required for

it to contact the target. Since this interaction occurs nearly at light speed, capturing accurate

11

measurements proves challenging. Hence, ToF RGB-D cameras often underperform when juxtaposed

with other RGB-D illuminative models [1].

4.4. Monocular RBG

RGB cameras measure light intensity across three channels: red, green, and blue. Different designs

for these devices exist, from CCD sensors that individually capture each channel using distinct sensors

to those using Bayer pattern sensors, where colour filters are arranged interwoven ahead of a singular

sensor [1]. Monocular cameras are recognized for their ability to mitigate calibration discrepancies. Due

to their prevalence, affordability, ease of installation, and incorporation in many handheld devices,

these cameras remain a primary focal point for researchers. The latter typically gravitate towards this

input form when executing reconstruction tasks in SLAM, SFM, and VO. However, it's worth noting

that employing this input introduces complexities. Monocular vision inherently grapples with scale

ambiguities [45], [46], and methodologies aimed at 3D reconstruction often necessitate considerable

computational capacity. Table 1 provides a concise overview of the advantages and limitations associ-

ated with various input modalities employed for 3D reconstruction.

Table 1. Input modalities used in 3D reconstruction

Type of

camera
Pros Cons

Stereo Instant computation of depth information and image scale.

Ease in obtaining depth information.

Capable of providing 3D data.

Demand more intensive calibration relative to

monocular devices, increasing costs.

Complications in synchronizing shutter oper-

ations.

Risk of degradation to a monocular status

when the stereo baseline falls short compared

to the distance between the camera and the

object.

Omni-di-

rectional

Offer an expansive field of view, nearly 360º, leading to

richer image data.

Image features persist for extended durations, aiding in the

derivation of refined models.

Generally pricier than alternative camera

types.

Lack of compatibility with mobile devices.

Some models may struggle in dynamic set-

tings.

Susceptibility to distortions, particularly

those stemming from equirectangular repre-

sentations.

Monocular

RGB-D

Facilitate real-time depth measurements in conjunction

with image captures.

Convenient deployment mechanisms.

Harmonious integration with mobile platforms.

Optimal for applications in small robotics and indoor set-

tings.

Possibility of generating inaccurate measure-

ments under sunlight exposure.

Constraints set by the range of the active sen-

sor and the dimensions of the projected pat-

tern.

Typically priced higher than monocular RGB

sensors.

Monocular

RGB

Economical choice with the most affordable pricing struc-

tures.

Widespread availability and use.

Straightforward deployment processes.

Integrated into a majority of mobile devices.

Simplified calibration methods.

Not bound by sensor range limitations.

Versatile applications include small robotics, both indoor

and outdoor settings, and functionality under sunlight.

Present challenges with image scale ambigu-

ity.

Lacks inherent depth measurement capabili-

ties.

3D reconstruction operations may necessitate

substantial computational input.

Referring to Table 1, it's evident that while monocular RGB cameras have certain challenges, pri-

marily stemming from their inability to directly provide depth information due to their sensorless con-

figuration, they offer a compelling suite of advantages, particularly for applications in small robotics.

12

Among the myriad camera variants, monocular RGB sensors boast the most economical price point,

coupled with ease of deployment and a compatibility range that spans almost all contemporary porta-

ble devices and processors, including Single Board Computers (SBC) and Field Programmable Gate

Arrays (FPGA). This combination of attributes renders the monocular RGB input modality especially

appealing to the academic community, and it serves as the foundational premise for the focus of this

research.

5. Basics and notation

5.1. Literature review process

Engaging in 3D scene reconstruction via monocular cameras represents a daunting challenge, one

that has captivated a considerable number of researchers. Surprisingly, this field remains sparsely re-

searched. Given the ill-posed nature of this issue, existing methodologies exhibit considerable diver-

gence, and terminology may lack consistent usage. Therefore, the primary aim of this manuscript is to

introduce a coherent taxonomy and furnish foundational insights into this field. To this end, our re-

search strategy employed specific search parameters on both Scopus and Google Scholar databases:

TITLE-ABS-KEY (("SLAM" OR "VO" OR "SFM" OR "Simultaneous Landing and Mapping" OR "Visual

Odometry" OR "Structure from Motion")) AND ("Monocular" OR "Visual" OR "RGB") AND NOT

("RGB-D" OR "Stereo" OR "omnidirectional" OR "Visual Inertial" OR "VI")). An exhaustive, independent

review enabled the exclusion of studies centring on RGB-D, stereo, or omnidirectional camera frame-

works. Ultimately, our inquiry yielded 137 studies dedicated to 3D reconstruction via monocular RGB

methodologies. Utilizing both Scopus and Mendeley, we extracted the bibliometric particulars of each

study, resulting in the generation of a . 𝑟𝑖𝑠 file. This data was subsequently analyzed by employing the

VOSviewer software [47]. Implementing a bibliometric co-authorship assessment grounded in our cho-

sen bibliometric data, an association strength methodology, a full-count approach, and a stipulation of

at least two publications per author, we identified 64 authors who satisfied these criteria. The outcomes

of this bibliometric evaluation are depicted in Figure 1.

Figure 2. Results from the bibliometric co-authorship analysis, carried out using VOSviewer, employed the asso-

ciation strength approach, a full-count technique, and mandated at least two publications for each author.

From the bibliometric assessment, it was noticeable that certain authors exhibited prominent link

strengths due to their important contributions to cutting-edge developments in the field. Notably,

Cremers, D., Czarnowski, J., Davison, A., Clark, R., and Leuteneger, S. stood out with link strengths of

28, 13, 12, 11, and 11, respectively. Guided by these findings, our literature exploration started with a

thorough review of works by these foremost authors to establish a foundational understanding. Sub-

sequently, our bibliographic repository expanded by incorporating references cited within each article,

both as antecedent works and comparative studies.

13

5.2. Notation

In this manuscript, vectors in equations and declarations are denoted by bold lowercase letters, such

as (𝒙). Matrices are symbolized by bold uppercase characters, for instance (𝑹). Scalars are designated

using non-bold lowercase letters, exemplified by (𝑐). Functions and images utilize non-bold uppercase

letters, like (𝐼). Consider an image (𝐼) composed of a certain pixel set. For each pixel, denoted as 𝒒, in

the image, it is posited that a depth value 𝑑 exists, facilitating the projection of the related 3D coordi-

nates 𝒙 = (𝑥, 𝑦, 𝑧)𝑇. Consequently, camera poses are delineated as transformation matrices 𝑻𝑖 ∈ 𝑆𝐸(3),

which translates a point from the global frame to the camera-centric frame. Herein, 𝑹 signifies rotation

matrices, whereas Π and Π−1 respectively stand for projection and back-projection operations. Moreo-

ver, 𝑑∗ typifies inverse depth values, implying that 𝑫 and 𝑫∗ pertain to depth and its inverse depth

map representations, respectively.

5.3. Initial words and approaches

Camera pose estimation is a primary objective in visual SLAM, SFM, and VO domains. Historically,

researchers have addressed this through three distinctive methodologies: feature-based, appearance-

based method, or a fusion of both feature and appearance-based strategies [18], [19], [41].

The feature-based methodology, as implemented in studies such as [6], [7], [14], [33], [48], [49], pre-

dominantly engages in the extraction of salient image features, which might include corners, lines, and

curves, among other elements. Subsequent steps involve the alignment of representative features and

motion estimation. The feature vectors' Euclidean distance across the two images is utilized to identify

matching candidates. Consequently, when two different-pose images of an identical scene are consid-

ered, the features from the initial image are aligned with the congruent features in the latter image. This

alignment facilitates the determination of a 3D position corresponding to these matched features, a

process visualized in Figure 3. The assessment of motion customarily revolves around the displacement

of these features. The camera's pose is inferred by identifying a geometric transformation spanning

each image pair, contingent on a set of corresponding features.

Figure 3. Feature matching and 3D triangulation from multiple views.

In the domain of visual tracking, there are distinct methodologies: the feature-based approach,

which focuses on specific features within an image, and the appearance-based approach, which centres

on the changes in the appearance of sequential images by leveraging pixel intensity data. One alterna-

tive that bypasses direct pixel intensity utilization is employing optical flow. This technique assesses

the shift in brightness patterns between consecutive images, represented by the intensity values of

neighbouring pixels. Optical flow (OF) algorithms, based on the pixel count used for deducing camera

motion, are categorized as either dense or sparse. Dense strategies harness the entirety of the image

data, wothout the need for feature extraction. This full utilization, however, renders them more suscep-

tible to noise than their sparse counterparts [50].

14

One prevalent method within the appearance-based paradigm for estimating ego-motion is tem-

plate matching. This entails selecting a "template" segment from an initial image and subsequently en-

deavouring to locate a matching segment in the succeeding frame. The essence of template matching

lies in discerning the presence of a smaller sub-image (the template) within a larger encompassing im-

age (the search area). This is achieved by computing similarity metrics, such as normalized cross-cor-

relation (NCC) and the sum of square or absolute differences (SSD/SAD). The operational premise in-

volves the algorithm progressively shifting the template across the search area, pinpointing the position

with the maximal similarity metric as the template's location within the new image [18]. Following this,

the pixel displacements of the template, denoted as ∆u and ∆v, are articulated as vectors, thereby out-

lining the velocity and ensuing acceleration in the flow field, a visualization provided in Figure 4. These

pixel displacements can be transmuted through camera calibration parameters into tangible horizontal

and vertical shifts, suitable for various applications.

Figure 3. Optical flow and optical flow acceleration fields are generated from consecutive frames. Where F is the optical flow

field, and ∆u and ∆v are the pixel displacements of the template.

Gonzalez et al. [51] and Nourani-Vatani and Borges [52] indicate that feature-based methodologies

often encounter challenges in environments with minimal textures, such as walls or roads. This is pri-

marily attributed to the limited availability of distinguishable features that can be effectively identified

and tracked in such contexts. Conversely, appearance-based techniques are recognized for their resili-

ence, offering superior tracking capabilities in low-textured settings (Nourani-Vatani & Borges, 2011).

Nonetheless, these methods are not without their limitations; they exhibit sensitivity to changes in pho-

tometric conditions and necessitate meticulous initialization to yield optimal outcomes. To address

these complexities, systems like the one presented by [43] were designed by amalgamating feature- and

appearance-based strategies, offering a more comprehensive approach to visual tracking.

Given the intrinsic complexity of 3D reconstruction inherent to monocular SLAM, SFM, and VO

methodologies, the prior categorization—based on feature, appearance, or a hybrid of both—cannot

encompass the breadth of solutions available for this monocular ill-conditioned challenge. A more re-

fined taxonomy can be discerned from the contributions of researchers such as [16], [17], [22], [23], [53].

Two predominant categories are evident from these works: direct versus indirect and dense versus

sparse.

Thus, monocular SLAM, VO, and SFM techniques can be categorized primarily based on the volume

of features they employ for 3D reconstruction tasks, leading to a bifurcation into sparse and dense

methodologies. Furthermore, another differentiation emerges based on whether there's a necessity for

initial preprocessing to extract relevant parameters and measurements. Indirect techniques hinge on

this preprocessing phase, producing an intermediary depiction of imprecise measurements that un-

dergo optimization before determining geometry and camera movement. Direct methods, on the other

hand, directly work with pixel data. With the rapid advancements in machine learning and its notable

15

outcomes, a novel category has been integrated into this classification, as illustrated in Figure 4. As a

result, we delineate three primary classifications to create a holistic taxonomy for the monocular 3D

reconstruction challenge: direct vs. indirect, dense vs. sparse, and classic vs. machine learning ap-

proaches.

Direct vs. Indirect: Direct methods bypass preprocessing stages such as feature or optical flow ex-

traction. In contrast, indirect methods incorporate these preprocessing stages in their workflows.

Dense vs. Sparse: The term "dense" describes methodologies that utilize the whole or a significant

portion of image pixel data. Conversely, "sparse" denotes techniques that leverage only a subset of the

available pixel information.

Classic vs. Machine Learning: Classic techniques, often called geometric-based methods, base their

operations on geometric principles, odometry, or probabilistic frameworks. These methods lack learn-

ing phases and necessitate precise tuning and calibration for optimal performance. In juxtaposition,

machine learning-driven approaches have showcased their prowess in executing low-level functions

(such as feature extraction, depth estimation, and pose estimation) and high-level operations (like clas-

sification and semantic segmentation). Owing to these advantages, many researchers are exploring neu-

ral networks for tasks like pose prediction, depth evaluation, feature discernment, and semantic seg-

mentation. These are often integrated with traditional architectures to augment their precision, adapt-

ability, resilience, scene interpretation abilities, and other salient attributes.

Figure 4 illustrates the triadic classification framework adopted in this investigation. Taking into

account these categorizations and acknowledging the existence of hybrid methodologies [13], [54] that

meld both direct and indirect strategies for reconstruction, we put forth the following taxonomy: Clas-

sic + Dense + Direct, Classic + Sparse + Direct, Classic + Dense + Indirect, Classic + Sparse + Indirect,

Classic + Hybrid, ML + Dense + Direct, ML + Sparse + Direct, ML + Dense + Indirect, ML + Classic +

Sparse + Indirect and ML + Hybrid. The classification of the currently existing methods is depicted in

Figure 5.

Figure 4. Proposed taxonomy for monocular 3D reconstruction methods

16

Figure 5. Classifications for monocular 3D reconstruction approaches. The top examples represent direct and indi-

rect classification, while the middle examples belong to sparse and dense classification. The bottom examples cor-

respond to classic and machine learning classification. Examples were obtained by implementations of ORB-

SLAM2 [21], DSO [2], LDSO [10], and MonoRec [43] on the datasets TUM-Mono [44] sequence 42, TUM-RGB-D

[45] sequence Freiburg-1-room and KITTI [46] sequence 7, respectively.

6. Classic methods

In this study, the initial category was focused on the traditional Monocular SLAM, SFM, and VO

techniques, collectively named the geometric-based approach. These methodologies predominantly

harness geometric data to facilitate 3D reconstruction and to execute their comprehensive SLAM, VO,

or SFM processes. Given the inherent complexity of reconstructing scene geometry, which is character-

ized as an ill-posed problem, numerous proposals have emerged that amalgamate conventional geo-

metric methods with other strategies, such as probabilistic, optimization, computer vision, and heuris-

tic techniques. However, it is pertinent to note that this categorization deliberately omits methods in-

corporating machine learning, a topic slated for discussion in Section 5.

As delineated by [2], the estimation of scene geometry can be achieved through a probabilistic model

that capitalizes on noisy measurements, denoted as 𝒀, sourced from images. This subsequently yields

an 𝑋 estimator for the 3D model and ego-motion [2]. Addressing the 3D reconstruction challenge can

be approached through two primary paradigms: the indirect and the direct. Within the indirect para-

digm, measurements from the camera undergo preprocessing, resulting in an intermediate representa-

tion that addresses a portion of the overarching problem. The values derived from this phase then serve

as noisy inputs for the 𝑋 estimator. On the other hand, the direct paradigm sees systems forgoing the

preprocessing phase, opting instead to directly utilize measurements gleaned from observations as

noisy inputs for the 𝑋 estimator within a probabilistic framework. This bifurcation also influences the

optimization strategy: while direct methods prioritize the optimization of photometric errors (differ-

ences in pixel intensity) due to their reliance on photometric measurements, indirect methods empha-

size the optimization of geometric errors, stemming from the geometric values computed during pre-

processing.

17

6.1. Classic + Indirect methods

As mentioned, indirect methodologies employ preprocessing stages to distil information from the

input image sequence, typically manifesting as visual features, descriptors, or optical flow. Concur-

rently, traditional indirect systems can be designed to facilitate either sparse or dense 3D reconstruc-

tions of the environment. These nuanced subcategories will be further detailed in sections 4.2.1 and

4.2.2. Presented in Figure 6 is a chronological overview of the most prominent methods within this

category, curated based on their citation frequency and pivotal roles in pioneering new implementa-

tions or comparative studies. Notably, Figure 6 underscores the ORB-SLAM system and its subsequent

iterations as a cornerstone development within this category, boasting one of the most outstanding

citation metrics in the context of this research.

Figure 6. Monocular SLAM, VO, and SFM classic indirect systems--A Timeline.

6.1.1. Classic + Sparse + Indirect methods

Within this category, several predominant approaches can be identified, primarily grounded in 3D

geometry estimation derived from keypoint matches, utilizing geometry error without prior geometry

knowledge. The SLAM methodologies in this category leverage a specific subset of pixel data to execute

their inherent processes. Consequently, the resultant output mirrors a subset of the anticipated scene

reconstruction. In certain applications, such as robotics, this level of reconstruction is deemed adequate

for undertakings like robot navigation or place recognition. The characterization of these methods as

"indirect" stems from their preprocessing stages. During these stages, novel variables, encompassing

features and their respective positions are deduced by replacing pixel data, ensuring subsequent pro-

cesses utilize these newly derived values.

Jin et al. (2000). An early pivotal work of this category was presented by Jin et al. in 2000, titled

"Real-Time 3-D Motion and Structure of Point Features" [14]. This research delineated a system profi-

cient in selecting and monitoring a designated set of high-contrast point features within an image se-

quence. The system's capability extended to estimating a three-dimensional relative position and mo-

tion rooted in an inertial reference. This objective was realized by pinpointing an 𝑁 − 𝑡𝑢𝑝𝑙𝑒 of points,

designating a reference plane 𝑌0, and ascertaining their depth through the projection 𝜌 rays. This ap-

proach culminated in the derivation of a discrete-time non-linear dynamic system, articulated using a

translation vector function 𝑇, a rotation matrix 𝑹, and its associated linear and rotational velocities 𝑉

and �̂� (expressed using the hat notation). Herein, 𝛼 symbolizes the pertinent accelerations. The authors

posited that the noisy projection could be articulated as 𝑌𝑖(𝑡) = 𝜋 (𝑹(𝑡)𝑌0
𝑖𝜌𝑖 + 𝑇(𝑡)) + 𝒏𝑖(𝑡) ∈ ℝ2,

aligning with the projection model's framework. Additionally, the research validated the model's min-

imalistic nature and affirmed the stability of the Extended Kalman Filter predicated on this model. The

model's traditional state space representation was subsequently represented as:

18

{

𝑌0
𝑖(𝑡 + 1) = 𝑌0

𝑖(𝑡), with 𝑖 ∈ {4, … , 𝑁}, 𝑌0
𝑖(0) = 𝑌0

𝑖 ,

𝜌𝑖(𝑡 + 1) = 𝜌𝑖(𝑡) 𝑖 ∈ {2,… , 𝑁}, 𝜌𝑖(0) = 𝜌0
𝑖

𝑇(𝑡 + 1) = exp(�̂�(𝑡))𝑇(𝑡) + 𝑉(𝑡), 𝑇(0) = 𝑇0

Ω(𝑡 + 1) = 𝐿𝑜𝑔𝑆𝑂(3) (exp(�̂�(𝑡)) exp (Ω̂(𝑡))) , Ω(0) = Ω0

𝑉(𝑡 + 1) = 𝑉(𝑡) + 𝛼𝑣(𝑡), 𝑉(0) = 𝑉0
𝜔(𝑡 + 1) = 𝜔(𝑡) + 𝛼𝜔(𝑡), 𝜔(0) = 𝜔0

𝑌𝑖(𝑡) = 𝜋 (exp (Ω̂(𝑡))𝑌0
𝑖(𝑡)𝑝𝑖(𝑡) + 𝑇(𝑡)) + 𝒏𝑖(𝑡),

 (1)

where 𝒏𝑖 ∼ 𝒩(𝟎, 𝚺𝑛), 𝐿𝑜𝑔𝑆𝑂(3)(𝑹) stands for Ω and 𝑖 = {1 . . . 𝑁}. The algorithm employs the model

mentioned above and undergoes phases of initialization (of the initial selection of features), transient

operations (encompassing prediction, update, gain, and linearization), and regime tasks (which include

initialization, prediction, and update). Features are meticulously tracked, eliminated, and refreshed

within these phases following the Riccati equation. New features are integrated into the state after a

designated probationary period. Figure 7 delineates the algorithm conceived by Jin et al., inspired by

their publication [14].

Figure 7. Jin et al., algorithm diagram. Adapted from [14].

MonoSLAM (2007). In 2007, Davison et al. [31] pioneered introducing the first monocular visual

SLAM system. This innovation was constructed upon foundational works [55]–[57] with the intent of

devising a "pure vision" system. This system was designed to dynamically construct persistent 3D en-

vironmental maps while concurrently estimating camera ego-motion, rectifying drift through loop clo-

sures, and operating in real-time, all by exclusively harnessing a monocular camera as its information

source. This system dedicates a persistent sparse map through a probabilistic framework that utilizes

a landmark set. Noteworthy advancements in this study encompass incorporating active guided meas-

urement, superior mapping features, amalgamating a motion model for refined camera motion estima-

tion (facilitating the capture of prior data within an image sequence), and introducing feature initiali-

zation and orientation estimation techniques. The authors established that leveraging SLAM, wherein

simultaneous probabilistic camera state estimation occurs in tandem with its map, as opposed to SFM,

offers advantages in terms of efficient processing. The probabilistic feature map estimation is central to

the MonoSLAM methodology, which encapsulates the camera's state at any given moment and all per-

tinent features. The Extended Kalman Filter perpetually refreshes this map. MonoSLAM employs ex-

pansive image patches (11×11 pixels) as enduring landmarks, with detection facilitated by Shi & Tomasi

operators (Shi & Tomasi, 1994). Given the inherent scale ambiguity of monocular SLAM, system initial-

ization necessitated the provision of some scene-prior data, achieved by positioning a recognizable rec-

tangular target before the camera. Subsequent depth estimation involved placing a semi-infinite line at

each 2D position, oriented in a specific direction. Along this line, discrete depth hypotheses were se-

quentially estimated as the camera moved, culminating when the distribution converged to a peak. The

distribution could be approximated as Gaussian when the standard deviation diminishes below a set

threshold. A notable limitation of this approach is the algorithm's complexity, which escalates directly

to scene size, yielding a sparse landmark map that doesn't fully capture the intricacies of the environ-

ment. Figure 8 depicts the MonoSLAM algorithm inspired by the article [31].

19

Figure 8. Diagram of MonoSLAM algorithm diagram. Adapted from [31].

PTAM (2009). In 2009, Klein & Murray [58] introduced a system known as "Parallel Tracking and

Mapping" (PTAM), specifically tailored for the augmented reality domain. The primary objective of

PTAM was to transform a planar surface into an interactive arena suitable for VR simulations, albeit its

application was primarily confined to smaller-scale AR endeavours. PTAM distinguished itself as the

first system to separate tracking and mapping tasks into two concurrent threads, capitalizing on the

multi-core architecture of contemporary computers. Within this framework, the tracking thread bore

the responsibility of prior pose estimation, projecting map points onto an image, coarsest-scale feature

identification within the image, camera pose updates based on these matches, patch searches of repro-

jected points, and the estimation of the current frame's pose from the identified matches. Conversely,

the mapping thread was meticulously crafted to oversee map initialization, its subsequent refinement,

and expansion, drawing keyframes from the tracking thread. This also encompassed the Levenberg-

Marquardt bundle adjustment to recalibrate each keyframe's pose and refine data associations, lever-

aging an outlier management strategy rooted in a Tukey estimator. A prominent feature of PTAM is

decoupling tracking and mapping, bypassing numerous redundant frames. This liberates processing

capabilities to focus on a select group of keyframes, facilitating operations with an expanded map size.

This approach eschews incremental mapping in favour of a more precise batch method, exemplified by

Bundle Adjustment. PTAM was conceived with an emphasis on AR integrations within video games

and, when juxtaposed with EKF-SLAM [59], demonstrated a marked reduction in trajectory errors. Fig-

ure 9 visually represents the PTAM algorithm, a drawing inspired by the article [58].

Figure 9. Diagram of PTAM algorithm. Adapted from [58].

OpenMVG (2013). The OpenMVG (Open Multiple View Geometry) Structure from Motion (SfM)

system stands as an open-source initiative aimed at reconstructing 3D representations of objects, scenes,

or structures from a collection of 2-dimensional images. These images can be simultaneously captured

(via stereo setups) or sourced from a sequence of monocular images (incrementally). This system was

20

introduced by Moulon et al. in 2013 [60] and has since been enhanced, building upon the contributions

of various researchers. Notably, it integrates a hash-map algorithm, adopts a graph-based geometry

verification mechanism, and is tailored to manage expansive datasets [60].

OpenMVG's operational pipeline encompasses camera calibration, feature extraction and matching,

geometric filtering, 3D reconstruction, global optimization, and colourization. A defining advancement

of OpenMVG over preceding SfM systems is its hash-map algorithm, which streamlines the feature

extraction and matching process. This is achieved by efficiently cataloguing the positions and de-

scriptors of features for swift access and comparison, thereby facilitating the management of volumi-

nous datasets and expediting computation times. The system's graph-based geometry verification pro-

cess also juxtaposes estimated camera poses and 3D reconstructions against a similarity graph. This

graph, which encapsulates recurring geometric relationships, aids in the exclusion of erroneous

matches and outliers, thereby enhancing the precision of the reconstruction. OpenMVG's prowess in

managing vast datasets and its scalability are also commendable. The system can process up to 100,000

images in a singular execution and adeptly reconstruct intricate scenes and structures. Such scalability

is attributed to its efficient memory utilization and data structure optimizations, such as employing

locally homogenous patches and a sparsity-centric representation of feature matches. The reconstruc-

tion quality is contingent upon various factors, including camera calibration, image quality and quan-

tity, system scalability, and feature extraction and matching precision. OpenMVG addresses these con-

siderations through automated camera calibration, parallelized feature extraction and matching, robust

camera pose, and 3D point estimation. Additionally, the system offers users the flexibility to refine the

reconstruction process and furnishes various visualization tools for inspecting and modifying the 3D

models.

The OpenMVG library is structured around a suite of modules presented on a user-friendly inter-

face, facilitating effortless configuration. These modules span image processing, feature extraction and

description, feature and image collection matching, multiple view geometry, robust estimation, struc-

ture from motion, and localization. Each module is meticulously designed to perform specific tasks,

ranging from image encoding and processing to feature detection, description, and matching, as well

as geometric constraint verification on matched pairs. The robust estimation module is adept at identi-

fying and discarding corrupted or noisy image pairs. The Structure from Motion module enables

OpenMVG to produce 3D reconstructions through global or incremental pipelines, even with images

exhibiting minimal cross-coverage. Notably, the incremental approach is recognized for its susceptibil-

ity to drift due to its sequential nature. Bundle Adjustment is executed as a concluding step within the

SFM module to refine the SFM scene by minimising reprojection error. Figure 10 offers a visual repre-

sentation of the OpenMVG algorithm inspired by the article [61].

Figure 10. Diagram of OpenMVG algorithm. Adapted from the article [61].

ORB-SLAM (2015). Several years after earlier implementations, a notable monocular system named

ORB-SLAM was introduced by Mur-Artal et al. [33]. This system was built based on the utilization of

ORB features, characterized as multiscale FAST corners accompanied by a 256-bit descriptor. Intri-

guingly, this descriptor was consistently employed across various processes, including tracking, map-

ping, relocalization, and loop closing, primarily owing to its rapid computation and matching

21

capabilities. The ORB-SLAM system execution starts with extracting features, a preliminary step,

thereby categorizing ORB-SLAM as an indirect methodology. Within this phase, the input undergoes

preprocessing to distil ORB features from prominent key-point locales. Subsequent processes are exe-

cuted based on these extracted features, rendering the remaining input image data redundant. Similarly

to PTAM, ORB-SLAM incorporates bundle adjustment, which is widely regarded as the gold standard

for SFM due to its efficacy. Historically, the computational intensity of Bundle Adjustment rendered it

impractical for real-time applications. Nonetheless, the authors postulated that its computational de-

mands could be attenuated by concentrating on pertinent scene feature observations, specifically by

selecting a subset of keyframes. This approach aimed to circumvent redundancy in keyframe selection

and emphasized using keyframes characterized by pronounced parallax and abundant matches during

loop closure. Consequently, ORB-SLAM employs an initial approximation for keyframe poses and

point positioning during optimization. This system is designed to prioritize optimization centred on

local map scrutiny while also retaining the capacity to execute global optimizations for loop closures.

Within this methodology, the Bundle Adjustment optimization is orchestrated for the 3-D coordi-

nates 𝒙𝜔,𝑗 = (𝑥𝜔,𝑗 , 𝑦𝜔,𝑗 , 𝑧𝜔,𝑗)
𝑇
. Concurrently, the poses of the keyframes, denoted as 𝑻𝑖𝜔 are refined by

minimizing the reprojection error associated with the 𝑥𝑖,𝑗 points. Thus, the error attributed to a point 𝑗

within a keyframe 𝑖 is articulated as:

𝑒𝑖,𝑗 = 𝑥𝑖,𝑗 − 𝜋𝑖(𝑻𝑖𝜔 , 𝒙𝜔𝑗),

𝜋𝑖(𝑇𝑖𝜔 , 𝑋𝜔,𝑗) =

[

 𝑓𝑖,𝑢

𝑥𝑖,𝑗

𝑧𝑖,𝑗
+ 𝑐𝑖,𝑢

𝑓𝑖,𝑣
𝑦𝑖,𝑗

𝑧𝑖,𝑗
+ 𝑐𝑖,𝑢

]

, and

[𝑥𝑖,𝑗 𝑦𝑖,𝑗 𝑧𝑖,𝑗]𝑇 = 𝑹𝑖𝜔𝒙𝜔,𝑗 + 𝒕𝑖𝜔,

(2)

where 𝜋𝑖 is the projection function, 𝑹𝑖𝜔 and 𝒕𝑖𝜔 are rotation and translation components of 𝑻𝑖𝜔.

(𝑓𝑖,𝑢, 𝑓𝑖,𝑣) and (𝑐𝑖,𝑢 , 𝑐𝑖,𝑣) are the focal length and main point associated with the 𝑖 camera. The objective

function targeted for minimization is articulated as: 𝐶 = ∑ 𝐻ℎ(𝑒𝑖,𝑗
𝑇 , Ω𝑖,𝑗

−1𝑒𝑖,𝑗)𝑖,𝑗 , where 𝐻ℎ represents the

Huber robust cost function and 𝛀𝑖,𝑗 = 𝜎𝑖,𝑗
2 Ι2×2 denotes the covariance matrix corresponding to the scale

of each identified keypoint.

ORB-SLAM is an intricate system, synthesized from foundational systems such as PTAM [58], the

place recognition methodology termed Bags of Words [62], the scale-aware loop closing technique [63],

and the integration of co-visibility information explored in both [64], [65]. The amalgamation and en-

hancement of these techniques culminated in a novel system. Its notable contributions encompass: the

uniform application of features for tracking, mapping, relocalization, and loop closing in real-time, ex-

hibiting commendable resilience to alterations in viewpoint and lighting; the deployment of a local co-

visibility graph for tracking and mapping, ensuring map size independence and facilitating real-time

operations in expansive environments; the adoption of a loop-closing method anchored in pose graph

optimization; the capability to recuperate from tracking discrepancies; an automatic initialization pred-

icated on model selection; and the strategic selection of map points and keyframes via the "survival of

the fittest" approach. Mirroring PTAM, ORB-SLAM displays three concurrent threads dedicated to

tracking, local mapping, and loop closing. The tracking thread is tasked with camera localization for

each frame and discerns the opportune moments for keyframe insertion. The local mapping thread

processes each emergent keyframe and conducts bundle adjustment to reconstruct proximate 3D ele-

ments. The loop-closing thread is responsible for identifying loops with every new keyframe and com-

puting a similarity transformation to gauge the accumulated drift upon loop detection. Furthermore,

ORB-SLAM has instituted a flexible policy for the generation and removal of keyframes, facilitating

dynamic map expansion and the efficient identification and elimination of superfluous keyframes. Em-

pirical results underscored that one of the primary advantages of indirect methodologies is their profi-

ciency in feature matching, even across extensive baselines. As per Mur-Artal et al. [33], precision can

be further augmented by incorporating points at infinity into the tracking, which encapsulates pivotal

22

rotational data. Potential enhancements include utilising a denser map or leveraging the system as a

foundational structure upon which a more precise dense map can be constructed. Figure 11 offers a

visual depiction of the ORB-SLAM algorithm inspired by the article [33].

Figure 11. Diagram of ORB-SLAM algorithm. Adapted from [33].

COLMAP (2016). COLMAP, a method tailored for photogrammetry and computer vision, endeav-

ours to reconstruct a 3D scene from an array of 2D images. Its core approach is estimating camera ori-

entations and 3D scene points by optimizing a bundle adjustment challenge. The method capitalizes on

feature-based matching to establish inter-image correspondences and subsequently refines these

matches, considering geometric consistency to eliminate outliers. Notably, COLMAP introduces ad-

vancements in the optimization phase, incorporating a unique parameterization for rotation and lever-

aging a more resilient optimization strategy based on the Levenberg-Marquardt algorithm.

Structure from Motion (SFM) techniques conventionally unfold in two phases: correspondence

search and incremental reconstruction. The former phase discerns overlaps in input images and pro-

jects identical points in overlapping images, constructing a graph of image projections for each point.

In this context, COLMAP performs feature extraction to pinpoint sets of local features resilient to radi-

ometric and geometric alterations, facilitating their recognition across multiple images. Subsequent

matching identifies images capturing identical scene segments by seeking the most analogous features

in each image. Given that matching is solely appearance-based, geometric verification becomes imper-

ative to ensure that feature correspondences genuinely represent the same scene point. This verification

is achieved by estimating transformations; transformations mapping many features are verified.

COLMAP's second phase, incremental reconstruction, leverages the scene graph from the correspond-

ence search to retrieve pose estimates and depict the scene structure as a point cloud. This phase starts

with an initialization process, essential for averting trajectory loss complications. Image registration

enables the system to incorporate new images by resolving the Perspective-n-Point (PnP) problem us-

ing previously discerned feature correspondences of triangulated points. Triangulation subsequently

augments the scene's point cloud representation. Given SFM's propensity to rapidly deviate to irrecov-

erable states, bundle adjustment refines camera and point parameters by minimizing reprojection er-

rors.

COLMAP's seminal contributions to the SFM process encompass enhancements in image registra-

tion, triangulation, and bundle adjustment procedures. The method introduces a robust next-best im-

age selection technique, improving pose estimation and ensuring reliable triangulation. This approach

employs a multi-resolution analysis underpinned by an 𝑆 score, which elevates when more points are

23

discernible and uniformly distributed. Furthermore, using the RANSAC approach, COLMAP intro-

duces an innovative triangulation procedure designed for heightened resilience to outliers and the

amalgamation of independent points into singular tracks. Notably, COLMAP's bundle adjustment is

integrated into image registration and triangulation, facilitating local bundle adjustment for each image

registration and global adjustments upon significant model expansion.

When juxtaposed with analogous methods, COLMAP exhibits superior accuracy, efficiency, and

scalability performance metrics. Remarkably, it adeptly manages extensive image collections, spanning

hundreds of thousands of images, without compromising reconstruction quality. Furthermore,

COLMAP excels in reconstructing scene geometry, an essential attribute for virtual and augmented

reality applications. Its versatility in processing diverse input data types, ranging from unordered im-

age sets to video frames, renders it apt for many applications, spanning from 3D cultural heritage mod-

elling to robotic vision. Additionally, COLMAP offers an exhaustive toolkit for visualizing and scruti-

nizing reconstruction outcomes, including point cloud visualization, texture mapping, and error eval-

uation. Figure 12 delineates the COLMAP algorithm inspired by the article [66].

Figure 12. Diagram of COLMAP algorithm. Adapted from [66].

ORB-SLAM2. After their initial work on ORB-SLAM, Mur-Artal and Tardós further advanced their

research in developing ORB-SLAM2 [7]. This enhanced system broadened the operational scope of its

antecedent, facilitating compatibility with monocular, stereo, and RGB-D sensors. While its foundation

was primarily based on the original ORB-SLAM, it incorporated additional functionalities, such as ste-

reo matching techniques for stereo cameras and stereo coordinate generation for RGB-D sensors. A

significant innovation in the monocular configuration was the introduction of a fourth thread dedicated

to executing a comprehensive Bundle Adjustment after the loop closure pose-graph optimization, aim-

ing for an optimal structure and motion resolution. Given the intensive computational demands of this

optimization, which encompasses all points and features, it was designated to a distinct thread. This

strategic allocation ensured the system's uninterrupted ability to expand the map and identify loops

concurrently. Similarly to the design of ORB-SLAM, ORB-SLAM2 integrated the DBoW2 place recog-

nition module for relocalization and employed a co-visibility graph tailored for expansive environ-

ments. In the context of stereo and RGB-D configurations, monocular key points were retained for ro-

tation and translation estimations. However, they were not utilized for scale information, as the respec-

tive sensor could either directly measure or triangulate it. The system adopted the Levenberg-Mar-

quardt optimization, facilitated by the g2o module, to refine the camera pose during tracking, optimize

the local window of keyframes, and refine points within the mapping thread, as well as all keyframes

and points post loop closure. Consequently, the comprehensive Bundle Adjustment essentially repre-

sents a variant of the local Bundle Adjustment, wherein all map points and keyframes undergo optimi-

zation, barring the origin keyframe.

24

Furthermore, ORB-SLAM2 introduced a localization mode, wherein the local mapping and loop

closing threads are suspended in familiar terrains, provided the environment remains relatively un-

changed. This feature paves the way for enduring and efficient localization capabilities. When bench-

marked against contemporary Stereo, RGB-D, and monocular systems, ORB-SLAM2 demonstrated su-

perior performance across datasets such as EuRoC [67], TUM [68] (Sturm et al., 2012), and KITTI [69].

This underscored its adaptability across a diverse range of environments. The study further postulated

the potential applicability of ORB-SLAM2 to an array of novel sensors, encompassing omnidirectional

and fisheye cameras and expansive dense fusion. Figure 13 offers a visual representation of the ORB-

SLAM2 algorithm inspired by the article [7].

Figure 13. Diagram of ORB-SLAM2 algorithm. Adapted from [7].

ORB-SLAM3. ORB-SLAM has long been recognized as the gold standard in feature-based monoc-

ular SLAM systems, serving as the foundation for subsequent innovations such as ORB-SLAM-VI and

ORB-SLAM3 [70], [71]. The most recent iteration, ORB-SLAM3, introduced by Campos et al. [71], amal-

gamates and refines the advancements of its forerunners. This system executes visual, visual-inertial,

and multimap SLAM, compatible with monocular, stereo, and RGB-D cameras, encompassing pin-hole

and fisheye configurations. A notable enhancement in ORB-SLAM3 is its proficiency in four distinct

data association types: short-term, which facilitates matching of map elements from recent moments;

mid-term, targeting map elements proximate to the camera with minimal accumulated drift; long-term,

which identifies map elements from earlier explored areas using a place recognition technique, irre-

spective of accumulated drift; and multimap, which correlates and employs BA map elements from

prior mapping sessions, thereby constructing a map conducive to precise localization.

Key innovations distinguishing ORB-SLAM3 from its predecessors include: a visual-inertial system

for both monocular and stereo configurations grounded in Maximum-a-Posteriori estimation (MAP),

enhancing ORB-VI through the initialization approach delineated in [72]; an advanced place recogni-

tion mechanism that augments recall by assessing geometrical consistency with three co-visible map

keyframes, albeit with a slight computational overhead; the ORB-SLAM atlas, a multimap SLAM

framework inspired by [73], which encapsulates an array of disjointed maps applicable to various map

operations; and an abstract camera model, enabling compatibility with diverse camera types given the

provision of their projection and un-projection Jacobian functions.

A pivotal advancement is the ATLAS system, which maintains an active map for the tracking thread

to localize incoming frames, perpetually refining the Atlas with novel keyframes. Concurrently, non-

active maps remain poised for integration. The tracking thread determines the pose of the current frame

relative to the active map, minimizes reprojection discrepancies, and discerns which frames qualify as

25

keyframes. The local mapping thread incorporates keyframes and points into the active map, excises

superfluous points, and fine-tunes the map via bundle adjustment, considering a spectrum of adjacent

keyframes. The loop and map merging thread identify shared regions within the Atlas and, upon de-

tection, initiates loop correction, followed by a separate thread executing a comprehensive BA to refine

the entire map. When benchmarked against an extensive array of monocular, stereo, monocular inertial,

and stereo inertial methodologies on the EuRoC and TUM-VI datasets, utilizing RMSE (Root Mean

Square Error) and ATE (Absolute Trajectory Error) metrics, ORB-SLAM3 consistently outperformed its

counterparts in the majority of sequences. However, it's worth noting that ORB-SLAM3 encountered

challenges in environments lacking texture, scenarios characterized by slow motion, or purely rota-

tional applications. Figure 14 offers a visual depiction of the ORB-SLAM3 algorithm inspired by the

article [71].

Figure 14. Diagram of ORB-SLAM3 algorithm. Adapted from [71].

6.1.2. Classic + Dense + Indirect methods

The primary objective of this category is to deduce 3D geometry either directly from a regularized

optical flow field or in association with it. This involves balancing the geometric error (the divergence

from the flow field) with the acquired geometric prior, typically characterized by the flow field's

smoothness [2]. As previously indicated, such monocular techniques necessitate a substantial volume

of input data, leveraging most pixel values to execute their inherent operations. Specifically, dense mo-

nocular strategies bypass the need to extract a specific feature subset, as they operate directly on the

complete input. Consequently, while these techniques eliminate the need for discrete features, they

entail significant computational overhead due to the extensive data volume being processed. Further-

more, methods within this category are typically classified as indirect, given that many rely on prelim-

inary optical flow data acquired during an initial processing phase.

26

Valgaerts et al. (2011). In 2012, Valgaerts et al. [74] performed an analytical comparison between

dense and sparse methodologies. Within this research, the scholars introduced a variational model for

dense 3D reconstruction, aiming to deduce the fundamental matrix and optical flow by minimising a

singular energy function. The study further delved into the contrasts between sparse feature-centric

techniques, predominantly employed for epipolar geometry estimation, and the dense energy-driven

methods frequently utilized for determining correspondences in an image sequence. The primary ob-

jective of that exploration was to underscore the potential of dense optical flow techniques in estimating

epipolar geometry. This led to the proposition of a combined variational approach that concurrently

estimates both the epipolar geometry and optical flow.

For comparative purposes, the researchers evaluated systems that leveraged feature-based tech-

niques, specifically those utilizing the Scale Invariant Feature Transform (SIFT) and the Kanade-Lucas-

Tomasi (KLT) feature matching algorithms. Additionally, the efficacy of the Random Sampling Con-

sensus (RANSAC) and the Least Median of Squares (LMedS) methods in estimating the fundamental

matrix was scrutinized. Extensions of RANSAC, namely LORANSAC (local optimization RANSAC) as

presented by Chum et al. [75] and DEGENSAC (degenerate configurations RANSAC) as outlined by

[76], were also subjected to analysis. Through a series of tests, it was discerned that dense estimation

techniques, when applied to epipolar geometry, offer superior results compared to sparse methods,

especially in scenarios where features lack precise localization or when a minimal set of out-of-plane

correspondences is essential to address degeneracy challenges. Furthermore, the team applied their

variational model across a spectrum of applications. A notable application involved automatic 3D re-

construction, which was achieved by deriving the camera projection matrices from the estimated fun-

damental matrix and subsequently triangulating the back-projected ray for each pixel. Alternatively, a

projective transformation was employed without supplementary camera data or scene information.

This innovative approach facilitated simultaneous 3D reconstruction by resolving dense epipolar ge-

ometry and two-image optical flow, associating a distinct 3D point in space with every image pixel. As

a result, the researchers attained enhanced precision and robustness compared to isolated epipolar and

optical flow estimations. Nonetheless, it's imperative to note that the efficacy of this method is contin-

gent upon an image sequence that facilitates stable estimation, rendering it most suitable for rigid ap-

plications devoid of moving entities. Figure 15 provides a visual representation of the algorithm con-

ceptualized by Valgaerts et al., as detailed in their publication [74].

Figure 15. Diagram of Valgaerts et al., algorithm. Adapted from [74].

