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Abstract: In this paper, we give a basic structure theorem based on the study of extreme cases for
the value of ≺ (the classical precedence relation between ultrafilters), i.e., ≺= ∅ and no isolated
element in ≺. This gives rise, respectively, to the temporal varieties O and W, with the result that O
generates a variety of temporal algebras. We also characterize the simple temporal algebras by means
of arithmetical properties related to basical temporal operators; we conclude that the simplicity of
the temporal algebra lies in being able to make 0 any element less than 1 by repeated application
to it of the L operator. We then present an algebraic construction similar to a product but in which
the temporal operations are not defined componentwise. This new “product” is shown to be useful
in the study of algebra order and finding of bounds by means of something similar to a lifting
process. Finally, we give an alternative proof of an already known result on atoms counting in free
temporal algebras.
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1. Introduction

Temporal logic was born with the intention of allowing the representation of temporal
information in the logical framework. It was also intended to address the modal logic
approach introduced around 1960 by A. Prior under the name of Tense Logic. As is
well known, this field caught the subsequent attention not only of logicians but also of
computer specialists.

Technical applications have been derived from it, but let us not forget the use of Tense
Logic as a formalism to elucidate philosophical questions related to time, especially those
arising from temporal expressions in natural language, as a language to encode temporal
information in applications to A.I. development and, finally, as a tool to manipulate the
execution of programs in their temporal aspects. The most modern treatment we know of
these aspects is chapter 10 of [1] written by Y. de Venema and entitled “Temporal Logic”.

Among the precursors is H. Reichenbach (see [2]). He explains how the function of
each tense is focused on specifying relations between three tenses related to the utterance:
the time of conversation (S), the time of reference (R), and the time of the event (E). Prior
disagreed with this simplification and thus opened up a great avenue of evolution in
analysis; out of it emerged a great variety of temporal logics. A good collection of these
logics can be found in [3].

Applications of temporal logic to artificial intelligence are poorly documented in
published works. Almost all of them are found in internal company documents or in
untested writings. The last academic news we had on this topic was contained in [4,5]. The
problem was focused on the properties of the world that change with the results of other
events or actions and those that do not change; at that time, it all remained very much tied
to automatic demonstration.
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The modal style of temporal logic has reigned supreme in applications to computing
that deal with program specification and verification, especially in concurrent programming
with several processors working in parallel. The central problem here is to guarantee
synchronicity to ensure the integrity of the information shared between processors. The
nondeterminism imprinted on computer applications has led to branching temporal models.
The treatment of this can be traced back to [6].

The treatment of logics has sought the use of algebra as a great ally. Whenever a
logic has turned out to be algebraizable, algebra has been not only the most elegant and
expressive language for its treatment but also the ideal means for devising algorithms.
That is why in this work on temporal logic we resort exactly to the study of free temporal
algebra. Given the many philosophical nuances appreciated in the literature, in studying
temporal algebra the course of research will drift towards varieties of temporal algebras.
To see the overwhelming dimension of the problem, we can consult [7,8].

As is well known, the study of algebraic structures is founded whenever possible
on the study of order relations; the case of Boolean algebra is an archetypal example of
this. Classical temporal algebras are built on the platform of a Boolean algebra, and their
tradition has been fully consolidated since the last quarter of the twentieth century. In this
case, to the formal operations of the Boolean algebra are added the temporal ones, g and h.
This addition is made, as is logical, by making these operators interact harmoniously with
the Boolean operations, which leads them to play a role in the underlying order. Intuition
dictates that certain values, such as g0 and h0, will play a relevant role in this context;
to found and analyze it from the algebraic point of view is the essential motivation of
this article. The problem of atom identification is a classical one in the study of varieties
of temporal algebras (see, for example, [7,8]). By reading both papers, we confirm our
intuition that the problem rests on the study of g0∧ h0. However, neither of these papers
nor the rest of those consulted isolate in one study the role played by g0 ∧ h0 within the
order of the temporal algebra; we have begun this task, and it has inevitably led us to
the study of simple temporal algebras, without which we believe the problem cannot be
understood in its full depth. The study we present here does not pretend to be exhaustive
but an indispensable first step.