Ranftl et al. (2016). One of the prominent contributions in the depth estimation research field is

attributed to Ranftl et al. [77]. Their work, titled "Dense Monocular Depth Estimation in Complex Dy-

namic Scenes", presents a system adept at deriving a comprehensive depth map for stationary and

moving objects, utilizing merely two successive frames. The methodology hinges on a segmentation

algorithm that segments the optical flow, resulting in an array of motion models. Each of these models

27

possesses its distinct epipolar geometry. After this, the scene undergoes reconstruction by optimizing

a convex problem. The depth estimation process in Ranftl et al.'s method unfolds in two distinct phases.

The initial phase, termed motion segmentation, involves segmenting a dynamic scene into multiple

moving models, each accompanied by its epipolar geometry. This is executed within an optical flow

field and is conceptualized as a variational labelling challenge. The subsequent phase, termed recon-

struction, entails the reassembly of the scene. This is achieved by collectively determining the scale and

positioning of various components concerning the camera. This is further facilitated through object

triangulation and the subsequent reconstruction of all its inherent objects.

Delving deeper into the motion segmentation phase, the dynamic scene is decomposed into a col-

lection of independent rigid motions. Each motion is characterized by its fundamental matrix and a

per-pixel designation. This intricate procedure, conceived as a joint estimation labelling challenge, man-

dates a dense optical flow field, denoted as 𝐹 = (𝑓𝑥, 𝑓𝑦), spanning between images 𝐼1 and 𝐼2. This results

in a soft 𝑢𝑙 assignment where each pixel is allocated to a specific l label, representing distinct 𝑀𝑙 motion

models. Alternatively, there's provision for an additional 𝑙 + 1 outlier label. Consequently, the formu-

lation is articulated as:

(𝑢𝑙
∗, 𝑀𝑙

∗) = arg𝑚𝑖𝑛𝑢𝑙,𝐹𝑙∑𝑢𝑙 · 𝑔(𝐹𝑙) + ‖𝑊𝑙∇𝑢𝑙‖2,1

𝐿+1

𝑙=1

,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑢𝑙
𝑖 = 1, 𝑢𝑙

𝑖 ≥ 0

𝐿+1

𝑙=1

,

∀𝑙. 𝑟𝑎𝑛𝑘(𝐹𝑙) = 2,

(3)

𝑔𝑖(𝑀𝑙) = 𝑑(𝑥1
𝑖 , 𝑀𝑙𝑥2

𝑖)
2
+ 𝑑(𝑥2

𝑖 , 𝑀𝑙
𝑇𝑥1

𝑖)
2
, (4)

where, 𝑔𝑖(𝑀𝑙) denotes the symmetric distance to the epipolar lines for each 𝑙 ∈ {1 . . . 𝐿} model, 𝑥1
𝑖 =

[𝑥𝑖, 𝑦𝑖, 1]𝑇and 𝑥2
𝑖 = [𝑥𝑖 − 𝑓

𝑥
𝑖 , 𝑦𝑖 − 𝑓

𝑦
𝑖 , 1] represent the homogeneous coordinates in the initial image and

their corresponding coordinates in the subsequent image, respectively. The term ‖𝑊𝑙∇𝑢𝑙‖2,1 serves as

the smoothness component, where ∇ is a linear operator signifying the discrete differential between 𝑥

and 𝑦 coordinates. The matrix 𝑊𝑙 acts as a diagonal weighting mechanism, introduced to facilitate edge-

preserving regularization. Subsequently, the energy encapsulated in the equation undergoes optimiza-

tion through a modified version of the primal-dual algorithm. This adaptation incorporates entropy

proximal terms, which implicitly signify simplex constraints, thereby streamlining the problem-solving

process for labelling. As a result, the fundamental matrices 𝑀𝑙 are concurrently decomposed across all

𝐿 models. The soft assignments are denoted as 𝑢𝑖, are then employed to adjust the weighting of indi-

vidual correspondence:

𝑀𝑙
∗ = arg𝑚𝑖𝑛𝐹𝑙∑𝑢𝑙

𝑖 ((𝑥1
𝑖)
𝑇
𝑀𝑙(𝑥2

𝑖))
2

𝑀

𝑖=1

,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑎𝑛𝑘(𝑀𝑙) = 2,

(5)

subsequent to the initial procedures, the subproblems are addressed using a reweighted adaptation

of the 8-point algorithm, as delineated in [78]. To ascertain the count of dynamic models, the method-

ology encompasses several sequential actions: employ the 8-point algorithm to extract a preliminary

set of candidates; address the energy equation by augmenting the assortment of motion candidates;

introduce new models by robustly determining motion from pixels labelled as outliers; enlarge the

candidate pool by segregating labels associated with unconnected regions; undertake alternating min-

imization iteratively until no further energy reduction is feasible. Upon the culmination of these steps,

a collection of epipolar geometries denoted as 𝐹𝑙
∗, along with membership likelihood 𝑢𝑙

∗ for each pixel,

is derived. The final phase involves a sturdy reconstruction, leveraging these epipolar models in con-

junction with optical flow data facilitated by a super-pixel-oriented formulation.

28

The efficacy of this system was rigorously evaluated using the KITTI [69] and MPI Sintel [79] da-

tasets. The results showcased its superiority over a majority of the contemporary techniques aimed at

discerning dynamic scene geometry from monocular videos. Various methodologies for optical flow

computation, including Large Displacement Optical Flow (LDOF), EpicFlow, and FlowFields, were

employed for these tests. A critical observation was that the system's performance is intrinsically tied

to the accuracy of optical flow estimation; a failure in the latter would compromise the entire system.

Additionally, the method exhibits constraints characteristic of a purely geometric approach, notably

the omission of prior knowledge regarding shapes and scene dimensions. Consequently, the authors

advocate for integrating Machine Learning (ML) techniques to more accurately determine the absolute

scale. Figure 16 offers a visual representation of the algorithm conceptualized by Ranftl et al., as detailed

in their publication [77].

Figure 16. Diagram of Ranftl et al., algorithm. Adapted from [77].

6.2. Classic + Direct methods

Direct methodologies have been developed to recover the scene's geometry and the observer's move-

ment by utilizing the raw data from pixel intensities. Unlike their indirect counterparts, these methods

were built to work without initial steps such as feature extraction. This omission conserves computa-

tional resources and accelerates the process, albeit at the expense of a less dense three-dimensional

reconstruction (3D reconstruction). By engaging with the intensity values of each pixel—or a substan-

tial majority thereof—direct strategies tend to yield a 3D reconstruction of superior quality compared

to indirect methods. Nonetheless, direct methods presuppose brightness constancy across various

viewing angles on an object's surface—a postulate known as the brightness constancy assumption. This

assumption does not hold in certain conditions, such as motion blur, dynamic objects, or non-Lamber-

tian surfaces present, leading to potential failures in these methods.

Furthermore, direct methods can be categorized based on the density of the resulting 3D map into

dense and sparse types, which will be further explored in Sections 4.2.1 and 4.2.2. A historical timeline

of significant contributions to this field is depicted in Figure 17. Notably, as illustrated in Figure 17,

three seminal monocular systems—DTAM [17], LSD-SLAM [4], and DSO [2]—are distinguished within

this domain. It is important to acknowledge that despite DSO's recent introduction, it has garnered

considerable attention from the research community, as reflected in its remarkable citation metrics.

29

Figure 17. A timeline for the most representative monocular SLAM, VO, or SFM classic direct systems.

6.2.1 Classic + Dense + Direct methods

Approaches within this segment of simultaneous localization and mapping are categorized as dense,

reflecting their utilization of the entirety, or a majority, of the input data for reconstructing the environ-

ment. Moreover, they are identified as direct techniques, owing to the absence of preliminary pro-

cessing phases, allowing the immediate use of the input image to deduce the geometry of the surround-

ings. Typically, these methods employ photometric error assessments and geometric priors to ascertain

either dense or semi-dense spatial configurations by operating directly on the information derived from

pixel intensities.

Stühmer et al. (2010). Stümer, Gumhold, and Cremers pioneered the field with their early work,

"Real-Time Dense Geometry from a Handheld Camera" [80], introducing a real-time variational frame-

work for directly estimating dense depth maps from multiple images. This technique employs data

terms associated with the coordinate system of a chosen viewpoint and leverages the perspective pro-

jection to transpose these coordinates onto a second camera's frame. Consequently, the authors formu-

lated an energy function designed for deriving depth maps utilizing a series of images.

𝐸(ℎ) = 𝜆∫ ∑ |𝜌𝑖(𝒙,𝑫)|𝑑
2𝒙 +∫ |∇𝑫|𝑑2𝒙

𝑌𝑖∈𝔗(𝑥)𝑌

, (6)

where, 𝑫 represents the depth map, and 𝒙 = (𝑥1, 𝑥2, 1)
𝑇 denotes the homogeneous 2D coordinates.

The term 𝑑(𝒙, 𝑫) specifies the depth value corresponding to each pixel. 𝑌𝑖 refers to the image plane,

while 𝑻𝑖 signifies the camera pose. Here, 𝔗(𝒙) encompasses all image indices for which the perspective

projection 𝜋(exp(𝑻�̂�) · 𝑑(𝒙, 𝑫)) falls within the image boundaries. Furthermore, 𝜌𝑖(𝒙, 𝑫) is defined as

the linearized residual data term for the image 𝐼𝑖 .

𝜌𝑖(𝑥, 𝑫) = 𝐼𝑖(𝒙, 𝑫0) + (𝑫 − 𝑫0)𝐼𝑖
𝑫(𝒙) − 𝐼0(𝒙), (7)

where 𝐼𝑖
𝑫(𝑥) represents the derivative

𝑑

𝑑𝑫
𝐼𝑖(𝒙, 𝑫)|𝑫0 . The described formulation integrates direct

pixel information into the energy function, from which the depth map 𝑫 is derived through a minimi-

zation process, characterizing it as a direct method. The complexity of this energy function is evident,

as the data term is composed of the aggregate of absolute values of linear functions, which are not

amenable to simplification through basic thresholding techniques. Consequently, the authors have also

suggested an approach for generalized thresholding. The advantage of this dense, multi-view proposal,

as compared to techniques that rely on only two images, is that multiple perspectives can contribute to

the estimation of disparity in regions that may be occluded in some views but visible in others, thereby

integrating information from unobstructed images. An additional benefit is enhancing the signal-to-

noise ratio, which bolsters the quality of results when the input images are compromised by noise—a

common issue with footage from standard webcams or handheld devices.

In essence, this method diverges from real-time pose estimation and instead calculates the depth

map using the present input image in conjunction with the 𝑁 keyframes closest to the current pose. The

method effectively reduces noise impact by employing estimates of the camera pose from these

30

keyframes. This approach was incorporated into the camera tracking module of an existing PTAM sys-

tem [32], which can store keyframes. Each camera pose linked to a keyframe is refined iteratively, as is

the depth map associated with its respective keyframe, utilizing the 𝑁 nearest keyframes for refine-

ment. Figure 18 graphically represents the Stühmer et al. algorithm inspired by their study [80].

Figure 18. Diagram Stühmer et al. algorithm. Adapted from [80].

DTAM (2011). In 2011, Newcombe et al. introduced a dense direct methodology, characterized by

its 'every-pixel' approach, designed to construct a comprehensive 3D model. This model is generated

through a detailed, sub-pixel-level reconstruction that facilitates precise camera tracking. The technique

involves using the dense model to align the full image with the current model, thereby enabling camera

motion estimation. Subsequently, the model is augmented and refined by incorporating and honing

dense depth maps derived from tracked images. In this approach, the dense model is associated with

overlapping keyframes, with depth values 𝑑 being back-projected from each pixel, categorizing it as a

direct method. Within this framework, a keyframe 𝑟 consists of an image 𝐼𝑟 , a camera pose 𝑇𝑟𝜔, and an

associated cost 𝐶𝑟. For every pixel 𝑞𝑟, there is a corresponding cost error 𝐶𝑟(𝑞, 𝑑) for each depth value

𝑑. A substantial number of video frames of 𝑚 ∈ 𝔗(𝑟) —representing a collection of frames in close

proximity—are utilized to calculate the cost volume. The photometric error is then determined by pro-

jecting each point in the volume onto all overlapping images and aggregating the 𝐿1 norms of each

photometric discrepancy.

𝐶𝑟(𝒒, 𝑑) =
1

𝔗(𝑟)
∑ ‖𝜌𝑟(𝐼𝑚 , 𝒒, 𝑑)‖1

𝑚∈𝔗(𝑟)

, (8)

𝜌𝑟(𝐼𝑚 , 𝒒, 𝑑) = 𝐼𝑟(𝒒) − 𝐼𝑚(Λ ((𝜻𝑇𝑚𝑟Λ
−1(𝒒, 𝑑))), (9)

where 𝜌𝑟 is the photometric error for every overlapped image, 𝜻 is the intrinsic matrix, Λ(𝑥𝑐) =

(𝑥/𝑧, y/z)𝑇is de-homogenization for a 3D point 𝑥𝑐 = (𝑥, 𝑦, 𝑧)𝑇 . The acquisition of the inverse depth map

is achieved through the minimization of the energy functional 𝐸𝑑∗, which comprises a non-convex pho-

tometric error cost that serves as the data term, alongside a convex regularizer term.

𝐸𝑫∗ = ∫ {𝑔(𝒒)‖∇𝑑∗(𝒒)‖𝜖 + 𝜆𝐶(𝒒, 𝑑
∗(𝒒))}𝑑𝒒

Ω

, (10)

where 𝑔(𝒒) = 𝑒−𝛼‖∇Ir(𝒒)‖2
𝛽

 assigns a weight to each pixel, where 𝑫∗ signifies the inverse depth map

and ∇𝑑∗(𝒒) is the gradient of the inverse depth map within the image domain Ω. The parameter 𝜖 is

deliberately kept small to diminish the staircase effect. The term 𝜆 = 1/(1 + 0.5𝑑) gauges the quality of

the data term, with 𝛼 and 𝛽 serving as auxiliary variables. DTAM runs over an energy minimization

framework incorporating a photometric error data term and a robust spatial regularization term. It

commences by establishing a projective photometric cost volume, akin to the disparity space image

found in stereo matching, which is then regularized by applying a weighted Huber norm to the gradi-

ent of the inverse depth map. This model is discretized and addressed through the application of

31

duality principles, leading to a primal-dual formulation. Here, the weighted Huber regulator is substi-

tuted with its conjugate by employing the Legendre-Fenchel transformation. This allows for the extrac-

tion of the inverse depth map by iteratively minimizing the cost volume for each pixel relative to a

reference frame. Initially, DTAM employs the PTAM point feature-based method for the initial phase

until the first keyframe is secured. Subsequently, the algorithm transitions to a proprietary, fully dense

tracking and mapping sequence. Adding a new keyframe occurs when the number of pixels lacking

visible surface data from the antecedent predicted image descends beneath a pre-defined threshold.

Concisely, this method computes the camera pose in real-time by deducing motion parameters that

conjure a synthetic view resembling the live video feed. Figure 19 graphically represents the DTAM

algorithm inspired by the article [17].

Figure 19. Diagram of DTAM algorithm. Adapted from [17].

REMODE (2014). In 2014, Pizzoli, Forster, and Scaramuzza introduced REMODE [5], "Regularized

Monocular Depth Estimation." This method can compute dense depth maps through Bayesian estima-

tion coupled with a sophisticated optimization process, effectively functioning as a depth sensor with

a broad operational depth range. REMODE estimates the depth of each pixel independently using a

probabilistic framework and a novel smoothing technique. This pixel-wise Bayesian depth estimation

is an advancement of the methodology proposed by [81], which is further refined by incorporating a

regularization step that employs a weighted Huber norm. Distinct from DTAM, REMODE leverages

depth uncertainty to engage a convex formulation, thereby mitigating the impact of noise in camera

localizations. In REMODE, depth determination is framed as a Bayesian estimation challenge, where

triangulation is performed between a reference view and the most recently captured view. Each pixel's

depth is treated as a parametric model continuously refined with each new observation, and smooth-

ness is attained through the minimization of a regularized energy function. Moreover, REMODE adopts

a probabilistic strategy in which a depth hypothesis 𝑑𝑘 is formulated based on the observation set

{𝐼𝑘 , 𝑻𝑘,𝜔}, by triangulating between views 𝑟 and 𝑘, where 𝑻𝒌,𝝎 denotes the rigid body transformation

that characterizes the camera pose for each image. The depth sensor in REMODE is modeled as a dis-

tribution that merges a precise measurement, normally distributed around the true depth �̂�, with an

outlier measurement that captures the depth of the targeted structure.

𝑝(𝑑𝑘|�̂�, 𝜌) = 𝜌𝒩(𝑑𝑘|�̂�, 𝜎𝑘
2) + (1 − 𝜌)𝒰(𝑑𝑘|𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥), (11)

where 𝜌 represents the probability of a precise measurement while 𝜎𝑘
2 denotes the variance associ-

ated with such a measurement. The term 𝑝 (�̂�, 𝑝) reflects the prior, which encapsulates the pre-existing

knowledge about the true depth's uncertainty and the proportion of measurements corroborating it.

Subsequently, the resultant posterior is inferred as an approximation, characterized by the product of

a Gaussian distribution, which accounts for the depth, and a Beta distribution, which represents the

inlier ratio.

𝑞(�̂�, 𝜌|𝑎𝑘, 𝑏𝑘 , 𝜇𝑘, 𝜏𝑘
2) = 𝐵𝑒𝑡𝑎(𝜌|𝑎𝑘 , 𝑏𝑘)𝒩(�̂�|𝜇𝑘 , 𝜏𝑘

2), (12)

where 𝑎𝑘 , 𝑏𝑘 are parameters controlling Beta distribution. Then, for every 𝒒 pixel 𝜇𝑘 and 𝜏𝑘
2 are the

mean depth estimation, its confidence for each observation, and the denoised depth map 𝐹(𝒒) is ob-

tained by the following energy minimization:

32

min
𝐹
∫ {𝐺(𝒒)‖∇𝐹(𝒒)‖𝜖 + 𝜆‖𝐹(𝒒) − 𝐷(𝒒)‖1}𝑑𝒒
Ω

, (13)

where 𝐷(𝒒) denotes the depth map, while 𝐺(𝒒) signifies the "G-Weighted Total Variation" weighting

function, as introduced by [82]. These equations constitute the foundational methods and exemplify

the integration of a probabilistic framework to derive a depth map that has been denoised, leveraging

direct pixel information. REMODE employs a tracking thread that draws inspiration from the odome-

try system of SVO [13], which utilizes an image alignment method to ascertain the pose, relying solely

on pixel intensity data. After the tracking phase, the mapping thread triangulates depth using each

frame in conjunction with the reference view. Here, the depth for each pixel is conceptualized as a

parametric model, the computation of which is framed as a Bayesian estimation problem. This problem

incorporates a regularizer predicated on the gradient Huber norm, and the resolution is pursued itera-

tively through minimization. This process harnesses a primal-dual formulation and employs a gradient

descent-ascent technique to converge on the solution. Figure 20 visually delineates the REMODE algo-

rithm inspired by the article [5].

Figure 20. Diagram of REMODE algorithm. Adapted from [5].

LSD-SLAM (2014). In the study by Engel et al. [4], a real-time monocular SLAM and 3D reconstruc-

tion system was devised. This system cannot only track camera motion locally but also construct con-

sistent, large-scale, environment-dense maps. It employs a semi-dense approach focusing on tracking

depth values predominantly in areas with significant image gradients. The method is grounded in di-

rect image alignment and a filtering-based estimation of semi-dense depth maps, building upon the

earlier work of [22]. The global depth map is conceptualized as a pose graph, with keyframes serving

as vertices connected by 3D similarity transforms as edges. This structure facilitates detecting and cor-

recting scale changes and accumulated drift within the environment. LSD-SLAM incorporates an ap-

pearance-only loop detection algorithm, FAB-MAP [83], to identify candidates for substantial loop clo-

sures. It generates its features independently, without repurposing any data from the visual odometry

front end. The contributions of LSD-SLAM include a direct method for aligning two keyframes within

the 𝜉 𝜖 𝑠𝑖𝑚(3) space, and a probabilistically consistent method for integrating the noisy uncertainty of

estimated depth into the tracking process. The innovative image alignment is executed through a

Gauss-Newton minimization of the photometric error.

𝐸(𝑻) =∑(𝐼𝑟𝑒𝑓(𝒒𝑖) − 𝐼 (𝜔(𝒒𝑖 , 𝑫
∗
𝑟𝑒𝑓(𝒒𝑖), 𝑻)))

2

𝑖

, (14)

33

where 𝐼 denotes the images, 𝑫∗ represents the per-pixel inverse depth map, 𝒒𝑖 is a point within the

image, 𝜔 is a function that performs 3D projective warping, and 𝑻 encapsulates the camera pose. The

comprehensive method encompasses tracking, depth map estimation, and map initialization proce-

dures. The tracking module persistently follows new images by estimating the rigid body pose relative

to the current keyframe. This relative pose is determined by minimizing the variance-normalized pho-

tometric error:

min
𝑻 ∈ 𝑆𝐸(3)

∑ ‖
𝑟𝒒
2(𝒒, 𝑻𝑖𝑗)

𝜎𝑟𝒒
2 (𝒒, 𝑻𝑖𝑗)

‖

𝛿𝑝∈Ω𝐷𝑖

, (15)

where 𝑟𝒒
2 and 𝜎𝑟𝒒

2 are the photometric residual and variance, respectively. Also, for adding a

keyframe to the map, the closest keyframes are found, and the edges are estimated by 𝑆𝐸(3), so mini-

mization is performed by the equation:

min
𝑻 ∈ 𝑆𝐸(3)

∑ ‖
𝑟𝒒
2(𝒒, 𝑻𝑖𝑗)

𝜎𝑟𝒒
2 (𝒒, 𝑻𝑖𝑗)

+
𝑟𝑑
2(𝒒, 𝑻𝑖𝑗)

𝜎𝑟𝑑
2 (𝒒, 𝑻𝑖𝑗)

‖

𝛿𝒒∈Ω𝑫∗𝑖

. (16)

In summary, LSD-SLAM can generate dense depth maps by deducing the rigid body pose from

camera images concerning the current keyframe, with the preceding image serving as the basis for ini-

tialization—a process known as tracking. Subsequent frames that have been tracked are then utilized

to enhance or supplant the existing keyframe, thereby allowing for the refinement of depth through

multiple per-pixel comparisons with small baselines, a phase referred to as depth map estimation. Ul-

timately, when a new keyframe supersedes the previous one as the reference for tracking and no addi-

tional refinement is conducted, it is integrated into the global map, a step known as map optimization.

Figure 21 shows the LSD-SLAM algorithm inspired by the article [4].

Figure 21. Diagram of LSD-SLAM algorithm. Adapted from [4].

6.2.2. Classic + Sparse + Direct methods

Formulations within this category typically optimize photometric error directly from the input

frames, avoiding the need for geometric priors and preprocessing steps. A significant advantage of

direct formulations is their common use of pixel-wise inverse depth, which does not necessitate indi-

vidual point recognition, thereby facilitating a more refined and detailed representation of geometry.

This approach also enables sampling from every pixel, capturing edges and subtle intensity variations,

which enhances robustness in textured environments. Conversely, sparse methods do not require geo-

metric priors, bypassing their constraints. Such priors, when introduced, create correlations among ge-

ometry parameters, where achieving real-time statistically consistent joint optimization is generally

unfeasible. These priors may also induce bias, potentially compromising large-scale accuracy. Direct

34

methods are not dependent on the repeatability of a set of points, allowing them to function effectively

on low-texture surfaces that include contours. Many techniques in this category employ photometric

bundle adjustment to reduce the photometric error of mapped point observations within a local sliding

window of active keyframes. Points are sampled from pixels exhibiting significant gradients, such as

edges and intensity shifts. In this realm, Visual Odometry (VO) systems often utilize sliding windows

to select active keyframes that are temporally proximate, marginalizing map points that fall outside the

field of view. This can be a drawback, as VO systems may not capitalize on the reobservation of map

points. In contrast, sparse direct Visual Simultaneous Localization and Mapping (VSLAM) systems typ-

ically construct enduring maps of the scene, depicting a network of keyframes interconnected by ob-

serving the same region at varying times.

DSO (2017). In the early work [2], the authors introduced Direct Sparse Odometry (DSO), a sparse

direct visual odometry formulation. This method synergizes the benefits of direct methods, such as the

ability to reconstruct a wide array of points beyond mere corners, with the efficiency and flexibility of

sparse approaches in joint optimization. The DSO algorithm is adept at tracking in low-texture envi-

ronments where indirect methods often struggle. DSO executes an ongoing optimization of photomet-

ric error across a selection of recent frames, incorporating a photometrically calibrated model for image

formation, drawing inspiration from [24]. Concurrently, it optimizes the full likelihood for all model

parameters, including camera poses, intrinsics, extrinsics, and inverse depth values, in a process anal-

ogous to windowed sparse bundle adjustment. For successful optimization, precise initializations are

crucial in the front end to address the non-convex optimization in the backend. The minimization pro-

cess involves the photometric error of a point 𝒑 in a reference frame 𝐼𝑖 across a small pixel neighbor-

hood. Empirical evidence suggests that a residual pattern spread over 8 pixels yields sufficient infor-

mation for computation. The photometric error minimization is governed by the following equation:

𝐸𝒒𝑗 : = ∑ 𝜔𝒒 ‖(𝐼𝑗[𝒒
′] − 𝑏𝑗) −

𝑡𝑗𝑒
𝑎𝑗

𝑡𝑖𝑒
𝑎𝑖
(𝐼𝑖[𝒒] − 𝑏𝑖)‖

𝛾𝑖∈𝒩𝒒

, (17)

where 𝒩𝒒 is the set of pixels, 𝑡𝑖 and 𝑡𝑗 are the exposure times for images 𝐼𝑖 and 𝐼𝑗, respectively, and

𝑎𝑖, 𝑏𝑖, 𝑎𝑗 and 𝑏𝑗 are the parameters of the brightness transfer function for the poses 𝑻𝑖, 𝑻𝑗 of the frames

involved. The gradient-dependent weighting 𝜔𝒒 and the projected point position 𝒒′, are defined as:

𝒒′ = Π𝑐(𝑹Π𝑐
−1(𝒒, 𝑑𝒒) + 𝒕) with [

𝑹 𝒕
0 1

] ≔ 𝑻𝑗𝑻𝑖
−1,

𝜔𝒒: =
𝜻2

𝜻2 + ‖∇𝐼𝑖(𝒒)‖2
2,

(18)

where 𝜻 denotes the camera intrinsics matrix, Π𝜻, Π𝜻
−1 are the projection and back-projection func-

tions, and 𝑑𝒒 is the inverse depth for the projected point position. The variable 𝑖 iterates over all ℱ

frames, 𝒒 iterates over all 𝒫𝑖 points of the image, and 𝑗 iterates over all 𝑜𝑏𝑠(𝒒) frames where the point

is visible. Thus, the comprehensive photometric error for DSO is expressed as:

𝐸𝑝ℎ𝑜𝑡𝑜 =∑∑ ∑ 𝐸𝒒𝑗
𝑗∈𝑜𝑏𝑠(𝒒)𝒒∈𝒫𝑖𝑖∈ℱ

. (19)

Two modules are responsible for frame and point management manage the DSO algorithm's per-

formance. Frame management deals with a set of active frames, tracking each new frame from the cur-

rent keyframe, employing two-frame direct alignment, a multiscale image pyramid, and a constant

motion model to track all points. A new keyframe is established when there is a significant change in

the field of view, occlusions, disocclusions, or changes in camera exposure time. Subsequently, old

keyframes are marginalized when visibility is insufficient, and the most distant keyframe is

35

marginalized upon exceeding the maximum number of active keyframes. The point management mod-

ule is tasked with selecting point candidates within the optimization window, tracking points, and ac-

tivating candidate points as necessary for windowed optimization. The algorithm's efficacy was vali-

dated across three datasets, demonstrating that a larger dataset does not necessarily enhance accuracy;

however, a sparse selection of points does improve accuracy and robustness. Figure 22 illustrates the

DSO algorithm inspired by the publication [2].

Figure 22. Diagram of DSO algorithm. Adapted from [2].

LDSO (2018). In the innovative study by Gao et al. [23], the researchers expanded upon the Direct

Sparse Odometry (DSO) system, creating an enhanced version known as LDSO. This extension capital-

izes on DSO's ability to utilize pixels with significant intensity gradients, which ensures the repeatabil-

ity of points, particularly corner features, for detecting loop closure candidates using the bag-of-words

model. Depth, estimations of matched feature points are instrumental in computing 𝑆𝑖𝑚(3) constraints,

which, combined with pose-only bundle adjustment and point cloud alignment, are integrated into a

co-visibility graph of relative poses derived from the DSO's sliding window optimization phase. While

point selection remains a requisite in direct methods, a salient distinction between direct and indirect

methods is the non-necessity of point repeatability in the former. LDSO employs corners and high-

gradient pixels for tracking, with corners specifically used to generate bag-of-words (BoW) models.

LDSO identifies loop closure candidates for keyframes by querying a database, excluding those within

the optimization window. After this, the method endeavours to match each feature, initially estimating

𝑆𝐸(3) through RANSAC PnP, followed by the optimization of a 𝑆𝑖𝑚(3) transformation via the Gauss-

Newton method to minimize the cost function:

𝐸𝑙𝑜𝑜𝑝 = ∑ 𝜔1‖𝑆𝑐𝑟Π
−1(𝒒𝑖 , 𝑑𝒒𝑖

∗) − Π−1(𝒎𝑖 , 𝑑𝒒𝑖
∗)‖

2
+

𝒎𝑖∈𝒬1

∑ 𝜔2 ‖Π (𝑆𝑐𝑟Π
−1 (𝒒𝑗 , 𝑑𝒒𝑗

∗)) −𝒎𝑗‖
2

𝒎𝑗∈𝒬2

,
(20)

where 𝑆𝑐𝑟 represents the loop candidate for the current keyframe, Π and Π−1 are the projection and

back-projection functions, respectively. The weights 𝜔1 and 𝜔2 are utilized to balance the measurement

units, 𝒬2 and 𝒬1 denote ORB features with and without depth information, respectively, 𝒒𝑖 are the

reconstructed features, 𝑑𝒒𝑖
∗ their inverse depths and 𝒎𝑖 the matched features for the current frame. By

amalgamating loop closure with global map optimization, LDSO successfully mitigates rotation, trans-

lation, and scale drift while preserving the tracking accuracy and robustness akin to DSO. A pivotal

contribution of LDSO is the incorporation of ORB descriptors as corner trackers, which are integrated

into a Bag of Words (BoW) model, significantly enhancing feature matching between keyframes. LDSO

closely mirrors the original DSO framework but introduces a loop-closing module predicated on global

pose graph optimization. This module operates over a sliding window of 5 to 7 DSO keyframes, allow-

ing the system to utilize even marginalized keyframes for loop closure. This is accomplished by main-

taining connections between keyframes and consistently matching ORB features across all keyframes

36

and the current keyframe. Loop candidates are proposed by querying the keyframe database, followed

by the execution of global pose graph optimization that merges the sliding window estimates with the

global pose graph. Figure 23 depicts the LDSO algorithm inspired by the article [23].

Figure 23. Diagram of LDSO algorithm. Adapted from [23].

DSM (2020). In the realm of visual SLAM, the work of Zubizarreta et al. [84] stands out with their

introduction of direct sparse mapping (DSM), an innovative system that builds upon the foundation of

Direct Sparse Odometry (DSO). As a visual SLAM variant, the DSM approach endeavours to enhance

accuracy, diminish motion drift, and rectify structural inconsistencies by leveraging the information

gleaned from scene reobservations. This system is distinguished as the inaugural monocular visual

SLAM system capable of detecting point reobservations across entire images, thereby harnessing the

comprehensive data they offer. This is in stark contrast to LDSO [23], which relies on a sparse array of

feature reobservations; DSM, on the other hand, constructs a persistent map that facilitates the recycling

of extant map data through a photometric approach, eschewing the need for a pose-graph or relocali-

zation mechanisms.

DSM employs a local map co-visibility window (LMCW) criterion to identify active keyframes that

observe the same region, utilizes a graduated approach for processing point reobservations with the

photometric model, and adopts a robust influence function rooted in the t-distribution, coupled with a

pixel-wise strategy for outlier management. This enhances the consistency of photometric bundle ad-

justment (PBA) in the face of outliers that may emerge as distant keyframes are activated. Like other

monocular VSLAM methodologies, DSM features a tracking front end and an optimization back end.

The tracking component is responsible for ascertaining the camera pose and selecting frames that could

become keyframes. Concurrently, the optimization mapping thread processes each new frame to track

points from active keyframes, which then serve as inputs for PBA to refine motion and structure. This

thread also upholds global consistency by excising outliers, detecting occlusions, and preventing point

duplication. The robust nonlinear PBA is executed using an outlier management strategy that is in-

formed by the distribution of photometric errors, where the t-distribution has been shown to more

accurately characterize dense photometric errors compared to other distributions, as evidenced by a

weight function (Kerl et al., 2013b; Lange et al., 1989). Empirical evaluations have demonstrated DSM's

superior performance over comparable sparse direct and indirect systems by employing a t-distribution

robust influence function and utilizing four or three co-visible keyframes for LMCW across most se-

quences of the EuRoC dataset. Figure 24 depicts the DSM algorithm inspired by the article [84].

37

Figure 24. Diagram of DSM algorithm. Adapted from [84].

6.3. Classic + Hybrid methods

Within the spectrum of methodologies for monocular visual odometry, a select number of ap-

proaches can be aptly classified as a hybrid, straddling the line between direct and indirect strategies.

The most prominent work in this hybrid category is the Semi-Direct Monocular Visual Odometry (SVO)

introduced by Forster et al. [13], along with its subsequent variations and implementations [85], [86].

Despite the limited number of such works, they have garnered considerable attention from the research

community for their adept fusion of the merits inherent in direct and indirect methods. Specifically,

SVO employs an initial feature extraction only during the keyframe initialization phase; after this, the

system pivots to direct motion estimation rather than relying on feature matching. This dualistic ap-

proach enables SVO to attain the precision typically associated with direct methods while benefiting

from the computational efficiency characteristic of sparse indirect techniques.

SVO (2014). The publication "Fast Semi-Direct Monocular Visual Odometry" by Forster et al. [13]

presents a novel visual odometry system designed to estimate ego-motion without requiring feature

extraction or robust matching, instead directly utilizing pixel intensity values. Termed as semi-direct

owing to its synthesis of direct and indirect methodological benefits, SVO operates on two concurrent

threads: one for motion and another for mapping.

The motion thread bypasses traditional feature extraction and matching, employing direct motion

estimation to establish feature correspondences. This approach minimizes the need for feature extrac-

tion, which is reserved solely for instigating new points within the map upon selecting a new keyframe.

The system's preference for numerous small patches over fewer large ones enhances robustness and

obviates the need for considering patch normals, echoing the findings of [87] and [88]. The motion

estimation is achieved through a sparse model-based image alignment algorithm that leverages sparse

point-feature data to ascertain camera motion and refine feature correspondences by minimizing pho-

tometric discrepancies. Concurrently, the mapping thread employs a Bayesian filter to manage outlier

measurements and ascertain the depth at each feature location. Inserting 3D points into the map is

contingent upon reducing depth filter uncertainty, thus creating an efficient tracking map of outliers

and points. A notable attribute of SVO is its capability to operate at high frame rates, achieving 55 fps

on embedded systems and up to 300 fps on consumer-grade laptops of that period. This performance

is attributed to its probabilistic mapping method, which is resilient to outliers and its robustness in

environments with redundant or sparse textures. Figure 25 depicts the SVO algorithm inspired by the

article [13].

38

Figure 25. Diagram of SVO algorithm. Adapted from [13].

6.4. General comments for classic approaches

The challenge of monocular 3D reconstruction, a problem inherently fraught with complexity, can

be approached, resolved, and refined from many angles. This discourse has examined a selection of the

most pivotal monocular SLAM, VO, and SFM methodologies considered traditional due to their non-

reliance on machine learning innovations. These methodologies have been discussed in alignment with

an established classification scheme, revealing discernible commonalities within the systems grouped

under each category. In the realm of direct versus indirect categorization, it is evident that various

preprocessing and direct methods have been explored. Sparse indirect methods often incorporate fea-

ture extraction techniques, while dense indirect methods may utilize optical flow, and direct methods

typically apply direct motion estimation. Hybrid approaches meld these techniques, offering a nuanced

blend of both. This analysis has led to identifying nine distinct criteria that serve as a guide for selecting

the most suitable system based on factors such as performance, dimensionality, practical application,

and ease of implementation. These criteria are concisely presented in Table 2, which outlines the char-

acteristics of each classic monocular system.

Furthermore, to substantiate the theoretical insights, we have executed available open-source imple-

mentations of these systems. Figure 26 showcases the outcomes of deploying classic monocular SLAM,

VO, and SFM systems on datasets that are openly accessible to the research community.

Table 2. Input modalities used in 3D reconstruction

Method
SLAM,

VO or
SFM

Track-

ing

method

Map

density
Pixels used Estimation

Global

optimi-

zation

Relocal-

ization

Loop

clo-

sure

Availa

-bility

Jin et al. (2000) [14] SFM Feature-

based

Sparse Hi.grad. EKF - - - -

MonoSLAM

(2007) [31]

SLAM Feature-

based

Sparse Shi Tomasi EKF - - - [89]

PTAM (2007) [58] SLAM Feature-

based

Sparse Hi.grad. BA - [90]

OpenMVG (2013)

[61]

SFM Feature-

based

Sparse Hi.grad. BA - [91]

ORB-SLAM

(2015) [33]

SLAM Feature-

based

Sparse Hi.grad. Local BA [92]

COLMAP (2016)

[93]

SFM Feature-

based

Sparse PnP

matches

Local and

Global BA
 - - [93]

ORB-SLAM2

[7]

SLAM Feature-

based

Sparse Hi.grad. Local BA [94]

ORB-SLAM3

(2021) [71]

SLAM Feature-

based

Sparse Hi.grad. Local BA [95]

39

Valgaerts et al.

(2011) [74]

SFM Optical

flow

Dense 8-point

matches

Robust 8-

point algo-

rithm

- - - -

Ranftl et al. (2016)

[77]

SFM Optical

flow

Dense FlowFields Superpixel

graph mini-

mization

- - - -

 Stühmer et al.

(2010) [80]

SLAM Direct Dense Hi.grad. Cost volume

refinement
 - -

DTAM (2011) [17] SLAM Direct Dense Hi.grad. Cost volume

refinement
 - [96]

REMODE (2014)

[5]

SLAM Direct Dense Hi.grad. Bayesian esti-

mation

- - - [97]

LSD-SLAM (2014)

[4]

SLAM Direct Semi-

Dense

Edgelets Pose graph

optimization
 - [98]

DSO (2017) [2] VO Direct Sparse Hi.grad. Local BA - - - [99]

LDSO (2018) [23] VO Direct Sparse Hi.grad. Local BA

GPGO
 - [100]

DSM (2020) [84] SLAM Direct Sparse Hi. grad. Photometric

BA

 - - [101]

SVO (2014) [13] VO Hybrid Sparse FAST + Hi.

grad.

Local BA - - - [102]

Hi.grad. is used to abbreviate a set of pixels with high-intensity gradient.

EKF is used to abbreviate the Extended Kalman Filter technique.

BA is used to abbreviate the Bundle Adjustment technique.

GPGO is used to abbreviate the Global Pose Graph Optimization technique.

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 26. Examples of the results obtained by classic approach implementations. (a) represents the input image,

(b) presents results obtained using the ORB-SLAM2 algorithm [7], (c) presents results obtained using the LSD-

SLAM algorithm [4], (d) presents results obtained using the DSO algorithm [2], and (e) presents results obtained

using DSM algorithm [84]. Top row results correspond to the indoor example sequence seq_01, and bottom row

results correspond to the outdoor sequence seq_29 of the TUM-MONO dataset [103].

7. Machine Learning methods

In the wake of remarkable advancements in artificial intelligence, particularly within the domain of

deep learning, the research community has ventured into enhancing traditional SLAM, SFM, and VO

methodologies by incorporating deep neural networks. These networks are tasked with various func-

tions aimed at diminishing errors in depth estimation, refining the quality of 3D reconstructions, and

enhancing camera pose accuracy, among other improvements. A prominent challenge in monocular

techniques is the issue of scale ambiguity. Without initial depth measurements, monocular systems

may misinterpret the size of objects or surfaces due to variations in environmental contexts and camera

calibrations. To address this, deep learning approaches in monocular methods have been instrumental

in augmenting VO, SLAM, and SFM systems. They achieve this by leveraging learning-based depth

40

predictions, integrating depth information into system components such as feature points and depth

maps, and executing ancillary tasks like semantic segmentation and optical flow estimation.

Recent scholarly efforts have focused on supplanting manually engineered features with those de-

rived through learning processes [104]–[107], crafting neural 3D representations [6], [8], [49], [108]–

[110], and integrating learned depth predictions with conventional SLAM backends [3], [54], [111],

[112]. Additionally, there has been a push towards developing SLAM or VO systems that are trained

in an end-to-end fashion [8], [49], [113]–[115]. While learning-based methods may lack in explainability

and often encounter difficulties when applied to novel environments or with disparate camera calibra-

tions, they offer a compelling avenue for advancing monocular visual SLAM. This is particularly true

in scenarios characterized by pure rotation, slow motion, or movements devoid of roll and pitch rota-

tions, where traditional SLAM or VO systems might struggle with initialization or generalization.

7.1. ML + Indirect methods

Deep learning has markedly enhanced the capabilities of 3D reconstruction systems by undertaking

various tasks, thereby substantially elevating the overall efficacy of these systems. These tasks span

from fundamental parameter estimations crucial for the initialization of SLAM, VO, or SFM systems

[28], to the substitution of entire components within a SLAM framework, such as depth or pose estima-

tion modules [112], [113], and even endowing the system with novel functionalities like semantic seg-

mentation [3], [116]. In the realm of indirect methods, the research encapsulated in this category inte-

grates preprocessing stages within their algorithms, which encompass feature extraction and optical

flow determination prior to pose estimation or depth prediction tasks. Consequently, the integrity of

the final 3D representation is intrinsically linked to the volume and fidelity of data procured during

these initial stages.

Similarly, to traditional approaches, machine learning-enhanced indirect methods can reconstruct

dense and sparse environmental 3D maps. Therefore, discussions of both these categories are presented

in sections 7.1.1 and 7.1.2. Figure 27 delineates a chronological overview of the most seminal SFM, VO,

and SFM methodologies that indirectly employ machine learning processing image data. One of the

most distinguished machine learning methods within this category is DeMoN [114], which has gar-

nered significant acclaim within the academic community, as evidenced by its exceptional citation

score, a testament to its remarkable performance.

Figure 27. Most representative monocular SLAM, VO or SFM, ML + indirect systems--a Timeline.

7.1.1. ML + Sparse + Indirect methods

Analogous to traditional techniques, machine learning-based indirect methods can be subcatego-

rized into dense and sparse types, contingent upon the density of the resultant 3D reconstructions.

Sparse methods are advantageous because they necessitate processing a limited amount of data. How-

ever, this also limits the ultimate reconstruction quality, as potentially significant information might be

disregarded during pixel selection or feature extraction phases. This limitation has motivated the crea-

tion of Convolutional Neural Network (CNN) architectures specifically designed to enrich the sparsity

41

of the 3D maps [50], [117]. These architectures have shown considerable promise, enhancing the detail

of the reconstructions while capitalizing on the performance merits inherent in the sparse computa-

tional framework.

DynaSLAM (2018). In the study by Bescos et al. [118], a novel algorithm was introduced to identify,

segment, and inpaint dynamic elements within sequences of scene frames. This algorithm is an adap-

tation of the more streamlined ORB-SLAM2 [7] framework, enhanced with a convolutional neural net-

work (CNN) for segmenting known dynamic objects and a multi-view geometry technique to detect

additional dynamic entities not identifiable by the CNN. Dynamic entities such as people and bicycles,

typically present in image sequences used for 3D reconstruction, are often only partially filtered out as

anomalies by SLAM, SFM, and VO methods due to their foundational static environment assumption.

To address this, the authors integrated the Mask R-CNN [119] for its proven efficacy in semantic seg-

mentation tasks. This network can discern and delineate image regions likely to contain movable ob-

jects across various classes trained on the MS COCO dataset [120]. The Mask R-CNN is an extension of

the ResNet C4 and FPN architectures, supplemented with a mask branch to forecast segmentation

masks for each identified instance. It can be further refined with new training data to recognize addi-

tional classes. After segmenting potential dynamic objects, the algorithm employs the tracking mecha-

nism of ORB-SLAM2 to project features, search for correspondences, minimize reprojection errors, and

optimize camera pose. The authors incorporated a multi-view geometry phase to recognise that certain

dynamic objects, such as a book being carried, may elude CNN detection due to their absence in the

trained classes. This phase calculates the back-projections of keypoints to ascertain the parallax angle,

distinguishing between movable and stationary items.

DynaSLAM leverages both geometric and machine learning techniques, mitigating initialization

challenges inherent to geometric methods and the limited recognition scope of CNNs. It combines

CNN-based segmentation with multi-view geometry to effectively track and segment moving objects.

The integration of these approaches has been empirically shown to surpass the performance of either

method used in isolation. DynaSLAM first segments out dynamic objects from scene imagery then ap-

plies cost-effective tracking based on ORB-SLAM2. It further refines the removal of dynamic object data

by synthesising CNN and multi-view geometry. Subsequently, a background inpainting technique uti-

lizing information from preceding frames fills in the excised image portions. This process enables pre-

cise tracking and mapping of the static segments of each image. Figure 28 depicts the DynaSLAM al-

gorithm inspired by the article [118].

Figure 28. Diagram of DynaSLAM algorithm. Adapted from [118].

BA-NET (2019). The innovative research by Tang & Tan [49], “BA-Net” represents a significant ad-

vancement in integrating domain expertise with deep learning techniques. The network enforces multi-

view geometric constraints by optimizing scene depth and camera motion through a feature-metric

bundle adjustment process. The authors have ingeniously made the Levenberg-Marquardt (LM)

42

optimization algorithm differentiable, which allows the network to learn optimal features. This is

achieved by employing a multilayer perceptron (MLP) trained to predict the damping factor 𝜆 for the

LM algorithm, thus facilitating the learning process. Additionally, Tang & Tan introduced a pioneering

method for depth parameterization that enables the recovery of dense per-pixel depth information.

Depth maps are generated by a convolutional neural network that creates a series of basis depth maps

for each input image. These maps are optimized through a linear combination in a feature-metric bun-

dle adjustment framework.

The BA-Net formulates Bundle Adjustment as a differentiable layer within the network, which min-

imizes the feature-metric error across aligned feature maps from multiple images. This approach allows

for optimising scene geometry and camera motion using the network features as inputs. Traditional

bundle adjustment methods, which rely on reprojection error, are limited by their reliance on specific

feature types and are prone to outliers, necessitating robust outlier rejection techniques. To address

these limitations, BA-Net employs a feature-metric bundle adjustment algorithm that estimates scene

depth and camera motion parameters while minimizing the feature-metric difference of aligned pixels,

as described by the equation:

𝑒𝑖,𝑗
𝑓 (𝒳) = 𝐹𝑖 (Π(𝑻𝑖 , 𝑑𝑗 · 𝒒𝑗)) − 𝐹1(𝒒𝑗), (21)

where 𝔽 = {𝐹𝑖|𝑖 = 1…𝑁𝑖} represents the feature pyramids for the images 𝕀 = {𝐼𝑖|𝑖 = 1…𝑁𝑖}, while

𝕋 = {𝑻𝑖|𝑖 = 1…𝑁𝑖} denotes the camera poses, 𝒳 = [𝑻1, 𝑻2…𝑻𝑁𝑖 , 𝑑1, 𝑑2…𝑑𝑁𝑗]
𝑇

 is the set of optimization

parameters, Π is the projection function, 𝑑𝑗 ∈ 𝔻 = {𝑑𝑗|𝑗 = 1…𝑁𝑗} is the depth at pixel 𝒒𝑗, and 𝑑𝑗 · 𝒒𝑗

upgrades the pixel to its 3D coordinate. The BA-Layer predicts camera poses and dense depth maps

during the forward pass and back-propagates the loss to the feature pyramids during training.

The architecture of BA-Net is based on the DRN-54 backbone and includes a depth map generator,

a feature pyramid constructor for building multiscale feature maps, and a BA-Layer that optimizes the

depth map and camera poses using a novel differentiable LM algorithm. The differentiability of the LM

algorithm is crucial for solving the optimization problem, and the authors' strategy to predict the damp-

ing factor 𝜆 using an MLP network is a key innovation. In summary, BA-Net processes each new frame

through the DRN-54 network, extracting feature maps to construct feature pyramids. Depth estimation

is performed using a modified decoder in the DRN-54 encoder, generating multiple basis depth maps.

These maps are then linearly combined to produce a final depth map, optimized alongside the camera

poses by minimizing feature-metric error using a differentiable LM algorithm. Figure 29 describes the

BA-Net algorithm inspired by the article [49].

Figure 29. Diagram of BA-NET algorithm. Adapted from [49].

Steenbeek et al. (2022). In the study by Steenbeek & Nex [117], a novel implementation of the ORB-

SLAM2 framework [7] is presented, which incorporates deep learning to enhance its capabilities, spe-

cifically for use in unmanned aerial vehicle (UAV) exploration under emergency scenarios. This adap-

tation is particularly significant as it addresses the need for lightweight and cost-effective equipment

suitable for rapid 3D reconstruction in contexts where additional sensors like inertial units, ultrasound,

43

LIDAR, RGB-D, or stereo cameras are impractical. The original ORB-SLAM2 algorithm is renowned for

its geometric sparse indirect approach, delivering precise pose and trajectory estimations. However, its

3D reconstruction output is typically not dense enough for certain applications and is subject to the

common scale ambiguity challenge inherent in SLAM systems. To address these limitations, the authors

integrated a Convolutional Neural Network (CNN) for Single Image Depth Estimation (SIDE) [121],

which has demonstrated efficiency in real-time monocular depth estimation.

The system architecture involves capturing a sequence of RGB images via a commercial drone's cam-

era, which is then processed by the ORB-SLAM2 algorithm on a laptop to estimate the pose and gener-

ate a sparse depth map. This data serves as the CNN input, producing a scaled pose and a more detailed

depth map. The outputs are subsequently combined using the OctoMap framework (Hornung et al.,

2013). Minimal modifications were made to the ORB-SLAM system, with parameter adjustments based

on empirical findings, such as setting six pyramid levels for feature detection, connecting frames with

25 shared features, and establishing a minimum keyframe interval of 15 to accommodate the UAV's

rapid movements. The CNN SIDE network features an encoder-decoder structure, with the encoder

generating a feature map that feeds into a decoder. The decoder is inspired by the design of Laina et al.

(2016), employing up-projection blocks in an up-sampling strategy to enhance and refine the depth

map progressively. The CNN was initially trained on the NYU Depth v2 dataset [122], which required

adjustments to account for the different camera specifications between the Kinect sensor and the drone.

This involved image cropping to match the field of view and resampling based on the drone camera's

intrinsic parameters. A median filter was also implemented to improve the scale estimation by filtering

out outliers.

Despite the advancements, the resulting map was not sufficiently dense to be classified as a dense

approach, and the map quality was suboptimal compared to similar systems. The authors suggest that

the limitations of current SIDE algorithms in replicating the performance of stereo methods could be a

contributing factor, along with the computational constraints of the hardware used in the experiments.

Future work is anticipated to involve higher computational resources to overcome these issues. Figure

30 depicts the Steenbeek et al. algorithm inspired by the article [117].

Figure 30. Diagram of Steenbeek et al., algorithm. Adapted from [117].

Sun et al. (2022). In the innovative study by Sun et al. [50], a novel framework is introduced that

enhances Visual Odometry (VO) by incorporating a depth estimation module into the established ORB-

44

SLAM system [33]. This integration aims to expand the system's generalization ability and enrich the

density of the resulting 3D reconstructions. The authors successfully integrated a neural network into

ORB-SLAM, drawing on the methodology of DiverseDepth [123], and implemented it as a versatile

depth module that operates in dual modes to aid both odometry and mapping tasks.

In its initial mode, the network processes a singular monocular image to predict a relative depth

map. While this map lacks absolute scale, it is rich in relational depth information, which is instrumen-

tal in eliminating outliers and retaining a precise collection of points to calculate accurate camera poses.

The second mode involves the network receiving an RGB image and a sparse depth map, which it uses

to predict a depth map with consistent scale, subsequently utilized to achieve a more comprehensive

mapping. The authors' focus on enhancing generalization led to the selection of ORB-SLAM as the

foundational SLAM model, given its robust performance in diverse environments. The deep neural

network employed in this research was influenced by the design proposed by Yin et al. (2019), featuring

an encoder-decoder architecture adept at operating in various modes and capable of being trained to

switch between them randomly. Based on the ResNetXt-50 backbone, the architecture is tailored to

predict depth maps from an affine invariant perspective relative to the ground truth when provided

with a single image and to forecast an accurate, scale-consistent depth map when supplemented with

a sparse depth map from the SLAM system.

To enhance the network's generalization capacity, the authors utilized a heterogeneous mix of train-

ing data sourced from five distinct datasets: Taskonomy [124], DIML [125], ApolloScape [126], Diver-

seDepth [123], and RedWeb [127]. These datasets encompass a range of indoor and outdoor scenes

captured with high to medium-precision annotation tools such as LiDAR, lasers, and stereo setups.

During training, a FAST corner detector was employed to generate sparse depth points from dense

depth datasets, thereby emulating the sparse depth characteristics derived from the SLAM system. The

network was trained with two distinct loss functions corresponding to the two input modes. The ex-

perimental findings revealed that the modified ORB-SLAM system exhibited significant improvements

in generalization, enhancing performance across both indoor and outdoor scenes, advancing depth es-

timation accuracy, and diminishing the absolute trajectory error as assessed on the KITTI dataset. How-

ever, it is noteworthy that while the depth maps generated were denser than those produced by the

original ORB-SLAM, they may not be sufficiently dense to qualify as a dense indirect approach com-

pared to other dense reconstruction methodologies. Figure 31 depicts the Sun et al. algorithm inspired

by the article [50].

Figure 31. Diagram of Sun et al., algorithm. Adapted from [50].

Lee et al. (2023). In the cutting-edge research by Lee et al. [128], a novel contribution to the sparse

indirect category of SLAM systems is presented, which incorporates deep learning to enhance the pre-

cision and robustness of SLAM methodologies for autonomous vehicles. SLAM systems are pivotal for

navigation self-driving cars, providing critical capabilities for position estimation and environmental

mapping through monocular vision. The authors have developed a deep neural network-augmented

monocular SLAM system that synergizes semantic segmentation with 3D geometric estimation to refine

the system's accuracy. This advanced system was created based on the ORB-SLAM framework, which

has been augmented with a deep neural network for 3D geometric estimation and supplemented with

45

a semantic segmentation module to elevate the fidelity of the resultant point cloud. The semantic seg-

mentation module is adept at discerning objects of similar geometry, such as vehicles, pedestrians, and

foliage, by employing a labelling strategy that enhances the precision of point cloud construction. The

core innovation of the proposed monocular SLAM system lies in its utilization of semantic segmenta-

tion to achieve more accurate 3D reconstruction and environmental mapping. The deep neural net-

work-based architecture of the system enables it to assimilate and adjust to diverse environmental and

illumination conditions, thereby bolstering its robustness in real-world applications. Additionally, the

system employs an innovative loss function that differentially penalizes translational and rotational

errors, contributing to stabilising the estimated pose.

The methodology devised by Lee et al. encompasses three integral modules: localization, mapping,

and segmentation. The localization module is tasked with keyframe selection, which, upon completion

by the mapping and segmentation modules, facilitates the extraction of corner features and the estima-

tion of camera pose for each keyframe based on the points from connected keyframes. The mapping

module engages in triangulation between current and connected corner features to generate new 3D

points and estimates a ground plane using only the points identified as ground by the CNN, which also

aids in recovering the correct scale for camera poses. Consequently, the mapping module delivers scale-

adjusted camera poses and 3D points. Concurrently, the segmentation module executes deep-learning-

based semantic segmentation on each downsampled keyframe and refines the corner features on the

keyframe by excluding moving objects and areas of low parallax, utilizing the ERFNet CNN as pro-

posed by [129]. Notably, the Lee et al. approach introduces scale correction in 3D mapping and an

innovative technique to mitigate factors that could lead to inaccurate mapping in each keyframe. The

performance of the proposed monocular SLAM system was rigorously assessed using the KITTI bench-

mark dataset, which enabled the authors to establish that their system surpasses existing state-of-the-

art monocular SLAM methods, including ORB-SLAM, ORB-SLAM2, and Mask-SLAM. The system

demonstrated an average translational error of merely 0.19%, a significant improvement over the 0.40%

error of its nearest rival. Furthermore, the semantic segmentation module's integration enhanced the

accuracy of 3D reconstruction and facilitated the creation of a detailed semantic map. Figure 32 depicts

the Lee et al. algorithm inspired by the article [128].

Figure 32. Diagram of Lee et al., algorithm. Adapted from [128].

SVR-Net (2023). The SVR-Net SLAM system, developed by Lang et al. [130], represents an innova-

tive approach in the domain of simultaneous localization and mapping, designed to function with both

visual and visual-plus-range sensory inputs, facilitating the generation of precise 3D mappings of un-

charted environments. A salient feature of this system is the integration of a Support Vector Regression

(SVR) network, which is instrumental in estimating the spatial coordinates of key points within the

46

scene. This enhancement is pivotal in ensuring the robustness of feature tracking, even under adverse

lighting conditions or when occlusions occur. Further distinguishing the SVR-Net SLAM system are

several pioneering attributes. It incorporates an online learning algorithm that dynamically adjusts to

evolving environmental conditions and utilizes graph optimization to refine the estimations of camera

poses and the map's structure. Including loop-closure detection contributes to the map's enhanced ac-

curacy and coherence. When juxtaposed with other SLAM systems that depend exclusively on visual

or range sensors, the SVR-Net SLAM system stands out for its capacity to construct highly detailed and

precise maps of intricate environments, including multi-level structures and non-planar surfaces.

Moreover, the system's computational efficiency renders it suitable for real-time applications.

The SVR-Net SLAM system employs a coarse-to-fine methodology to facilitate efficient tracking and

comprehensive global mapping. It encompasses two modules: one for initial data processing and an-

other for refining the outcomes. Initially, the system processes a pair of frames to estimate the raw pose

and a local map through the SVR network, representing the map as sparse voxels with TSDF values.

Subsequently, this map is expanded into a global map using the data from the initial stage. In the second

stage, the system undertakes voxel up-sampling and proceeds with the refinement of pose and map;

after that, it merges the refined local map with the global map to enhance it. Specifically, the SVR-Net

module, trained on the ScanNet(V2) dataset [131], operates as an end-to-end tracking and mapping

network. It processes a pair of RGB frames alongside voxel coordinates to output a local map, relative

pose, and TSDF values for the voxels. The process begins with extracting feature maps from the images,

which are then converted into feature voxels for each keyframe. These feature voxels are correlated

with the second frame's features to provide matching data. Following this, the system matches features

based on the current pose estimation, iteratively updating the pose and map. The feature-matching

outputs are then employed to refine the pose and map estimations of SVR-Net. The SLAM pipeline,

underpinned by the Kinect-Fusion approach [34], leverages the local map data to augment the global

map and bolster its overall consistency. Figure 33 illustrates the SVR-Net algorithm inspired by the

article [130].

Figure 33. Diagram of SVR-Net SLAM algorithm. Adapted from [130].

7.1.2. ML + Dense + Indirect methods

Indirect approaches in computer vision often employ optical flow for depth estimation tasks. A no-

table difficulty within the Visual Odometry (VO) paradigm is the precise quantification of errors in

feature point locations, which may be adversely affected by motion blur, blockages, and changes in the

camera's perspective. Direct methods, which are generally dependent on the premises of minimal

47

movement and consistent appearance, encounter limitations in their robustness against scene varia-

tions, thus constraining their broader applicability (Min & Dunn, 2021). In recent developments, the

application of machine learning to optical flow estimation has yielded impressive results. This tech-

nique, which synthesizes rigid flow associated with camera movement and a free-flowing component

that accounts for the motion of objects within the scene, has achieved leading-edge performance [132],

[133]. This method's accuracy, robustness, and adaptability have been established, particularly in de-

manding scenarios characterized by a lack of texture, motion blur, or substantial obstructions, position-

ing it as an exemplary solution in the field.

DeMoN (2017). In the Structure from Motion (SfM) research field, a noteworthy contribution is the

DeMoN system, as delineated by Ummenhofer et al. [114]. This system pioneered integrating a Convo-

lutional Neural Network (CNN) designed to recover depth and camera motion from sequential, unre-

stricted image pairs concurrently, thereby enhancing its predictive capabilities. The network extends

its functionality by estimating additional parameters such as surface normals, optical flow between

images, and confidence in these matches. DeMoN leverages motion parallax—a potent indicator for

generalizing across novel environments—to facilitate egomotion estimation. It achieves this by alter-

nating between optical flow prediction and estimating depth and camera motion. The system incorpo-

rates a modified version of FlowNet [134] to compute optical flow from image pairs. Specific loss func-

tions are employed to balance the diverse outputs of the network, such as depth maps and motion

vectors. The L1 loss ℒ function for inverse depth values is defined as:

ℒ𝑑𝑒𝑝𝑡ℎ =∑|𝑠𝑑∗(𝑖, 𝑗) − 𝑑∗̂(𝑖, 𝑗)|

𝑖,𝑗

, (22)

where 𝑑∗ =
1

𝑧
 represents the inverse depth, 𝑑∗̂ is the ground truth inverse depth, and 𝑠 is the scale

factor predicted by the network. For surface normals and optical flow, the L2 norm is utilized to penal-

ize deviations from the ground truth values �̂� and �̂�:

ℒ𝑛𝑜𝑟𝑚𝑎𝑙 =∑‖𝒏(𝑖, 𝑗) − �̂�(𝑖, 𝑗)‖2
𝑖,𝑗

, (23)

ℒ𝑓𝑙𝑜𝑤 =∑‖𝒘(𝑖, 𝑗) − �̂�(𝑖, 𝑗)‖2,

𝑖,𝑗

 (24)

then, the loss functions for motion vectors are given by:

ℒ𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = ‖𝒓 − �̂�‖2, (25)

ℒ𝑡𝑟𝑎𝑠𝑙𝑎𝑡𝑖𝑜𝑛 = ‖𝒕 − �̂�‖2, (26)

where 𝒓 = 𝜃𝒗 denotes the minimal parameterization of rotation with angle 𝜃 and axis 𝒗, and 𝒕 is the

translation vector. The scale-invariant loss for discrete scale-invariant gradients 𝑔 is:

𝑔ℎ[𝑓](𝑖, 𝑗) = (
𝑓(𝑖 + ℎ, 𝑗) − 𝑓(𝑖, 𝑗)

|𝑓(𝑖 + ℎ, 𝑗)| + |𝑓(𝑖, 𝑗)|
,
𝑓(𝑖, 𝑗 + ℎ) − 𝑓(𝑖, 𝑗)

|𝑓(𝑖, 𝑗 + ℎ)| + |𝑓(𝑖, 𝑗)|
)

𝑇

, (27)

ℒ𝑔𝑟𝑎𝑑 𝑑∗ = ∑ ∑‖𝑔ℎ[𝑑
∗](𝑖, 𝑗) − 𝑔ℎ[𝑑

∗̂](𝑖, 𝑗)‖
2

𝑖,𝑗ℎ∈{1,2,4,8,16}

, (28)

this approach uses various spacings ℎ to accommodate gradients of different scales, allowing the

network to compare within a pixel's neighbourhood. The system also applies scale-invariant gradient

loss to each component of optical flow, which enhances the smoothness of the estimated flow fields and

sharpens the delineation of motion discontinuities. In brief, DeMoN processes a pair of images to pre-

dict a depth map from the first image and the relative pose from the second, utilizing a sequence of

48

encoder-decoder networks that iterate over optical flow, depth map, and egomotion estimation. The

system comprises three principal components: the bootstrap net, which provides initial depth and mo-

tion estimates; the iterative net, which refines these estimates, particularly focusing on discontinuities

and scale; and the refinement net, which enhances the resolution of the final depth map. Figure 34

depicts the DeMoN algorithm inspired by the article [114].

Figure 34. Diagram of DeMoN algorithm. Adapted from [114].

DeepV2D (2020). The DeepV2D system, as introduced by Teed & Deng [113], represents an inte-

grated, end-to-end trainable framework that alternates between depth and motion modules to estimate

depth and camera pose. The motion module utilizes depth predictions to refine camera pose estima-

tions, enhancing the precision of the pose determination process. Both modules are constructed upon

neural networks that adhere to geometric constraints, yet they are amalgamated within a fully differ-

entiable architecture to facilitate Structure from Motion (SfM) tasks.

The depth module of DeepV2D accepts camera motion as an input to generate depth predictions. In

contrast, the motion module ingests depth information to output a motion correction factor. The depth

module constructs a cost volume from learned features, enriched with data from multiple viewpoints

via a pooling layer. This module encompasses a 2D feature extractor, which employs dual stacked

hourglass networks to transform each frame into a dense feature representation; a cost volume back-

projection module that reprojects coordinates across frames for each potential depth; and a 3D stereo

matching network that conducts stereo matching across a specified array of cost volumes. The motion

module outputs perturbations in error terms, which are utilized to refine the camera pose. This mod-

ule's workflow includes initialization, selecting a keyframe and predicting relative motion; feature ex-

traction, where learned features convert every frame into a feature map; an error term computation,

using two frames and an hourglass network to predict residual flow between their feature maps; and

an optimization layer, which employs a Gauss-Newton method to compute pose increments.

While the primary focus of DeepV2D is on depth estimation, it can evolve into a SLAM system by

training the neural network to map optical flow to camera motion directly, avoiding the need for ex-

plicit optical flow supervision. This work distinguishes itself from DeMoN (Ummenhofer et al., 2017)

by its motion module's capability to operate with a variable number of frames. Moreover, DeepV2D

introduces a novel motion estimation architecture, termed Flow-SE3, which differentiates it from other

works, such as DeMoN and DeepTAM. This architecture allows the system to apply geometric con-

straints on camera motion, thereby minimizing reprojection error and leveraging the benefits of end-

to-end training. Figure 35 depicts the DeepV2D algorithm inspired by the article [113].

49

Figure 35. Diagram of DeepV2D algorithm. Adapted from [113].

VOLDOR (2021). The VO system VOLDOR, developed by Min & Dunn [135], represents a signifi-

cant advancement in Visual Odometry (VO), utilizing log-logistic depth residuals for its operation. This

system integrates an externally computed optical flow derived from machine learning estimators and

a probabilistic model to construct a VO pipeline. This pipeline is distinctive in bypassing the need for

feature extraction, RANSAC estimation, or local bundle adjustment to generate camera pose and depth

maps. The observation that optical flow residuals typically adhere to a log-logistic distribution forms

the cornerstone of VOLDOR's probabilistic framework, which employs a Fisk-distributed residual

model. This model concurrently estimates camera motion, pixel depth, and motion-track confidence

through a generalized Expectation Maximization (EM) algorithm.

VOLDOR's inference mechanism also relies on a generalized EM approach to deduce depth and ri-

gidity, employs a maximum likelihood estimator (MLE) for initiating subsequent camera poses, utilizes

a maximum inlier estimation to refine the MLE criteria, and applies a forward-backwards algorithm to

deduce rigidity, reducing it to hidden Markov chains. Notably, VOLDOR is designed to be indifferent

to the choice of optical flow estimator, and in this instance, PWC-net [133] was selected to determine

the external dense optical flow input. PWC-net is a compact and trainable CNN that incorporates py-

ramidal processing, warped features, and cost volume for warping the CNN features of a subsequent

image using the current image's optical flow estimate. This network is significantly more compact and

user-friendly for training than FlowNet2 [132], consisting of a feature extractor, an optical flow estima-

tor, and context networks. In this way, VOLDOR employs a Fisk residual model to infer from an exter-

nal estimator's sequence of optical flows, with PWC-net being the system of choice in this context. The

initial camera pose is established using epipolar geometry from the first optical flow, applying the least

median-square estimator. Subsequently, depths are triangulated through two-view triangulation, uti-

lizing optical flow and the initial camera pose. The system then updates by inferring over the Fisk re-

sidual model, where a generalized EM algorithm refines depth and rigidity. Sequential camera poses

are bootstrapped using an MLE, and a maximum inlier estimation criterion is applied to mitigate biases

introduced during the initialization and update phases. Coupled with the Fisk residual model and

maximum inlier estimation, this CNN-based system demonstrated superior performance in an ablation

study and surpassed comparable optical flow systems on the KITTY and TUM RGB-D datasets. Figure

36 depicts the VOLDOR algorithm inspired by the article [136].

50

Figure 36. Diagram of VOLDOR algorithm. Adapted from [136].

DROID-SLAM (2021). The DROID-SLAM system, as introduced by Teed & Deng [136], stands out

as a significant advancement in the field of deep learning-based Simultaneous Localization and Map-

ping (SLAM). This system utilizes a Differentiable Recurrent Optimization-Inspired Design to perform

iterative camera pose updates and estimate depth maps through a dense bundle adjustment layer.

DROID-SLAM employs a Gated Recurrent Unit (GRU) to predict updates within the domain of dense

flow fields, generating an error correction term for the dense correspondence field alongside a depth

map.

DROID-SLAM can execute real-time localization and mapping by dividing its operations between

frontend and backend processes. The frontend processes incoming frames, feature extraction, keyframe

selection, and local bundle adjustment. Concurrently, the backend thread engages in global bundle

adjustment across all historical keyframes. The system's architecture is differentiable and is built upon

the RAFT [137] framework for optical flow, which stands for Recurrent All-Pairs Field Transforms. This

foundation allows DROID-SLAM to handle optical flow by performing recurrent iterative updates. Un-

like traditional systems that update the optical flow, DROID-SLAM updates depth maps, and camera

poses through a differentiable bundle adjustment layer that computes the Gauss-Newton update, en-

suring maximum consistency with the current optical flow estimate.

DROID-SLAM is versatile, supporting monocular, RGB-D, and stereo inputs, and has exhibited re-

markable performance across various benchmarks, including TartanAir, EuRoC, TUM-RGB-D, and

ETH3D-SLAM. It has been shown to surpass both classic and learned-based monocular systems in most

tested sequences. However, the authors acknowledge that a significant limitation of this monocular

system is its high computational demand, which, during experimental evaluations, necessitated up to

24GB of GPU memory to process the EuRoC, TartanAir, and ETH3D sequences. Figure 37 depicts the

DROID-SLAM algorithm inspired by the article [136].

Figure 37. Diagram of DROID-SLAM algorithm. Adapted from [136].

SDF-SLAM (2022). The SDF-SLAM system, as presented by C. Yang et al. [116], is a monocular

SLAM approach that builds upon the foundational concepts of ORB-SLAM. It introduces a novel fea-

ture extraction method and integrates a dense semantic network to estimate densely labelled depth

maps, situating it within the dense category of SLAM taxonomy. The original ORB-SLAM was adept

at extracting textural features such as edges and corners using a combination of SIFT, SURF, and the

ORB algorithms, among others, to identify feature points in adjacent frames based on similarity. These

feature points are then projected to subsequent frames using camera pose changes, with Perspective-n-

51

Point (PnP) algorithms minimizing the discrepancy between projected points and their actual matches.

PnP further translates these feature points into 3D coordinates by utilizing the camera pose, amalgam-

ating all features to create a depth map. However, the depth map generated by ORB-SLAM is not suf-

ficiently dense for certain applications and lacks semantic information recognizable by machines. Aim-

ing to enhance the accuracy of camera trajectory estimation and to recover a semantically rich three-

dimensional scene map, SDF-SLAM integrates camera poses with depth and semantic data at the frame

level. This integration is achieved through three primary components: a Feature Point and CNN Fea-

ture Description (FPFDCNN), which is trained to extract features from image pairs and compute vector

descriptors for each feature point; a Deep Semantic Fusion CNN (SDFCNN), which is trained for con-

current semantic segmentation and depth prediction from RGB images, significantly reducing the esti-

mated parameter count; and a monocular visual SLAM system that incorporates a deep learning frame-

work with a data correction module to globally optimize the point cloud for consistent outputs.

SDF-SLAM employs two neural networks: the FPFDCNN extracts feature points from adjacent

frames and matches them to form feature-matching pairs, followed by a minimization process to derive

camera rotation and displacement matrices. These matrices and the image are inputted into the

SDFCNN to recover a dense depth map and semantic segmentation. Subsequently, the data calibration

module utilizes the dense map, pose, and semantic segmentation data to optimise global and local,

resulting in a three-dimensional semantic map. The FPFDCNN is based on an encoder-decoder archi-

tecture comprising an input layer, encoder layers for feature map extraction, decoder layers for restor-

ing the original image size and feature descriptors, output layers, and concatenation layers. The

SDFCNN employs a unified semantic down-sampling layer to process feature map information and an

up-sampling layer for feature extraction and restoration, alongside discriminative layers for feature

classification, probability estimation, and depth regression estimation.

Experimental results using the TUM dataset have shown that SDF-SLAM offers marked improve-

ments over traditional methods such as ORB-SLAM [33] and LSD-SLAM [4], as well as enhanced se-

mantic segmentation quality compared to CNN-SLAM (Tateno et al., 2017), achieving 90% accuracy in

point cloud prediction and 67% in semantic labelling. An additional benefit of SDF-SLAM is its com-

patibility with various classic SLAM methodologies, as demonstrated by the authors who successfully

integrated the same network architectures within the DSO framework. Figure 38 illustrates the SDF-

SLAM algorithm inspired by the article [116].

Figure 38. Diagram of SDF-SLAM algorithm. Adapted from [116].

52

NERF-SLAM (2022). The study by Rosinol et al. introduces NeRF-SLAM [138], a monocular tech-

nique for reconstructing indoor scenes that leverages normal priors to elevate the precision and intri-

cacy of the reconstructions. This method synergizes the benefits of Neural Radiance Fields (NeRF) with

the tracking capabilities of the DROID-SLAM system (Teed & Deng, 2021) to achieve real-time, accu-

rate, and detailed reconstructions of indoor environments. NeRF-SLAM is engineered to surmount

common challenges many monocular systems face, such as difficulties with dynamic settings, occlu-

sions, and scalability issues. The NeRF-SLAM framework employs an implicit neural representation to

model the scene's geometry and appearance, with the integration of normal priors to refine the detail

and accuracy of the reconstruction. It is composed of three main components: a frontend that deduces

camera poses and produces sparse 3D point clouds; a backend that amalgamates these sparse point

clouds to form the final implicit scene representation; and a normal prediction module that is trained

to infer surface normals from the implicit representation.

The tracking component is based on DROID-SLAM, which procures dense depth maps and poses

from a sliding window of eight keyframes. DROID-SLAM computes the optical flow for each frame

pair, drawing inspiration from the RAFT methodology, which utilizes a Convolutional GRU to calcu-

late the flow and weight by correlating two frames and an estimation of the current optical flow. Sub-

sequently, DROID-SLAM addresses the dense bundle adjustment (BA) challenge by representing the

3D geometry as a parameterized collection of inverse depth maps, facilitating an efficient resolution of

the BA problem through a linear least squares method. Marginal covariances for the depth maps and

poses are then computed, which, in conjunction with the depth, poses, and input RGB images, are used

to optimize the parameters of the radiance field and refine the camera poses. NeRF-SLAM operates

with a tracking thread that persistently minimizes the BA reprojection error across an active window

of keyframes while the mapping thread optimizes the keyframes sourced from the tracking thread. The

tracking thread generates a new keyframe whenever the mean optical flow between the preceding and

current frames exceeds a predetermined threshold.

Through comprehensive testing on various datasets and comparison with leading-edge methods,

NeRF-SLAM has demonstrated superior performance in reconstruction accuracy, detail, and resilience

to dynamic scene elements and occlusions. This positions NeRF-SLAM as a highly promising method

for indoor scene reconstruction, merging the strengths of neural networks with the principles of SLAM.

Figure 39 illustrates the NeRF-SLAM algorithm inspired by the article [138].

Figure 39. Diagram of NeRF-SLAM algorithm. Adapted from [138].

Rosinol et al. (2023). The innovative probabilistic volumetric fusion approach introduced by Rosinol

et al. [139] represents a significant advancement in the domain of dense mapping and 3D environmental

53

reconstruction from RGB-D or monocular RGB data. This method has demonstrated superior accuracy,

robustness, and processing speed performance when benchmarked against many contemporary state-

of-the-art techniques. This method enhances the conventional volumetric fusion process by integrating

a probabilistic framework that employs Gaussian Process Regression (GPR). This integration allows for

more robust and precise reconstruction of 3D environments from RGB data by factoring in the uncer-

tainty inherent to depth measurements—a critical consideration for making reliable decisions in uncer-

tain environments. A key distinction of this method is its capacity to process numerous frames in real-

time, which is a considerable improvement over existing approaches. The method merges dense, noisy

depth maps, applying probabilistic uncertainty estimates into a cohesive volumetric representation.

Utilizing the Droid-SLAM frontend, the system retrieves pose estimates and dense depth maps, further

refined to yield dense uncertainty maps.

In the context of the Droid-SLAM framework, a set of inverse depths for each keyframe is calculated

to address the bundle adjustment (BA) challenge. The uncertainties of these inverse depths are derived

from the information matrix of the BA problem, leveraging marginal covariances for the per-pixel depth

variables. This process facilitates the recovery of sparse depth maps that are subsequently upscaled

using the Raft upsampling operator. Depth variances are also computed, taking into account nonlinear

uncertainty propagation. Subsequently, an uncertainty-aware volumetric mapping technique is ap-

plied, contrasting with Droid-SLAM's ad-hoc depth filter. This technique utilizes the estimated uncer-

tainties from each depth map within a probabilistic volumetric fusion model, offering a robust and

mathematically rigorous alternative for reconstructing scene geometry. The final 3D mesh is extracted

from the volumetric representation, selectively meshing only those voxels that exhibit uncertainty be-

low a predetermined maximum threshold.

The system's efficacy was rigorously assessed using various datasets, encompassing both synthetic

and real-world scenarios. It was juxtaposed with several leading-edge methods, including fusion-based

approaches like KinectFusion and ElasticFusion and deep-learning-based methods such as MVSNet

and NeRF. The results underscored its robustness and adaptability across different contexts. The pre-

cision and quality of the proposed method render it highly applicable to fields such as augmented/vir-

tual reality and computer graphics, potentially revolutionizing virtual gaming environments and film

production. Moreover, its exceptional real-time capabilities make it well-suited for robotic applications,

particularly in autonomous navigation within uncharted terrains. Figure 40 depicts the Rosinol et al.

algorithm inspired by the article [139].

Figure 40. Diagram of Rosinol et al. algorithm. Adapted from [139].

54

7.2. ML + Direct methods

In the contemporary landscape of artificial intelligence, machine learning has emerged as an inter-

esting alternative to aid monocular 3D reconstruction. This surge in interest is largely attributable to

machine learning's capacity to address the inherent constraints of traditional monocular systems, such

as scale indeterminacy, motion distortion, non-textured surfaces, and repetitive patterns. Classic direct

systems face formidable hurdles, including reliance on precise initialization, the assumption of con-

sistent brightness, robustness under dim lighting conditions, and adaptability to novel environments.

Over the last ten years, the scientific community has made notable strides in overcoming these obstacles

by integrating neural network frameworks into established SLAM, VO, and SFM methodologies, en-

hancing their efficacy. In numerous instances, these modernized versions have surpassed their tradi-

tional counterparts in performance.

The categorization of ML-enhanced Direct methods, akin to other classifications, bifurcates into

dense and sparse, based on the density of the resultant 3D reconstructions. These variants are detailed

in sections 7.2.1 and 7.2.2. Figure 41 depicts a timeline for the emergence of seminal ML-enhanced Di-

rect methods within the previous decade. Among these, CNN-SLAM and CodeSLAM stand out as par-

ticularly influential, having made substantial contributions to the avant-garde of the field and garner-

ing impressive citation scores. These approaches have charted new courses for inquiry, with CNN-

SLAM integrating semantic segmentation and CodeSLAM employing encoder-decoder structures, re-

spectively.

Figure 41. Timeline for the most pivotal SLAM, VO or SFM, ML + direct systems.

7.2.1. ML + Dense + Direct methods

Analogous to traditional SLAM techniques, machine learning-based dense formulations are catego-

rized into dense and sparse types, contingent on the sparsity level of the ultimate reconstruction. Re-

searchers in this field have suggested enhancements to pose and depth estimation and the estimation

of additional parameters, such as scale factors and initialization terms. Moreover, as indicated in the

preceding section, there is potential for neural networks to be trained to enhance the map outputs from

conventional SLAM systems. Consequently, these traditional sparse methods have been expanded to

include their machine learning-enhanced dense counterparts. As illustrated in Figure 34, most direct

machine learning methodologies are classified under the dense category, reflecting the substantial im-

provements machine learning has contributed to the density of 3D reconstructions.

CNN-SLAM (2017). The innovative research by Tateno et al. [3] represents a significant leap in mo-

nocular SLAM technology by integrating deep convolutional depth prediction with a dense direct sys-

tem. Through example-based learning, this integration utilizes CNN-generated depth maps to address

the challenge of absolute scale estimation in monocular SLAM, not presenting limitations related to

traditional assumptions and geometric constraints. The CNN-generated depth map serves as an initial

estimate for dense reconstruction, which is subsequently refined using the LSD-SLAM direct method.

Unlike most monocular SLAM systems limited by scene absolute scale ambiguity, the CNN-generated

depth map introduces absolute scale data, enhancing the accuracy of pose estimation, trajectory, and

scene reconstruction. Additionally, while conventional monocular systems struggle with camera

55

rotations due to the absence of a stereo baseline, the CNN approach estimates each frame inde-

pendently, thus avoiding this issue.

The system builds upon the depth prediction methodology of Laina et al. [10], incorporating the

CNN-generated depth map as prior information for the SLAM system with each new keyframe. The

network architecture uses a ResNet-50 base pre-trained on ImageNet to gauge environmental scale.

Subsequent network layers, replacing the final pooling and fully connected layers, consist of residual

up-sampling blocks, followed by the application of dropout and a final convolutional layer that outputs

the depth map. The fusion of CNN depth prediction with direct SLAM is accomplished through an

uncertainty map, 𝒰𝑘𝑖
, which quantifies the elementwise disparity between the depth map of the current

keyframe 𝑘𝑖 and the nearest keyframe 𝑘𝑗:

𝒰𝑘𝑖
(𝒖) = (𝑫𝑘𝑖(𝒖) − 𝑫𝑘𝑗 (Π (𝜻𝑻𝑘𝑗

𝑘𝑖𝒱𝑘𝑖(𝒖))))

2

, (29)

where 𝜻 denotes the camera intrinsics matrix, 𝒱𝑘𝑖(𝒖) = 𝜻
−1�̇�𝑫𝑘𝑖(𝒖) represents a 3D vertex map ele-

ment derived from the current keyframe's depth map, 𝒖 is a generic depth map element with �̇� being

its homogeneous representation, 𝑣 = Π(𝜻𝑻𝑘𝑗
𝑘𝑖𝒱𝑘𝑖(𝒖)), and �̃�𝑘𝑗

 is the uncertainty associated with the

CNN estimation. The depth and uncertainty maps of a frame are combined with those of the closest

keyframe to enhance the precision of every initialized keyframe, with the uncertainty of the nearest

keyframe defined as:

�̃�𝑘𝑗
(𝒗) =

𝑫𝑘𝑗(𝒗)

𝑫𝑘𝑖(𝒖)
𝒰𝑘𝑗

(𝒗) + 𝜎𝑝
2, (30)

Subsequently, the two maps are merged using weighted formulas:

𝑫𝑘𝑖(𝒖) =
�̃�𝑘𝑗

(𝒗) ∙ 𝑫𝑘𝑖(𝒖) + 𝒰𝑘𝑖
(𝒖) ∙ 𝑫𝑘𝑗(𝒗)

𝒰𝑘𝑖
(𝒖) + �̃�𝑘𝑗

(𝒗)
, (31)

𝒰𝑘𝑖
(𝒖) =

�̃�𝑘𝑗
(𝒗) ∙ 𝒰𝑘𝑖

(𝒖)

𝒰𝑘𝑖
(𝒖) + �̃�𝑘𝑗

(𝒗)
. (32)

In CNN-SLAM, the authors also executed semantic segmentation based on the premise that the same

network can undertake high-dimensional regression tasks. This positions CNN-SLAM as a pioneering

example of simultaneous semantic segmentation and 3D reconstruction, paving the way for research

where multiple 3D regression tasks can be conducted alongside depth prediction. In essence, CNN-

SLAM gathers keyframes, refines their pose via pose graph optimization, and concurrently estimates

camera pose by determining the transformation to the closest keyframe. Depth maps predicted by CNN

are generated for keyframes at high frame rates, and an uncertainty map is created to gauge the confi-

dence of each pixel-wise prediction. Concurrently, a second convolutional network predicts semantic

segmentation for each frame. The relative pose is then optimized through a pose graph on keyframes.

Figure 42 depicts the CNN-SLAM algorithm inspired by the article [3].

56

Figure 42. Diagram of CNN-SLAM algorithm. Adapted from [3].

DeepTAM (2018). The DeepTAM system, as delineated by Zhou et al. [140], is an evolution of the

DTAM framework [17], re-envisioned through the lens of deep learning with dual CNN architectures

tailored for tracking and mapping operations. This system's advancements include a tracking network

fine-tuned for frame-to-keyframe incremental tracking, a novel approach to camera pose estimation

employing multiple hypotheses, a mapping network that fuses depth estimation with image priors,

and a depth refinement process that synergizes CNN architectures with a narrow band technique.

In DeepTAM, the tracking network's role is to align the current image with a keyframe, encompass-

ing depth and colour information, to deduce the camera pose. This is achieved by establishing 2D to

3D correspondences between the image and the keyframe. The authors implemented an encoder-de-

coder architecture that learns the six degrees of freedom (DOF) pose estimation relative to a keyframe,

incorporating optical flow to train the network in recognizing the dynamics between image pairs. The

decoder in the tracking network concurrently predicts optical flow and generates pose hypotheses. A

coarse-to-fine strategy was employed to accommodate tracking of both large and small camera move-

ments, training three separate tracking networks to propose poses at varying resolutions, thus enabling

incremental pose estimation with each network specializing in a different resolution scale. The map-

ping network of DeepTAM draws inspiration from the plane sweep stereo concept, aggregating multi-

image data into a cost volume from which a depth map is extracted via a CNN that leverages image-

based priors and the collated depth data. The authors introduced a network that iteratively refines the

depth estimate to enhance depth prediction by utilizing the cost volume within a narrow band proximal

to the geometry inferred from previous frames. The mapping architecture of DeepTAM is bifurcated

into fixed- and narrow-band modules that take the input image and cost volume to yield an initial

depth estimate and interpolation factor and the latter iteratively constructing a learned cost volume,

culminating in a refined depth map produced by a differentiable soft 𝑎𝑟𝑔𝑚𝑖𝑛 operation followed by a

secondary encoder-decoder that refines the depth map further using the keyframe image.

To mitigate the propensity for machine learning models to overfit, authors meticulously designed its

architecture and learning configurations to prevent the network from adopting simplistic shortcuts that

could impair generalization. They also incorporated data augmentation strategies during training and

utilized datasets such as SUN3D [141] and SUNCG [142] to enhance the network's proficiency in 6 DOF

motion tracking. As evidenced through empirical evaluations, DeepTAM's robust tracking capabilities

have demonstrated superior performance compared to its forerunner, CNN-SLAM. Moreover, its ca-

pacity to refine depth maps by processing multiple concurrent images reduces drift. Figure 43 depicts

the DeepTAM algorithm inspired by the article [141].

57

Figure 43. Diagram of DeepTAM algorithm. Adapted from [141].