The problem of capturing atoms can be approached by understanding it as a bound-
edness search problem. With the purpose of contributing to possible generalizations up
to temporal and polymodal varieties in general, the authors of the present paper have
searched for a method of bounding formulas in free temporal algebras, using exclusively
their operations, valuations, filtrations (see [9]), quotients, and products. The study should
proceed by exhibiting non-zero lower bounds of a sufficient number of formulas that may
have them, so that the atoms would be among the rest and could be finally selected. The
essential idea of the procedure would be, as so often is the case in algebra and calculus,
to descend from the temporary free algebra to a certain finite algebra carefully chosen
to fit the given formula, then to gather there the necessary information, and finally to
ascend again to the free algebra with the information necessary to prove what is desired.
Finding that finite algebra to descend to is the task we consider central to the paper. To
achieve this, a construction has been introduced that we believe to be novel: a “product” of
temporal algebras in which the temporal operations are not defined componentwise but
by taking into account the conditions on the adjacent components. The definitions of g, h
given in Definition 6, and the consequence thereof on their dual temporal operator f and p
(see Lemma 11), tentatively suggest for such a new product the name “Temporal Algebra
Skew-Product” (or, for short in this context, simply “skew-product”).

In our approach, the use of these skew-products has been shown to be versatile with
very good algebraic qualities: it is finite by definition, it preserves the simplicity of skew-
factors, and its terminal “factor” can be chosen on purpose to pick up or produce effects.
It could even become a skew–product again; examples of this are shown and analyzed
here. In short, we believe that this study exemplifies the application of a working technique
that could be generalized to suit the search for formulae quantifications in polymodal
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algebras –when necessary– and, in particular, to the study of atomicity in them. On the
other hand, it would suggest to researchers an algebraic object whose study may in itself
be of sufficient interest.

Although this paper has been inspired by the initiative put forward in others such
as [10] and even more [11], we have not overlooked classical works on finitely generated
free temporal and modal algebras such as [7,12], where excellent studies of atomicity
touching on varieties of temporal algebras and modal algebras are exposed. In order to
constrast our views, we have devoted the last section to giving an alternative proof of
Theorem 1.1 in [7].

Section 2 contains a summarized compilation of the preliminary basic concepts and
language used in this paper. Section 3 is devoted to the study of extremal situations on
the relation ≺ over ultrafilters, i.e., we study the classes of temporal algebras in which ≺
is empty, O, and those in which ≺ has only a connected component, W. Both classes turn
out to be varieties, and a structure theorem in the classical sense of universal algebra arises.
Once again in this study it is glimpsed, and here it all began for us, that g0∧ h0 plays an
interesting role in all this. Theorem 7 is the final and central product of the section. Indeed,
this theorem exposes with crystal clarity the relevance of the study of extreme cases for ≺
in that it will establish that any temporal algebra is isomorphic to a product of two algebras,
one in O and the other in W, which will a priori separate the atoms of the algebra into two
sets. This simple observation will turn out to be transcendental in the treatment of the final
example of the article when we understand that one factor contributes all the atoms and
the other, none. Section 4 is devoted to a classical topic in universal algebra; it provides a
practical characterization of simple temporal algebras in their maximum generality. In it,
we resort to the operators L and M for their outstanding expressive capacity. From now
on, these operators will be essential for our exposition. The most outstanding result of this
section is Theorem 9, which, to our knowledge, has not been reported so far. It is fully
satisfactory from the algebraic point of view. It will therefore be an important tool in the rest
of the paper. In Section 5, we present a skew-product construction and describe its general
and technical properties. Of course the key piece is Definition 6; the subsequent results
prove that it could be very appropriate for the study of order-related phenomena. In it, we
highlight Lemma 15, which relates the process similar to classical “lifting” that we have
suggested above. Also of interest are Corollary 8 and Lemma 16, where we establish the
behavior of the construction with respect to the simplicity of the skew–factors. In Section 6,
we find lower bounds of non-atomic formulas in the free temporal algebra. In this section,
we highlight Theorem 14 and Theorem 16 because of the lower bound it provides. But
the central result is Corollary 10; it establishes the upper bound of any atom of the free
temporal algebra. Finally, as an application, Section 7 is devoted to providing an alternative
and new proof of Theorem 1.1 [7] (p. 61) about the number of atoms of Ft(X), whenever
X is of cardinality n. Specifically, the technique of proof is to give a particular bijection
between the set of atoms under investigation and another well known finite set that we will
specify. Of course, the result highlighted in the section is Theorem 17, although Corollary 11
is also of interest.

As for the related bibliography, we include papers with prospective value and others
with algebraic subject matter. Those with prospective content are divided into two groups:
those that are like [1–3,13] have been useful for us to be able to capture the fine nuances of
astute thinkers and try to imprint them on our algebraic approaches, but their influence on
the work lies in the background of our research training. The second group of prospective
papers are those that open up fields of technological applications beyond the scope of the
present work; they are of the [4,5,14] type. They indicate that the theoretical mathematics
we elaborate could underlie certain applications. Closer to our work are [7,8,12]. The first
deals with certain general varieties of temporal algebras inspired by the classical literature
represented by [15,16]. While F. Bellissima uses the language of temporal structures, we
choose the one provided by Universal Algebra, which opens us to totally different methods,
language and subject matter. In the case of free temporal algebra, which is the one we
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are concerned with, in [7] we do not find structure theorems or allusions to congruences
or simplicity. Although it speaks of atoms, the problem of bounds is not raised. In
common with [7], our work only has the statement of Theorem 1.1, to which we give a
very different proof. Ref. [8] does have a language and subject matter closer to ours, but
while we focus on temporal algebra at full generality, T. Kowalski descends to the varieties
Dn, which are interesting for their nuance to the deduction theorem and their ingenious
conceptual relation with Hilbert Algebra. Moreover, we will emphasize that T. Kowalski
has understood the interest of the g0∧ h0 element, although his treatment is very different
from ours. In Section 8, we detail how [8] suggests a field of possible applications of our
work. Finally, [11,12,14,17–19] have served us only to intuit a second field of applications or
evolution of the techniques developed in this work. Finally, [9,20] are instrumental works
where instruments are developed that we now use here, as indicated in the appropriate
places; that was their purpose and that is what they were written for.

2. Preliminaries

The paper deals with temporal algebras. A temporal algebra is an algebra
A = 〈A,∧,∨,¬, g, h, 1〉 of type 〈2, 2, 1, 1, 1, 0〉 such that:

(T.1) 〈A,∧,∨,¬, 1〉 is a Boolean algebra.
(T.2) Both g and h are ∧-morphisms (i.e. k(a ∧ b) = ka ∧ kb, for k ∈ {g, h}).
(T.3) The equivalence [ga ∨ b = 1 if and only if a ∨ hb = 1] is satisfied.
(T.4) g1 = h1 = 1.

As usual, we also consider in A the operators p = ¬h¬ and f = ¬g¬, as well as the
unary operators L and M defined, respectively, by Lx = hx ∧ x ∧ gx and Mx = px ∨ x ∨ f x.

The class T of temporal algebras is a variety. In the sequel, we will denote by F(X)
(resp. Ft(X)) the algebra of terms of type 〈2, 2, 1, 1, 1, 0〉 over (resp. the free temporal algebra
freely generated by) the set X. The universe of F(X) (resp. Ft(X)) is denoted by F(X) (resp.
Ft(X)). Ft(X) is a quotient of F(X) by certain well known congruence θt(X) or simply θ
(see [21]). Hence, the elements of Ft(X) are the quotient classes α/θ, with α ∈ F(X). If we
represent by πθ , or simply π, the epimorphic projection of F(X) onto Ft(X) and i is the
inclusion map of X in F(X), it is well known that for all temporal algebras A and for all
mappings v : X −→ A there are unique morphisms v̄ : F(X) −→ A and ṽ : Ft(X) −→ A
such that v = v̄ ◦ i and v̄ = ṽ ◦ π. If α ∈ F(X), which we will write indistinctly π(α) or α/θ.
For all temporal algebra A, Atm(A) is the set of atoms of de underliying Boolean algebra.

In this article, we shall use ω (resp. ω∗) to represent the set of natural numbers (resp.
non-zero natural numbers). For any set X, here P(X) (resp. Pω(X)) stands for the power
set of X (resp. finite parts of X, i.e., finite elements of P(X)); moreover, P(X)∗ (resp.
Pω(X)∗), by definition, stands for P(X) \ {∅} (resp. Pω(X) \ {∅}).

It is possible to construct temporal algebras in a standard form as follows. A structure is
a pair 〈T, σ〉, where T is a non-empty set and σ ⊆ T2. Given a structure 〈T, σ〉, the temporal
algebra 〈T, σ〉+ is, by definition, the algebra 〈P(T),∧,∨,¬, gσ, hσ, T〉, where ∧,∨, and ¬
are the Boolean operations ∩, ∪, and complementation over P(T), respectively. As for gσ

and hσ, these operators are defined by gσ(X) = {a ∈ A : for all b ∈ T, if aσb then b ∈ X}
and hσ(X) = {a ∈ A : for all b ∈ T, if bσa then b ∈ X}.