DeepFusion (2019). In the work of Laidlow et al. [9], the DeepFusion system was introduced, de-

signed to generate dense, scaled depth maps and poses in real-time from a monocular SLAM system.

This system employs predicted depth gradients as constraints to maintain global consistency in the

reconstruction while leveraging learned uncertainties to integrate different data modalities. DeeFusion

is conceptualized by merging the sparse outputs of the monocular system ORB-SLAM2 [7] with the

depth and gradient predictions from a CNN within a probabilistic framework. This framework utilizes

uncertainties derived from the predicted per-pixel mean and variance and combines them with geo-

metric constraints.

The network in DeepFusion is activated once per keyframe, allowing for the continuous optimization

of the depth map for each frame with fresh geometric constraints. The system ascertains shape and

absolute scale through a cost function incorporating per-pixel losses based on CNN depth predictions

and depth estimates, further constrained by the network's depth gradient predictions. The network's

architecture is based on the U-Net model [143], adapted to predict log-depth and modified to include

three additional decoders for estimating log-depth uncertainties, log-depth gradients, and log-depth

gradient uncertainties. The choice of log-depth over depth or inverse depth is due to its scale-invariant

characteristics. An associated uncertainty is integrated into the system to merge the CNN outputs with

the estimates from the monocular SLAM system for each pixel in the log-depth and gradient images.

This integration is achieved by training the network to predict the mean and variance using the

SceneNet RGB-D dataset and employing a maximum likelihood cost function:

ℒ𝑁𝑁(𝝎) =∑
(𝑦𝑖 − 𝜇𝝎,𝑖(𝒙))

𝜎𝝎,𝑖(𝒙)
2

+

𝑖

log(𝜎𝝎,𝑖(𝒙)
2), (33)

where 𝝎 represents the network weights, 𝒙 is the set of input pixels, 𝑦𝑖 is the ground truth for each

pixel, and 𝜇𝝎,𝑖(𝒙), 𝜎𝝎,𝑖(𝒙)
2 are the predicted mean and variance, respectively. Monocular depth estima-

tion follows the method of Engel et al. [22], searching for depth values along the epipolar line for tex-

ture-rich pixels in the keyframe by minimizing the sum of squared differences at five equidistant points.

As a direct dense system, DeepFusion estimates depth by minimizing the photometric error:

𝐸𝑖 = ℑ𝑖 (Π (𝜻𝑻𝑊𝐶1
−1 𝑻𝑊𝐶0Π

−1(𝒙𝑖 , 𝑑𝑠𝑒𝑚𝑖,𝑖))) − ℑ0(𝒙𝑖), (34)

58

where 𝜻 contains the camera intrinsics, 𝑻𝑊𝐶0 and 𝑻𝑊𝐶1
−1 are the poses for the keyframe and reference

frame, respectively. ℑ∗(·) returns intensity values for each pixel, Π is the projection and homogenization

function, and Π−1(𝒙𝑖 , 𝑑𝑠𝑒𝑚𝑖,𝑖) is the back-projection function that yields a 3D point for each pixel with

depth 𝑑𝑠𝑒𝑚𝑖,𝑖. The optimal depth is determined through interpolation between two steps. The uncer-

tainty for each semi-dense measurement is approximated by 𝜎𝑖
2 = (𝐽𝑇𝐽)−1, where 𝐽 is the Jacobian of

the error function. These depth estimates and uncertainties are then converted to log space to align with

the CNN outputs.

In brief, the system computes the pose using ORB-SLAM2 for each new RGB image. Subsequently,

the Engel et al. [22] algorithm updates semi-dense depth estimates for each keyframe. If a new keyframe

is selected, the CNN predicts log-depth, log-depth gradients, and associated uncertainties. If the current

frame is not a keyframe, it contributes to optimization, where a set of log-depth values and scale cor-

rection factors are minimized within the 𝑂𝑝𝑡 optimization framework [144]. The final output is a fusion

of depth and pose, resolved using an associated uncertainty formulation. Figure 44 describes the Deep-

Fusion algorithm inspired by the article [9].

Figure 44. Diagram of DeepFusion algorithm. Adapted from [9].

CodeSLAM (2018). The work presented in Bloesch et al. [8], is an innovative system designed to

capture a dense yet compact representation of scene geometry. This system generates a 'code' from a

single image combined with an intensity image, where the code is a concise set of parameters that en-

capsulates the scene's geometry without losing detail. The underlying concept is that encoding the full

depth of an image is redundant since much of the necessary information is already present in the image

intensities. Therefore, the code is crafted to preserve only the information that cannot be inferred from

these intensities.

In this system, the depth map is expressed as a function of the image 𝐼 and an undetermined code 𝑐,

which is resolved using a neural network 𝐷 = 𝐷(𝐼, 𝑐). The CNN architecture employed here merges the

monocular depth estimation framework of Zhou et al. [145] with the encoder network of Kingma &

Welling [146], fine-tuned to produce a minimal code size while maximizing accuracy through training

to minimise reconstruction error. The process begins with a U-Net taking the intensity image to extract

a high-dimensional image representation. The features from the intensity image are then encoded and

decoded to derive the image's depth map. The encoding and decoding involve a standard down-sam-

pling architecture with strided convolutions, leading to a variational component at the autoencoder's

bottleneck. This component comprises two fully connected layers that sample the code from a Gaussian

distribution, incorporating a regularization cost. The code is then decoded through an upsampling ar-

chitecture that employs bilinear interpolation, integrating the processed image intensities from preced-

ing layers. Additionally, the network calculates the mean and depth uncertainty across four pyramid

levels. CodeSLAM's inference mechanism operates within an N-frame Structure from Motion frame-

work, where codes and poses are refined using loss functions that account for photometric and geo-

metric discrepancies. Residuals and Jacobians are computed to facilitate the application of a damped

59

Gauss-Newton algorithm, which determines the optimal code and pose for each frame. Tracking is

accomplished by estimating the pose of the current keyframe relative to the pre-existing keyframe map.

The SLAM methodology underpinning CodeSLAM is inspired by the PTAM concept [90], which

alternates between tracking and mapping. The system initiates by processing two frames to optimize

their relative poses and codes jointly. After several iterations, a keyframe is introduced to conduct a

global optimization once a baseline is established. The geometry encoding strategy of CodeSLAM,

which facilitates the concurrent optimization of geometry and motion, has demonstrated enhanced per-

formance on the EuRoC dataset compared to its predecessors. This advancement has endowed the sys-

tem with increased robustness, particularly in handling rapid and purely rotational movements. Figure

45 depicts the CodeSLAM algorithm inspired by the article [8].

Figure 45. Diagram of CodeSLAM algorithm. Adapted from [8].

DeepFactors (2020). DeepFactors, as introduced by Czarnowski et al. [6], represents a probabilistic

dense SLAM system that integrates an efficiently learned depth map representation. This innovative

system integrates the foundational principles of classical SLAM with geometry priors derived from

data within a probabilistic factor-graph framework. The system is characterized by three distinct types

of errors, or factors, which are instrumental in estimating the camera trajectory and the geometry of the

scene: the photometric factor, which is the disparity in image intensities compared to a target image;

the reprojection factor, which measures the variance between observed and predicted matched land-

mark locations; and the sparse geometric factor, which assesses the differences in scene geometry by

comparing depth maps of a frame to its target image.

The ablation studies conducted by Czarnowski et al. considered the photometric error as a founda-

tional system component, given its direct method nature. These studies concluded that the reprojection

error is beneficial for avoiding local minima and enhancing the convergence rate. Meanwhile, the geo-

metric error introduces a prior understanding of the world, which is particularly useful in anchoring

depth maps to create a unified reconstruction in areas devoid of photometric information. DeepFactors

advances the concepts initially presented in CodeSLAM [8], albeit with a modified mapping backend

that redefines the problem as a multiview bundle adjustment. This redefinition includes adopting a

three-factor error formulation and enhancements in keyframing, map maintenance, and tracking. Un-

like DeepTAM [140], DeepFactors emphasises network generalisation less, opting for a more robust

optimization process that corrects suboptimal predictions from the network. Here, neural networks are

primarily employed to derive an image-conditioned manifold, the basis for the optimization process.

The authors leveraged a General-Purpose GPU (GPGPU) to facilitate real-time performance and re-

structured the CodeSLAM network architecture. They implemented a U-Net to distil features from in-

put images, reducing image size through successive convolution steps. A Variational Auto-Encoder

(VAE) is then utilized to learn a compact, optimizable depth representation, which the decoder trans-

lates back into depth values. The features intricately condition the encoder and decoder through con-

catenation processes. An additional output from the feature network is an uncertainty parameter,

which is incorporated into the negative log of a Laplacian likelihood loss, serving as a supervisory

60

metric for the reconstructed depth. Concurrently, the predicted depth map is regulated with an L1 loss.

Figure 46 exemplifies the DeepFactors algorithm inspired by the article [6].

Figure 46. Diagram of DeepFactors algorithm. Adapted from [6].

7.2.2. ML + Sparse + Direct methods

In the realm of direct methods, akin to traditional techniques, a bifurcation exists based on the den-

sity of the resultant 3D map from the reconstruction process, leading to a classification into dense and

sparse categories. Integrating machine learning into these methodologies yields two classifications: ML

+ Dense + Direct and ML + Sparse + Direct. ML + Sparse + Direct is frequently adopted due to the notable

successes achieved by sparse direct classic methods such as DSO [2]. This section is dedicated to show-

casing the most effective machine learning enhancements applied to the DSO system, including ad-

vanced versions where neural network integration has been employed to augment map quality, track-

ing accuracy, and generalization capacity and to address common failure scenarios such as violations

of brightness constancy, motion blur, and repetitive textures.

Several initiatives outlined in this section have successfully attained denser reconstructions [147],

[148], yielding dense or semi-dense output maps by integrating machine learning techniques. None-

theless, these methods are categorized under ML + Sparse + Direct because they fundamentally operate

on a sparse selection of points.

DVSO (2018). The pioneering "Deep Virtual Stereo Odometry" (DVSO) system, introduced by Yang

et al. [111], builds upon the Direct Sparse Odometry (DSO) framework [2] and incorporates deep learn-

ing concepts alongside the stereo extension of DSO (Stereo DSO) [149]. DVSO ingeniously simulates a

stereo odometry system utilizing solely monocular input. The system's efficacy is bolstered by a semi-

supervised neural network that predicts depth maps from single images, initializing sparse depths for

the DSO algorithm at a uniform depth scale. Additionally, it enhances odometry by integrating a novel

virtual stereo term that aligns the depth estimated in DSO's windowed bundle adjustment with the

depth predictions from the network.

The semi-supervised neural network employed in DVSO is tailored to predict refined disparity esti-

mates, incorporating three pivotal components to elevate performance: a self-supervised learning par-

adigm anchored in photo-consistency and image reconstruction loss, a supervised learning strategy

utilizing Stereo DSO depth predictions as a proxy for ground truth, and a dual-stage refinement process

for network predictions deploying a stacked encoder-decoder network architecture. This network

termed StackNet, layers two distinct networks, SimpleNet and ResidualNet, drawing inspiration from

DispNet [150] with an encoder-decoder design. SimpleNet, utilizing a ResNet-50 backbone with skip

connections, projects feature maps back to their original resolution, producing disparity maps across

various scales. Conversely, ResidualNet, modelled after FlowNet 2.0 [132], refines the disparity maps

generated by SimpleNet, processing this data in a stereo format that includes a reconstructed right

61

image (achieved by warping the input image to a rectified stereo view), a synthesized left image, and

the associated reconstruction error.

The learning process is meticulously directed by a loss function comprising five linearly combined

terms: self-supervised loss for evaluating the reconstructed image quality; supervised loss for gauging

the predicted disparity map's deviation from the sparse pixel disparities estimated by DSO; left-right

disparity consistency loss to ensure symmetry between the left and right disparity images; disparity

smoothness regularization to encourage local smoothness in the predicted disparity map; and occlusion

regularization to refine the system's handling of background depths and abrupt transitions at occlu-

sions. Through this finely calibrated approach, the authors achieved superior performance over tradi-

tional monocular VO systems and even stereo VO systems despite relying exclusively on monocular

input. Figure 47 depicts the DVSO algorithm inspired by the article [111].

Figure 47. Diagram of DVSO algorithm. Adapted from [111].

CNN-DVO (2020). In the realm of artificial intelligence and computer vision, [21] have pioneered a

novel approach with their CNN-DVO framework, which integrates deep learning with sparse direct

visual odometry. This integration is achieved by leveraging deep convolutional neural network (CNN)

depths as initial priors, which are then utilized across various stages, including initialization, local bun-

dle adjustment, and loop closure. The CNN-DVO stands out as the inaugural framework to holistically

integrate depth prediction with the initialization, tracking, and marginalization components, thereby

enabling the simultaneous optimization of all model parameters, such as inverse depth, camera pose,

and the affine model. The researchers also demonstrated the advantages of incorporating depth priors,

notably in stabilizing the initialization scale, mitigating scale drift during tracking, and restoring 3D

measure correspondence in loop closures while preserving consistent scale [21].

Furthermore, the study introduces an enhanced strategy for point selection, targeting regions with

low and high gradients to prevent clustering. This strategy enhances the adaptability of the tracking

thread, particularly in scenarios with large stereo baselines and extreme motion, thus bolstering the

robustness of pose estimation. The optimization process is bifurcated into two distinct phases: initially

resolving the pose using a coarse prior, then refining the depth based on the pose values obtained in

the preliminary stage. Drawing inspiration from Gao et al. (2018), the methodology delineates the

SLAM challenge into coarse tracking and map refinement. The authors also implemented a keyframe

selection mechanism predicated on marginalization outcomes and a pose graph, employing a bag-of-

words (BoW) database of ORB features uniformly extracted from the image space, which aids in ensur-

ing the reproducibility of mapped points in subsequent frames, thereby facilitating effective loop clo-

sure. The method further incorporates a dynamic point sampling strategy within multiscale image sec-

tions. After selecting tracking points and applying the Direct Sparse Odometry (DSO) point selection

criteria, the system calculates gradient histograms in defined kernel regions, selectively discarding

62

points in sparse, low-gradient areas. The resulting set of tracking points is then optimized using a slid-

ing window approach. The Monodepth2 model [151] serves as the CNN depth predictor, providing

essential data for estimating the camera pose for the upcoming frame and refining the pose estimation.

Subsequently, a Gauss-Newton optimization refines the reprojection locations and recovers the inverse

depth along the epipolar line. The equation defines the variance of each observation:

𝜎𝑑
2 = 𝜆(

𝑑′

6
)

2

+ (1 − 𝜆)𝜎𝑑,𝑜𝑏𝑠
2 , (35)

where 𝑑∗ denotes the inverse depth, 𝑑′ the predicted inverse depth, 𝜆 weight (empirically set to 0.57),

𝜎𝑑 the standard deviation, and 𝜎𝑑,𝑜𝑏𝑠 the observation variance. This empirical approach allows for the

convergence of noisy depth predictions. Depth prior is then incorporated as a residual to penalize de-

viations in inverse depth between keyframes, ensuring proper scaling of estimated transformations:

𝑟𝑖𝑑 = (𝐼𝑗[𝑝
′(𝑻𝑖, 𝑻𝑗 , 𝑑

′, 𝜻)] − 𝑏𝑗) −
𝑡𝑗𝑒

𝑎𝑗

𝑡𝑖𝑒
𝑎𝑖
(𝐼𝑖(𝑝) − 𝑏𝑖), (36)

where 𝑻𝑖 , 𝑻𝑗 are the camera poses, 𝜻 is the camera intrinsics matrix, 𝑎𝑖, 𝑎𝑗, 𝑏𝑖, 𝑏𝑗 correspond to affine

bright coefficients, 𝐼𝑖 and 𝐼𝑗 are a pair of keyframes, 𝑝′ in 𝐼𝑗 are projected points from 𝑝 in 𝐼𝑖 . This opti-

mization process is akin to that used in DSO, with BRIEF descriptors extracted from keyframes and

maintained within the same BoW database for loop detection queries. RANSAC PnP initializes trans-

formations, followed by the optimization of 𝑆𝑖𝑚(3) transformations using 3D-2D geometric constraints.

The depth filter initializes inverse depth estimation for each selected point, with error variance formu-

lated as:

𝜎𝑑∗
2 = 𝛼2 (𝜻 𝑑 + 𝜻 𝑑

𝐽𝑑Σ𝐽𝑑 + 𝐽𝑑
′ Σ𝐽𝑑

′

𝐽𝑑Σ𝐽𝑑
+ 𝜎𝑑

2), (37)

where the inverse depth 𝑑∗ = 𝑑(𝐼0, 𝐼1, 𝑑
′, 𝜉, Π) is a function of depth prior and geometrical projection

input, 𝑑′ is the inverse depth prior, 𝜉 is the relative transformation matrix, Π is the projection function,

𝑐𝑑 is the normalization constant (empirically set to 0.2), 𝐽𝑑 is the Jacobian of 𝑑, 𝐽𝑑
′ = [𝑑𝑥,−𝑑𝑦]𝑇 is the

conjugated Jacobian of 𝑑, Σ = [𝐼𝑥 , 𝐼𝑦]
𝑇
[𝐼𝑥 . 𝐼𝑦] is the input error covariance, and 𝛼 is the proportionality

constant defined in [22]. The inverse depth prior is then initialized, and a Gauss-Newton optimization

refines the upper bound of inverse depth for each map point candidate through the inverse depth re-

sidual 𝑟𝑖𝑑 :

𝑟𝑖𝑑 = ∑‖𝐼1[Π(𝒒𝑖 , 𝑑, 𝜉) − 𝑒
𝑎𝐼0(𝒒𝑖) + 𝑏]‖𝛾

𝑖∈𝒫𝑖

, (38)

where 𝛾 is the Huber norm, and 𝒫𝑖 is the residual pattern. Depth prior effectively narrows the search

region, rendering the method more amenable to challenges posed by large baseline stereo configura-

tions. Depth propagation for tracking updates the inverse depth using a formulation akin to the Kalman

filter, where a noisy observation 𝒩(𝑑′, 𝜎𝑑′
2) is fused with the geometrical propagation prior 𝒩(𝑑1, 𝜎𝑑1

2)::

𝑑1
′ (𝑑1, 𝑑

′) = 𝒩 (
𝜎𝑑1
2 𝑑′ + 𝜎𝑑′

2 𝑑1

𝜎𝑑1
2 + 𝜎𝑑′

2 ,
𝜎𝑑1
2 𝜎𝑑′

2

𝜎𝑑1
2 + 𝜎𝑑′

2).

In summary, CNN-DVO is predicated on the principles of direct SLAM, extracting a pose hessian

prior for each new frame, initializing depth through dynamic point sampling, estimating coarse pose

via a sliding window approach, and refining depth with CNN predictions. This continuous propaga-

tion of depth into each tracking frame is refined by local bundle adjustment. The tracking thread then

63

performs marginalization to resolve the camera pose and eliminate outlier map points, refining the

depth map and pose graph using a BoW database and ORB features for loop closure. Ultimately, 𝑆𝑖𝑚(3)

transformations are optimized through 3D-2D geometric constraints. Figure 48 describes the CNN-

DVO algorithm inspired by the article [21].

Figure 48. Diagram of CNN-DVO algorithm. Adapted from [21].

D3VO (2020). In the realm of computer vision and SLAM (Simultaneous Localization and Mapping),

the D3VO system, as introduced by Yang et al. [112], represents an evolution of the DSO framework

[2]. This system integrates deep learning with Visual Odometry (VO) to enhance monocular depth pre-

diction, camera pose estimation, and the assessment of photometric uncertainty. D3VO distinguishes

itself from DVSO by eschewing semi-supervised methods that depend on depth data from StereoDSO

[149], instead opting for training exclusively with stereo video footage without requiring of any external

depth guidance signals.

The methodology involves the incorporation of DepthNet and PoseNet, which are convolutional

neural networks that emulate a U-Net-like structure, building on the foundation provided by

MonoDepth2 [152]. These networks are designed to predict not only depth and pose but also parame-

ters for brightness transformation and photometric uncertainty, thus extending the system's proficiency

in handling variations in illumination, reflective surfaces, detailed textures, motion blur, and dynamic

objects that could otherwise violate the brightness constancy assumption. They are assigned a reduced

weight to mitigate the impact of pixels likely to infringe upon this assumption. The self-supervised

training network and the VO system converge on similar photometric goals, prompting the authors to

suggest substituting the empirical weighting function based on photometric residuals in DSO with

learned weights. The D3VO's neural network is adept at estimating depth, pose uncertainty, and affine

brightness transformation parameters, facilitating the alignment of illumination across training image

sets in a self-regulated manner. Consequently, the network can predict photometric uncertainty for

each pixel based on the range of potential brightness values, seamlessly integrating this predicted data

into both the tracking front-end and the photometric bundle adjustment in the backend. Addressing

the inaccuracies introduced by the failure of the brightness constancy assumption, the authors employ

the concept of heteroscedastic aleatoric uncertainty for neural networks [153] to forecast a probability

distribution for each pixel characterized by its mean and variance. This predictive uncertainty allows

64

the CNN to modify the weighting of residuals based on the input data, thereby enhancing the model's

resilience to noisy data. Contrary to traditional SLAM systems that initiate depth values arbitrarily,

D3VO utilizes DepthNet's predicted depth values, which are informed by scale prior knowledge. More-

over, it replaces the constant velocity model with PoseNet's predicted poses to construct a nonlinear

factor graph. This graph facilitates tracking new frames from the current keyframe through direct im-

age alignment. D3VO leverages these predicted poses for initializations in both the tracking front-end

and the optimization backend, while also incorporating depth information as a stabilizing factor in the

energy function for photometric bundle adjustment.

Empirical evidence suggests that D3VO's amalgamation of techniques surpasses its predecessor and

delivers trajectory estimation results on par with the most advanced visual-inertial odometry methods

despite solely relying on monocular data. Figure 49 depicts the D3VO algorithm inspired by the article

[112].

Figure 49. Diagram of D3VO algorithm. Adapted from [112].

MonoRec (2021). Building upon the foundational concepts of Direct Sparse Odometry (DSO) [2],

Wimbauer et al. introduced MonoRec [147], a system that transcends traditional VO and SLAM para-

digms. Designed primarily as a 3D reconstruction system, MonoRec adeptly handles static and dy-

namic environments by harnessing the capabilities of two specialized neural networks: a MaskModule

and a DepthModule. These networks work in tandem to broaden the scope of monocular Structure

from Motion (SFM) applications. Depth prediction techniques that integrate deep learning have been

bifurcated into two streams: multiview stereo (MVS) [105], [112], [154] and monocular depth prediction

[112], [152], [155]. While both approaches aim to deduce depth information, their applications differ.

MVS methods leverage multiple viewpoints to infer depth, operating under the premise that the envi-

ronment remains static. Consequently, these methods struggle with accuracy in scenes with moving

objects. On the other hand, monocular depth prediction techniques, which derive depth from single

images, excel with moving subjects but are heavily dependent on the object's appearance relative to the

camera's positioning.

MonoRec ingeniously amalgamates these two methodologies to harness their respective strengths.

The MaskModule utilizes a cost volume tensor, constructed using the Structural Similarity Index Meas-

ure (SSIM) from multiple views, to pinpoint and de-emphasize moving pixels by down-weighting their

representation in the cost volume. This module employs a U-Net-like architecture with skip connec-

tions, drawing on pre-trained ResNet-18 features to predict a probabilistic mask that discerns moving

objects through inconsistent geometric data across cost volumes. The DepthModule, based on a U-Net

architecture, predicts an inverse depth map by processing the complete cost volume alongside an im-

age. The integration of the mask ensures that inaccuracies caused by moving objects are filtered out

from the depth predictions. MonoRec's training regimen is a multistage process that eschews the need

65

for LiDAR ground truth data, instead adopting a semi-supervised loss formulation. Initially, each mod-

ule is trained independently: the DepthModule is refined using a semi-supervised loss that combines a

self-supervised photometric component with an edge-aware smoothness constraint (Godard et al.,

2019), while a binary cross-entropy loss between the predicted mask and the actual ground truth guides

the MaskModule's training. Subsequent refinement stages for the MaskModule introduce a supervised

loss to enhance stability and precision in mask prediction, preventing overfitting by adjusting the cost

volume structure. The final stage of DepthModule refinement enables the system to accurately predict

depths for moving objects through additional stereo processing, using the depth map as a prior.

Empirical evaluations of MonoRec on datasets such as KITTI, TUM-Mono, and Oxford Robot-Car

have showcased its proficiency in generating semi-dense point clouds of scenes. Ablation studies fur-

ther underscore the critical role of the MaskModule and DepthModule refinements in augmenting the

detection and mapping of moving objects. Figure 50 describes the MonoRec algorithm inspired by the

article [147].

Figure 50. Diagram of MonoRec algorithm. Adapted from [147].

DDSO (2022). Zhao et al. [28] have advanced the field of monocular SLAM with their development

of DDSO, an innovative system that builds upon the DSO visual odometry framework [2]. This system

integrates unsupervised deep neural networks to refine the precision and robustness of the DSO sys-

tem. As a direct method, DSO calculates the camera pose using photometric data, thus obviating the

requirement for feature descriptor computation. Despite its efficiency, direct methods are susceptible

to photometric variances between frames and are contingent on precise initialization, which can be

problematic in complex environments. The accuracy of pose estimation in DSO relies heavily on the

image alignment algorithm, which determines inter-frame poses by optimizing an initial pose based on

a constant motion model. This model, however, presumes that the motion between frames remains

unchanged, an assumption that falters in the presence of rapid movements, motion blur, or repetitive

textures. Initially, DSO employs a unit matrix for lack of prior camera pose information, an empirical

choice that DDSO seeks to improve.

DDSO enhances the DSO framework by employing a deep-learning-based pose estimation for ini-

tialization and tracking, thus enriching the constant motion model with inter-frame pose data. This

enhancement is facilitated by TrajNet, a CNN trained unsupervisedly with four geometric constraints,

with the study's significant contribution being the novel pose-to-trajectory constraint. TrajNet operates

in conjunction with DepthNet, a depth estimation network where the geometric constraints between

the outputs of each network pair serve as a training guide. The supervisory signal for TrajNet comprises

the view reconstruction constraint, which accounts for reconstruction errors from consecutive frame

pairs using the same depth map; the smoothness constraint, encouraging the detailed representation of

66

geometry; the depth alignment constraint, ensuring scale consistency across adjacent depth maps; and

the innovative pose-to-trajectory constraint, which enhances the network's trajectory generation by

maintaining scale consistency across three consecutive poses, considering inter-frame poses. In the DSO

system, the Gauss-Newton algorithm is employed to optimize the total photometric error across a slid-

ing window of keyframes, framing the process as a nonlinear optimization problem that requires an

initial transformation, typically a unit matrix, which is then iteratively refined. Additionally, DSO's

protocol for reinitialization during tracking loss involves multiple motion models and small rotations,

a complex and computationally intensive process.

DDSO's TrajNet offers initial transformations and models for failure scenarios, simplifying and im-

proving the original DSO's reinitialization process. Empirical evaluations have demonstrated that the

integration of TrajNet into DDSO significantly surpasses the performance of the original DSO system,

achieving robust and precise trajectories and depth maps without the need for intricate calibration.

Figure 51 presents the DDSO algorithm inspired by the article [28].

Figure 51. Diagram of MonoRec algorithm. Adapted from [28].

7.3. ML + Hybrid methods

Within the spectrum of methodologies for SLAM (Simultaneous Localization and Mapping), there

exists a hybrid classification that adeptly merges the direct and feature-based (indirect) approaches.

The Semi-Direct Visual Odometry (SVO) system, developed by [13], exemplifies this category by syn-

ergizing the direct acquisition of pixel-level data with feature-based techniques to facilitate camera

tracking and the generation of sparse depth maps. In the ensuing years, the SVO framework has un-

dergone enhancements, notably the incorporation of a Convolutional Neural Network (CNN) to bolster

its generalization capabilities and improve initialization, a topic that will be further explored in the

subsequent section. Although the body of literature in this hybrid category is not extensive, it has gar-

nered a favourable reception within the scientific community, particularly for its applications in robot-

ics. This acknowledgment is reflected in the substantial citation metrics these works have achieved,

indicating their influence and utility in the field.

CNN-SVO (2019). As mentioned, the implementation of depth filters in the SVO mapping thread

and the proposed use of direct pixel matching in the semi-direct framework of SVO have enabled the

system to achieve efficient camera motion estimation at high frame rates. However, this proposal still

has shortcomings, especially regarding the high-depth uncertainty in the map point initialization pro-

cess. This problem is addressed in the study of [54], where authors incorporated a CNN to overcome

this depth uncertainty limitation. The system was built entirely over the SVO framework [13], adding

depth prior knowledge obtained by the single-image CNN MonoDepth of [152] for reducing the uncer-

tainty in identifying feature correspondences, which was built over the Resnet50 backbone using a var-

iant of its encoder-decoder architecture. In SVO's original proposal, the system was divided into

67

mapping and tracking threads. Depth values for each feature are obtained by finding feature corre-

spondence over the epipolar line recovering depth by triangulation. The mapping thread runs the ini-

tialization of new map points with high depth uncertainty, updating this depth uncertainty using depth

filters created to approximate the mean and variance of current depth values to separate inliers from

outliers; hence, a depth filter converges when a point depth uncertainty is small. However, in the orig-

inal SVO, depth uncertainty tends to be large, leading to two problems: erroneous feature correspond-

ence on the epipolar line and many depth estimations far from converging to their true depth. Conse-

quently, the CNN depth prediction is used to better estimate the mean and variance used in each depth

filter, allowing for faster and more accurate convergence.

As shown in Figure 46, MonoDepth is added as a depth estimation module in the mapping thread

providing strong depth priors in the map points initialization process to initialize the depth filters.

Whereas the original SVO proposal initialized depth-filters as average depth measurements of current

image 𝜇𝑛 = 1/𝑑𝑎𝑣𝑔 and variance were set as a function of the minimum depth of the image 𝜎𝑛
2 =

1/(6𝑑𝑚𝑖𝑛)
2; CNN-SVO replaced these simple values with more precise information of the depth esti-

mation coming from the CNN for each filter position as 𝜇𝑛 = 1/𝑑𝐶𝑁𝑁, 𝜎𝑛
2 = 1/(6𝑑𝐶𝑁𝑁)

2. Experimental

results demonstrated that adding prior CNN depth information improved the system's performance

for overexposed and underexposed images thanks to its illumination invariance properties, facilitating

feature correspondence between views and overcoming key- illumination issues of original SVO. Fig-

ure 52 introduces the CNN-SVO algorithm inspired by the article [54].

Figure 52. Diagram of CNN-SVO algorithm. Adapted from [54].

7.4. General comments for ML approaches

As delineated in preceding discussions, machine learning paradigms, particularly convolutional

neural networks (CNNs), have been extensively incorporated into various classical frameworks to ad-

dress identified limitations and failure modes within each category of taxonomic classification. It is

noteworthy, as highlighted in scholarly contributions [135], [156], that a segment of the research com-

munity maintains that traditional geometric strategies continue surpassing machine learning tech-

niques regarding reconstruction fidelity and tracking precision. Nonetheless, as scrutinized in this re-

view, proponents of machine learning have endeavoured to rectify these shortcomings by developing

and applying novel or more advanced CNN architectures, alongside the construction of robust datasets

aimed at refining the training process. Furthermore, as evidenced in the systems evaluated herein,

CNNs extend beyond the scope of scene depth recovery or camera pose estimation. They have been

effectively deployed for tasks such as densifying depth maps, estimating initialization parameters,

68

conducting preprocessing operations like feature extraction or optical flow estimation, and executing

ancillary functions such as semantic segmentation.

From various analytical angles, CNNs have been shown to significantly contribute to SLAM, VO,

and SFM domains. Another frequently discussed challenge in machine learning endeavours is the pro-

pensity for overfitting [157], which has been mitigated by the continuous enhancement of datasets [68],

[123]–[127], [158], thereby enabling more robust training and the integration of sophisticated semi-su-

pervised [147] and self-supervised methods [48], [104], [121], [151].

Issues concerning the generalization of machine learning methods [50] have been addressed by uti-

lizing datasets captured under diverse conditions, including indoor [68], outdoor [103], autonomous

driving [69], and Micro Aerial Vehicle (MAV) [67] flight sequences. Consequently, machine learning

techniques have explored many avenues to resolve the challenges of 3D reconstruction, making signif-

icant strides in this field of research. Moreover, the selection criteria for SLAM, VO, or SFM systems

employing machine learning mirror those of classical approaches, with additional considerations spe-

cific to machine learning, such as the integrated CNN architectures and the principal estimation tasks

that necessitated using CNNs for each system. Table 3 in the article encapsulates the 11 criteria assessed

across various machine learning systems.

In practice, several machine learning methods with open-source code availability have been imple-

mented, selected based on their accessibility and their reliance on monocular RGB input as the sole data

source. It is pertinent to mention that methods such as those by [3], [6], [8], [9], [21], [28], [49], [112],

[114], [135], [140], [147] have been made publicly accessible. However, their published open-source

versions did not encompass their monocular RGB pipelines and were contingent on supplementary

information such as externally estimated optical flow or depth priors, and hence were not featured in

the examples depicted in Figure 53. Figure 53 illustrates the outcomes of implementing ML-based mo-

nocular SLAM, VO, and SFM systems on publicly accessible datasets.

Table 3. Summary of the most representative ml monocular SLAM, VO, and SFM systems

Method
SLAM,

VO or

SFM

Tracking

method

Map

density

Pixels

used
Estimation

CNN ar-

chitec-

ture

CNN's main

estimation

tasks

Globa

l op-

timi-

za-

tion

Re-

loca-

liza-

tion

Loop

clo-

sure

Avai-

labil-

ity

DynaSLA

M (2018)

[118]

SLAM Feature-

based

Sparse Hi.grad. Local BA Mask R-

CNN

Instance seg-

mentation
 [159]

BA-Net

(2019) [49]

SFM Feature-

based

Sparse Hi.grad. BA DRN-54 Depth

Damping fac-

tor

- - - [160]

Steenbeek

et al.

(2022) [117]

SLAM Feature-

based

Sparse Hi.grad. BA ResNet-

50

Enc.dec.

Scale

Depth map

densify

 [161]

Sun et al.

(2022) [50]

SLAM Feature-

based

Sparse Hi.grad. BA ResNetXt

-50

Enc.dec.

Scale

Relative depth

Depth

 -

Lee et al.

(2022) [128]

SLAM Feature-

based

Sparse Hi.grad. BA Enc. dec. Scale

Semantic

segmentation

Feature

refinement

 -

SVR-Net

(2023) [130]

SLAM Feature-

based

Sparse Learned

features

Optimal

match recur-

rent network

ScanNet Local map

Relative pose

TSDF values

 - - -

69

DeMoN

(2017) [114]

SFM Optical

flow

Dense SIFT key-

points

matching

Flow-

Fields

8-point algo-

rithm

RANSAC

Chain

Enc.dec.

Optical flow

Depth

Pose

Surface

normals

- - - [162]

DeepV2D

(2020) [113]

SLAM Optical

flow

Feature-

based

Dense Learned

features

3D Stereo

matching

over cost vol-

umes

Residual

Flow

Hourglas

s

Enc.dec.

Depth

Pose

3D stereo

matching

 - - [163]

VOLDOR

(2020) [135]

VO Optical

flow re-

siduals

Dense Learned

features

Generalized

Expectation-

Maximiza-

tion

PWC-

Net

Optical flow - - - [156]

DROID-

SLAM

(2021) [136]

SLAM Optical

flow

Dense Learned

features

Between

keyframe

s edges

BA Residual

blocks

Feature

extraction

Optical flow

Estate

estimation

 - [164]

SDF-SLAM

(2022) [116]

SLAM Feature-

based

Dense Learned

features

and de-

scriptors

BA Enc.dec. Feature and

descriptor

extraction

Semantic

segmentation

 -

NeRF-

SLAM

(2022) [138]

SLAM Optical-

flow

Dense Learned

features

Between

keyframe

s edges

BA

Radiance

field optimi-

zation

Residual

blocks

Neural

Radiance

Fields

Feature

extraction

Optical flow

Estate

estimation

 - [165]

Rosinol et

al. (2023)

[139]

SLAM Optical-

flow

Dense Learned

features

Between

keyframe

s edges

BA

Probabilistic

volumetric

fusion

Residual

blocks

Feature

extraction

Optical flow

Estate

estimation

 - -

CNN-

SLAM

(2017) [3]

SLAM Direct Semi-

dense

Hi.grad. Pose Graph

optimization

ResNet-

50

FCN

Depth

Semantic

segmentation

 - [166]

DeepTAM

(2018) [140]

SLAM Direct

Optical

flow

Dense Hi. grad. Cost volume

refinement

Enc.dec. Pose

hypotheses

Optical flow

Depth

Depth

refinement

 - [167]

Deep-

Fusion

(2019) [9]

SLAM Direct Semi-

dense

Hi. grad. Opt frame-

work

U-Net Log-depth

gradients and

uncertainties

Scale

 - - -

CodeSLA

M

(2018) [8]

SLAM Direct Dense Hi. grad. BA U-Net

Variation

al

Enc.dec.

Code

Compact

depth

 - - [168]

DeepFac-

tors

(2020) [6]

SLAM Direct Dense Hi. grad. Multiview

BA

U-Net

Variation

al

Enc.dec.

Code

Compact

depth

Uncertainty

 [169]

DVSO

(2018) [111]

VO Direct Sparse Hi. grad. BA ResNet-

50

Disparity

maps

- -

- [170]

70

Encoder-

decoder

CNN-DVO

(2020) [21]

SLAM Direct Sparse Hi. grad.

Dynamic

upsam-

pling and

downsa

mpling

BA U-Net

Encoder-

decoder

Depth - [171]

D3VO

(2020) [112]

VO Direct Sparse Hi.grad. BA U-Net

Encoder-

decoder

Depth, Pose,

Uncertainty

- - - -

MonoRec

(2021) [147]

SFM Direct Sparse Hi. grad.

Mask fil-

ter

BA U-Net

ResNet-

18

features

Encoder-

decoder

Depth

Mask

Moving

objects

- - - [172]

DDSO

(2022) [28]

VO Direct Sparse Hi. grad. BA ResNet-

50

Encoder-

decoder

Depth

Pose

Transformatio

ns

- - - -

CNN-SVO

(2019) [54]

VO Hybrid Sparse FAST +

Hi.grad.

Local BA ResNet-

50

Encoder-

Decoder

Depth - - - [173]

Hi.grad. is used to abbreviate a set of pixels with a high-intensity gradient.

Enc.dec. is used to abbreviate the Encoder-decoder CNN architecture.

EKF is used to abbreviate the Extended Kalman Filter technique.

BA is used to abbreviate the Bundle Adjustment technique.

1Unofficial implementation of the CNN-SLAM method. There is not an official implementation of this method yet.

2Unofficial implementation of the Code-SLAM method. There is not an official implementation of this method yet.

3Unofficial implementation of the DVSO method. There is not an official implementation of this method yet.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 53. Examples of results obtained by ML approach implementations. (a) represents the input

image, (b) presents results obtained using the DynaSLAM algorithm (Bescos, 2019), (c) presents results

obtained using the CNN-SVO algorithm [54], and (d) presents results obtained using the CNN-DSO

algorithm [174]. Top row results correspond to the indoor example sequence seq_01, and bottom row

results correspond to the outdoor sequence seq_29 of the TUM-MONO dataset [103].

71

8. Discussion

The domains of SLAM (Simultaneous Localization and Mapping), VO (Visual Odometry), and SFM

(Structure from Motion) have been subjects of intensive research over the past thirty years, with signif-

icant advancements in the last two owing to computational power enhancements that have facilitated

their core operations. Yet, it is imperative to acknowledge the existence of unresolved challenges that

have spurred the development of the systems previously delineated. These challenges encompass the

fortification of existing systems, the optimization of computational resources, the integration of scene

understanding, the tracking and reconstruction of moving objects, the enhancement of map density,

the improvement of generalization in novel environments, and the attainment of per-pixel dense scaled

reconstruction, among others.

Efforts to reinforce current methodologies have been thoroughly investigated by researchers such as

[7], [17], [23], [71], [84], who have focused on refining original systems through both classical techniques

and the integration of neural networks into traditional frameworks [3], [49], [54], [112], [116], [117],

[140]. The optimization of computational resources has been particularly pertinent for embedded sys-

tems with limited processing capabilities, such as UAVs or drones, necessitating specialized strategies

for feature, point, and frame selection to operate with minimal data [13], [117].

The incorporation of scene understanding has been approached in classical methods [7], [71] by add-

ing modules for scene comprehension or through machine learning to classify point clouds in scenes

recognizable by the trained network [3], [116]. The detection and depth estimation of moving objects

has been explored using artificial intelligence to generate masks that assess the likelihood of each pixel

belonging to a moving object, thus aiding in object detection, exclusion, and prediction [147], [175].

Enhancing map density has been tackled using classical dense techniques reliant on optical flow [74],

[80] or pixel intensities [4], [5], [17], as well as neural networks designed for this specific end [28], [117].

To boost generalization capabilities, researchers like [28] have advocated for using diverse datasets

during training, while others [147] have implemented multistage training approaches, and some have

applied machine learning regularization and data augmentation techniques.

Furthermore, the pursuit of scale recovery from monocular imagery has been advanced through the

use of neural networks tailored for this purpose [9], [50], [117] or by incorporating scale estimation into

CNN inference models. Despite the plethora of solutions proposed to address the various failure modes

and open issues in monocular 3D reconstruction, there remains a vast array of potential strategies and

combinations yet to be explored in future research, along with many more beyond the purview of this

overview, which pertains to forthcoming technological and theoretical developments. To provide read-

ers with an understanding of the research trajectory, this paper collates citation metrics from the Scopus

database and aligns them with the taxonomy introduced herein, offering insights into the evolution of

these research fields.

8.1. Classic vs. Machine Learning

Starting with the foundational categorization of classical and machine learning (ML) techniques, Fig-

ure 54 delineates the trajectory of citation scores for each group spanning from 2005 to 2022. It is perti-

nent to note that the citation data from 2000 to 2005, marking the inception of the earliest system under

review [14], have been omitted due to their negligible citation frequency. Additionally, the analysis

excludes data for years not yet completed, hence the metrics for 2023 were not incorporated into this

analysis at the time of this article's submission.

72

Figure 54. Citation score progression for classical and ML methodologies since 2005. The dashed lines indicate the

trend lines for each category, established with a 99% confidence interval using the Loess smoothing technique.

The data presented in Figure 54 reveal that over the preceding 18 years, classical methods have con-

sistently garnered higher citation scores. This can be largely attributed to the longer period these meth-

ods have been accessible, often as open-source implementations. It is observable that ML techniques

began to captivate the interest of the academic community around 2017, with their citation scores

demonstrating a steady ascent after that. The projection is that this upward trend will persist, leading

to the anticipation that citation scores for ML methods will soon approximate, if not parallel, the re-

markable figures attained by classical approaches.

8.2. Direct vs. Indirect

Transitioning to the indirect vs. direct classification, it is instructive to highlight prevalent challenges

within both domains. Indirect techniques typically depend on geometric Bundle Adjustment (BA) pred-

icated on reprojection error. Nonetheless, as indicated by [2] and [49], this approach is not without its

limitations, such as its reliance on specific feature types (e.g., corners, blobs, or line segments) and the

propensity for feature matching across frames to introduce outliers. Direct methods, as discussed by

[2], [33], [49], exhibit sensitivity to initialization due to photometric variations that exacerbate non-con-

vexity. These methods are also more vulnerable to camera exposure adjustments and white balance

shifts, leading to a heightened susceptibility to outliers, including motion blur or moving objects.

In response to these challenges, innovative formulations have been developed that amalgamate the

advantages of both indirect and direct approaches. For instance, certain indirect methods, such as those

by [49], have integrated direct pixel information to enrich the depth maps while maintaining an indirect

backend. Conversely, direct methods exemplified by [84] have incorporated feature extraction tech-

niques to bolster tracking performance. These advancements have been formally encapsulated by semi-

direct hybrid approaches [49], [84], which distinguish themselves by their capacity to fully merge both

modalities within their optimization backend. The categorizations were analyzed using data from the

Scopus database, facilitating a citation progression study over time. Figure 55 depicts the citation tra-

jectory for direct versus indirect methods from 2005 to 2022.

73

Figure 55. Citation score trends for direct, indirect, and hybrid methods since 2005. The dashed lines denote the

trend lines for each category, established with a 99% confidence interval and employing the Loess smoothing

method.

As illustrated in Figure 55, indirect methods have garnered the most citations among the three cate-

gories, with direct methods following closely and hybrid approaches in third place. This pattern can be

ascribed to the extensive period during which indirect methods have been under scrutiny, being the

pioneering proposals in this field of research. In contrast, direct methods emerged in 2010, with hybrid

techniques entering the discourse in 2014. Notably, within this study's scope, 16 indirect, 17 direct, and

only two hybrid methods were examined. Despite the limited number of contributions in the hybrid

category, it is remarkable that they have achieved a significant citation count, underscoring the impact

of hybrid approaches in the field.

8.3. Dense vs. Sparse

Advancing to the dense versus sparse classification within the third facet of the taxonomy under

discussion, this classification is predicated on the density of points that constitute the ultimate 3D

model. As delineated in scholarly contributions [5], [6], [13], [17], [22], [54], [74], [77], [85], [117], [176],

the choice between dense and sparse approaches is intrinsically linked to the intended use-case of the

3D reconstruction system. A dense methodology is preferred for applications where a high-density

map is essential, such as for navigation purposes, exploration tasks, or augmented reality. Conversely,

for scenarios where a high-definition 3D model is not critical, rapid movement is necessary, or the ap-

plication must function on devices with limited computational power [13], [50], [117], a sparse frame-

work is deemed more appropriate.

Following the analytical procedure applied to the other categories, the database was queried using

the dense versus sparse classification as a categorical variable. The outcomes of this analysis are encap-

sulated in Figure 56.

74

Figure 56. Evolution of citation scores for dense and sparse methodologies since 2005. The dashed lines indicate

the trend lines for each category, calculated with a 99% confidence interval and utilizing the Loess smoothing

method.

8.4. Complete taxonomy

To ensure a thorough and holistic examination, we analyzed the dataset, employing the full spec-

trum of our taxonomy as a categorical variable. This taxonomy, delineated in Section 3.3, comprises ten

distinct levels, each representing a unique combination of the three primary classifications: Classic +

Dense + Direct, Classic + Sparse + Direct, Classic + Dense + Indirect, Classic + Sparse + Indirect, Classic

+ Hybrid, ML + Dense + Direct, ML + Sparse + Direct, ML + Dense + Indirect, ML + Classic + Sparse +

Indirect, and ML + Hybrid. Figure 57 delineates the trajectory of citation scores across these categories

over time.

Figure 57. Citation score evolution for taxonomy proposed categories over time. Dashed lines represent the trend

line for each classification obtained, setting a 99% confidence interval and the Loess method.

75

In Figure 57, the trend lines, demarcated by dashed lines and calculated with a 99% confidence in-

terval using the Loess smoothing technique, reveal that the 'Classic Sparse Indirect' category has con-

sistently garnered the highest citation scores. This enduring interest from the academic community can

be largely ascribed to the early introduction and subsequent influence of seminal methods such as

MonoSlam, PTAM, and ORB-SLAM, whose open-source availability has facilitated widespread adop-

tion and comparative analysis in subsequent research. Following closely, the 'Classic Dense Direct' cat-

egory has also achieved notable citation prominence, likely due to its proficiency in addressing the

critical challenge faced by sparse indirect systems: generating detailed depth maps suitable for a broad

array of applications. The 'Classic Sparse Direct' category, a more recent entrant from 2018, has quickly

risen to prominence, a testament to the compelling advancements made by systems evolving from DSO,

which have adeptly mitigated noise issues inherent in direct pixel information extraction while main-

taining a manageable computational footprint. The citation trends observed across the various taxo-

nomic categories indicate the significant contributions made by these pioneering works, which have

propelled the field forward. Figure 58 catalogues the systems under review, arrayed by their year of

release and their respective citation scores, with the legend on the right indicates the taxonomy classi-

fication from the most to the least cited.

Figure 58. Reviewed methods citation score. The right legend depicts a color for each taxonomy classi-

fication ordered from the highest cited category to the lowest. The methods are ordered on the vertical

axis according to their year of appearance.

9. Intermediate conclusions

The challenge of 3D scene reconstruction is a complex, underdetermined issue that can be ap-

proached through various methods and technology. In the current study, we have provided a compre-

hensive review of a particularly compelling method for 3D reconstruction: the visual reconstruction of

environments utilizing a singular monocular RGB camera as the sole data source. This discussion has

spanned various input modalities and their respective advantages and limitations, focusing on three

principal techniques: SLAM, VO, and SFM. We have established a taxonomy that encapsulates the most

prevalent system configurations reported in scholarly literature, delineating three primary classifica-

tions that yield ten potential combinations within an expanded taxonomy framework. Furthermore,

this work has included an exhaustive review of 42 quintessential monocular systems. To assist in se-

lecting and deploying these systems, we have compiled nine decisive criteria for each classical system,

which serve as pivotal factors in implementing a 3D reconstruction system. These criteria encompass

76

the type of algorithm, tracking method, map density, pixels utilized, estimation method, global optimi-

zation, relocalization, loop closure, and system availability. For ML-based methods, we have identified

eleven criteria, mirroring those of classical approaches but incorporating two additional considerations

pertinent to the network: the architecture of the CNN and the primary estimation tasks of the CNN.

The extensive information collated herein is intended to aid researchers in judiciously choosing an

algorithm or taxonomy category that aligns optimally with their project objectives. Moreover, we have

delineated each classification's principal strengths and weaknesses within the taxonomy. An analysis

of the evolution of each classification and category within the taxonomy over the past 18 years has been

conducted, based on citation metrics, to infer the impact and recognition each has garnered within the

field of research. Looking ahead, our future endeavours will leverage the proposed taxonomy to con-

duct comparative analyses of the most significant open-source algorithms within each category, to dis-

cern their respective merits and drawbacks, and to select the most apt methodology for the monocular

3D reconstruction of indoor environments.

77

Chapter III – Comparative Analysis and

Selection

78

Adapted from the novel published article: A Comparison of Monocular Visual SLAM and Visual

Odometry Methods Applied to 3D Reconstruction.

Authors: Erick P. Herrera-Granda, Juan C. Torres-Cantero, Andrés Rosales, and Diego H. Peluffo-

Ordóñez. Appl. Sci. 2023, 13(15), 8837.

Status: Published

Impact Factor (JCR 2022): 2.7

Quartile: Q2

DOI: http://dx.doi.org/10.3390/app13158837

1. Introduction

Monocular 3D reconstruction is a complex problem that can be solved from multiple perspectives

(commonly requiring combining geometric, probabilistic, and even machine learning techniques), due

to the large amount of information to be processed and the scale ambiguity problems that pure monoc-

ular sensors imply [6], [177]. This problem has been studied in the past three decades to obtain 3D

representations of an environment using a sequence of images as the unique source of information for

an algorithm. Previously, multiple researchers have explored the possibility of addressing this problem

by using diverse hardware like radars, lasers, GPS, INS, cameras, and any possible combination thereof.

Regarding the camera alternative, it can be combined with active or passive infrared sensors as RGB-D

input modalities. It can also be structured as an array of cameras registering the same objects from

multiple angles to allow triangulation. Monocular RGB sensors can also be used alone to register a

frame sequence from which the algorithm can process a scene from multiple views [1], [18]. This last

option is known as monocular RBG or monocular pure visual input modality, used in monocular Sim-

ultaneous Landing and Mapping (SLAM), Visual Odometry (VO), or Structure from Motion (SFM) to

obtain 3D reconstructions of environments and estimate the ego-motion of an agent from such repre-

sentations. In recent years, the pure monocular input modality has attracted the research community’s

attention due to the sensors’ low price and availability in most handheld devices—smartphones, tab-

lets, and laptops. Thus, monocular SLAM, VO, and SFM systems are not limited as other sensors are

(like lasers or radars) to work in a limited range and have demonstrated the ability to recover precise

trajectories and 3D reconstructions indoors and outdoors.

Simultaneous Localization and Mapping is the process where a robot constructs a map of its sur-

roundings while concurrently figuring out where it is located within that map. It involves determining

the positions of landmarks and objects near the robot and its position, commonly utilizing sensors and

geometric and Bayesian techniques. Visual Odometry is the process of incrementally estimating the

robot’s ego-motion (location and orientation) by analyzing the changes between the sequential camera

images from the robot, estimating the robot’s local trajectory rather than obtaining a comprehensive

map. VO is commonly utilized as a front-end in many visual SLAM systems. Structure from Motion

refers to a reduction in the 3D structure from 2D image sequences that show a scene from different

perspectives. It recovers the 3D location of points matched across multiple images and the camera pose

for each image. SFM does not require knowing the camera’s motion in advance and is utilized in SLAM

for initializing new 3D points [178].

As mentioned before, SLAM, VO, and SFM are three disciplines that can be used to achieve the 3D

reconstruction goal. SLAM is a discipline that appeared in the robotics field motivated by the objective

of estimating the environment map from where the trajectory of a robot can be calculated, which can

be used for autonomous navigation, driving, and flying, among other things. In the computer vision

field, multiple systems have been created to address similar problems: SFM and VO. Structure from

Motion specializes in recovering an environment geometry, while Visual Odometry focuses on calcu-

lating the trajectory and pose of a moving camera. However, it has been demonstrated that instead of

solving each problem separately, the best results have always been obtained by solving and optimizing

both problems simultaneously [18], [38], [103], [158]. That is why it is common to find VO methods that

79

include SFM modules to improve their performance and SFM methods that use VO to improve estima-

tion or optimization tasks. For such reasons, in this study, we aim to identify the best monocular RGB

methods for 3D reconstruction; so, we included methods from these three disciplines suitable for re-

covering 3D environment reconstructions.

As a complex problem, pure visual monocular 3D reconstruction has been addressed from multiple

perspectives combining various techniques that can be classified following different approaches. One

early classification is described in the study of [18] defining the feature-based and appearance-based

categories; nevertheless, this approach is unsuitable for covering all the SLAM, VO, and SFM tech-

niques available nowadays in the state of the art. A better approach to classify monocular RGB 3D

reconstruction systems is the taxonomy described in [179], considering three classifications covering

dense, sparse, direct, indirect, classic, and machine learning-based proposals. Moreover, the authors

listed 42 methods classified following the proposed extended taxonomy. After a careful reading and

analysis of the 42 listed methods, we could identify that many of the existing methods were not ade-

quately evaluated on large datasets [10–13] or not tested under different motion patterns and illumina-

tion changes [54], [147], [174] and not tested for indoors/outdoors [16–18]; or the results were not ob-

tained on the same metrics [49], [158], [166] hindering comparison and selection. In addition, most of

the methods performed comparisons against the currently available methods from the state of the art,

providing results in tables summarizing the average mean or median of the algorithm execution on a

specific scene, but they did not provide an inferential statistical analysis of the results; thus, the reported

differences or improvements cannot be considered significant. Moreover, given the fact that before the

extended taxonomy described in [179], there were only general classifications like direct vs. indirect

and sparse vs. dense methods [2], [38], [158] or the feature-based and appearance-based classification

reported in [18], none of the studies compared their results following a taxonomy that might allow

identifying better the advantages and limitations of direct, indirect, dense, and sparse methods.

To address the mentioned issues, in this study, we performed a comparison of ten publicly available

SLAM and VO methods following a taxonomy, where the main contributions are:

• A comparison of 10 SLAM and VO methods, following the main classification described in

the taxonomy (sparse-indirect, dense-indirect, dense-direct, and sparse-direct), to identify

the advantages and limitations of each method of those classifications.

• A comparison of three machine learning-based methods against their classic geometric ver-

sions to identify whether there are significant improvements in adding neuronal networks

to classic approaches.

• An inferential statistical analysis describing the procedure to identify significant differences

based on the most suitable metrics for testing monocular RGB methods.

We also provide video samples of each algorithm’s execution as supplementary material in the

GitHub repository: “https://github.com/erickherreraresearch/MonocularPureVisualSLAMComparison

accessed on 16 June 2023”, along with all the .txt result files of each algorithm run for reproducibility.

1.1. Related Works

Following the classification described in [2], there are four main classifications for the methods that

can be used to recover a scene’s 3D geometry using monocular image sequences as the unique source

of information: sparse-indirect, dense-indirect, dense-direct, and sparse-direct.

1.1.1. Sparse-Indirect Methods

Sparse-indirect methods implement preprocessing steps recovering sparse reconstructions.

MonoSLAM, PTAM, ORB-SLAM, and OpenMVG are the most prominent works in this classification.

MonoSLAM [31] was one of the first real-time monocular SLAM systems. Its key contributions included

using large image patches as features, “active” feature matching based on uncertainty, and initializing

80

by tracking known targets. However, MonoSLAM was limited to small workspaces and lacked loop-

closing abilities. PTAM [32] introduced the concept of parallel tracking and mapping threads, with the

map optimized via bundle adjustment over carefully selected keyframes. This configuration achieved

excellent AR tracking in small spaces, but the PTAM lacked loop closing, and the relocalization was

view-dependent. ORB-SLAM [33] significantly expanded PTAM’s capabilities using ORB features for

tracking, mapping, and loop closing via DBoW2 place recognition. The covisibility graphs enabled local

mapping, while the pose graphs distributed loop closures globally. ORB-SLAM also introduced flexible

keyframe insertion/deletion policies to improve mapping during exploration while reducing redun-

dancy. This versatility enabled state-of-the-art performance across indoor, outdoor, handheld, and ro-

botics datasets. OpenMVG is a C++ library that provides an interface to multiple view geometry algo-

rithms for building complete 3D reconstruction pipelines from images implementing incremental and

global SfM approaches. The OpenMVG SfM pipeline stores camera poses, landmarks, and observa-

tions, providing smooth data flow between OpenMVG modules. Overall, the OpenMVG enables flexi-

ble experimentation and the development of new techniques used for multiple implementations since

2016; however, it only allows recovering widely sparse reconstructions, which are unsuitable for many

applications.

1.1.2. Dense-Indirect Methods

Dense-indirect techniques incorporate preprocessing stages and recover dense depth maps. Some

important prior works that defined this category were Valgaerts et al. and Ranftl et al. Valgaerts et al.

[74] proposed a novel two-step method for estimating the fundamental matrix from a dense optical

flow. Their key contribution was demonstrating that accurate epipolar geometry robust estimation was

possible using dense correspondence fields computed by variational optical flow methods. They intro-

duced a joint variational model that recovered the optical flow and epipolar geometry within a single

energy functional, thus improving the results. However, their method was limited by its sensitivity to

large displacements and occlusions. Ranftl et al. [77] presented an approach to estimate dense depth

maps for complex dynamic scenes from monocular video, built on the use of dense optical flow. The

key concept is a motion segmentation stage that decomposes the scene into independent rigid motions,

each with its epipolar geometry enabling moving objects’ reconstruction. Its method was optimized to

work with object scales and geometry to assemble a globally consistent 3D model determined up to

scale. A key difference from Valgaerts et al. was the explicit handling of multiple independently mov-

ing objects and the recovery of dense depth for fully dynamic scenes. However, Ranftl et al.’s approach

still relied on approximate scene rigidity and the connectivity of objects to the environment. Valgaerts

et al. introduced a dense optical flow for fundamental matrix estimation, while Ranftl et al. extended

dense the geometric reconstruction to complex dynamic scenes. Both moved from sparse features to

dense correspondence fields; in contrast, Ranftl et al. focused on depth estimation and scene assembly.

1.1.3. Dense-Direct Methods

Dense-direct techniques work directly with pixel information and can recover dense depth maps.

Some of the main contributions in this field are the Stühmer et al., DTAM, REMODE, and LSD-SLAM

systems. Stühmer et al. [80] proposed one of the first real-time dense monocular SLAM systems. They

introduced a variational framework to estimate the dense depth maps from multiple images using ro-

bust penalizers for both the data term and the regularizer. The key contributions were integrating mul-

tiple images for noise robustness and an efficient primal-dual optimization scheme. However, their

method was limited to local dense tracking and mapping without global map optimization. The DTAM

system proposed by Newcombe et al. [26] enabled real-time dense tracking and global mapping using

a single handheld camera. They introduced the concept of dense model-based camera tracking by align-

ing live images to the textured 3D surface models synthesized from the estimated dense depth maps.

The depth maps were computed by filtering over the small-baseline stereo comparisons from video. A

key difference from Stühmer et al. was maintaining a global map with pose graph optimization. The

REMODE system of Pizzoli et al. [5] also performed per-pixel Bayesian depth estimation but introduced

81

a convex optimization-based smoothing step using the estimated uncertainty to enforce the spatial reg-

ularity. They demonstrated probabilistic updating, allowing online refinement and error detection. A

key contribution was the derivation of a measurement uncertainty model. However, REMODE was

limited to local mapping without global optimization. The LSD-SLAM of Engel et al. [4], integrated

many of these concepts into the first direct monocular SLAM system capable of performing consistent

global semi-dense reconstruction. The key novelties were the direct alignment on the 𝑆𝑖𝑚(3) handling

scale drift and the incorporation of depth uncertainty into tracking. LSD-SLAM reached an outstanding

outdoor performance by enabling large-scale accurate monocular dense reconstruction in real time. In

summary, early works, like Stühmer et al. and DTAM, introduced key concepts like multiple image

integration, probabilistic depth estimation, and variational optimization, while later methods, like LSD-

SLAM, were built on these concepts to enable globally consistent mapping and reconstruction, with

fully direct approaches finally demonstrating accurate monocular dense SLAM at scale.

1.1.4. Sparse-Direct Methods

Sparse-direct techniques work directly on pixel information but do not use all the pixels, producing

sparser maps using fewer computational resources. The main contributions from this classification are

the DSO, LDSO, and DSM. Direct Sparse Odometry (DSO) was introduced by Engel et al. [2] as the first

direct-sparse VO technique. The DSO operates directly on image intensities, optimizing the photomet-

ric error instead of the geometric reprojection error. It represents the geometry using inverse depth

parametrization and jointly optimizes all the model parameters in real time using a sliding keyframe

window. The DSO demonstrated superior accuracy and robustness compared to indirect methods by

utilizing edges and intensity variations in featureless areas. However, as a pure visual odometry tech-

nique, the DSO suffers from drift over long trajectories as it marginalizes old points and keyframes.

Gao et al. presented the LDSO [23], extending the DSO to a more robust VO system by adding loop

closure detection and pose graph optimization. The LDSO adapts the DSO’s point selection to favor

repeatable corner features and computes the ORB descriptors detecting the loop closures using DBoW2.

It then estimates the 𝑆𝑖𝑚(3) constraints by minimizing the 2D and 3D errors fusing them with the co-

visibility graph from DSO’s sliding window optimization in a pose graph. While reducing the accumu-

lated drift, the LDSO still lacks a persistent map ignoring the existing information after loop closures.

Zubizarreta et al. introduced Direct Sparse Mapping (DSM) [84], the first direct sparse monocular

SLAM system with a persistent map enabling point reobservations. The DSM selects active keyframes

based on temporal and covisibility constraints using the Local Map Covisibility Window applying a

coarse-to-fine optimization scheme and a robust cost function based on the t-distribution to handle

challenges in converging when incorporating distant keyframes. The DSM demonstrated increased ac-

curacy in trajectory and mapping on EuRoC compared to the DSO, LDSO, and ORB-SLAM. The ability

to reuse existing map points resulted in more consistent maps without duplicates. In brief, the DSO

pioneered direct-sparse SLAM and achieved superior odometry compared to the indirect methods. The

LDSO extended it to full SLAM by adding loop closure detection and correction to reduce drift, while

the DSM took a further step creating the first direct technique with a persistent map, enabling beneficial

point reobservations through key innovations in window selection, optimization, and robustification.

1.1.5. Machine-Learning-Based Approaches

Recently, a new category emerged, adding machine learning modules to the SLAM, VO, and SFM

pipelines. Some of the most prominent approaches are DynaSLAM, SVR-Net, VOLDOR, DROID-

SLAM, SDF-SLAM, CNN-SLAM, CodeSLAM, DeepFactors, MonoRec, and CNN-SVO. CNN-SLAM [3]

was one of the first systems to incorporate CNN-predicted depth maps into monocular SLAM, over-

coming the scale ambiguity issues. It also performed joint semantic segmentation and 3D reconstruc-

tion, pioneering multitask learning. DynaSLAM [118] was one of the first attempts to detect and remove

dynamic objects from the mapping process using a CNN for segmentation and a multiview geometry

approach enabling more robust tracking and mapping in dynamic environments. CodeSLAM [8] in-

corporated an encoder–decoder CNN for scene geometry into a compact latent code conditioned on

82

image intensities retaining only nonredundant information for joint geometry and motion optimiza-

tion. The CNN-SVO [54] incorporated CNN depth predictions to initialize the depth filters in SVO,

reducing uncertainty and improving mapping. DeepFactors [6] was built over the basis of CodeSLAM

to formulate dense monocular SLAM as a factor graph optimization combining the learned depth pri-

ors, the reprojection error, and the photometric error for robust performance. VOLDOR [135] integrated

a CNN into its visual odometry pipeline using log-logistic depth residuals and probabilistic inference,

eliminating the need for feature extraction or RANSAC, enabling real-time performance. The DROID-

SLAM [136] integrated a recurrent neural network to iteratively update camera poses and estimate

depth maps through differentiable bundle adjustment. MonoRec [147] addressed the alternative to in-

corporate mask prediction and depth prediction modules to enable high-quality monocular reconstruc-

tion in dynamic scenes. SDF-SLAM [116] combined classic sparse feature extraction with a CNN for

dense depth prediction and semantic segmentation enabling semantic 3D reconstruction while retain-

ing real-time performance. SVR-Net [130] integrated a Support Vector Regression network to estimate

3D keypoint locations, enabling robust tracking in challenging conditions using online learning and

graph optimization for map refinement. In summary, machine-learning-based methods progressively

incorporated deep learning into sparse indirect SLAM systems to improve the robustness and handle

the dynamics, achieving dense reconstruction enabling end-to-end learning. The key innovations in-

cluded using CNNs for segmentation, depth prediction, semantic segmentation, compact scene encod-

ing, and uncertainty modeling.

1.1.6. Comparisons

Regarding comparison studies, an early work that accurately compared monocular visual odometry

systems was the study of [148], comparing the state-of-the-art methods of that time, DSO, ORB-SLAM,

and SVO, on the TUM-Mono benchmark. The authors found that the DSO system, even being a visual

odometry system, outperformed the SLAM method and the popular SVO. In that study, the authors

also tested the photometric calibration, the motion bias, and the rolling shutter effect, with the available

information provided in the TUM-Mono dataset, finding that the photometric calibration improved the

performance of the direct methods considerably, and the motion bias effect was more prominent in the

indirect method. In contrast, we compared ten methods following a taxonomy, where the three meth-

ods tested in [148] were addressed, exploring the same photometric calibration, motion bias, and rolling

shutter effects by applying the TUM-Mono dataset. Then in 2020, Mingachev et al. published two com-

parisons [16], [180] testing first the DSO, LDSO, and ORB-SLAM2 and then the ROS-based methods,

DSO, LDSO, DynaSLAM, and ORB-SLAM2, on the TUM-Mono and EuRoC benchmarks, where the

authors verified the performance of the algorithms implementing an open-source code in their hard-

ware to determine whether there were improvements in the LDSO and DynaSLAM—updates of the

original DSO and ORB-SLAM2. The authors found that the updates achieved slight error reductions

over their predecessors on both benchmarks, reported as medians of 10 executions of each algorithm in

each sequence.

Comparing those studies, we tested ten methods following a taxonomy to test whether the newer

versions improved their previous performance and to identify the advantages and disadvantages in

the entire taxonomy. We also provided a complete inferential statistical analysis of each method’s per-

formance, not only their median values. In addition, we included machine-learning-based versions of

the classic methods in our comparison. One of the most recent related works was the study of [29],

which explored the state-of-the-art classification and tested visual and visual–inertial algorithms in the

ERoC benchmark. In that work, the authors briefly overviewed the existing methods and reviewed the

classic classification of direct, feature-based, and RGB-D methods, adding DSO, ORB-SLAM2, and

Vins-Mono methods to their comparison. In contrast, this comparison is focused only on monocular

RGB methods; so, we followed an appropriate taxonomy for monocular RGB SLAM and VO systems.

In addition, we used the TUM-Mono benchmark and its metrics, which is a broader and more complete

benchmark.

83

2. Materials and Methods

For this study, we used a taxonomy, algorithms, benchmarks, and metrics suitable for the monocular

SLAM and VO problems discussed in the following sections.

2.1. Taxonomy

The prior work [6] described a taxonomy based on three classifications in the literature: direct vs.

indirect, dense vs. sparse, and classic vs. machine learning.

• Direct vs. indirect. Indirect methods refer to those algorithms that implement preprocessing

steps, like feature extraction or optical flow estimation, before their pose and map estimation

processes; so, the amount of information that moves into the following steps is considerably

reduced, requiring less computational power but also reducing the density of the final 3D

reconstruction [2]. Indirect methods typically perform their optimization steps by minimiz-

ing the reprojection error due to the feature type of information that the preprocessing step

outputs [29]. On the other hand, direct methods work directly on the pixel intensity infor-

mation without requiring preprocessing steps, implying that the algorithm has more infor-

mation for estimation tasks allowing one to obtain denser reconstructions of the scene, re-

quiring more computational power [29]. In addition, direct methods typically perform their

optimization steps based on the photometric error due to the direct pixel availability infor-

mation.

• Dense vs. sparse. Dense vs. sparse classification refers to the amount of information recov-

ered in the final map as a 3D reconstruction [2]. Denser reconstructions have more definition

and continuity in the reconstructed objects and surfaces. In contrast, sparser reconstructions

are typically represented as largely separated point clouds, where the edges and corners are

commonly the only objects that can be recognized clearly [38].

• Classic vs. machine learning. Classic methods have been proposed in the last three decades,

typically basing their formulation on geometric, optimization, and probabilistic techniques

without machine learning. However, in recent years, due to the impressive advances in ar-

tificial intelligence, especially in Convolutional Neural Networks (CNN), many techniques

have been applied to improve the SLAM or VO estimation tasks [54], [116], [118], [172]. The

methods based on classic formulations enhanced with machine learning are called Machine-

learning-based approaches (ML).

Combining these three classifications in all their possible configurations [179] establishes the taxon-

omy: Classic + Dense + Direct, Classic + Sparse + Direct, Classic + Dense + Indirect, Classic + Sparse +

Indirect, Classic + Hybrid, ML + Dense + Direct, ML + Sparse + Direct, ML + Dense + Indirect, ML +

Classic + Sparse + Indirect, and ML + Hybrid. It must be mentioned that the hybrid category was added

for those methods that efficiently combine the direct and indirect principles to estimate ego-motion and

scene geometry, like SVO [13] and CNN-SVO [54]. This taxonomy was completely detailed and de-

picted in Chapter 1.

2.2. Selected Algorithms

In this comparative analysis, we aimed to determine the taxonomy classifications, limitations, and

advantages by exploring as many taxonomy categories as possible. For this purpose, we selected and

implemented five methods of geometric-based classification. Furthermore, we included three machine-

learning versions of the selected classic approaches to test the hypothesis of whether or not the addition

of a CNN to classic approaches significantly improved the geometric-based methods’ performance. In

a previous work [179], many machine learning approaches were listed available as open-source code

[156], [159], [170]–[173], [161]–[164], [166]–[169]. However, during their implementation, we found that

many implementations were available for multiple input modalities like RBD-D or INS. However, the

84

provided code was not available for monocular RGB as the unique input source of information, or they

required external and not included modules for their implementation, e.g., [156], [168], [169], [172];

thus, we could not include those methods for this comparison. Finally, we added two additional sparse-

direct implementations built over the DSO [2] system, given the impressive 3D reconstruction results

that this method demonstrated during evaluations.

In this way, the algorithms selected to perform this comparative study were:

1. ORB-SLAM2. As a sparse-indirect representative, we selected ORB-SLAM2 [7], widely

known as the gold standard of this category, as most of the currently available sparse-indi-

rect methods are proposals inspired by this algorithm. The original ORB-SLAM [33] extracts

ORB features as preprocessing of multiscale FAST corners with a 256-bit descriptor giving

that algorithm information to perform a Bundle Adjustment for optimization and work in

three threads for tracking, local mapping, and loop closure. In addition, the ORB-SLAM2

incorporates a fourth thread to perform full Bundle Adjustment after loop closure redefining

the original method and obtaining the scene optimal geometric representation. The ORB-

SLAM2 is publicly available as an open source code in [94]; it may be implemented in its C++

version or ROS version, with minimum additional requirements, Pangolin, OpenCV (tested

for 2.4.3 version), Eigen 3 (tested for 3.1.0 version), DBoW2, and g2o, which are included in

the repository.

2. DF-ORB-SLAM. Classic dense-indirect methods available in the literature, like [74], [77], are

not available as open-source code for implementation; so, they could not be considered for

this evaluation. Instead, a well-known classic dense-direct version of ORB-SLAM2 exists,

called DF-ORB-SLAM [181], with its code publicly available on GitHub. The DF-ORB-SLAM

algorithm was built based on the ORB-SLAM2 algorithm, allowing the addition of depth

map retrieval capabilities and incorporating optical flow to track the detected points; thus,

this algorithm uses a large amount of information obtained through the input using most of

the pixel values for optical flow estimation. Once the optical flow is estimated, the ORB-

SLAM2 performs feature extraction on the optical flow domain executing the rest of its pipe-

line. The DF-ORB-SLAM is publicly available in [181], implemented in Ubuntu 18.04 in its

ROS version using its official build_ros.sh script.

3. LSD-SLAM. The LSD-SLAM [4] is one of the most popular methods of the dense-direct cat-

egory, since it has been the basis and inspiration for a lot of the methods currently available

[2], [3], [25]. The LSD-SLAM not only locally tracks the camera’s movement but also allows

the construction of dense maps through a semi-dense geometric representation tracking the

depth values only in high-gradient areas. The method has direct image alignment mecha-

nisms and estimation based on the semi-dense depth map filtering technique [22]. The global

depth map is rendered as a pose graph comprising keyframes represented as vertices that

present feature 3D similarity transformations as edges, adding environment scaling ability

and allowing the accumulated drift to be detected and corrected. Furthermore, the LSD-

SLAM uses an appearance-based loop detection algorithm called FAB-MAP [83], introduc-

ing prominent loop closure candidates that extract their features without reusing any addi-

tional visual odometry information. The LSD-SLAM is publicly available in [98] and was

implemented in Ubuntu 18.04 in its ROS version.

4. DSO. The DSO [2] is widely known as the direct methods’ gold standard due to the impres-

sive reconstruction and odometry results that it has achieved, inspiring other implementa-

tions and new proposals. The DSO works directly on the pixel intensity information but ap-

plies a point selection strategy to reduce the amount of information to be processed effi-

ciently, continuously optimizing the photometric error applied to the last N-frames while

optimizing the complete likelihood for the parameters involved in the model, including

poses, intrinsics, extrinsics, and inverse depths, executing a windowed sparse bundle adjust-

ment. The DSO is publicly available for implementation in [99]; its code runs entirely in C++,

using minor requirements like Suitesparse, Eigen3, and Pangolin.

85

5. SVO. We selected the most commonly known method, SVO [85], for the hybrid classifica-

tion. The SVO efficiently combines the advantages of the direct and indirect approaches by

using the feature correspondences obtained on the direct motion estimation for tracking and

mapping. This procedure considerably reduces the number of required features and is only

executed when a new keyframe is selected to insert new points in the map. First, camera

motion is estimated by a sparse model-based image alignment algorithm, where sparse point

features are used to estimate the feature correspondences. Next, this information is used to

minimize the photometric error. Then the reprojected points, pose, and structure are refined

by minimizing the reprojection error. The SVO is publicly available in [102] for testing and

implementation running on C++ or ROS. Modern operating systems might find issues dur-

ing implementation; so, Ubuntu 16.04 and ROS kinetic were used.

6. LDSO. As an additional sparse direct system, the LDSO [23] was selected as an update of

the DSO algorithm that includes loop-closure capabilities. The LDSO enables the DSO frame-

work to detect the loop closure by ensuring point repeatability using corner features to de-

tect loop candidates. For this purpose, the depth estimates for point features allow the algo-

rithm to compute the 𝑆𝑖𝑚(3) constraints, to be combined with the pose-only bundle adjust-

ment and point cloud alignment and fused with the relative pose DSO covisibility graph,

sliding the window optimization stage. This way, the LDSO adds the loop closure to the

DSO system, including a loop closure module based on a global pose graph optimization

working over the last five to seven keyframes’ sliding window. The LDSO was made pub-

licly available in [100], and for this comparison, it was implemented in Ubuntu 18.04 along

with OpenCV 2.4.3, Sophus, DBoW3, and g2o.

7. DSM. Another sparse-direct method we were interested in testing was the DSM [84], an-

other update made to the DSO to create a complete SLAM system. The DSM aimed to include

scene reobservation information to enhance the precision and reduce the drift and inconsist-

encies. In contrast to the LDSO, which considers a sparse set of reobservations, the DSM

builds a persistent map allowing the algorithm to reuse existing information by a photomet-

ric formulation. The DSM uses local map covisibility window criteria to detect the active

keyframes reobserving the same region, a coarse-to-fine strategy to process that point reob-

servation information and a robust nonlinear photometric bundle adjustment technique

based on the photometric error for outlier detection. The DSM open-source code is publicly

available in [101], which was implemented for comparisons on Ubuntu 18.04 with Eigen

(v3.1.0), OpenCV (v2.4.3), and Ceres solver, which were provided in the official repository.

8. DynaSLAM. The Dyna-SLAM algorithm [118] is a lighter version of ORB-SLAM2 exceeded

by adding the detection, segmentation, and inpainting of dynamic information on scenes’

machine learning capabilities. In addition, the Mask R-CNN of [119] was integrated with the

classic sparse-indirect method to detect and segment regions of each image that potentially

belonged to movable objects. The authors also incorporated a multiview geometry approach

calculating backprojections to define the key point parallax angles to detect additional infor-

mation the CNN cannot recognize. The authors reported that this combination contributed

to overcoming the ORB-SLAM2 initialization issues; so, it works in dynamic environments.

The DynaSLAM is publicly available in [159], and it was implemented in Ubuntu 16.04 with

ROS Kinetic, Cuda 9, Tensorflow 1.4.0, and Keras 2.0.8.

9. CNN-DSO. In the literature, DSO neuronal methods like D3VO [112], MonoRec [147], and

DDSO [28] can be found. Nevertheless, they are not publicly available, or in the case of Mon-

oRec, its monocular VO pipeline is not available for testing; so, the CNN-DSO was selected

for this comparison, which is publicly available in [174]. This method includes a CNN depth

prediction module enabling the DSO system to execute its estimation modules using addi-

tional depth prior information obtained by the network. The CNN used for this study was

the MonoDepth system of [152], a single image depth estimation network that outputs a

depth value for each pixel position by chains of feature maps processing. The network was

built over the ResNet backbone using a variant of its encoder–decoder architecture. The

86

CNN-DSO requires building TensorFlow (v1.6.0) from source and MonoDepth from its offi-

cial repository [182], and it was implemented in Ubuntu 18.04, with Eigen (v3.1.0) and

OpenCV (v2.4.3).

10. CNN-SVO. In the study of [54], an extension of the hybrid method SVO was proposed by

fusing the same Single Image Depth Estimation (SIDE) CNN MonoDepth module used in

the CNN-DSO with the original geometric-based hybrid method. In this case, MonoDepth

was included to add preliminary depth information to the SVO pipeline, minimizing the

uncertainty in the feature correspondence identification steps; then, the system is initialized,

obtaining high uncertainty maps. Then, the SIDE CNN creates filters to approximate the

current values’ mean and variance, considerably reducing the amount of information sepa-

rating inliers/outliers in the depth map. The CNN-SVO is publicly available in [173] and was

implemented in Ubuntu 16.04 to allow the SVO modules to work with ROS Kinetic.

2.3. Benchmarks

Today, the scientific community has considerably promoted the development of datasets, including

existing open-source datasets even for evaluating complex hardware setups like visual–inertial systems

(i.e., YTU [183], WHUVID [184], and VOID [185]). In this way, there are several datasets and bench-

marks available in the literature for evaluating RGB SLAM, SFM, and VO systems, like [67], [69], [186],

[79], [103], [123]–[127], [158]. Nevertheless, only a few are suitable for pure monocular RGB systems

due to the nature of image acquisition, the type of camera calibration or camera models used, and the

format of the provided ground truth. Similarly, it is safe to say that among the reviewed available da-

tasets, the following can be applied for monocular algorithms comparison:

• The KITTI dataset in [69] contains 21 video sequences of a driving car, where the movement

parameters are limited to forward driving. The available images have pre-rectification treat-

ments, and the dataset provides a ground truth obtained through an assembly of GPS and

INS.

• The EUROC-MAV dataset in [67] contains 11 inertial stereoscopic sequences of a quadcopter

flying in different indoor environments providing groundtruth values of all frames and cal-

ibration parameters.

• The TUM-Mono dataset in [103] presents 50 sequences of indoor/outdoor environments ob-

tained using monocular RBG cameras on monochrome uEye UI-3241LE-M-GL cameras

equipped with Lensagon BM2420 (with 148° × 122° field of view) and Lensagon BM4018S118

(with 98° × 79° field of view) sensors. This benchmark includes the photometric calibration

parameters, the ground truth, the timestamps for the execution of each image sequence, and

the calibration file for the vignetting effect in each sequence, comprising more than 190,000

frames and more than 100 min of video.

• The ICL-NUIM benchmark in [158] has eight sequences in conjunction with its ray-tracing

of two environments, providing the groundtruth values of each sequence and camera intrin-

sics; so, no photometric calibration is required. This dataset presents degenerative and

purely rotational motion sequences, which are considered demanding for monocular algo-

rithms.

As can be noticed, the most complete and largest dataset of the above is the TUM-Mono, which is

why this dataset was applied in this comparison study. It also has the advantage of being the only

dataset that was obtained purely depending on a monocular RGB setup, without depending on any

additional sensor or source of information as mentioned in [16], [103], [180], making it ideal for com-

paring visual-only SLAM and VO systems. In addition, this benchmark provides the most complete set

of metrics that can be explored to efficiently compare the selected algorithms in multiple dimensions—

discussed in the following section.

87

2.4. Metrics

As SLAM, SFM, and VO are ill-posed problems that can be addressed from multiple perspectives

and a wide variety of techniques, comparing the final obtained 3D reconstruction is not the best alter-

native for monocular RGB methods because of the different sparsity, scale, and type of output that each

method brings, due to the difficulty of accruing accurate groundtruth maps [68]. At the same time,

trajectories can be acquired using INS, GPS, LASER, RADAR, LIDAR, and Kinect systems, among oth-

ers, with acceptable accuracy. In this way, as discussed in [103], the best way of comparing SLAM and

VO algorithms of diverse nature (see Figures 1 and 2) is by comparing the output trajectory in each

algorithm, because even if the method is focused on reconstruction only, it has been demonstrated that

solving both problems of landing and mapping simultaneously brings the best reconstruction results

[18], as the quality of the final reconstruction tightly depends in the quality of the ego-motion estima-

tion. Hence, the metrics we used for this comparison are entirely based on ego-motion estimation,

which can be effectively compared for all SLAM and VO algorithms. Among the different metrics for

ego-motion available in the literature, we found that the metrics present in most of the methods listed

in [179] were: the absolute trajectory RMSE (ATE), the relative pose RMSE (RPE), the cumulated trajec-

tory, rotation, and scale errors, the alignment error, and the alignment RMSE.

The ATE and RPE are local pose accuracy metrics proposed by [68], commonly applied along with

the EUROC dataset. The relative pose error is a metric for the accuracy of an estimated trajectory over

a defined time interval ∆. In this way, this metric corresponds to the drift of the estimated trajectory.

For a sequence of estimated poses 𝑷1, … , 𝑷𝑛 ∈ 𝑆𝐸(3) and a ground truth trajectory 𝑸1, … , 𝑸𝑛 ∈ 𝑆𝐸(3),

the relative pose error for each timestamp 𝑖 is:

𝑬𝑖 : = (𝑸𝑖
−1𝑸𝑖+∆)

−1(𝑷𝑖
−1𝑷𝑖+∆). (39)

So, for a sequence of n poses, an 𝑚 = 𝑛 − ∆ number of relative poses is obtained. Then the root mean

square error (RMSE) for such errors over all the timestamps of the sequence can be calculated as:

𝑅𝑀𝑆𝐸(𝑬𝑖:𝑛, ∆): = √
1

𝑚
∑ ‖𝑡𝑟𝑎𝑛𝑠(𝑬𝑖)‖

2𝑚
𝑖=1 , (40)

where 𝑡𝑟𝑎𝑛𝑠(𝑬𝑖) corresponds to the translational component of the relative pose error 𝑬𝑖 . Many VO

or SLAM systems can be evaluated for a timestep interval ∆ = 1, but some methods work on frames or

keyframes windows (like [2], [23], [101]); thus, different ∆ values might be appropriate for testing. So,

for SLAM systems’ evaluation, it can also be useful to obtain the RMSE for all the possible time inter-

vals:

𝑅𝑀𝑆𝐸(𝑬𝑖:𝑛) =
1

𝑛
∑ 𝑅𝑀𝑆𝐸(𝑬𝑖:𝑛, ∆)
𝑛
∆=1 . (41)

The ATE was proposed to evaluate the estimated trajectory’s global consistency. The ATE estimation

was achieved by comparing the absolute distances between the estimated trajectory and the ground

truth directly. So, the trajectories are first aligned using Horn’s method [187] to find the rigid body

transformation 𝑺 to map the estimated trajectory 𝑷1:𝑛 into the ground truth trajectory 𝑸1:𝑛; hence, the

absolute trajectory error for each timestamp 𝑖 can be calculated as:

𝑭𝑖 : = 𝑸𝑖
−1𝑺𝑷𝑖. (42)

In the same way as RPE, the RMSE for all the timestamps of the translational components is calcu-

lated as follows:

𝑅𝑀𝑆𝐸(𝑭𝑖:𝑛): = √
1

𝑛
∑ ‖𝑡𝑟𝑎𝑛𝑠(𝑭𝑖)‖

2𝑛
𝑖=1 . (43)

Thus, for the [68] benchmark, the RPE combines the translational and rotational errors elegantly,

while the ATE considers only the translational error component. In contrast, for the TUM-Mono bench-

mark [103], the authors proposed to benefit from large loop sequences. This way, instead of using the

complete exploring motion pose information, the TUM-Mono benchmark was built to register the

88

ground truth of each sequence’s first and last 10–20 s, using the LSD-SLAM [4] method to track only

those segments. In this way, the authors used the accumulated drift for all their metrics, and they

demonstrated that the error registered by each evaluated run was not originated in the SLAM method

drift used to register the ground truth; instead, it came from the accumulated drift by the algorithm

through the entire trajectory. So, any SLAM or VO system can be used to register the start and end

segments’ ground truth. Consequently, the TUM-Mono benchmark aligns the estimated trajectory with

the start and end ground truth segments and measures their differences. Let 𝒑1, … , 𝒑𝑛 ∈ ℝ
3 be the

estimated tracked positions for the 1 to 𝑛 frames and 𝑆 ⊂ [1; 𝑛] and 𝐸 ⊂ [1; 𝑛] be the frame indices cor-

responding to the start and end segments for the groundtruth positions �̂� ∈ ℝ3. Then, by aligning the

estimated trajectory with the groundtruth start and end segments, the two relative transformations can

be calculated as:

𝑻𝑠
𝑔𝑡
: = argmin

𝑻∈𝑆𝑖𝑚(3)
∑(𝑻𝒑𝑖 − �̂�𝑖)

2

𝑖∈𝑆

 (44)

𝑻𝑒
𝑔𝑡
: = argmin

𝑻∈𝑆𝑖𝑚(3)
∑ (𝑻𝒑𝑖 − �̂�𝑖)

2
𝑖∈𝐸 . (45)

By these transformations, the accumulated drift can be calculated as:

𝑻𝑑𝑟𝑖𝑓𝑡 : = 𝑻𝑒
𝑔𝑡
 (𝑻𝑒

𝑔𝑡
)
−1

. (46)

The translation, rotation, and scale error components can be extracted as, respectively:

𝑒𝑡 : = ‖𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝑻𝑑𝑟𝑖𝑓𝑡)‖

𝑒𝑟 : = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑻𝑑𝑟𝑖𝑓𝑡)

𝑒𝑟 : = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑻𝑑𝑟𝑖𝑓𝑡).

As a result, the authors established the alignment error, which is a metric that equally takes into

account the errors produced by the translational, rotational, and scale effects:

𝑒𝑎𝑙𝑖𝑔𝑛 : = √
1

𝑛
∑ ‖𝑻𝑠

𝑔𝑡
𝒑𝑖 − 𝑻𝑒

𝑔𝑡
𝒑𝑖‖2

2𝑛
𝑖=1 . (47)

This metric can be computed individually for the start and end segment, but when it is estimated by

combining both intervals, it is equivalent to the translational RMSE when aligned to the ground truth.

Thus, it can also be formulated as follows:

𝑒𝑟𝑚𝑠𝑒 : = √ min
𝑻∈𝑆𝑖𝑚(3)

1

|𝑆∪𝐸|
∑ (𝑻𝒑𝑖 − �̂�𝑖)

2
𝑖∈𝑆∪𝐸 . (48)

As can be observed, in contrast to the APE and ATE, which only include two metrics explaining the

rotation and translation effects, the TUM-Mono benchmark analyzes the SLAM or VO performance

method in a more detailed way, providing six metrics explaining the amount of the accumulated trans-

lation, rotation, and scale errors, as well as determining the performance of the algorithm in the start

and end segment to better identify the initialization and accumulated drift errors, finally calculating

the translational RMSE to visualize the global effects of the combined metrics on the whole evaluated

sequence. For these reasons, we selected the TUM-Mono and its official metrics to execute a complete

comparison.

3. Results

As mentioned above, the algorithms were selected based on their open-source availability and inde-

pendence from any additional input information source other than a monocular RGB frame sequence.

Following the primary taxonomy described in [2], [179], we selected the classic sparse-indirect system

ORB-SLAM2 [7], the classic dense-indirect system DF-ORB-SLAM [181], the classic dense-direct system

89

LDS-SLAM [4], and the classic sparse-direct method DSO [2]. Then, we added to this study the cur-

rently available ML implementations of the ORB-SLAM2 [7], DSO [2], and SVO [13], which are the

DynaSLAM [118], CNN-DSO [174], and CNN-SVO [54]. Additionally, the direct proposals derived

from the DSO system were included due to the impressive reconstruction results that this method

showed during experimental evaluation; thus, the LDSO [23] and DSM [84] systems representing the

addition of loop closure and SLAM capabilities for the DSO system were selected. Figure 59 and 60

present some examples of the evaluated algorithms’ execution on the outdoor and indoor sequences of

the TUM-Mono dataset.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 59. Examples of each indoor algorithm sequence execution seq-01—TUM-Mono dataset. The im-

plemented methods were: (a) ORB-SLAM2, (b) DF-ORB-SLAM, (c) LSD-SLAM, (d) DSO, (e) CNN-

DSO, (f) LDSO, (g) DSM, (h) DynaSLAM, (i) SVO ,and (j) CNN-SVO.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 60. Algorithm executions for the outdoor sequence seq-02 of the TUM-Mono dataset. The implemented

methods were: (a) ORB-SLAM2, (b) DF-ORB-SLAM, (c) LSD-SLAM, (d) DSO, (e) CNN-DSO, (f) LDSO, (g) DSM,

(h) DynaSLAM, (i) SVO and (j) CNN-SVO.

90

3.1. Hardware Setup

All the methods were evaluated on the same hardware platform with the same available computa-

tional and power resources using Ubuntu 18.04 and 16.04 operating systems, depending on each algo-

rithm’s software requirements. For this evaluation, we selected readily available and cheap hardware

components to assemble a desktop based on the AMD Ryzen™ 7 3800X processor and the GPU NVIDIA

GEFORCE GTX 1080 Ti. The technical specifications are summarized in Table 4.

Table 4. Specifications of the hardware used during experimentation.

Component Specifications

CPU
AMD Ryzen™ 7 3800X, eight cores, 16 threads,

3.9–4.5 GHz.

GPU
NVIDIA GEFORCE GTX 1080 Ti. Pascal architecture,

1582 MHz, 3584 CUDA cores, 11 GB GDDR5X.

RAM 16 GB, DDR 4, 3200 MHz

ROM SSD NVME M.2 Western Digital 7300 MB/s

Power consumption 750 W 1

1 The hardware did not reach the max power consumption. The avg. load was close to 600 W during the experiments.

Additionally, we provide some CPU performance metrics obtained by averaging the metrics of ten

executions of each algorithm over the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_01 of the TUM-Mono dataset. All these CPU usage

metrics were obtained using the hardware detailed in Table 1, using the official codes provided in their

repositories and the same dependencies’ versions listed by each author. The metrics selected to provide

an idea of the computational expenses required by each algorithm were: the overall CPU usage (multi-

core), the current CPU usage, the amount of GPU memory required by the algorithm, the amount of

RAM used while running the algorithm, the time that the algorithm required to process the

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_01 of the TUM-Mono dataset, and the number of frames per second that the algorithm pro-

cessed. The computational expenses associated with each approach to reconstruct the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_01

scene are presented in Table 5.

Table 5. The average CPU usage performance metrics for the ten executions of each algorithm on

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_01 of the TUM-Mono dataset.

Method
Overall CPU Usage,

Multicore

Current CPU

Usage

GPU

Usage

Memory

Usage

Time

(s)
FPS

ORB-SLAM2 1.8472% 16.2374% 1.2376% 9.2147% 128.4571 37

DF-ORB-SLAM 1.9254% 17.4235% 1.7861% 12.4572% 133.1217 36

LSD-SLAM 2.4578% 18.4521% 1.6423% 10.3457% 138.4172 34

DSO 1.2604% 14.6818% 1.8971% 9.3892% 91.2564 52

SVO 1.1286% 10.4589% 1.7852% 8.5316% 87.5241 55

LDSO 1.6909% 15.4717% 3.1588% 14.2962% 99.4758 48

DSM 1.8346% 31.9216% 2.7203% 24.1591% 315.4982 15

DynaSLAM 1.9247% 21.4576% 15.3467% 20.3879% 118.3245 40

CNN-DSO 4.0647% 30.9091% 27.5346% 24.6742% 161.2389 30

CNN-SVO 3.2579% 27.8461% 24.4732% 23.5476% 134.7583 35

As can be noticed in Table 5, the SVO was the fastest algorithm that required fewer computational

resources to be implemented, closely followed by the DSO and ORB-SLAM2. However, as described in

the following sections, the SVO presented strong trajectory loss issues and poor 3D reconstruction qual-

ity; so, it might not be considered the best alternative. In addition, it can be noticed that adding ML

techniques to geometric-based approaches implied a considerable increase in the CPU, GPU, and

memory use.

91

3.2. Comparative Analysis

As mentioned in Section 2.3, we used the TUM-Mono dataset and benchmark because it has a com-

plete set of metrics; all its sequences were gathered using only monocular cameras, and it presents the

largest collection of 50 sequences and scenarios that comprise multiple outdoor and indoor examples.

In addition, it must be considered that these sequences were gathered using a pure monocular

handheld camera and were recorded by a walking person; so, the results presented in this section might

not be generalized to considerably different applications like autonomous driving, flying drones, and

medical exploration applications, among others.

As addressed in the related works [7], [103], we followed the authors’ suggestions of running each

sequence of a benchmark five times to create cumulative-error plots and account for the nondetermin-

istic nature of each system [180]. Nevertheless, authors like [23], [118] performed their experimental

comparisons by running each sequence ten times in forward and backward reproduction directions to

better capture the probabilistic behavior of the algorithms against multiple variations like illumination

and dynamic objects. In this way, we applied this extended approach, given the large variety of algo-

rithms we tested. In total, we performed ten runs of each of the 50 sequences in forward and backward

modalities, gathering a total of 1000 runs for each method; so, for the ten evaluated algorithms, we

created a database of 10,000 trajectory files saved in .txt format that were processed using the MATLAB

scripts provided in the official repository of the TUM-Mono benchmark [103].

The TUM-Mono benchmark scripts require a specific structure, where each algorithm must output a

. txt file containing all the camera poses registered during each sequence algorithm execution, where

each 𝑷𝑖 pose must be in the quaternion format represented in Equation (1). However, the SVO, CNN-

SVO, and DSM algorithms output rotation and translation matrixes instead of quaternions, which are

incompatible with the TUM-Mono format. In this way, we had to modify the codes of these methods

to introduce the correct output format, following the proposal of Sarabandi and Thomas [188], by ap-

plying Equations (11)–(15) to convert the translation and rotation outputs of the SVO, CNN-SVO, and

DSM to quaternions.

𝑷𝑖 = (𝑡𝑖 𝑥𝑖 𝑦𝑖 𝑧𝑖 𝑞𝑥𝑖 𝑞𝑦𝑖 𝑞𝑧𝑖 𝑞𝑤𝑖) (49)

Given the rotation matrix:

𝑹 = (

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

),

𝑞𝑥 =

{

1

2
√1 + 𝑟11 + 𝑟22 + 𝑟33, 𝑖𝑓 𝑟11 + 𝑟22 + 𝑟33 > 𝜂

1

2
√
(𝑟32 − 𝑟23)

2 + (𝑟13 − 𝑟31)
2+(𝑟21 − 𝑟12)

2

3 − 𝑟11 − 𝑟22 − 𝑟33
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (50)

𝑞𝑦 =

{

1

2
√1 + 𝑟11 − 𝑟22 − 𝑟33, 𝑖𝑓 𝑟11 − 𝑟22 − 𝑟33 > 𝜂

1

2
√
(𝑟32 − 𝑟23)

2 + (𝑟12 + 𝑟21)
2+(𝑟31 + 𝑟13)

2

3 − 𝑟11 + 𝑟22 + 𝑟33
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (51)

𝑞𝑧 =

{

1

2
√1 − 𝑟11 + 𝑟22 − 𝑟33, 𝑖𝑓 − 𝑟11 + 𝑟22 − 𝑟33 > 𝜂

1

2
√
(𝑟13 − 𝑟31)

2 + (𝑟12 + 𝑟21)
2+(𝑟23 + 𝑟32)

2

3 + 𝑟11 − 𝑟22 + 𝑟33
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (52)

92

𝑞𝑧 = {

1

2
√1 − 𝑟11 − 𝑟22 + 𝑟33, 𝑖𝑓 − 𝑟11 − 𝑟22 + 𝑟33 > 𝜂

1

2
√
(𝑟21−𝑟12)

2+(𝑟31+𝑟13)
2+(𝑟32+𝑟23)

2

3+𝑟11+𝑟22−𝑟33
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (53)

As reported in [188], the best results that outperformed Shepperd’s rotation to the quaternion

method were achieved for 𝜂 = 0; so, we set this value to build the trajectory files for those methods that

did not match the evaluation format. In addition, the ORB-SLAM2, DF-ORB-SLAM, DynaSLAM, SVO,

CNN-SVO, and DSM required a different calibration camera model than that the provided by the

benchmark that includes full photometric data considering the geometric intrinsic calibration, photo-

metric calibration, and the nonparametric vignette calibration, while the rest of the methods used an

ATAN camera model based on the FOV distortion model of [189] provided in the official PTAM repos-

itory [90]. We used the ROS calibration package [190] to estimate three radial and two tangential dis-

tortion coefficients 𝒅𝑐𝑜𝑒𝑓𝑓 = (𝑘1 𝑘2 𝑝1 𝑝2 𝑘3), following the formulation of Equations (6) and (7). The re-

sults were also tested and compared with the OpenCV Camera calibration package [191].

For each undistorted pixel at (𝑥𝑢 , 𝑦𝑢) coordinates, its position in the distorted image is (𝑥𝑑 , 𝑦𝑑):

𝑥𝑢 = 𝑥𝑑(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)

𝑦𝑢 = 𝑦𝑑(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)

(54)

𝑥𝑢 = 𝑥𝑑 + [2𝑝1𝑥𝑑𝑦𝑑 + 𝑝2(𝑟
2 + 2𝑥𝑑

2)]

𝑦𝑢 = 𝑦𝑑 + [𝑝1(𝑟
2 + 2𝑦𝑑

2) + 2𝑝2𝑥𝑑𝑦𝑑],
(55)

where 𝑟 is the distorted radius 𝑟𝑑 = √𝑥𝑑
2 + 𝑦𝑑

2. As suggested in [103], to make a fair comparison based

on the accumulated drift over the aligned start and end sequences, we disabled the loop closure for the

SLAM methods ORB-SLAM2, DF-ORB-SLAM, DynaSLAM, LDSO, and DSM. Figure 61 presents each

algorithm’s cumulative error plots for the translational, rotational, and scale errors. These graphs depict

the number of runs for each error type below a certain x-value. Hence, the methods close to the top left

corner were better because they reached a determined error value after more executions.

Figure 61. Translation 𝑒𝑡, rotation 𝑒𝑟, and scale 𝑒𝑠

′ accumulated errors for the ten evaluated algorithms.

As can be seen in Figure 61, the sparse-direct methods (DSO, LDSO, and DSM) achieved the best

overall performance, followed by the sparse-indirect method (ORB-SLAM2), the dense-indirect method

(DF-ORB-SLAM), and the hybrid method (SVO); the dense-direct method (LDS-SLAM) showed the

worst performance. The ORB-SLAM2 and SVO CNN versions showed an important improvement over

their classic versions. At the same time, the CNN-DSO did not outperform the DSO in accumulated

translation, rotation, and scale metrics but remained close to the performance of the DSO. Finally, it

must be mentioned that the large error observed in the LSD-SLAM, SVO, and CNN-SVO methods can

93

be attributed to the severe initialization and relocalization problems that the algorithms presented dur-

ing the evaluations in the TUM-Mono dataset.

As mentioned, the alignment error considers the translation, rotation, and scale errors equally. There-

fore, it is equivalent to the translational RMSE when aligned to the start and end segments (the first and

last 10–20 s of each sequence), for which the ground truth is available. The cumulated alignment error

for each algorithm is presented in Figure 62.

Figure 62. Start and end segment alignment error, corresponding to the RMSE of the alignment error when com-

pared with the start and end segment’s ground truth.

Figure 62 shows that the ORB-SLAM and DynaSLAM performed slightly better than the sparse di-

rect methods for start-segment alignment errors. However, on the end segment, the cumulative drift

effect was lower on the sparse-direct methods ratifying the results observed in Figure 4. In addition, it

can be noticed that the CNN-DSO performed better than the DSO, suggesting that integrating the Single

Image Depth Estimation (SIDE) CNN improved the DSO bootstrapping by adding the prior depth in-

formation, whereas the end-segment performance of both algorithms was similar. Moreover, the addi-

tion of the Mask R-CNN in DynaSLAM was used to remove scenes’ moving objects information and

did not represent a clear improvement in algorithm performance in the start segment, but, as shown in

Figure 5, the benefits of adding the CNN can be observed over the end segment by the reduction in the

accumulated drift. Additionally, for the hybrid approaches, the addition of the MonoDepth CNN made

a paramount contribution in helping to overcome SVO loss of trajectory issues. Similar to the results in

Figure 1, the overall alignment error results suggest that the sparse-direct methods performed better,

followed by the sparse-indirect, dense-indirect, hybrid, and finally the dense-direct, reaching a thresh-

old error in around 50 runs.

As suggested by [103], we examined the dataset motion bias for each algorithm by running each

method ten times forwards and ten times backward in such modalities and combining both to visualize

how much each algorithm is affected. This situation allowed us to consider the importance of evaluat-

ing the SLAM and VO methods in large datasets, covering as many environments and motion patterns

as possible. The dataset motion bias for each method is presented in Figure 63.

94

Figure 63. The dataset motion bias for each method was evaluated by running all sequences forwards and back-

ward, as well as their combination (bold).

In Figure 63, it can be noticed that the DSO, LDSO, and SVO were not seriously affected by motion

bias. In contrast, different motion patterns considerably affected the ORB-SLAM2, DynaSLAM, and

DF-ORB-SLAM. This can be observed in the performance differences when running forwards versus

backward. This behavior provides a reference for the consistency and robustness of each algorithm for

using them in different environments or applications. It can be observed that the CNN-DSO on for-

ward-only modality outperformed its classic version, but it suffered from a larger motion bias effect

affecting its overall performance; while DynaSLAM and CNN-SVO outperformed their classic versions

and presented less motion bias effect, representing an additional robustness improvement over their

classic versions.

Figure 64 shows the color-coded alignment error for each of the 50 TUM-Mono sequences for each

run forward and backward to observe which specific sequences were challenging for each algorithm.

Figure 64. The color-coded alignment error 𝑒𝑎𝑙𝑖𝑔𝑛 for each algorithm in the TUM-Mono dataset.

95

The first row of Figure 64 presents the sparse-direct methods, DSO, CNN-DSO, LDSO, and DSM,

demonstrating an outstanding performance compared to the rest of the evaluated methods belonging

to different taxonomy classifications placing the sparse-direct methods as the best alternative for the

Visual Odometry, SLAM, and 3D reconstruction tasks. It can be noticed that the CNN-DSO performed

worse than the original DSO algorithm in sequences 13 and 22 but outperformed the DSO in sequence

39. The LDSO performance was close to the DSO, but it presented a better trajectory in some forward

sequences and overcame the DSO in sequence 21. The DSM performed similarly to the rest of the

sparse-direct approaches but occasionally presented trajectory loss issues affecting the overall perfor-

mance. Furthermore, the DynaSLAM considerably outperformed the ORB-SLAM2, especially in chal-

lenging sequences like 18, 19, 21, 22, 23, 27, 28, 38, 39, and 40, among others, where the ORB-SLAM

commonly failed. However, it occasionally presented trajectory loss and initialization issues. The ORB-

SLAM2 optical flow implementation performed slightly worse on forwards and considerably worse on

backward, especially in scenes 21, 22, 38, 39, 40, 46, 48, and 50. In contrast, the CNN SVO version con-

siderably reduced the RMSE in most sequences compared to the SVO but still constantly failed in the

outdoor sequences 21 and 22, showing random initialization and trajectory loss issues. As reported in

[2], the SVO and LSD-SLAM methods had the worst results over the whole dataset, which was why

Engel et al. [2] did not include these methods in their study. However, we think it is vital to report such

results and the errors attributed to these algorithms’ commonly known initialization and trajectory loss

errors over the sequences of the TUM-Mono dataset.

The results processed on the TUM-Mono benchmark for the cumulative translation error 𝑒𝑡, rotation

error 𝑒𝑟, scale error 𝑒𝑠
′, start-segment alignment error 𝑒𝑎𝑙𝑖𝑔𝑛

𝑠 , end-segment alignment error 𝑒𝑎𝑙𝑖𝑔𝑛
𝑒 , and

the translational RMSE 𝑒𝑅𝑀𝑆𝐸 were gathered in a database defining the method as the categoric variable.

The statistical results were processed using R programing language. First, we removed the blank ob-

servations for the executions, where each algorithm became lost or could not initialize; so, the Ma-

halanobis distances were [192] as a multivariate data cleaning technique to detect and remove the out-

lier observations. A 22.4577 cut score based on the 𝜒2 distribution for a 99.999% interval was set up

detecting 344 outlier observations ending with a database of 8860 observations.

Then, each dependent variable’s normality and homogeneity assumptions were verified to select the

appropriate statistical test for comparisons. For example, for the translation error, the p-values of 2.2 ×

10−16 for the DSO, LDSO, CNN-DSO, DSM, DynaSLAM, ORB-SLAM2, DF-ORB-SLAM, CNN-SVO,

SVO, and LSD-SLAM methods were obtained in the Lilliefors (Kolmogorov–Smirnov) normality test;

so, the sample did not reach the normality assumption. We applied Levene’s test obtaining a p-value of

2.2 × 10−16 for the homogeneity assumption; so, the sample did not meet the homogeneity assumption.

The rest of the dependent variables had similar assumptions verification results; thus, it was concluded

that the sample was not parametric. Hence, the Kruskal–Wallis test was selected as the general test,

with the Wilcoxon signed rank as a pairwise post hoc test. Figure 65 and Table 6 present the results

obtained by applying the differences tests.

96

(a) (b)

(c)

Figure 65. Bar plots, box-plot error bars, and Kruskal–Wallis comparisons for the medians of the cumulative

errors collected after 1000 runs of each algorithm: the (a) translation error, the (b) rotation error, and the (c) scale

error.

Table 6. Medians and Kruskal–Wallis comparisons for each algorithm’s translation, rotation, and scale errors.

Method Translation Error Rotation Error Scale Error

Kruskal–Wallis gen-

eral test
𝜒2 = 3582.9

𝑝𝑣𝑎𝑙𝑢𝑒 = 2.2𝑒 − 16
𝜒2 = 2278.4

𝑝𝑣𝑎𝑙𝑢𝑒 = 2.2𝑒 − 16
𝜒2 = 2419.1

𝑝𝑣𝑎𝑙𝑢𝑒 = 2.2𝑒 − 16

DSO 0.8064585 a 0.8800369 b 1.064086 ab

LDSO 0.7892125 a 0.9135608 ab 1.061302 ab

CNN-DSO 0.7980411 a 0.9618528 a 1.058849 a

DSM 0.8519143 b 1.1117710 c 1.064615 b

DynaSLAM 1.7473504 c 1.5730542 d 1.126499 c

ORB-SLAM2 2.8738313 d 2.3585843 e 1.260155 d

CNN-SVO 1.6248001 c 1.4159545 d 1.086399 e

97

DF-ORB-SLAM 3.6423921 e 3.4940400 f 1.238232 f

SVO 5.4819407 f 3.3772024 f 1.343603 g

LSD-SLAM 9.1403348 g 14.9621188 g 2.044298 h

Means with different letters in the same column differ significantly according to the Kruskal–Wallis test and pair-

wise Wilcoxon signed rank test for 𝑝𝑣𝑎𝑙𝑢𝑒 ≤ 0.05.

As presented in Figure 65 and Table 6, the sample identified significant differences between the im-

plemented algorithms. By observing the translation error, it can be noticed that the DSO, LDSO, and

CNN-DSO methods achieved the most significant performance of the ten evaluated algorithms; despite

the DSO performing at 2.18% and 1.05% worse than the DSO and CNN-DSO in this metric, the differ-

ence was not significant among them. The DSO, LDSO, and CNN-DSO achieved significantly lower

errors than the dense-direct method DSM. The feature-based methods performed significantly worse

than the sparse-direct methods, where the DynaSLAM achieved a significantly better performance than

the ORB-SLAM2 and DF-ORB-SLAM, reaching a 39.19% and 52.02% translation error reduction, re-

spectively. The CNN-SVO performed slightly worse than the DynaSLAM, but the difference was not

significant, while it significantly outperformed its classic version achieving a 47.57% translation error

reduction. The LSD-SLAM performed substantially worse in terms of the translation error metric

among the ten algorithms.

Regarding the rotation error, the DSO and LDSO achieved significantly better results than the rest

of the algorithms. Although the DSO showed an average rotation error reduction close to 3.66%, the

difference was not significant. The DSO performed significantly better than its neuronal version in the

accumulated rotation error metric. The LDSO performed around 5.02% better than the CNN-DSO, but

the difference was not significant. The DSM performed significantly worse than the rest of the sparse-

direct methods. The feature-based methods performed worse than the sparse-direct methods in the

rotation error metric, where the DynaSLAM achieved a downright performance than the ORB-SLAM2

and DF-ORB-SLAM, showing an average error reduction close to 33.30% and 54.97%, respectively. The

CNN-SVO performed better than the DF-ORB-SLAM, SVO, and LSD-SLAM in terms of the rotation

error metric, significantly outperforming its classic SVO version showing a 58.07% average reduction

in the rotation error. The LSD-SLAM performed significantly worse than the other methods in the ro-

tation error metric.

For the scale error metric, the sparse-direct methods, DSO, LDSO, and CNN-DSO, performed signif-

icantly better, where the CNN-DSO showed the best performance by an average 0.49% and 0.23% re-

duction compared to the DSO and LDSO, but the difference was not significant. The DSM performed

significantly worse than the CNN-DSO. The feature-based methods performed significantly worse than

the sparse-direct methods on the scale error metric, where the DynaSLAM achieved the significantly

best performance and an average reduction of 10.60% and 9.02% compared to the ORB-SLAM2 and DF-

ORB-SLAM. The CNN-SVO performed significantly better than the feature-based methods, SVO and

LSD-SLAM, exhibiting a 19.14% average error reduction compared to its classic version, SVO. Again,

the LSD-SLAM performed worst in the scale error metric.

Similarly, the Kruskal–Wallis test was applied as general test, with the Wilcoxon signed rank test,

for statistical comparison among the ten methods for the start- and end-segment alignment errors and

the overall RMSE. Figure 66 and Table 7 present the results obtained by applying the differences tests.

98

(a) (b)

(c)

Figure 66. Bar plots, box-plot error bars, and Kruskal–Wallis comparisons for the medians of the cumulative errors

collected after 1000 runs—(a) only the start-segment alignment error, (b) only the end-segment alignment error,

(c) the RMSE for the combined effect on the start and end segments.

99

Table 7. Medians and Kruskal–Wallis comparisons for the translation errors of each algorithm.

Method
Start-Segment

Alignment Error

End-Segment

Alignment Error
RMSE

Kruskal–Wallis general

test
𝜒2 = 4575.7

𝑝𝑣𝑎𝑙𝑢𝑒 = 2.2𝑒 − 16
𝜒2 = 3718

𝑝𝑣𝑎𝑙𝑢𝑒 = 2.2𝑒 − 16
𝜒2 = 530.78

𝑝𝑣𝑎𝑙𝑢𝑒 = 2.2𝑒 − 16

DSO 0.003974759 a 0.004184367 a 0.1950799 ab

LDSO 0.007925665 b 0.008009198 b 0.1944492 a

CNN-DSO 0.008987173 b 0.006199582 c 0.2083872 ab

DSM 0.015794222 c 0.015537213 d 0.2167750 b

DynaSLAM 0.004286919 a 0.005516179 e 0.2389837 cd

ORB-SLAM2 0.004311949 a 0.005102672 e 0.3165024 e

CNN-SVO 0.067201999 d 0.062036008 f 0.2373532 c

DF-ORB-SLAM 0.053360456 e 0.084420570 g 0.3643844 e

SVO 0.108150349 f 0.117753996 h 0.3642558 e

LSD-SLAM 0.158469383 g 0.190127787 i 0.3507099 d

Means with different letters in the same column differ significantly according to the Kruskal–Wallis test and pair-

wise Wilcoxon signed rank test for 𝑝𝑣𝑎𝑙𝑢𝑒 ≤ 0.05.

Figure 66 and Table 7 show many significant differences between the ten compared methods on the

alignment error and RMSE metrics. Regarding the start-segment alignment error, the DSO,

DynaSLAM, and ORB-SLAM methods outperformed the rest of the algorithms. Despite the DSO

slightly reducing the average start-segment alignment error by around 7.28% and 7.81% compared to

the DynaSLAM and ORB-SLAM2, the differences were not significant. The rest of the sparse-direct

methods, LDSO, CNN-DSO, and DSM, performed significantly worse than the DSO by an average of

49.84%, 55.77%, and 74.83%, respectively, in the start-segment alignment error metric. For the feature-

based methods, the DynaSLAM and DSO performed significantly better than the DF-ORB-SLAM, while

the DF-ORB-SLAM achieved an error significantly lower than the CNN-SVO, SVO, and LSD-SLAM.

When comparing the CNN-SVO with its predecessor SVO, the difference was significant, where the

neural version reduced the start-segment alignment error by an average of close to 37.86%. The LSD-

SLAM achieved the worst start-segment alignment error of the ten methods, significantly.

By observing the end-segment alignment error, it was found that the sparse-direct methods signifi-

cantly outperformed the rest of the compared methods. The DSO significantly outperformed all the

evaluated methods, including the rest of the sparse-direct methods, the LDSO, CNN-DSO, and DSM,

reducing the average alignment error by around 47.85%, 32.50%, and 73.06%, respectively. In the

sparse-indirect category, the DynaSLAM and ORB-SLAM2 performed significantly better than the DF-

ORB-SLAM, but even though the ORB-SLAM2 reduced the average end-segment error by approxi-

mately 7.49%, the difference was not significant. The CNN-SVO end-segment alignment error was sig-

nificantly lower than the error of the SVO, reducing this metric by approximately 47.31%. The LDSO

performed significantly worse than the rest of the methods.

For the RMSE metric, the sparse-direct methods performed significantly better than the rest, where

the LDSO achieved RMSE values around 0.32% and 6.68% lower than the DSO and CNN-DSO; the

differences were not significant. The LDSO performed significantly better than the DSM, with an aver-

age RMSE around 10% lower. In the feature-based classification, the DynaSLAM performed signifi-

cantly better than the ORB-SLAM2 and the DF-ORB-SLAM, reducing the RMSE metric by approxi-

mately 24.49% and 34.41%, respectively. For the hybrid methods, the CNN-SVO performed signifi-

cantly better than the SVO, reducing the RMSE by around 34.83%. As with the rest of the metrics, the

LSD-SLAM performed significantly worse than the other methods in terms of the RMSE metric.

Finally, in Figure 67, we present the sample trajectories obtained by the three overall best methods

evaluated in this comparison study. To exemplify the behavior of the algorithms in different environ-

ments, we selected the sequence seq-02 of the TUM-Mono dataset as an example for indoors and the

100

sequence seq-29 as an example for outdoors. In addition, we provide video samples of the execution of

each algorithm as supplementary material in the GitHub repository: https://github.com/erickherrerare-

search/MonocularPureVisualSLAMComparison, along with all the .txt result files of each algorithm

run for reproducibility.

(a) (b) (c)

(d) (e) (f)

Figure 67. Trajectories in the TUM-Mono dataset for the compared sparse-direct (a,d), indirect (b,e), and hybrid

methods (c,f). The top row displays the results for the indoor sequence seq-02, and the bottom row displays the

results for the outdoor sequence seq-29. The solid lines represent the trajectory estimated by each algorithm; the

dashed lines represent the aligned ground truth.

As depicted in Figure 67, the algorithm’s observed behavior ratified this comparative analysis of

quantitative results. On the top row, for the indoor sequence, it can be noticed that the sparse-direct

methods outperformed the other evaluated methods starting and ending their trajectory pretty close to

the ground truth. The indirect methods behaved completely differently, where the system constantly

lost the trajectory, accumulating drift and obtaining the wrong scale measures concatenated errone-

ously when the system achieved relocalization. The DynaSLAM represents an important contribution

to the ORB-SLAM2 system because it estimated the trajectory better than the rest, closing the trajectory

close to the ground truth, while the rest of the indirect systems lost their trajectories. On the other hand,

the hybrid methods performed considerably worse indoors; so, many of the algorithms’ runs did not

complete the full frame sequence, and the algorithm typically finished its trajectory pretty far from the

end-segment ground truth. In the bottom row of Figure 67, it can be noticed again that the sparse-direct

methods outperformed the rest of the evaluated systems, with an appropriate bootstrapping in the start

segment and a small amount of accumulated drift in the end segment.

In Figure 67e, similar to indoors, the indirect methods suffered from trajectory loss issues despite the

fact that the relocalization module typically was able to continue the system execution, accumulating a

critical amount of drift during relocalization, making the estimated trajectory end far from the

101

groundtruth end segment. In the hybrid methods, the SVO suffered from similar issues to the indirect

methods. However, it can be noticed that the CNN version of the SVO improved its performance out-

doors, differently from indoors, which can be explained because the added CNN MonoDepth module

was trained in the Cityscapes dataset, which was mainly trained from outdoor sequences.

4. Discussion

In the previous studies of [16], [180], the authors compared the DSO, LDSO, ORB-SLAM2, and

DynaSLAM algorithms on the same TUM-Mono benchmark, and their findings mostly matched what

we observed during this evaluation. However, we extended their study considerably by implementing

six additional methods following the taxonomy described in [179] and performed an appropriate sta-

tistical analysis to determine the significant differences in each system’s performance. Thus, we could

observe the classification advantages and limitations for classic geometric-based approaches. The clas-

sic approaches can be classified as sparse-indirect, dense-indirect, dense-direct, sparse-direct, and hy-

brid. For the sparse-indirect, we selected its gold standard, ORB-SLAM2, and we can report that, in our

experience, it is an excellent method that demands low computational power and has an average per-

formance not being the best but still working well outdoors. Its main limitations are its poor indoor

performance and large drift and scale error accumulation during relocalization. We believe the ORB-

SLAM2 has achieved high popularity due to its low computational power consumption and ease of

implementation.

For the dense-indirect category, we selected the DF-ORB-SLAM, an ORB-SLAM2 open-source im-

plementation with an additional optical flow estimation module that allows the ORB-SLAM2 to work

with more image information. In this case, we observed that the optical flow module increased the

computational cost of the algorithm and slightly reduced the occurrence of trajectory loss issues. How-

ever, adding image information for feature extraction also introduced noise in the estimation steps,

significantly increasing the translation, rotation, scale error metrics, and RMSE. For dense-direct ap-

proaches, we selected their gold standard, the LSD-SLAM, one of the first proposed direct methods. In

this case, we found that the performance was significantly the poorest of all the evaluated methods.

This situation could be due, in particular, to the frequent initialization errors and trajectory loss in most

of the benchmark sequences matching what Engel et al. reported in their study [2]. For the sparse-direct

classification, we selected the most iconic VO system, the DSO. This system significantly outperformed

the methods of the rest of the classic classifications by a large margin, demonstrating an impressive

performance indoors and outdoors. The DSO was slightly outperformed by its neuronal version on the

scale metric and slightly outperformed by the LSDO in the translation and RMSE metric, but the dif-

ferences were not significant. This behavior lets us conclude that even its LDSO, CNN-DSO, and DSM

extensions do not significantly outperform the DSO, and this method can still be considered a great

avenue for future work, improvements, and contributions.

Additionally, it must be mentioned that, in contrast to what was reported in [84], the DSM method

did not outperform its predecessor, the DSO, in the TUM-Mono dataset, even after implementing a

complete SLAM pipeline to extend the DSO. We believe the DSM is a robust system that can contribute

to the sparse-direct category. However, the authors used the extended pinhole radial-tangential camera

model instead of the complete photometrical camera calibration provided in the original DSO, includ-

ing the intrinsic, photometric, and nonparametric vignette calibration. As reported in [180], this situa-

tion considerably contributed to the correct execution of the algorithm and allows it to obtain the best

results. Then, for the hybrid approaches, we tested the SVO, which combines direct and indirect for-

mulation paradigms in its pipeline. The SVO was second to last in our comparison, being significantly

outperformed by most of the methods in this study, only performing significantly better than the LSD-

SLAM, in line with what was reported in [2]. However, with this analysis, we could observe that it at

least performed better than the dense-direct method. The SVO is also a popular method in the robotics

102

research field. We believe that this is caused by its early appearance in 2014, low computational power

requirement, and open-source availability for implementation with C++ or ROS.

For machine learning classification, there are many ML implementations available in the literature

[3], [6], [113], [114], [116]–[118], [135], [136], [147], [8], [9], [12], [28], [49], [50], [111], [112], and many of

them include open source code implementations [6], [156], [168], [170]–[173], [159]–[164], [166], [167].

Nevertheless, most methods were formulated to work with more than one input mode, like RBD-D or

INS, and their code implementations did not include monocular running instructions or did not include

their monocular RGB pipeline, e.g., [6], [168], [172]. Other open-source code implementations required

additional external information for running, like optical flow or feature extractors, that were not in-

cluded as open source, e.g., [156]. For such reasons, we selected three ML versions of the classic ap-

proaches of the DSO, ORB-SLAM2, and SVO: CNN-DSO, DynaSLAM, and CNN-SVO. Therefore, we

concluded that the CNN-SVO significantly outperformed its predecessor in all the metrics, the

DynaSLAM significantly outperformed the ORB-SLAM2 in all the metrics except for the end-segment

alignment error where the difference was not significant, and the CNN-DSO significantly outper-

formed its classic version only in the rotation error metric. Here, we can mention that in contrast to

what is reported in the CNN-DSO official repository [174], where the algorithm was evaluated in the

first eleven sequences of the KITTI dataset, after testing the algorithm in a larger dataset indoors, out-

doors, and a large variety of motion patterns, the CNN-DSO only slightly outperformed the DSO in the

scale error metric, but the observed difference was not significant, while the DSO still outperformed it

in rotation and in the start- and end-segment alignment error metrics. In addition, during the evalua-

tion, it was observed that the algorithm introduced a considerable number of outlier points in the ob-

tained 3D reconstruction. Thus, we can point out that machine learning studies are making vital con-

tributions to enhancing the monocular VO, SLAM, and 3D reconstruction systems. Table 8 summarizes

the observed advantages and limitations of the evaluated methods based on the experience of imple-

menting and running the algorithms.

Table 8. Practical advantages and limitations of the evaluated methods.

Method Category Advantages Limitations

ORB-SLAM2

[54]

Classic sparse-

indirect

Low computational cost. Multiple input

modes. Ease of implementation. Robustness

to multiple environments.

Trajectory loss issues. Accumulation of

drift while relocalizing. Sparse 3D recon-

struction.

DF-ORB-

SLAM [16]

Classic dense-

indirect

Low computational cost. Reduction in trajec-

tory loss issues.

Introduction of noise for trajectory esti-

mation. Accumulation of drift on relocal-

ization. Sparse 3D reconstruction. Signif-

icant reduction in the performance of

ORB-SLAM2.

LSD-SLAM

[29]

Classic dense-

direct

Low computational cost. More detailed 3D re-

construction, but with the presence of outliers.

More information in the final 3D reconstruction.

Poorest performance of the evaluated

methods. Initialization issues. Trajectory

loss issues.

DSO [21]
Classic sparse-

direct

Low computational cost. Ease of implementa-

tion. More detailed and precise 3D reconstruc-

tion. Robust to multiple environments and

motion patterns. Best performance of all

methods in most of the metrics.

Requirement for a specific complex cam-

era calibration. Slightly, but not signifi-

cantly, lower performance than the

LDSO in the translation and RMSE met-

rics.

SVO [13] Classic hybrid

Low computational cost. Good documenta-

tion and open-source availability for imple-

mentation in diverse configurations.

Frequent trajectory loss issues. Initializa-

tion issues. Critical execution errors due

to the absence of a relocalization module.

LDSO [30]
Classic sparse-

direct

Low computational cost. Similar to DSO, de-

tailed and precise 3D reconstruction. Ease of

implementation. Loop closure module.

Slightly but not significantly better perfor-

mance than the DSO in translation and rota-

tion error. Best performance in the translation

Requirement of a specific complex cam-

era calibration. Significantly worse per-

formance than the DSO in the end-seg-

ment error metric.

103

and RMSE metrics (compared to DSO), but

without considerable difference.

DSM [31]
Classic sparse-

direct

Detailed and precise 3D reconstruction. Ro-

bust execution in most of the environments

and motion patterns. Complete and interac-

tive GUI.

Requirement of more computational ca-

pabilities than the rest of the sparse-di-

rect methods. Significant underperfor-

mance compared to most of the sparse-

direct methods.

CNN-DSO

[15]

ML sparse-di-

rect

Detailed and precise 3D reconstruction. Ro-

bust to multiple environments and motion

patterns. Best performance in scale error met-

ric.

Presence of outliers in the 3D reconstruc-

tion. Significantly better performance in

the rotation error metric by the DSO. Dif-

ficult to implement. Specific hardware

requirement.

DynaSLAM

[32]

ML sparse-in-

direct

Multiple input modes. Ease of implementa-

tion. Robustness to multiple environments.

Ability to detect, segment, and remove infor-

mation of moving objects. Especially recom-

mended for dynamic environments. Fewer

trajectory loss issues than ORB-SLAM2.

Accumulation of drift while relocalizing.

Sparse 3D reconstruction. Increase in

complexity over the ORB-SLAM2. Spe-

cific hardware requirement.

CNN-SVO

[54]
ML hybrid

Considerable reduction in the trajectory loss

issues compared to the SVO. Initialization is-

sues. Reduction in the number of execution is-

sues compared to the SVO. Improved perfor-

mance over the ORB-SLAM2 in the rotation,

translation, scale, and RMSE metrics. Signifi-

cant improvement over its classic version in all

the metrics.

Considerable presence of outliers in the

3D reconstruction. Imprecise and sparser

3D reconstruction. Complex implemen-

tation. Specific hardware requirement.

5. Intermediate conclusions

In this article, the most representative open source monocular RGB SLAM and VO available imple-

mentations were tested following a taxonomy to determine the advantages and limitations of each

method and classification, providing the reader a guide to correctly select the method that fits their

needs or to select a path to make future contributions to the tested methods and classifications. After

experimentation, it can be concluded that the monocular SLAM and VO methods need to be evaluated

on larger datasets in a large variety of environments, motion patterns, and illumination conditions to

be effectively compared with the state of the art, as demonstrated in this study for methods like the

DSM, CNN-DSO, and DF-ORB-SLAM that did not match the expected results on the TUM-Mono da-

taset.

The sparse-direct category of the taxonomy achieved the significantly best results among all the ten

methods in the translation, rotation, scale, and RMSE metrics outputting the most detailed and precise

3D reconstructions of the tested methods. At second best, the sparse-indirect category achieved good

ego-motion estimation but output sparser 3D reconstructions that might not be suitable for many ap-

plications, presenting trajectory loss issues and evidencing worse performance indoors. Additionally,

by including three machine learning-based methods and comparing them with their classic versions,

we can conclude that the integration of machine learning significantly improves the performance of the

SLAM or VO systems and should be considered as a future research direction to overcome the limita-

tions of each system. Integrating CNN information for the estimation steps contributes to mitigating

monocular systems’ commonly known scale ambiguity issue. This behavior was demonstrated in each

ML method’s significant scale error reduction compared to their classic versions.

Through experimentation, refs. [103], [180] concluded that the great majority of the alignment error

originated in the accumulated drift, independent from the noise in the ground truth that can be regis-

tered with any SLAM or VO, which allows using all the metrics using the ground truth of only the start

104

and end segments. We agree and confirm that this conclusion allowed us to compare a wide variety of

methods coming from different configurations and classifications that output trajectories in different

scales and orientations, which can be efficiently compared after the proposed benchmark alignment

method.

105

Chapter IV - Proposal

106

1. Introduction

Three-dimensional (3D) reconstruction is a complex, ill-posed challenge that has been approached

through various techniques and perspectives to accurately replicate the geometry of real-world set-

tings. Numerous scholars have attempted to resolve this issue by employing diverse sensors, including

lasers, infrared, radar, LIDAR, cameras, and their combinations, supplemented by additional sensors

like GPS and INS [18], [29], [38]. With the advancements in computer vision over recent years, cameras

have emerged as a precise tool for this task. For 3D reconstruction, cameras are utilized in several ways:

in stereo configurations that facilitate pixel triangulation; alongside active sensors such as RGB-D cam-

eras; in conjunction with inertial INS sensors; and as standalone monocular cameras [1]. Among these,

the monocular RGB camera is particularly intriguing to many researchers due to its cost-effectiveness,

widespread availability in mobile devices, and independence from the limited range of additional sen-

sors, which restricts their use in expansive areas. However, relying solely on a monocular camera for

information introduces complexity due to the absence of depth or scale data, necessitating increased

computational effort. This is why purely visual monocular methods are inherently scale-ambiguous, a

significant drawback when contrasted with Stereo, RGB-D, or RGB-INS methods, and a primary cause

of drift. Therefore, this study seeks to mitigate these issues by incorporating depth-prior information

into a popular monocular RGB system.

The process of 3D reconstruction is often a product of Simultaneous Localization and Mapping

(SLAM), Visual Odometry (VO), and Structure from Motion (SFM). Various research efforts have con-

tributed to enhancing this process, as precise mapping has significantly improved the performance of

SLAM, VO, and SFM systems, particularly those focused on ego-motion estimation. This is because

these systems often rely on tracking from the geometry map, and it has been established that tackling

simultaneously tracking and mapping yields better results [18], [38]. As delineated in preceding re-

search [193], SLAM, VO, and SFM can be categorized into three groups: direct versus indirect, dense

versus sparse, and classical versus Machine Learning-based. Indirect methods preprocess images to

extract visual features or optical flow, reducing data volume and producing sparse scene representa-

tions. Conversely, direct methods operate on pixel intensities, allowing for more image data but at a

higher computational cost. Dense methods aim to reconstruct extensive scene geometry, whereas

sparse methods recover minimal point clouds. Classical methods rely on mathematical, geometric, op-

timization, or probabilistic approaches without ML integration. ML methods, on the other hand, en-

hance classical approaches with ML techniques to improve performance from various angles. The tax-

onomy for SLAM, VO, and SFM suitable for 3D reconstruction includes: classic-sparse-indirect [7], [14],

[31], [33], [71], [90], classic-dense-indirect [74], [77], classic-dense-direct [4], [5], [80], classic-sparse-di-

rect [2], [23], [101], classic- hybrid [13], ml-sparse-indirect [50], [118], [161], ml-dense-indirect [113],

[114], [116], [135], [136], ml-dense-direct [3], [6], [8], [9], ml + classic-sparse-direct [21], [28], [112], [147]

and ml hybrid [54]1. Furthermore, a prior study [194] evaluated various open-source methods across

this taxonomy using a comprehensive monocular benchmark [103], revealing that sparse direct meth-

ods notably surpassed others in terms of translation, rotation, scale errors, and alignment RMSE across

the TUM-Mono dataset's 50 sequences [103].

Consequently, we have chosen the classic-sparse-direct method DSO, recognized as one of the supe-

rior classic methods, and aim to enhance its depth map estimation by integrating a Single Image Depth

Estimation (SIDE) CNN module. This integration is intended to augment the mapping capabilities of

the DSO method and yield an accurately scaled reconstruction through the pixel-wise depth infor-

mation estimated by the network. The SIDE technique selected is NeW CRFs, which stands at the fore-

front of CNN monocular depth estimation. Our experimental findings indicate that incorporating the

1 For further details of the cited algorithms and the described taxonomy, we encourage the reader to take a look at our previous

work [193]

107

NeW CRFs CNN module allows DeepDSO to surpass its classic counterpart in terms of rotation, trans-

lation, scale, and RMSE metrics.

2.1. Related works

Several initiatives have been undertaken to enhance the efficacy of sparse-direct methods by incor-

porating Convolutional Neural Networks (CNNs) into their frameworks [21], [28], [112], [147]. These

integrations have been applied to various tasks, such as improving the computation of disparity

maps[170], substituting the depth estimation component with a CNN [171], concurrently determining

depth, pose, and uncertainty [112], identifying and segmenting moving objects through depth masks

[147], and calculating pose transformations [28]. Yet, these proposals have not extensively investigated

the potential of infusing prior depth knowledge to restrict the point search range along the epipolar

line, an idea akin to the method presented in [54], which was successfully applied to the SVO hybrid

model[54]. The most closely related work to our method is the CNN-SVO, as described by [54], which

adapted the SVO hybrid system by incorporating a single image depth estimation module to refine its

depth estimation process. The original SVO system utilized a Gaussian model for depth estimation and

a Beta distribution to gauge the inlier ratio, with the Beta distribution parameters being updated incre-

mentally through Bayesian methods and depth filters that converge when the variance falls below a set

threshold. In contrast, the authors of CNN-SVO suggested narrowing the epipolar search interval in

subsequent frames by using the depth of each pixel, as determined by the SIDE CNN, to calculate the

mean and variance of the inverse depth. This modification enabled the SVO method to more rapidly

converge on the accurate depth and achieve a better-scaled reconstruction. The open-source CNN-DSO

code, referenced in [174], applied the CNN-SVO's methodology to the DSO algorithm, utilizing

MonoDepth [195] for SIDE depth estimation. However, it did not adhere closely to the approach out-

lined in [54], resulting in performance that did not markedly surpass that of the original DSO algorithm

[194]. In contrast, our approach has successfully integrated the Loo [54] method into the original DSO

system and employed the latest and most advanced SIDE CNN NeW CRFs. This integration has led to

a substantial enhancement in the performance of the sparse-direct method.

2. Materials and Methods

Within the scope of this research, the materials and methodologies employed encompassed the Di-

rect Sparse Odometry (DSO) algorithm for visual odometry, the NeW CRFs method for depth estima-

tion, and an enhanced technique for initializing point maps. These components are foundational to our

study and will be detailed in subsequent sections.

2.1. Review of the DSO algorithm

In the preceding investigation [194], Direct Sparse Odometry (DSO) has been recognized by com-

puter vision and robotics experts for its excellent capabilities in monocular RGB visual odometry and

monocular 3D reconstruction. That study involved an assessment of ten monocular RGB SLAM and

VO algorithms[2], [4], [7], [23], [54], [84], [118], [174], [181], in line with the taxonomy suggested in [193].

The aim was to identify the most fitting category within the taxonomy for the task of 3D reconstruction,

leading to the conclusion that sparse-direct methods significantly excel beyond the other methods eval-

uated. Therefore, the DSO method was chosen for this research due to its distinction as one of the fore-

most classic-sparse-direct methods and its accessibility as open-source. DSO operates directly on pixel

data in a sparse manner, incorporating point selection and sampling techniques to diminish the data

volume for processing since increasing pixel data does not necessarily improve map quality, as shown

in [2]. DSO, inspired by the studies [4], [22], is a direct method that utilizes five to seven keyframes to

create a sliding window, within which parameters are optimized jointly by minimizing photometric

error. In such a window, there are m keyframe poses 𝑇 ∈ 𝑆𝐸(3) and 𝑛 points 𝒑, constituting the set 𝒲 =

{𝑻1, … , 𝑻𝑚, 𝒑1, … , 𝒑𝑛}. The photometric error to be minimized is expressed as:

108

𝑚𝑖𝑛 ∑ 𝐸𝑖,𝑗,𝑘
𝑻𝑖,𝑻𝑗,𝒑𝑘∈𝒲

, where

𝐸𝑖,𝑗,𝑘 = ∑ 𝜔𝑝 ‖(𝐼𝑗[𝒑
′] − 𝑏𝑗) −

𝑡𝑗𝑒
𝑎𝑗

𝑡𝑖𝑒
𝑎𝑖
(𝐼𝑖[𝒑

′] − 𝑏𝑖)‖
𝛾

,

𝒑∈𝒩𝒑𝑘

(54)

where 𝒩𝒑𝑘
 is the sum of the weighted photometric differences across the neighboring pixels of 𝒑𝑘,

factoring in the affine lighting parameters 𝑎 and 𝑏, exposure time 𝑡, and the image 𝐼. The weight 𝜔𝑝 is

a heuristic factor, and 𝒑′ is the reprojected pixel position for point 𝒑 in the current image 𝐼𝑗, calculated

by:

𝒑′ = Π(𝑹Π−1(𝒑, 𝑑𝒑𝑘) + 𝝉) (55)

with Π and Π−1 being the projection and back-projection functions, 𝑹 and 𝝉 representing the relative

rotation and translation between frames as determined by transformations𝑻𝑖 and 𝑻𝑗, and d being the

inverse depth of a point.

The DSO frontend selects keyframes and points for photometric error optimization, initialises pa-

rameters, and decides which elements to marginalize. Keyframe management involves estimating the

initial pose of a new image by projecting active points from the sliding window and aligning them

directly. New keyframes are generated in response to changes in the field of view, occlusions, disocclu-

sions, and exposure time, detected by computing optical flow and relative brightness. A new keyframe

is added to the sliding window if it meets the criteria. Unlike ORB-SLAM's persistent co-visibility

graph, DSO's sliding window is dynamic, with old or redundant keyframes being marginalized.

Keyframes are distributed throughout the 3D space, with marginalization favouring the keyframe that

maximizes a distance score 𝑠(𝐼𝑖), based on the Euclidean distance 𝑑(𝑖, 𝑗), between 𝐼𝑖 and 𝐼𝑗 keyframes,

and a small constant 𝜀:

𝑠(𝐼𝑖) = √𝑑(𝑖, 1) ∑ (𝑑(𝑖, 𝑗) + 𝜀)

𝑗𝜖[3,𝑛]\{𝑖}

−1

 (56)

DSO significantly subsamples data across frames for sparse point management to reduce computa-

tion and redundancy. Unlike indirect methods that rely on specific features like edges and corners, DSO

can sample from all available data, enabling tracking in less textured areas. Candidate points are se-

lected from image blocks based on a gradient threshold, with the process repeated at multiple scales to

detect points with weaker gradients. These points are then tracked by searching along the epipolar line

to minimize photometric error, with depth and variance calculated from the best match to constrain the

search in subsequent frames. Following the approach in [54], our method posits that the search interval

for each point's depth can be further constrained by depth and variance from a SIDE CNN depth esti-

mator, leading to better depth initialization, faster convergence, and improved scaled 3D reconstruc-

tion. Active candidate points are then used to maintain a uniform spatial distribution, replacing old

marginalized points in each image.

2.2. Review of NeW CRFs single image depth estimation

Depth estimation is an extensively researched area within robotics and computer vision, tackled us-

ing technologies such as lasers, radar, LIDAR, and cameras. A notable purely visual technique for this

task is Single Image Depth Estimation (SIDE). Numerous strategies have been proposed to solve this

challenge, employing traditional machine learning (ML) methods and a fusion of both. Traditional

methods have explored the depth estimation of scene objects through feature utilization. However,

studies such as [196] have demonstrated that local features alone are insufficient for accurately deter-

mining the depth of each pixel. Subsequent efforts have utilized discriminatively trained Markov Ran-

dom Fields (MRF) [197] and Conditional Random Fields (CRFs) [198], which effectively model the

depth of individual pixels and their interrelations, thereby facilitating improved inference of depth

109

maps from various cues such as colour, pixel location, occlusions, known object sizes, haze, and defo-

cus.

Neural networks have also been applied to depth map estimation, directly regressing a continuous

depth map from an image [151], [155], [195], [199]–[203]. This approach heavily relies on training with

extensive datasets featuring diverse motion patterns and lighting conditions. Due to the complexity of

obtaining accurate ground truth depth maps for training, some methods have incorporated auxiliary

information to support the neural network training, introducing additional sparse depth [204] or seg-

mentation data [205], [206]. These methods aim to directly derive the depth map from image features,

posing a challenging fitting problem that necessitates intricate neural network architectures.

The Neural Window (NeW) CRFs method [207], utilized in this study, merges traditional and ML

approaches by incorporating an energy function with fully connected CRFs, optimized to yield precise

depth maps. Given the efficiency of CNNs for depth estimation tasks, some methods have attempted

to integrate them with neural networks, using CRFs to refine CNN outputs [208] or incorporating them

into CNN layers [209]. However, this increases computational complexity, as fully connected CRFs re-

quire all nodes to be interconnected across the entire graph. To address this, the creators of NeW CRFs

proposed dividing the graph into multiple sub-windows, connecting nodes only within each window,

thus rendering CRFs computationally feasible.

MRFs and CRFs are often employed for complex prediction tasks like depth estimation and semantic

segmentation due to their proven effectiveness in error correction based on neighbouring node infor-

mation. Fully connected CRFs, in particular, are adept at expanding the receptive field [207], which is

why they were employed in the NeW CRFs method. Here, the energy function of fully connected CRFs

is formulated as:

𝐸(𝑥) =∑𝜓𝑢(𝑥𝑖)

𝑖

+∑𝜓𝑝(𝑥𝑖 , 𝑥𝑗)

𝑖𝑗

 (57)

where 𝑥𝑖 denotes the predicted depth for node 𝑖, and 𝑗 represents other nodes in the graph. The unary

potential function 𝜓𝑢 is computed for each node by the predictor, while the pairwise potential function

𝜓𝑝 connects node pairs and is defined by:

𝜓𝑝 = 𝜇(𝑥𝑖 , 𝑥𝑗)𝑓(𝑥𝑖 , 𝑥𝑗)𝑔(𝐼𝑖 , 𝐼𝑗)ℎ(𝑝𝑖 , 𝑝𝑗) (58)

with 𝜇(𝑥𝑖 , 𝑥𝑗) = 1 for 𝑖 ≠ 𝑗 and zero otherwise. 𝐼𝑖 and 𝑝𝑖 represent the colour and position of node 𝑖,

respectively. The unary potential is based on the distribution over predicted values, and the pairwise

potential relies on the colour and position of pixel pairs:

𝜓𝑢(𝑥𝑖) = −𝑙𝑜𝑔𝑃(𝑥𝑖|𝐼)

𝜓𝑝(𝑥𝑖 , 𝑥𝑗) = 𝜇(𝑥𝑖 , 𝑥𝑗)‖𝑥𝑖 − 𝑥𝑗‖𝑒
−
‖𝐼𝑖−𝐼𝑗‖

2𝜎2 𝑒
−
‖𝑝𝑖−𝑝𝑗‖

2𝜎2

(59)

Where 𝐼 represents the input image, and 𝑃 represents the probability distribution of the prediction.

The pairwise potential applies heuristic penalties based on position and colour information, promoting

the distinction of distant colours and positions while penalizing similarities in colour and proximity in

pixels. This is computed for each sub-window rather than the entire graph and to relay information

between non-overlapping windows by (𝑁/2, 𝑁/2), another energy function is calculated by succes-

sively shifting the windows by half their size. To incorporate this formulation into a neural network

decoder, allowing the network to compute potential functions, the unary and pairwise potentials were

redefined to be directly derived by the network:

𝜓𝑢(𝑥𝑖) = 𝜃𝑢(𝐼, 𝑥𝑖)

𝜓𝑝(𝑥𝑖 , 𝑥𝑗) = 𝜔(ℱ𝑖, ℱ𝑗 , 𝑝𝑖 , 𝑝𝑗)‖𝑥𝑖 − 𝑥𝑗‖
(60)

110

Here, 𝜃 represents the parameters of the unary network, ℱ denotes each feature map, and 𝜔 is the

weighting function. For each node i, all pairwise potentials are aggregated as:

𝜓𝑝𝑖 = 𝛼(ℱ𝑖 , ℱ𝑗, 𝑝𝑖 , 𝑝𝑗)𝑥𝑖 +∑𝛽(ℱ𝑖, ℱ𝑗 , 𝑝𝑖 , 𝑝𝑗)𝑥𝑗
𝑗≠𝑖

 (61)

The network calculates the weighting functions 𝛼 and 𝛽. A query vector 𝒒 and a key vector 𝒌 are

implemented for each patch window as matrices 𝑸 and 𝑲. The dot product of these matrices with the

predicted values 𝑿 retrieves the potential weight for any node pair. By incorporating the relative posi-

tion 𝑷, the potential for node 𝑖 is computed as:

∑𝜓𝑝𝑖
𝑖

= 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑸 ∙ 𝑲𝑇 + 𝑷) ∙ 𝑿 (62)

In summary, the NeW CRFs method is constructed with a bottom-up-top-down architecture featur-

ing four levels of neuronal CRFs optimization performed by decoder modules. Based on the Swin-

Transformer [210], the encoders extract feature maps to feed into the decoder CRFs. The FC-CRFs mod-

ule's structure and the network's overall architecture are depicted in Figure 68.

Figure 68. Bottom-up-top-down convolutional neural network (CNN) structure of the NeW CRFs, including its

fully connected CRFs (FC-CRFs) module. Here, ℱ denotes the feature map output from the encoder, 𝑋 symbolizes

the prediction from the higher level, and 𝜓𝑢 and 𝜓𝑝 represent the unary and pairwise potentials, respectively. The

dashed lines indicate the decoder's FC-CRFs module, which constructs a multi-head energy function using the

upper-level predictions and the feature map to enhance the prediction accuracy. This design is derived from the

framework presented in [207].

2.3. Improved point’s depth initialization for DSO

The integration of Convolutional Neural Network (CNN) outputs as prior information can signifi-

cantly enhance the performance of Simultaneous Localization and Mapping (SLAM) or Visual Odom-

etry (VO) tasks. This can be achieved through various strategies, such as substituting the depth estima-

tion component with a Single Image Depth Estimation (SIDE) CNN [3], [112], [113],, or employing ma-

chine learning modules for refined parameter estimation [28], [49], semantic segmentation [3], [118],

dynamic object detection and segmentation [118], [147], and enhancing depth estimation with depth

priors. Previous research [194] has shown that incorporating a SIDE CNN to provide prior information

can markedly improve the convergence of depth estimation modules, thereby boosting the overall ef-

ficacy of SLAM or VO systems [173], [174]. Our approach has adopted the strategy outlined in [54] and

tailored it to fit within the Direct Sparse Odometry (DSO) framework.

This method capitalizes on the fact that, unlike feature-based methods that rely on feature matching,

direct methods necessitate the recovery of point depths for tracking in a direct formulation, making

111

precise depth estimation paramount. Furthermore, all monocular RGB SLAM and VO systems grapple

with scale ambiguity. Loo’s method [54] addresses both challenges by incorporating a point initializa-

tion strategy that leverages depth prior information from a single image depth estimation module. This

strategy constrains the search interval for estimating the true depth of each point.

Traditionally, in the DSO method, depth estimation begins by identifying point candidates in subse-

quent frames through a discrete search along the epipolar line, minimizing photometric error. The best

match's depth and variance are then computed using a probabilistic Gaussian framework, which en-

capsulates the uncertainty inherent in stereo-based depth estimation. However, rather than initializing

these parameters randomly as many direct methods do, the depth and variance can be precisely initial-

ized using data from a SIDE CNN. This reduces uncertainty and narrows the search interval, enabling

the probabilistic framework to more rapidly converge on the true depth. Large uncertainties can lead

to the selection of incorrect correspondences along the epipolar line in adjacent frames and a multitude

of depth measurements that fail to converge on their true depths. It has been shown that providing

depth prior information to constrain the search interval, thereby diminishing depth uncertainty, im-

proves initialisation and enables new points to more swiftly converge on their true depth in a scaled

fashion. This is because the search interval is now centred around the depth estimated by the SIDE,

which also facilitates scaled reconstructions. This concept is illustrated in Figure 69.

Figure 69. Map point initialization strategy. The DSO's search interval over the epipolar line is refined by incor-

porating CNN-derived prior information, such as estimated depth and variance. As shown in part b) of the figure,

the epipolar search interval in subsequent frames is condensed, which helps each point to converge on its scaled

true depth while excluding similar points from the search interval.

Thus, each point is initialized based on the depth provided by the CNN without discarding the DSO's

proven depth estimation framework. This preserves the uncertainty-based inference capabilities inher-

ited from [4], [22]. In this process, the inverse depth value of the best match from the previous frame is

replaced with the depth estimation for that pixel position obtained by the NeW CRFs method, where

𝜇𝑛 = 1/𝑑𝐶𝑁𝑁 equals the inverse of the CNN-derived depth, and the depth variance follows the approach

of [54], with 𝜎𝑛
2 = 1/(6𝑑𝑐𝑛𝑛)

2 being inversely proportional to the square of six times the CNN-derived

depth. This coefficient ensures that the search interval maintains a degree of uncertainty without com-

promising the scale provided by the CNN. Using these initialized parameters, 𝜇𝑛 and 𝜎𝑛
2, the depth

search interval [𝑝𝑖
𝑚𝑖𝑛 , 𝑝𝑖

𝑚𝑎𝑥] is defined as follows:

𝑝𝑖
𝑚𝑖𝑛 = 𝜇𝑛 +√𝜎𝑛

2

𝑝𝑖
𝑚𝑎𝑥 = {

0.00000001 if 𝜇𝑛 −√𝜎𝑛
2 < 0

𝜇𝑛 − √𝜎𝑛
2 otherwise

(63)

In this manner, depth prior information can direct the depth estimation process of the direct formu-

lation by delimiting the search interval for each point along the epipolar line in each new frame. The

incorporation of the depth module into the DSO algorithm is detailed in Figure 70.

112

Figure 70. Diagram of DeepDSO algorithm. Integrating the NeW CRFs single image depth estimation module in

the DSO method.

3. Results

The integration of Direct Sparse Odometry (DSO) with the Neural Window (NeW) CRFs CNN was

executed using the C++ and Python programming languages on the Ubuntu 18.04 operating system.

For the implementation and assessment, we opted for widely accessible and cost-effective computer

hardware components, which were procured to construct a desktop system powered by an AMD

Ryzen™ 7 3800X processor and an NVIDIA GEFORCE RTX 3060 GPU. The hardware specifications

utilized for the evaluation are delineated in Table 9.

Table 9. Specifications of the hardware used during experimentation.

Component Specifications

CPU AMD Ryzen™ 7 3800X. 8 cores, 16 threads, 3.9 – 4.5 GHz.

GPU

NVIDIA GEFORCE RTX 3060. Ampere architecture, 1.78

GHz, 3584 CUDA cores, 12 GB GDDR6X. Memory inter-

face width 192-bit. 2nd generation Ray Tracing Cores and

3rd generation Tensor Cores.

RAM 16 GB, DDR 4, 3200 MHz.

ROM SSD NVME M.2 Western Digital 7300 MB/s

Power consumption 750 W1

1 Hardware did not reach max power consumption. Avg. load was close to 550 W during experiments.

In a preceding study [194], we evaluated ten open-source algorithms from each taxonomy category,

following the monocular benchmark established in [103]. It was found that sparse-direct methods sig-

nificantly surpassed other methods in state-of-the-art performance. Consequently, this research was

predicated on the classic sparse-direct method DSO, chosen for its remarkable capabilities in monocular

reconstruction tasks. We considered the original DSO [2] and its neural enhancement, CNN-DSO [174],

for comparative analysis to ascertain whether our proposed DeepDSO method substantially surpasses

its classic counterpart and whether the advanced NeW CRFs single image depth estimation CNN no-

tably augments the performance of the sparse-direct method.

113

DSO and CNN-DSO are publicly accessible on GitHub as open-source code [99], [174], and can be

executed with minimal requirements. These include Pangolin V0.5 [211], OpenCV V3.4.16, TensorFlow

V1.6.0, and the MonoDepth C++ version [212], which offers a speed advantage over its original Python

implementation. Figure 71 presents examples of the 3D reconstructions obtained with the DeepDSO

algorithm, and Figure 72 compares the three implementations running in the same sequences indoors

and outdoors.

(a) (c)

(a) (c)

Figure 71. Depth maps generated using the DeepDSO method, with examples from sequences 01, 20, 25, 29, 38,

and 40 of the TUM-Mono dataset.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 72. Visual comparisons of reconstructions obtained with the algorithms under evaluation. In this figure, a)

represents the input image, while the geometric reconstructions for b) DSO, c) CNN-DSO, and d) DeepDSO meth-

ods are also presented. The top row illustrates indoor examples, and the bottom row features outdoor examples

from sequences 01 and 29 of the TUM-Mono dataset [39].

114

As observed in Figure 71, the mapping outcomes are significantly enhanced when employing the

DeepDSO algorithm. The top row, showcasing 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_01 from the TUM-Mono dataset, reveals that

integrating the MonoDepth CNN into CNN-DSO diminishes the mapping efficacy of DSO. This reduc-

tion in quality may stem from a deviation from the recommended procedures for point search along

the epipolar line, as suggested in [54]. Furthermore, the precision of the MonoDepth CNN is notably

inferior to that of NeW CRFs, resulting in a higher incidence of outliers within the CNN-DSO recon-

structions. Additionally, DeepDSO achieves reconstructions that are more accurate and marginally

denser, thanks to an enhanced strategy for selecting point candidates that accelerate the convergence

to their authentic depths. Correspondingly, the lower row of Figure 72, depicting an outdoor scene

from 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_29, illustrates that DeepDSO produces reconstructions that are denser, more accurate,

and properly scaled in comparison to the sparser and outlier-prone reconstructions of its predecessor,

CNN-DSO. It is apparent that the depth maps generated by the MonoDepth CNN are of lesser quality

than those produced by NeW CRFs, a distinction further expounded in Figure 73.

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure 73. Comparative examples of per-pixel depth estimations derived from two distinct single image depth

estimation CNNs. In this figure, part a) displays the original image provided for analysis, part b) reveals the depth

estimations ascertained by the MonoDepth CNN, and part c) depicts the results obtained from the NeW CRFs

CNN.

Figure 73 showcases the advancements in per-pixel depth estimation, particularly with the newer

SIDE NeW CRFs, which outperforms MonoDepth by delivering more precise, detailed, consistent, and

dependable depth estimations. Conversely, the examples in Figure 73b, derived from the MonoDepth

SIDE, exhibit poor depth estimations, especially when applied to the TUM-Mono dataset, which pos-

sesses a distinct camera calibration from the Cityscapes Dataset [186] where MonoDepth was trained.

115

Despite applying a camera calibration compensation formula (equation 11) from [54], CNN-DSO still

shows incompatibility with the TUM-Mono's 640×480 rectified images.

𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =
𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑓𝑡𝑟𝑎𝑖𝑛𝑒𝑑

𝑑𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (64)

Here, 𝑑 denotes the scaled estimated depth, and 𝑓 represents the focal length ratio between the cur-

rent and the training dataset cameras. The preeminence of NeW CRFs over preceding SIDE methodol-

ogies is substantiated in [207].

In the realm of visual SLAM and VO system assessments, a multitude of benchmarks have emerged

in recent times, such as those referenced in [67], [69], [186], [79], [103], [123]–[127], [158]. Among these,

only a select few are tailored to evaluate monocular RGB systems captured using monocular cameras.

Notable datasets include the KITTI dataset [69], featuring 21 sequences from an automobile perspective;

the EUROC-MAV dataset [67], with 11 sequences from a quadcopter; the TUM-Mono dataset [103],

encompassing over 190,000 frames from 50 sequences, both indoors and outdoors; and the ICL-NUIM

dataset, which offers eight sequences across two ray-traced environments. The TUM-Mono dataset

stands out for its comprehensive nature and particular suitability for sparse-direct systems due to the

inclusion of exhaustive photometric calibration data for the cameras. This dataset has been the bench-

mark of choice for evaluating a range of contemporary monocular sparse-direct approaches, such as

those found in [2], [16], [23], [180], [194].

Evaluating the efficacy of monocular RGB methods can be approached from various angles. Scene

geometries, for instance, might be represented as structures, surfaces, or point clouds with varying

densities. A robust and well-defined ground truth is essential to facilitate a fair comparison. However,

dense and precise point clouds are often unattainable in existing benchmarks. Consequently, as sug-

gested in [16], [68], [103], [180], trajectory estimation stands as the most reliable metric for monocular

RGB methods, as the accuracy of the trajectory is indicative of the precision of the map constructed by

the SLAM and VO systems. The TUM-Mono benchmark is particularly comprehensive, offering a

multi-dimensional evaluation framework for purely visual systems, in contrast to the two-dimensional

metrics proposed in [81], which are the Absolute Trajectory RMSE (ATE) and the Relative Pose RMSE

(RPE).

The TUM-Mono benchmark introduces several metrics, including:

• The start segment alignment error, which aligns the experimental trajectory with the ground truth

for the initial 10-20 seconds to calculate a relative transformation:

𝑻𝑠
𝑔𝑡
∶= argmin

𝑻∈𝑆𝑖𝑚(3)
∑(𝑻𝒑𝑖 − �̂�𝑖)

2

𝑖∈𝑆

 (65)

• The end segment alignment error, aligning the final 10-20 seconds of the trajectory to determine

the relative transformation and accumulated drift:

𝑻𝑒
𝑔𝑡
∶= argmin

𝑻∈𝑆𝑖𝑚(3)
∑(𝑻𝒑𝑖 − �̂�𝑖)

2

𝑖∈𝐸

,

𝑻𝑑𝑟𝑖𝑓𝑡 ∶= 𝑻𝑒
𝑔𝑡
 (𝑻𝑒

𝑔𝑡
)
−1

(66)

• The translation error, isolating the translational component of the accumulated drift:

𝑒𝑡 ∶= ‖𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝑻𝑑𝑟𝑖𝑓𝑡)‖ (67)

• The rotation error, isolating the rotational component of the accumulated drift:

𝑒𝑟 ∶= 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑻𝑑𝑟𝑖𝑓𝑡) (68)

• The scale error, isolating the scale component of the accumulated drift:

116

𝑒𝑠 ∶= 𝑠𝑐𝑎𝑙𝑒(𝑻𝑑𝑟𝑖𝑓𝑡) (69)

• The translational RMSE, TUM-Mono benchmark authors also introduced a metric designed to

uniformly consider the effects of translation, rotation, and scaling, termed the alignment error

𝑒𝑎𝑙𝑖𝑔𝑛, which applies to both the initial and final segments of the trajectory. Furthermore, when this

metric is applied to the aggregate of the initial and final segments, it corresponds to the transla-

tional Root Mean Square Error (RMSE).

𝑒𝑎𝑙𝑖𝑔𝑛 ∶= √
1

𝑛
∑‖𝑻𝑠

𝑔𝑡
𝒑𝑖 − 𝑻𝑒

𝑔𝑡
𝒑𝑖‖2

2
𝑛

𝑖=1

,

𝑒𝑟𝑚𝑠𝑒 ∶= √ min
𝑻∈𝑆𝑖𝑚(3)

1

|𝑆 ∪ 𝐸|
∑ (𝑻𝒑𝑖 − �̂�𝑖)

2

𝑖∈𝑆∪𝐸

,

(70)

where 𝒑1, … , 𝒑𝑛 ∈ ℝ
3 are the estimated tracked positions for the 1 to 𝑛 frames, 𝑆 ⊂ [1; 𝑛] and 𝐸 ⊂

[1; 𝑛] are the frame indices corresponding to the start- and end-segments for the ground truth positions

�̂� ∈ ℝ3. These metrics collectively facilitate a nuanced comparison of SLAM and VO systems, particu-

larly for sparse-direct systems. The TUM-Mono benchmark's suitability for monocular evaluations is

further enhanced by its monocular camera origin and ground truth registration via a monocular SLAM

system. This benchmark was employed to assess the performance of our proposed DeepDSO system.

This way, DeepDSO was benchmarked against the traditional DSO and the enhanced CNN-DSO.

Following the guidelines outlined in the literature [2], [16], [103], [180], we subjected each algorithm to

rigorous testing across all 50 sequences of the TUM-Mono benchmark. This entailed executing each

algorithm forward and in reverse ten times, culminating in 1000 trials per algorithm and a comprehen-

sive 3000 trials for the entire evaluation. The outcomes of each trial were meticulously recorded in a

text file, formatted as 𝑷𝑖 = (𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑞𝑥𝑖 , 𝑞𝑦𝑖 , 𝑞𝑧𝑖 , 𝑞𝑤𝑖), which documented the tracked position

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) alongside the associated quaternion (𝑞𝑥𝑖, 𝑞𝑦𝑖, 𝑞𝑧𝑖 , 𝑞𝑤𝑖) at each time stamp 𝑡𝑖. The trajectory

data were then processed using MATLAB with the official scripts from the TUM-Mono benchmark.

Figure 74 illustrates each algorithm's aggregate translation, rotation, and scale errors from 500 itera-

tions.

Figure 74. Cumulative errors in translation 𝑒𝑡, rotation 𝑒𝑟, and scale 𝑒𝑠

′ for the evaluated algorithms DeepDSO,

DSO, and CNN-DSO.

117

The diagram in Figure 74 indicates the accumulated error across 500 iterations, with the y-axis de-

noting the number of iterations and the x-axis indicating the error magnitude. The optimal algorithms

are those positioned towards the upper left quadrant of each plot. It is evident from Figure 4 that

DeepDSO surpasses both DSO and CNN-DSO in terms of translation, rotation, and scale errors, imply-

ing that the integration of the NeW CRFs SIDE CNN has enhanced the DSO framework, yielding not

only more accurately scaled reconstructions but also more precise trajectories and rotations. This is

reflected in the diminished translation, rotation, and scale errors. Conversely, it is noteworthy that the

CNN-DSO update, which incorporated the MonoDepth SIDE module, did not surpass the original

DSO, accruing the highest errors in translation, rotation, and scale. Furthermore, Figure 75 presents the

alignment error, synthesising these effects into a single metric for the initial and final segments.

Figure 75. Initial and final segment alignment discrepancies corresponding to the Root Mean Square Error (RMSE)

of the alignment error when juxtaposed with the ground truth of the initial and final segments.

Figure 75 demonstrates that DeepDSO outperformed in the alignment error metric for both the initial

and final segments, signifying that the NeW CFRs SIDE CNN has substantially contributed to the DSO

system, particularly during the initialization phase. This was anticipated due to its refined point initial-

ization technique that expedites convergence to the true depth by narrowing the search range along the

epipolar line for subsequent frames. Moreover, DeepDSO exhibited a significant error reduction in the

final segment, suggesting that the enhanced depth initialization of points improved overall algorithm

performance by diminishing drift in each pose through more precise depth and pose estimations. This

is ultimately manifested in a notable drift reduction in the final segment. It is also worth mentioning

that CNN-DSO showed a marginal improvement in alignment error at the start segment compared to

DSO, indicating that the MonoDepth SIDE does aid in improving the DSO initialization process. How-

ever, the prevalence of outliers adversely impacted its performance throughout the trajectory, resulting

in a higher end-segment alignment error. Subsequently, we examined the motion bias effect for the

three algorithms by contrasting each method's performance in forward and reverse runs and assessing

their collective impact. The motion bias for DeepDSO, DSO, and CNN-DSO is depicted in Figure 76.

118

Figure 76. Motion bias in the dataset for each evaluated method; assessed by executing all sequences in

both forward and reverse directions, as well as their combined effect (bold).

Motion bias, as delineated by [103], refers to the differential response of a monocular SLAM or VO

system when subjected to varied environmental contexts and motion dynamics. Observations from

Figure 76 elucidate that DeepDSO exhibits a reduced motion bias effect compared to other evaluated

algorithms, signifying heightened robustness and dependability across diverse motion scenarios, in-

cluding rapid manoeuvres, pronounced rotations, and environments with minimal textural infor-

mation. This enhanced capability is likely due to the integration of a CNN within the DSO framework,

which augments the system's ability to discern more accurate and scaled environmental details, thereby

curtailing the incidence of outliers and imprecise estimations and, consequently, refining the overall

efficacy of the DSO system. Additionally, Figure 76 reveals that DeepDSO registers a lower RMSE in

reverse operation, a notable deviation from the original DSO's performance, which tends to degrade

during backward movements. Figure 77 illustrates the aggregate alignment error for each system when

deployed on the 50 sequences of the TUM-Mono benchmark in both forward and reverse directions, to

better showcase the comparative system performances.

Figure 77. Color-coded alignment error 𝑒𝑎𝑙𝑖𝑔𝑛 for each algorithm in the TUM-mono dataset.

In the visual representation of Figure 77, it is noticeable that the DeepDSO approach outperforms

the other two methods in terms of performance across the entire dataset. Although DeepDSO incurs

more errors in the forward direction (indicated by yellow, orange, and green pixels), it significantly

diminishes such errors when operating in reverse, indicating a more consistent and trustworthy per-

formance relative to DSO. While DSO shows proficiency in forward execution, it is beset by numerous

instances of failure in reverse, particularly in sequences 13, 21, and 22. DeepDSO's performance is mark-

edly superior in these instances, albeit with some minor complications in sequence 21. Conversely,

119

CNN-DSO exhibits the most suboptimal performance, with a pronounced failure rate, especially in

reverse runs, where it fails almost entirely in sequences 21 and 22.

In pursuit of a comprehensive evaluation, as delineated in the referenced work [38], a thorough sta-

tistical examination of the outcomes was conducted following applying the TUM-Mono benchmark

across various algorithms. This analysis commenced with the aggregation of error metrics data into a

repository. This included translation error 𝑒𝑡, rotation error 𝑒𝑟, scale error 𝑒𝑠
′, start-segment alignment

error 𝑒𝑎𝑙𝑖𝑔𝑛
𝑠 , end-segment alignment error 𝑒𝑎𝑙𝑖𝑔𝑛

𝑒 , and translational RMSE 𝑒𝑅𝑀𝑆𝐸 . These served as the

dependent variables, while the algorithmic approach and the directionality of the modality—forward

and backwards—were the categorical variables under consideration.

Subsequently, the Mahalanobis distance was employed as a method for data purification, specifically

for the exclusion of outliers. A threshold of 22.45774 was established, correlating with the chi-square 𝜒2

distribution at a confidence level of 99.999%, facilitating the identification and removal of 94 anomalous

data points, culminating in a refined dataset of 2906 observations.

The assumptions of normality and homogeneity for each dependent variable were then scrutinized

using the Kolmogorov-Smirnov and Levene’s tests. Taking the translation error as an instance, the Kol-

mogorov-Smirnov test yielded p-values of 2.2e-16 for the algorithms DeepDSO, DSO, and CNN-DSO,

leading to the rejection of the normality assumption. Similarly, a p-value of 2.2e-16 from Levene’s test

necessitated the dismissal of the homogeneity assumption. Analogous outcomes were observed for the

remaining dependent variables, concluding that the sample was non-parametric. Consequently, the

Kruskal-Wallis test was selected for the overall analysis, with the Wilcoxon signed-rank test applied

for pairwise comparisons post hoc to ascertain the significance of the observed disparities. The results

of this statistical analysis are visually represented in Figure 78 and numerically detailed in Table 10,

which depicts the medians and Kruskal-Wallis comparisons for the cumulative errors after 1000 itera-

tions of each algorithm. These include translation error, rotation error, scale error, alignment errors at

the start and end segments, and the RMSE for the combined effect on these segments.

(a) (b) (c)

120

(d) (e) (f)

Figure 78. Distribution and central tendencies of cumulative errors via box plots and error bars, alongside Kruskal-

Wallis tests for median values, following 1000 iterations of each algorithm. This includes a) translation error, b)

rotation error, c) scale error, d) start-segment alignment error exclusively, e) end-segment alignment error exclu-

sively, and f) the RMSE reflecting the aggregate impact on both start and end segments.

Table 10. Medians and Kruskal-Wallis comparisons for each algorithm's translation, rotation, and scale errors.

Method
Translation

error

Rotation

error

Scale

error

Start-segment

Align. error

End-segment

Align. error

RMSE

Kruskal-Wallis

general test
𝜒2 = 3582.9

𝑝𝑣𝑎𝑙 = 2.2𝑒 − 16
𝜒2 = 2278.4

𝑝𝑣𝑎𝑙 = 2.2𝑒 − 16
𝜒2 = 2419.1

𝑝𝑣𝑎𝑙 = 2.2𝑒 − 16
𝜒2 = 2419.1

𝑝𝑣𝑎𝑙 = 2.2𝑒 − 16
𝜒2 = 2419.1

𝑝𝑣𝑎𝑙 = 2.2𝑒 − 16
𝜒2 = 2419.1

𝑝𝑣𝑎𝑙 = 2.2𝑒 − 16

DeepDSO 0.3250961a 0.3625576a 1.062872a 0.001659008a 0.002170299a 0.06243667a

DSO 0.6472075b 0.6144892b 1.100516b 0.003976057b 0.004218454b 0.19595997b

CNN-DSO 0.7978954c 0.9583970c 1.078830c 0.008847161c 0.006651353c 0.20758145b

As evidenced in Figure 78 and Table 10, the Kruskal-Wallis tests achieved statistical significance for

all the comparisons, prompting the execution of the Wilcoxon signed-rank test for pairwise post hoc

analysis on each dependent variable. This analysis revealed that DeepDSO markedly surpassed both

DSO and CNN-DSO regarding translation error, with an average reduction of 0.3221114 compared to

its classical counterpart. In the context of rotation error, DeepDSO again demonstrated superior perfor-

mance, with an average reduction of 0.2519316. The scale error metric also saw DeepDSO outperform-

ing the others, with a reduction of 0.37644 relative to DSO, while CNN-DSO notably exceeded DSO.

The start-segment alignment error metric followed a similar pattern, with DeepDSO significantly re-

ducing error. This trend was consistent with the end-segment alignment error, where DeepDSO's per-

formance was significantly better than the others. Lastly, in the comprehensive RMSE metric, DeepDSO

continued to outshine DSO and CNN-DSO, with reductions of 0.1335233 and 0.14514478, respectively.

It is noteworthy that DSO's RMSE was marginally lower than that of CNN-DSO, albeit not to a statisti-

cally significant degree.

4. Discussion

The empirical findings from the TUM-Mono benchmark, corroborated by statistical analysis, indicate

that the integration of the NeW CRFs SIDE neural network module within the DSO framework mark-

edly enhances its efficacy across various metrics, including translation, rotation, scale, alignment, and

RMSE. This evidences the substantial potential of incorporating neural modules for depth estimation

into traditional Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM) systems,

offering a significant stride towards resolving monocular SLAM and VO challenges.

It is pertinent to acknowledge that preceding endeavours, such as those referenced in [174] and in-

spired by the concepts in [54], have ventured to tackle these challenges. However, the experimental

121

results from the current study reveal that the CNN-DSO adaptation fell short, with the original DSO

surpassing it in rotation, translation, and both start and end-segment alignment errors. The sole metric

where CNN-DSO demonstrated superiority was in scale. This suggests that while the MonoDepth

module's integration into DSO facilitated scaled reconstructions, it concurrently introduced noise that

adversely affected the DSO system's performance. This could be ascribed to the MonoDepth module's

limited efficacy within the TUM-Mono dataset sequences and the suboptimal integration of depth prior

into the DSO process.

Further, statistical analyses have confirmed that DeepDSO not only excels in scale error—implying

that the CNN module effectively aids in achieving accurately scaled reconstructions—but also shows

that enhanced initialisation of depth points is crucial in the context of a sparse-direct approach like

DSO. This improvement significantly bolsters the tracking and mapping capabilities, as DSO relies on

depth information to manage and track every point and keyframe. Such advancements are manifest in

the substantial reduction of translation and rotation errors.

Figure 79. Three-dimensional representation of the administrative edifice of Carchi State Polytechnic University.

Acquired using a standard consumer smartphone, specifically the Xiaomi Redmi Note 10 Pro, without photometric

calibration. It is observable that DeepDSO can generate 3D reconstructions and trajectories utilizing commodity

cameras that are not specialized for computer vision tasks, and this is achieved without the need for specialized

photometric calibration.

5. Intermediate conclusions

In this work, we delineate an advancement of the established sparse-direct Visual Odometry (VO)

framework, Direct Sparse Odometry (DSO), through the strategic incorporation of a cutting-edge depth

estimation mechanism, the NeW CRFs single image depth estimation Convolutional Neural Network

(CNN). This module is adept at introducing depth prior knowledge, which substantially diminishes

the search scope along the epipolar line, a critical step in the VO process. Integrating this module into

the DSO framework significantly enhances the initialization process of depth points, thereby expediting

the convergence of each point towards its true depth with greater accuracy.

Upon rigorous testing, which included in excess of 3000 executions on the TUM-Mono benchmark—

a freely available dataset to the scientific community—we have substantiated that our proposed meth-

odology enhances the fidelity of 3D scene reconstructions. This is evidenced by the generation of re-

constructions that are marginally denser and exhibit proper scaling—a notable improvement over tra-

ditional models. In a comparative analysis, the performance of our novel DeepDSO was meticulously

evaluated against the foundational DSO and the CNN-DSO extended version that integrated the

122

MonoDepth CNN. The comparative results were revealing; DeepDSO demonstrated a pronounced su-

periority over the methodologies mentioned above across a spectrum of metrics. These metrics in-

cluded rotation, translation, scale, start-segment alignment error, end-segment alignment error, and the

Root Mean Square Error (RMSE). Such empirical evidence unequivocally suggests that our implemen-

tation contributes to the scaling of 3D reconstruction and plays a pivotal role in the recovery of more

accurate depth maps and trajectory estimations, thereby pushing the boundaries of precision in mo-

nocular VO systems.

The implications of these findings are twofold. Firstly, they validate the efficacy of integrating CNN-

based depth estimation modules into VO systems, which traditionally have not utilized machine learn-

ing to this extent. Secondly, they open up new avenues for further research into the optimization of

depth initialization in VO, which could lead to even more robust and accurate navigation and mapping

solutions in robotics and autonomous systems. This study, therefore, not only presents a significant

enhancement in the domain of VO but also lays the groundwork for future explorations into the syner-

gistic integration of machine learning and classical computer vision techniques.

123

Chapter V – Conclusions

124

1. The quest to accurately reconstruct 3D scenes from 2D data is an intricate and ill-posed prob-

lem that has been addressed through many methods and technological innovations. Our

study has provided an in-depth examination of a particularly promising approach to 3D

reconstruction: the visual reconstruction of environments using a single monocular RGB

camera as the exclusive sensory input. This exploration has covered a range of input modal-

ities, each with its unique strengths and constraints, with a concentrated focus on three core

methodologies: Simultaneous Localization and Mapping (SLAM), Visual Odometry (VO),

and Structure from Motion (SFM). We have developed a comprehensive taxonomy that en-

capsulates the predominant configurations of systems as reported in academic research, cat-

egorizing them into three main classes that give rise to ten possible permutations within an

extended taxonomy structure. Additionally, this thesis has presented a thorough review of

42 seminal monocular systems. We have identified nine critical criteria for each traditional

system to facilitate the discernment and application of these systems, which are essential in

deploying a 3D reconstruction system. These criteria include the algorithm type, tracking

approach, map density, pixel usage, estimation technique, global optimization, relocaliza-

tion capability, loop closure, and system availability. We have outlined eleven criteria for

machine learning-based methods, reflecting those of the classical systems while also inte-

grating two additional factors relevant to the neural network: the CNN architecture and the

primary estimation tasks it performs. The wealth of information compiled in this study aims

to assist researchers in making informed decisions when selecting an algorithm or taxonomy

category that best suits their project goals. We have also articulated each category's key ad-

vantages and drawbacks within the taxonomy. An evaluation of the progression of each cat-

egory within the taxonomy over the past 18 years has been undertaken, utilizing citation

metrics to gauge the influence and recognition each has achieved in the research community.

2. We have also rigorously evaluated the most salient open-source monocular RGB SLAM and

VO implementations, employing a structured taxonomy to discern the pros and cons of each

method and classification. This analysis serves as a navigational tool for readers, guiding

them to judiciously select a method that aligns with their specific requirements or to identify

avenues for future enhancements to the methodologies and classifications under review.

Through extensive testing, it has become evident that to facilitate a robust comparison with

the state-of-the-art, monocular SLAM and VO methods must undergo assessment across

more expansive datasets, encompassing a diverse array of environments, motion dynamics,

and lighting conditions, as this study has shown for methods like DSM, CNN-DSO, and DF-

ORB-SLAM, which reported impressive metrics but evidenced a poor performance on the

TUM-Mono dataset. The sparse-direct category within our taxonomy has demonstrated su-

perior performance, significantly outperforming the other ten methods in translation, rota-

tion, scale, and RMSE metrics, yielding the most intricate and accurate 3D reconstructions

among the evaluated methods. Following this, the sparse-indirect category showed com-

mendable ego-motion estimation capabilities, albeit producing sparser 3D reconstructions

that may not meet the criteria for certain applications, with noted deficiencies in trajectory

consistency and subpar indoor performance. Moreover, the inclusion of three machine learn-

ing-based methods in our comparison—and their juxtaposition with traditional counter-

parts—has led us to ascertain that the integration of machine learning can markedly enhance

the capabilities of SLAM or VO systems. This finding points to machine learning as a prom-

ising direction for future research aimed at transcending the limitations of existing systems.

The incorporation of CNN-derived insights into the estimation process has been shown to

alleviate the scale ambiguity typically associated with monocular systems, as evidenced by

the significant reduction in scale error for each machine-learning method compared to their

classical versions.

3. We have also articulated an enhancement to the well-established sparse-direct Visual Odom-

etry (VO) paradigm (specifically to the Direct Sparse Odometry (DSO), which evidenced an

125

impressive performance among all the evaluated methods) by the judicious integration of

an advanced depth estimation module, the NeW CRFs single image depth estimation Con-

volutional Neural Network (CNN). This addition adeptly infuses depth prior knowledge,

effectively narrowing the search range along the epipolar line, a pivotal aspect of the VO

methodology. The assimilation of this CNN into the DSO framework markedly improves

the initialization of depth points, thus accelerating the alignment of each point to its actual

depth with heightened precision. Through extensive evaluation involving over 3000 trials

on the TUM-Mono benchmark—an openly accessible dataset for the academic community—

we have validated that our proposed approach refines the quality of 3D scene reconstruc-

tions. The resulting reconstructions are slightly denser and properly scaled, marking a sig-

nificant advancement over conventional models. In our comparative analysis, the DeepDSO,

our innovative adaptation, was rigorously assessed against the original DSO and the CNN-

DSO variant that incorporated the MonoDepth CNN. The outcomes of this analysis were

telling; DeepDSO exhibited marked superiority over the established methods across various

metrics, including rotation, translation, scale, start-segment alignment error, end-segment

alignment error, and Root Mean Square Error (RMSE). This robust set of results firmly indi-

cates that this implementation contributes to the scaling of 3D reconstructions and signifi-

cantly enhances the accuracy of depth maps and trajectory predictions, thus advancing the

state-of-the-art in monocular VO systems.

4. The significance of the contributions of this thesis is manifold. Firstly, they confirm the ben-

efits of embedding CNN-based depth estimation modules within VO systems, a practice

uncommon in machine learning applications. Secondly, they pave the way for continued

research into the refinement of depth initialization in VO, which promises to yield more re-

silient and precise navigation and mapping solutions, particularly in robotics and autono-

mous system applications. Consequently, this research signifies a substantial improvement

in the VO field and establishes a foundation for future research that will explore the collab-

orative fusion of machine learning with traditional computer vision techniques.

126

Published articles

A Comparison of Monocular Visual SLAM and Visual Odometry Methods Applied to 3D Recon-

struction.

Authors: Erick P. Herrera-Granda, Juan C. Torres-Cantero, Andrés Rosales, and Diego H. Peluffo-

Ordóñez. Appl. Sci. 2023, 13(15), 8837.

Status: Published

Impact Factor (JCR 2022): 2.7

Quartile: Q2

DOI: http://dx.doi.org/10.3390/app13158837

127

Monocular Visual SLAM, Visual Odometry, and Structure from Motion Methods Applied to 3D

Reconstruction: A Comprehensive Survey.

Authors: Erick P. Herrera-Granda, Juan C. Torres-Cantero, and Diego H. Peluffo-Ordóñez. Heliyon

Computer Science.

Status: Preprint published and waiting for final decision.

Impact Factor (JCR 2022): 3.776

Quartile: Q1

DOI: http://dx.doi.org/10.2139/ssrn.4546921

128

References

[1] M. Zollhöfer et al., “State of the Art on Monocular 3D Face Reconstruction, Tracking, and

Applications,” Comput. Graph. Forum, vol. 37, no. 2, pp. 523–550, May 2018.

[2] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 40, no. 3, pp. 611–625, Mar. 2017.

[3] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-time dense monocular SLAM

with learned depth prediction,” in Proceedings - 30th IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 6565–6574.

[4] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct monocular SLAM,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2014, vol. 8690 LNCS, no. PART 2, pp. 834–849.

[5] M. Pizzoli, C. Forster, and D. Scaramuzza, “REMODE: Probabilistic, monocular dense

reconstruction in real time,” in Proceedings - IEEE International Conference on Robotics and

Automation, 2014, pp. 2609–2616.

[6] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, “DeepFactors: Real-Time Probabilistic

Dense Monocular SLAM,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 721–728, Apr. 2020.

[7] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source SLAM System for Monocular,

Stereo, and RGB-D Cameras,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[8] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison, “CodeSLAM - Learning

a Compact, Optimisable Representation for Dense Visual SLAM,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 2560–2568.

[9] T. Laidlow, J. Czarnowski, and S. Leutenegger, “DeepFusion: Real-time dense 3D reconstruction

for monocular SLAM using single-view depth and gradient predictions,” in Proceedings - IEEE

International Conference on Robotics and Automation, 2019, vol. 2019-May, pp. 4068–4074.

[10] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper depth prediction

with fully convolutional residual networks,” in Proceedings - 2016 4th International Conference on

3D Vision, 3DV 2016, 2016, pp. 239–248.

[11] C. Liu, J. Gu, K. Kim, S. G. Narasimhan, and J. Kautz, “Neural RGB®D sensing: Depth and

uncertainty from a video camera,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2019, vol. 2019-June, pp. 10978–10987.

[12] H. Zhou, B. Ummenhofer, and T. Brox, “DeepTAM: Deep Tracking and Mapping with

Convolutional Neural Networks,” Int. J. Comput. Vis., vol. 128, no. 3, pp. 756–769, Mar. 2020.

[13] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual odometry,”

Proc. - IEEE Int. Conf. Robot. Autom., pp. 15–22, Sep. 2014.

[14] H. Jin, P. Favaro, and S. Soatto, “Real-time 3-D motion and structure of point features: a front-

end system for vision-based control and interaction,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 2, pp. 778–779, 2000.

[15] G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A solution to the

simultaneous localization and map building (SLAM) problem,” IEEE Trans. Robot. Autom., vol.

17, pp. 229–241, 2001.

[16] E. Mingachev, R. Lavrenov, E. Magid, and M. Svinin, “Comparative analysis of monocular slam

algorithms using tum and euroc benchmarks,” in Smart Innovation, Systems and Technologies,

2021, vol. 187, pp. 343–355.

[17] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and mapping in

real-time,” Proc. IEEE Int. Conf. Comput. Vis., pp. 2320–2327, 2011.

[18] M. O. A. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review of visual odometry:

types, approaches, challenges, and applications,” SpringerPlus 2016 51, vol. 5, no. 1, pp. 1–26,

Oct. 2016.

[19] D. Scaramuzza and F. Fraundorfer, “Tutorial: Visual odometry,” IEEE Robot. Autom. Mag., vol.

18, no. 4, pp. 80–92, Dec. 2011.

[20] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry for ground vehicle applications,” J.

129

F. Robot., vol. 23, no. 1, pp. 3–20, Jan. 2006.

[21] R. Cheng, C. Agia, D. Meger, and G. Dudek, “Depth Prediction for Monocular Direct Visual

Odometry,” Proc. - 2020 17th Conf. Comput. Robot Vision, CRV 2020, pp. 70–77, May 2020.

[22] J. Engel, J. Sturm, and D. Cremers, “Semi-dense Visual Odometry for a Monocular Camera,” in

2013 IEEE International Conference on Computer Vision, 2013, pp. 1449–1456.

[23] X. Gao, R. Wang, N. Demmel, and D. Cremers, “LDSO: Direct Sparse Odometry with Loop

Closure,” IEEE Int. Conf. Intell. Robot. Syst., pp. 2198–2204, Dec. 2018.

[24] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual–inertial

odometry using nonlinear optimization:,” http://dx.doi.org/10.1177/0278364914554813, vol. 34,

no. 3, pp. 314–334, Dec. 2014.

[25] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler, and D. Cremers, “Omnidirectional DSO:

Direct Sparse Odometry With Fisheye Cameras,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3693–

3700, 2018.

[26] D. Schubert, N. Demmel, V. Usenko, J. Stückler, and D. Cremers, “Direct Sparse Odometry with

Rolling Shutter,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 11212 LNCS, pp. 699–714, Sep. 2018.

[27] J. Sun, Y. Wang, and Y. Shen, “Fully Scaled Monocular Direct Sparse Odometry with A Distance

Constraint,” 2019 5th Int. Conf. Control. Autom. Robot. ICCAR 2019, pp. 271–275, Apr. 2019.

[28] C. Zhao, Y. Tang, Q. Sun, and A. V. Vasilakos, “Deep Direct Visual Odometry,” IEEE Trans.

Intell. Transp. Syst., vol. 23, no. 7, pp. 7733–7742, Jul. 2022.

[29] M. Servières, V. Renaudin, A. Dupuis, and N. Antigny, “Visual and Visual-Inertial SLAM: State

of the Art, Classification, and Experimental Benchmarking,” J. Sensors, vol. 2021, p. 2054828,

2021.

[30] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: a survey from 2010 to 2016,”

IPSJ Trans. Comput. Vis. Appl., vol. 9, no. 1, p. 16, 2017.

[31] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-Time Single Camera

SLAM,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, 2007.

[32] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR Workspaces,” in 2007

6th IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007, pp. 225–234.

[33] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A Versatile and Accurate

Monocular SLAM System,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[34] R. A. Newcombe et al., “KinectFusion: Real-time dense surface mapping and tracking,” in 2011

10th IEEE International Symposium on Mixed and Augmented Reality, 2011, pp. 127–136.

[35] G. Chahine and C. Pradalier, “Survey of Monocular SLAM Algorithms in Natural

Environments,” in 2018 15th Conference on Computer and Robot Vision (CRV), 2018, pp. 345–352.

[36] Y. Chen, Y. Zhou, Q. Lv, and K. K. Deveerasetty, “A Review of V-SLAM,” in 2018 IEEE

International Conference on Information and Automation (ICIA), 2018, pp. 603–608.

[37] M. He, C. Zhu, Q. Huang, B. Ren, and J. Liu, “A review of monocular visual odometry,” Vis.

Comput., vol. 36, no. 5, pp. 1053–1065, 2020.

[38] A. Macario Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, “A Comprehensive Survey of

Visual SLAM Algorithms,” Robotics, vol. 11, no. 1, 2022.

[39] I. Krešo, M. Ševrović, and S. Šegvić, “A Novel Georeferenced Dataset for Stereo Visual

Odometry.” 2013.

[40] N. Suenderhauf and P. Protzel, Stereo odometry - A review of approaches (Technical Report 3/07).

Germany: Chemnitz University of Technology, 2007.

[41] D. Valiente García, L. Fernández Rojo, A. Gil Aparicio, L. Payá Castelló, and O. Reinoso García,

“Visual Odometry through Appearance- and Feature-Based Method with Omnidirectional

Images,” J. Robot., vol. 2012, pp. 1–13, 2012.

[42] X. Ke, F. Huang, Y. Zhang, Z. Tu, and W. Song, “3D Scene Localization and Mapping Based on

Omnidirectional {SLAM},” {IOP} Conf. Ser. Earth Environ. Sci., vol. 783, no. 1, p. 12143, May 2021.

[43] D. Scaramuzza and R. Siegwart, “Appearance-guided monocular omnidirectional visual

odometry for outdoor ground vehicles,” IEEE Trans. Robot., vol. 24, no. 5, pp. 1015–1026, 2008.

130

[44] K. Tateno, N. Navab, and F. Tombari, “Distortion-Aware Convolutional Filters for Dense

Prediction in Panoramic Images,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 11220 LNCS, pp. 732–750, 2018.

[45] A. Cumani, “Feature Localization Refinement for Improved Visual Odometry Accuracy,” Int J

Circuits Syst Signal Process, vol. 5, no. 2, pp. 151–158, 2010.

[46] B. Kitt, J. Rehder, A. Chambers, M. Schönbein, H. Lategahn, and S. Singh, “Monocular Visual

Odometry using a Planar Road Model to Solve Scale Ambiguity,” in ECMR, 2011.

[47] “VOSviewer - Visualizing scientific landscapes.” [Online]. Available:

https://www.vosviewer.com/. [Accessed: 17-Sep-2022].

[48] G. Li, L. Yu, and S. Fei, “A deep-learning real-time visual SLAM system based on multi-task

feature extraction network and self-supervised feature points,” Measurement, vol. 168, p. 108403,

2021.

[49] C. Tang and P. Tan, “BA-Net: Dense Bundle Adjustment Network,” 7th Int. Conf. Learn.

Represent. ICLR 2019, Jun. 2019.

[50] L. Sun, W. Yin, E. Xie, Z. Li, C. Sun, and C. Shen, “Improving Monocular Visual Odometry Using

Learned Depth,” IEEE Trans. Robot., pp. 1–14, 2022.

[51] R. Gonzalez, F. Rodriguez, J. L. Guzman, C. Pradalier, and R. Siegwart, “Combined visual

odometry and visual compass for off-road mobile robots localization,” Robotica, vol. 30, no. 6,

pp. 865–878, 2012.

[52] N. Nourani-Vatani and P. V. K. Borges, “Correlation-based visual odometry for ground

vehicles,” J. F. Robot., vol. 28, no. 5, pp. 742–768, Sep. 2011.

[53] F. Cheng, C. Liu, H. Wu, and M. Ai, “DIRECT SPARSE VISUAL ODOMETRY with

STRUCTURAL REGULARITIES for LONG CORRIDOR ENVIRONMENTS,” Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 43, no. B2, pp. 757–763, Aug. 2020.

[54] S. Y. Loo, A. J. Amiri, S. Mashohor, S. H. Tang, and H. Zhang, “CNN-SVO: Improving the

mapping in semi-direct visual odometry using single-image depth prediction,” Proc. - IEEE Int.

Conf. Robot. Autom., vol. 2019-May, pp. 5218–5223, May 2019.

[55] A. J. Davison, “Mobile Robot Navigation Using Active Vision,” Univ. of Oxford, 1998.

[56] A. J. Davison and D. W. Murray, “Mobile robot localisation using active vision,” in Computer

Vision --- ECCV’98, 1998, pp. 809–825.

[57] A. J. Davison and D. W. Murray, “Simultaneous localization and map-building using active

vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 865–880, 2002.

[58] G. Klein and D. Murray, “Parallel tracking and mapping on a camera phone,” in Science and

Technology Proceedings - IEEE 2009 International Symposium on Mixed and Augmented Reality,

ISMAR 2009, 2009, pp. 83–86.

[59] B. Williams, G. Klein, and I. Reid, “Real-time SLAM relocalisation,” Proc. IEEE Int. Conf. Comput.

Vis., 2007.

[60] P. Moulon, P. Monasse, R. Marlet, and Others, “OpenMVG: An Open Multiple View Geometry

library,” 2013.

[61] P. Moulon, P. Monasse, R. Perrot, and R. Marlet, “OpenMVG: Open Multiple View Geometry,”

in Reproducible Research in Pattern Recognition, 2017, pp. 60–74.

[62] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast place recognition in image

sequences,” IEEE Trans. Robot., vol. 28, no. 5, pp. 1188–1197, 2012.

[63] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Scale drift-aware large scale monocular

SLAM,” in Robotics: Science and Systems, 2011, vol. 6, pp. 73–80.

[64] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, “Double window optimisation for

constant time visual SLAM,” Proc. IEEE Int. Conf. Comput. Vis., pp. 2352–2359, 2011.

[65] C. Mei, G. Sibley, and P. Newman, “Closing loops without places,” IEEE/RSJ 2010 Int. Conf.

Intell. Robot. Syst. IROS 2010 - Conf. Proc., pp. 3738–3744, 2010.

[66] J. L. Schönberger and J.-M. Frahm, “Structure-from-Motion Revisited,” in 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104–4113.

[67] M. Burri et al., “The EuRoC micro aerial vehicle datasets:,”

131

https://doi.org/10.1177/0278364915620033, vol. 35, no. 10, pp. 1157–1163, Jan. 2016.

[68] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the

evaluation of RGB-D SLAM systems,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2012, pp. 573–580.

[69] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision

benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp.

3354–3361.

[70] R. Mur-Artal and J. D. Tardós, “Visual-Inertial Monocular SLAM With Map Reuse,” IEEE Robot.

Autom. Lett., vol. 2, no. 2, pp. 796–803, 2017.

[71] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM3: An

Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM,” IEEE Trans.

Robot., vol. 37, no. 6, pp. 1874–1890, Dec. 2021.

[72] C. Campos, J. M. M. Montiel, and J. D. Tardós, “Inertial-Only Optimization for Visual-Inertial

Initialization,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp.

51–57.

[73] R. Elvira, J. D. Tardós, and J. M. M. Montiel, “ORBSLAM-Atlas: a robust and accurate multi-

map system,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2019, pp. 6253–6259.

[74] L. Valgaerts, A. Bruhn, M. Mainberger, and J. Weickert, “Dense versus Sparse Approaches for

Estimating the Fundamental Matrix,” Int. J. Comput. Vis. 2011 962, vol. 96, no. 2, pp. 212–234,

Jun. 2011.

[75] O. Chum, J. Matas, and J. Kittler, “Locally Optimized RANSAC,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2781, pp. 236–243, 2003.

[76] O. Chum, T. Werner, and J. Matas, “Two-view geometry estimation unaffected by a dominant

plane,” Proc. - 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognition, CVPR 2005, vol. I,

pp. 772–779, 2005.

[77] R. Ranftl, V. Vineet, Q. Chen, and V. Koltun, “Dense Monocular Depth Estimation in Complex

Dynamic Scenes,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem,

pp. 4058–4066, Dec. 2016.

[78] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision,” Mult. View Geom.

Comput. Vis., Mar. 2004.

[79] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source movie for optical

flow evaluation,” in European Conf. on Computer Vision (ECCV), 2012, pp. 611–625.

[80] J. Stühmer, S. Gumhold, and D. Cremers, “Real-Time Dense Geometry from a Handheld

Camera,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 6376 LNCS, pp. 11–20, 2010.

[81] G. Vogiatzis and C. Hernández, “Video-based, real-time multi-view stereo,” Image Vis. Comput.,

vol. 29, no. 7, pp. 434–441, Jun. 2011.

[82] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J.-P. Thiran, and S. Osher, “Fast Global Minimization

of the Active Contour/Snake Model,” J. Math. Imaging Vis. 2007 282, vol. 28, no. 2, pp. 151–167,

Jul. 2007.

[83] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization and Mapping in the Space

of Appearance:,” http://dx.doi.org/10.1177/0278364908090961, vol. 27, no. 6, pp. 647–665, Jun.

2008.

[84] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel, “Direct Sparse Mapping,” IEEE Trans. Robot.,

vol. 36, no. 4, pp. 1363–1370, 2020.

[85] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO: Semidirect Visual

Odometry for Monocular and Multicamera Systems,” IEEE Trans. Robot., vol. 33, no. 2, pp. 249–

265, 2017.

[86] C. Liu, J. Zhao, N. Sun, Q. Yang, and L. Wang, “IT-SVO: Improved Semi-Direct Monocular

Visual Odometry Combined with JS Divergence in Restricted Mobile Devices,” Sensors, vol. 21,

no. 6, 2021.

132

[87] P. Favaro, H. Jin, and S. Soatto, “A semi-direct approach to structure from motion,” in

Proceedings 11th International Conference on Image Analysis and Processing, 2001, pp. 250–255.

[88] C. Mei, S. Benhimane, E. Malis, and P. Rives, “Efficient Homography-Based Tracking and 3-D

Reconstruction for Single-Viewpoint Sensors,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1352–1364,

2008.

[89] A. J. Davison, “SceneLib 1.0,” 2006. [Online]. Available:

https://www.doc.ic.ac.uk/~ajd/Scene/index.html.

[90] R. Castle, “PTAM-GPL: Parallel Tracking and Mapping,” GitHub repository, 2013. [Online].

Available: https://github.com/Oxford-PTAM/PTAM-GPL.

[91] P. Moulon, “OpenMVG (open Multiple View Geometry),” GitHub repository, 2013. [Online].

Available: https://github.com/openMVG/openMVG/tree/v2.0.

[92] R. Mur-Artal, “ORB-SLAM Monocular,” GitHub repository, 2016. [Online]. Available:

https://github.com/raulmur/ORB_SLAM.

[93] J. Schönberger, “COLMAP,” GitHub repository, 2016. [Online]. Available:

https://github.com/colmap/colmap.

[94] R. Mur-Artal, “ORB-SLAM2,” GitHub repository, 2017. [Online]. Available:

https://github.com/raulmur/ORB_SLAM2.

[95] J. D. Tardós, “ORB-SLAM3,” GitHub repository, 2021. [Online]. Available:

https://github.com/UZ-SLAMLab/ORB_SLAM3.

[96] P. Foster, “OpenDTAM,” GitHub repository, 2016. [Online]. Available:

https://github.com/anuranbaka/OpenDTAM.

[97] M. Pizzoli, “REMODE,” GitHub repository, 2015. [Online]. Available: https://github.com/uzh-

rpg/rpg_open_remode.

[98] J. Engel, “LSD-SLAM: Large-Scale Direct Monocular SLAM,” GitHub repository, 2014. [Online].

Available: https://github.com/tum-vision/lsd_slam.

[99] J. Engel, “DSO: Direct Sparse Odometry,” GitHub repository, 2017. [Online]. Available:

https://github.com/JakobEngel/dso.

[100] N. Demmel, G. Xiang, and U. Erkam, “LDSO: Direct Sparse Odometry with Loop Closure,”

GitHub repository, 2020. [Online]. Available: https://github.com/tum-vision/LDSO.

[101] J. Zubizarreta, “DSM: Direct Sparse Mapping,” GitHub repository, 2021. [Online]. Available:

https://github.com/jzubizarreta/dsm.

[102] C. Forster, “Semi-direct monocular visual odometry,” GitHub repository, 2017. [Online].

Available: https://github.com/uzh-rpg/rpg_svo.

[103] J. Engel, V. Usenko, and D. Cremers, “A Photometrically Calibrated Benchmark For Monocular

Visual Odometry,” Jul. 2016.

[104] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-Supervised Interest Point

Detection and Description,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 2018, pp. 337–33712.

[105] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “MVSNet: Depth Inference for Unstructured Multi-

view Stereo,” in Computer Vision -- ECCV 2018, 2018, pp. 785–801.

[106] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, “Working hard to know your neighbor’s

margins: Local descriptor learning loss.” arXiv, 2017.

[107] Y. Ono, E. Trulls, P. Fua, and K. M. Yi, “LF-Net: Learning Local Features from Images,” in

Advances in Neural Information Processing Systems, 2018, vol. 31.

[108] J. Kopf, X. Rong, and J.-B. Huang, “Robust Consistent Video Depth Estimation,” in 2021

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 1611–1621.

[109] X. Luo, J.-B. Huang, R. Szeliski, K. Matzen, and J. Kopf, “Consistent Video Depth Estimation.”

arXiv, 2020.

[110] E. Sucar, K. Wada, and A. Davison, “NodeSLAM: Neural Object Descriptors for Multi-View

Shape Reconstruction,” in 2020 International Conference on 3D Vision (3DV), 2020, pp. 949–958.

[111] N. Yang, R. Wang, J. Stückler, and D. Cremers, “Deep Virtual Stereo Odometry: Leveraging

Deep Depth Prediction for Monocular Direct Sparse Odometry.” arXiv, 2018.

133

[112] N. Yang, L. von Stumberg, R. Wang, and D. Cremers, “D3VO: Deep Depth, Deep Pose and Deep

Uncertainty for Monocular Visual Odometry,” in 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2020, pp. 1278–1289.

[113] Z. Teed and J. Deng, “DeepV2D: Video to Depth with Differentiable Structure from Motion.”

arXiv, 2020.

[114] B. Ummenhofer et al., “DeMoN: Depth and motion network for learning monocular stereo,”

Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 5622–

5631, Nov. 2017.

[115] W. Wang, Y. Hu, and S. Scherer, “TartanVO: A Generalizable Learning-based VO,” 4th Conf.

Robot Learn. (CoRL 2020), 2020.

[116] C. Yang, Q. Chen, Y. Yang, J. Zhang, M. Wu, and K. Mei, “SDF-SLAM: A Deep Learning Based

Highly Accurate SLAM Using Monocular Camera Aiming at Indoor Map Reconstruction With

Semantic and Depth Fusion,” IEEE Access, vol. 10, pp. 10259–10272, 2022.

[117] A. Steenbeek and F. Nex, “CNN-Based Dense Monocular Visual SLAM for Real-Time UAV

Exploration in Emergency Conditions,” Drones, vol. 6, no. 3, 2022.

[118] B. Bescos, J. M. Fácil, J. Civera, and J. Neira, “DynaSLAM: Tracking, Mapping, and Inpainting

in Dynamic Scenes,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4076–4083, 2018.

[119] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in 2017 IEEE International

Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.

[120] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” in Computer Vision -- ECCV

2014, 2014, pp. 740–755.

[121] L. Madhuanand, F. Nex, and M. Y. Yang, “Self-supervised monocular depth estimation from

oblique UAV videos,” ISPRS J. Photogramm. Remote Sens., vol. 176, pp. 1–14, 2021.

[122] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor Segmentation and Support Inference

from RGBD Images,” in Computer Vision -- ECCV 2012, 2012, pp. 746–760.

[123] W. Yin, Y. Liu, and C. Shen, “Virtual Normal: Enforcing Geometric Constraints for Accurate and

Robust Depth Prediction,” IEEE Trans. Pattern Anal. Mach. Intell., p. 1, 2021.

[124] A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese, “Taskonomy: Disentangling

Task Transfer Learning,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 3712–3722.

[125] J. Cho, D. Min, Y. Kim, and K. Sohn, “A Large RGB-D Dataset for Semi-supervised Monocular

Depth Estimation.” arXiv, 2019.

[126] X. Huang et al., “The ApolloScape Dataset for Autonomous Driving,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, pp. 1067–10676.

[127] K. Xian et al., “Monocular Relative Depth Perception with Web Stereo Data Supervision,” in

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 311–320.

[128] J. Lee, M. Back, S. S. Hwang, and I. Y. Chun, “Improved Real-Time Monocular SLAM Using

Semantic Segmentation on Selective Frames,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 3, pp.

2800–2813, 2023.

[129] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “ERFNet: Efficient Residual Factorized

ConvNet for Real-Time Semantic Segmentation,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1,

pp. 263–272, 2018.

[130] R. Lang, Y. Fan, and Q. Chang, “SVR-Net: A Sparse Voxelized Recurrent Network for Robust

Monocular SLAM with Direct TSDF Mapping,” Sensors, vol. 23, no. 8, 2023.

[131] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “ScanNet: Richly-

annotated 3D Reconstructions of Indoor Scenes,” in Proc. Computer Vision and Pattern Recognition

(CVPR), IEEE, 2017.

[132] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “FlowNet 2.0: Evolution of

Optical Flow Estimation with Deep Networks,” in 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, pp. 1647–1655.

[133] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for Optical Flow Using Pyramid,

Warping, and Cost Volume,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern

134

Recognition, 2018, pp. 8934–8943.

[134] A. Dosovitskiy et al., “FlowNet: Learning Optical Flow with Convolutional Networks,” in 2015

IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2758–2766.

[135] Z. Min and E. Dunn, “VOLDOR-SLAM: For the Times When Feature-Based or Direct Methods

Are Not Good Enough,” CoRR, vol. abs/2104.0, 2021.

[136] Z. Teed and J. Deng, “DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D

Cameras.” arXiv, 2021.

[137] Z. Teed and J. Deng, “RAFT: Recurrent All-Pairs Field Transforms for Optical Flow,” in Thirtieth

International Joint Conference on Artificial Intelligence (IJCAI-21), 2020.

[138] A. Rosinol, J. J. Leonard, and L. Carlone, “NeRF-SLAM: Real-Time Dense Monocular SLAM

with Neural Radiance Fields.” 2022.

[139] A. Rosinol, J. J. Leonard, and L. Carlone, “Probabilistic Volumetric Fusion for Dense Monocular

SLAM,” in 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023,

pp. 3096–3104.

[140] H. Zhou, B. Ummenhofer, and T. Brox, “DeepTAM: Deep Tracking and Mapping,” in Computer

Vision -- ECCV 2018, 2018, pp. 851–868.

[141] J. Xiao, A. Owens, and A. Torralba, “SUN3D: A Database of Big Spaces Reconstructed Using

SfM and Object Labels,” in 2013 IEEE International Conference on Computer Vision, 2013, pp. 1625–

1632.

[142] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser, “Semantic Scene Completion

from a Single Depth Image,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 190–198.

[143] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image

Segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9351, pp. 234–241, 2015.

[144] Z. Devito et al., “Opt: A Domain Specific Language for Non-Linear Least Squares Optimization

in Graphics and Imaging,” ACM Trans. Graph., vol. 36, no. 5, Oct. 2017.

[145] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised Learning of Depth and Ego-

Motion from Video,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 6612–6619.

[146] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes.” arXiv, 2013.

[147] F. Wimbauer, N. Yang, L. von Stumberg, N. Zeller, and D. Cremers, “MonoRec: Semi-

Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera,” in

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 6108–

6118.

[148] N. Yang, R. Wang, X. Gao, and D. Cremers, “Challenges in Monocular Visual Odometry:

Photometric Calibration, Motion Bias, and Rolling Shutter Effect,” IEEE Robot. Autom. Lett., vol.

3, no. 4, pp. 2878–2885, 2018.

[149] R. Wang, M. Schwörer, and D. Cremers, “Stereo DSO: Large-Scale Direct Sparse Visual

Odometry with Stereo Cameras,” in 2017 IEEE International Conference on Computer Vision

(ICCV), 2017, pp. 3923–3931.

[150] N. Mayer et al., “A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow,

and Scene Flow Estimation,” 2016 IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016.

[151] C. Godard, O. Mac Aodha, M. Firman, and G. Brostow, “Digging into self-supervised monocular

depth estimation,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2019-Octob, pp. 3827–3837, Oct. 2019.

[152] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised Monocular Depth Estimation with

Left-Right Consistency.” 2017.

[153] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep Learning for

Computer Vision?,” in Advances in Neural Information Processing Systems, 2017, vol. 30.

[154] P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “DeepMVS: Learning Multi-view

Stereopsis,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp.

2821–2830.

135

[155] D. Eigen, C. Puhrsch, and R. Fergus, “Depth Map Prediction from a Single Image using a Multi-

Scale Deep Network,” in Advances in Neural Information Processing Systems, 2014, vol. 27.

[156] Z. Min, “VOLDOR: Visual Odometry from Log-logistic Dense Optical flow Residual,” GitHub

repository, 2020. [Online]. Available: https://github.com/htkseason/VOLDOR.

[157] H. Zhou, B. Ummenhofer, and T. Brox, “DeepTAM: Deep Tracking and Mapping BT -

Computer Vision – ECCV 2018,” 2018, pp. 851–868.

[158] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A benchmark for RGB-D visual

odometry, 3D reconstruction and SLAM,” in 2014 IEEE International Conference on Robotics and

Automation (ICRA), 2014, pp. 1524–1531.

[159] B. Bescos, “DynaSLAM,” GitHub repository, 2019. [Online]. Available:

https://github.com/BertaBescos/DynaSLAM.

[160] C. Tang, “BA-Net: Dense Bundle Adjustment Network,” GitHub repository, 2020. [Online].

Available: https://github.com/frobelbest/BANet.

[161] A. Steenbeek, “Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single

Image,” GitHub repository, 2022. [Online]. Available: https://github.com/annesteenbeek/sparse-

to-dense-ros.

[162] B. Ummenhofer, “DeMoN: Depth and Motion Network,” GitHub repository, 2022. [Online].

Available: https://github.com/lmb-freiburg/demon.

[163] Z. Teed and J. Deng, “DeepV2D,” GitHub repository, 2020. [Online]. Available:

https://github.com/princeton-vl/DeepV2D.

[164] Z. Teed and J. Deng, “DROID-SLAM,” GitHub repository, 2022. [Online]. Available:

https://github.com/princeton-vl/DROID-SLAM.

[165] A. Rosinol, “NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields,”

GitHub repository, 2022. [Online]. Available: https://github.com/ToniRV/NeRF-SLAM.

[166] A. Sundar, “CNN-SLAM,” GitHub repository, 2018. [Online]. Available:

https://github.com/iitmcvg/CNN_SLAM.

[167] H. Zhou, B. Ummenhofer, and T. Brox, “DeepTAM,” GitHub repository, 2019. [Online].

Available: https://github.com/lmb-freiburg/deeptam.

[168] S. Troscot, “CodeSLAM,” GitHub repository, 2022. [Online]. Available:

https://github.com/silviutroscot/CodeSLAM.

[169] J. Czarnowski and M. Kaneko, “DeepFactors,” GitHub repository, 2020. [Online]. Available:

https://github.com/jczarnowski/DeepFactors.

[170] S. Zhang, “DVSO: Deep Virtual Stereo Odometry,” GitHub repository, 2022. [Online]. Available:

https://github.com/SenZHANG-GitHub/dvso.

[171] R. Cheng, “CNN-DVO,” McGill repository. McGill, 2020.

[172] F. Wimbauer and N. Yang, “MonoRec,” GitHub repository, 2017. [Online]. Available:

https://github.com/Brummi/MonoRec.

[173] S. Y. Loo, “CNN-SVO,” GitHub repository, 2019. [Online]. Available:

https://github.com/yan99033/CNN-SVO.

[174] Muskie, “CNN-DSO: A combination of Direct Sparse Odometry and CNN Depth Prediction,”

GitHub repository, 2019. [Online]. Available: https://github.com/muskie82/CNN-DSO.

[175] L. Cui and C. Ma, “SDF-SLAM: Semantic Depth Filter SLAM for Dynamic Environments,” IEEE

Access, vol. 8, pp. 95301–95311, 2020.

[176] R. A. Güler, N. Neverova, and I. Kokkinos, “DensePose: Dense Human Pose Estimation In The

Wild.”

[177] S. J. Lee, H. Choi, and S. S. Hwang, “Real-time Depth Estimation Using Recurrent CNN with

Sparse Depth Cues for SLAM System,” Int. J. Control. Autom. Syst., vol. 18, no. 1, pp. 206–216,

2020.

[178] M. F. Aslan, A. Durdu, A. Yusefi, K. Sabanci, and C. Sungur, “A Tutorial: Mobile Robotics,

SLAM, Bayesian Filter, Keyframe Bundle Adjustment and ROS Applications,” in Robot

Operating System (ROS): The Complete Reference (Volume 6), A. Koubaa, Ed. Cham: Springer

International Publishing, 2021, pp. 227–269.

136

[179] E. P. Herrera-Granda, “An Extended Taxonomy for Monocular Visual SLAM, Visual Odometry,

and Structure from Motion methods applied to 3D Reconstruction,” GitHub repository, 2023.

[Online]. Available:

https://github.com/erickherreraresearch/TaxonomyPureVisualMonocularSLAM/.

[180] E. Mingachev et al., “Comparison of ROS-Based Monocular Visual SLAM Methods: DSO, LDSO,

ORB-SLAM2 and DynaSLAM,” in Interactive Collaborative Robotics, 2020, pp. 222–233.

[181] S. Wang, “DF-ORB-SLAM,” GitHub repository, 2020. [Online]. Available:

https://github.com/834810269/DF-ORB-SLAM.

[182] S. Y. Loo, “MonoDepth CPP,” 2021. [Online]. Available:

https://github.com/yan99033/monodepth-cpp.

[183] M. Gurturk, A. Yusefi, M. F. Aslan, M. Soycan, A. Durdu, and A. Masiero, “The YTU dataset

and recurrent neural network based visual-inertial odometry,” Measurement, vol. 184, p. 109878,

2021.

[184] T. Chen, F. Pu, H. Chen, and Z. Liu, “WHUVID: A Large-Scale Stereo-IMU Dataset for Visual-

Inertial Odometry and Autonomous Driving in Chinese Urban Scenarios,” Remote Sens., vol. 14,

no. 9, 2022.

[185] A. Wong, X. Fei, S. Tsuei, and S. Soatto, “Unsupervised Depth Completion from Visual Inertial

Odometry.” 2021.

[186] M. Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene Understanding,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3213–3223.

[187] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” J. Opt. Soc.

Am. A, vol. 4, no. 4, pp. 629–642, Apr. 1987.

[188] S. Sarabandi and F. Thomas, “Accurate Computation of Quaternions from Rotation Matrices,”

in Advances in Robot Kinematics 2018, 2019, pp. 39–46.

[189] F. Devernay and O. Faugeras, “Straight lines have to be straight,” Mach. Vis. Appl., vol. 13, no. 1,

pp. 14–24, 2001.

[190] ROS.org, “ROS Camera Calibration,” 2020. [Online]. Available:

http://wiki.ros.org/camera_calibration. [Accessed: 26-Dec-2022].

[191] Open Source Computer Vision.org, “Camera calibration with OpenCV,” 2019. [Online].

Available: https://docs.opencv.org/4.1.1/d4/d94/tutorial_camera_calibration.html. [Accessed:

26-Dec-2022].

[192] H. Ghorbani, “MAHALANOBIS DISTANCE AND ITS APPLICATION FOR DETECTING

MULTIVARIATE OUTLIERS,” FACTA Univ. Ser. Math. INFORMATICS, vol. 34, pp. 583–595,

2019.

[193] E. P. Herrera-Granda, J. C. Torres-Cantero, and D. H. Peluffo-Ordoñez, “Monocular Visual

SLAM, Visual Odometry, and Structure from Motion Methods Applied to 3D Reconstruction:

A Comprehensive Survey,” Heliyon - First Look, vol. 8, no. 23, pp. 1–61, 2023.

[194] E. P. Herrera-Granda, J. C. Torres-Cantero, A. Rosales, and D. H. Peluffo-Ordóñez, “A

Comparison of Monocular Visual SLAM and Visual Odometry Methods Applied to 3D

Reconstruction,” Appl. Sci., vol. 13, no. 15, 2023.

[195] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised Monocular Depth Estimation with

Left-Right Consistency,” CoRR, vol. abs/1609.0, 2016.

[196] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning Depth from Single Monocular Images,” in

Proceedings of the 18th International Conference on Neural Information Processing Systems, 2005, pp.

1161–1168.

[197] A. Saxena, M. Sun, and A. Y. Ng, “Make3D: Learning 3D Scene Structure from a Single Still

Image,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 824–840, 2009.

[198] X. Wang, C. Hou, L. Pu, and Y. Hou, “A depth estimating method from a single image using

FoE CRF,” Multimed. Tools Appl., vol. 74, no. 21, pp. 9491–9506, 2015.

[199] S. Aich, J. M. Uwabeza Vianney, M. Amirul Islam, and M. K. Bingbing Liu, “Bidirectional

Attention Network for Monocular Depth Estimation,” in 2021 IEEE International Conference on

Robotics and Automation (ICRA), 2021, pp. 11746–11752.

137

[200] L. Huynh, P. Nguyen-Ha, J. Matas, E. Rahtu, and J. Heikkilä, “Guiding Monocular Depth

Estimation Using Depth-Attention Volume,” in Computer Vision -- ECCV 2020, 2020, pp. 581–

597.

[201] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, “From Big to Small: Multi-Scale Local Planar

Guidance for Monocular Depth Estimation.” arXiv, 2019.

[202] S. Lee, J. Lee, B. Kim, E. Yi, and J. Kim, “Patch-Wise Attention Network for Monocular Depth

Estimation,” Proc. AAAI Conf. Artif. Intell., vol. 35, no. 3, pp. 1873–1881, May 2021.

[203] X. Qi, R. Liao, Z. Liu, R. Urtasun, and J. Jia, “GeoNet: Geometric Neural Network for Joint Depth

and Surface Normal Estimation,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2018, pp. 283–291.

[204] V. Guizilini, R. Ambruş, W. Burgard, and A. Gaidon, “Sparse Auxiliary Networks for Unified

Monocular Depth Prediction and Completion,” in 2021 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2021, pp. 11073–11083.

[205] M. Ochs, A. Kretz, and R. Mester, “SDNet: Semantically Guided Depth Estimation Network,”

in Pattern Recognition, 2019, pp. 288–302.

[206] S. Qiao, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen, “ViP-DeepLab: Learning Visual Perception

with Depth-aware Video Panoptic Segmentation,” in 2021 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2021, pp. 3996–4007.

[207] W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan, “Neural Window Fully-connected CRFs for

Monocular Depth Estimation,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2022, pp. 3906–3915.

[208] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He, “Depth and surface normal estimation

from monocular images using regression on deep features and hierarchical CRFs,” in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1119–1127.

[209] Y. Hua and H. Tian, “Depth estimation with convolutional conditional random field network,”

Neurocomputing, vol. 214, pp. 546–554, 2016.

[210] Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” in

2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 9992–10002.

[211] S. Lovengrove, “Pangolin,” GitHub repository, 2016. [Online]. Available:

https://github.com/stevenlovegrove/Pangolin/tree/v0.5.

[212] S.-Y. Loo, “MonoDepth-cpp,” GitHub repository, 2021. [Online]. Available:

https://github.com/yan99033/monodepth-cpp.