Let A = 〈A,∧,∨,¬, g, h, 1〉 be a temporal algebra. The concept of filter, ideal, and
ultrafilter is the proper of the underlying Boolean algebra, i.e., F ∈ P(A) is a filter iff, by
definition: 1 ∈ F, a ∧ b ∈ F whenever a, b ∈ F, and b ∈ F whenever a ∈ F and a ≤ b
(see [21] (p. 127)); the filter F is an ultrafilter iff, by definition, F is maximal with respect to
the property that 0 /∈ F (see [21] (p. 132)). The symbol Sp(A) (resp. Ult(A)) will denote
the set of filters (resp. ultrafilters) of the temporal algebra A, i.e., the Boolean algebra
〈A,∧,∨,¬, 1〉. For all map k : X −→ Y and B ⊆ Y (resp. A ⊆ X), the set k∗(B) (resp. k∗(A))
is, by definition, the set {x ∈ X : g(x) ∈ B} (resp. {g(a) ∈ Y : a ∈ A}); k∗(X) (resp. k∗(X)),
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which represents the reciprocal (resp. direct) image of X by the map k. The relation of
precedence induced by A in Ult(A), in symbols ≺, is defined as follows:

D ≺ D′ if and only if g∗(D) ⊆ D′

or using any equivalent condition as p∗(D) ⊆ D′, f∗(D′) ⊆ D, or h∗(D′) ⊆ D. It is
well known that for any temporal algebra there is a homomorphic inclusion of A into
〈Ult(A),≺〉+.

Here, we will use the following result proved in [9]: let α ∈ F(X) such that π(α) 6= 1;
then, there exists a temporal valuation wα over a finite temporal algebra Aα such that
w̃α 6= 1.

Let A = A = 〈A,∧,∨,¬, g, h, 1〉 be a temporal algebra. A filter F (resp. an ideal I)
of 〈A,∧,∨,¬, 1〉 is a temporal filter (resp. ideal) iff, by definition, Lx ∈ F (resp. Mx ∈ I)
whenever x ∈ F (resp. x ∈ I). The symbol Tsp(A) will represent the set of temporal filters
of A. A temporal filter of A is a maximal temporal filter iff, by definition, it is distinct
from A and it is maximal in the set of temporal filters distinct from A. The set of maximal
temporal filters of A will be denoted by Mtsp(A); the set

⋂
SptM(A) will be denoted

by Radmt(A).
If X ⊆ A, Dt(X) will denote the smallest temporal filter of A including X, that is

Dt(X) =
⋂
{D ∈ Tsp(A) : X ⊆ D}

If a ∈ A, we henceforth will represent the set {x ∈ A : a ≤ x} (resp. {x ∈ A : x ≤ a})
by [a, 1] (resp. [0, a]). For all 0 ≤ i ≤ k, here πi(〈y0, . . . , yi, . . . , yk〉) = yi is the projection
map on the ith coordinate of the usual product of Universal Algebra.

According to the notion of Universal Algebra, a temporal algebra A is simple iff, by
def., it has no nontrivial congruence relations or, equivalently, if every homomorphism
with domain A is either injective or constant.

The following results are well known.

Lemma 1. Let A = 〈A,∧,∨,¬, g, h, 1〉 be a temporal algebra. Then, f ,p,g, and h are increasing functions.

Lemma 2. For all temporal algebra A and for all x ∈ A:

1. pgx ≤ x.
2. f hx ≤ x.
3. x ≤ gpx.
4. x ≤ h f x.

where ≤ is the Boolean partial order.

Lemma 3. Let A be a finite temporal algebra. For all a, b ∈ Atm(A), the following assertions
are equivalent:

1. b ≤ pa,
2. a ≤ f b,
3. if a ≤ gx, then b ≤ x,
4. if b ≤ hx, then a ≤ x.

3. A Basic Structure Theorem for Temporal Algebras

In this section, we will prove that any temporal algebra is isomorphic to a product of
two others, one of which meets the condition g0 = 0; the problem is knowing how to obtain
the two factors. To achieve this, we will consider elements which are, from a temporal
point of view, similar to the element 0. First, we will define the following class of temporal
algebras denoted by O.
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Definition 1. Let O be the class of temporal algebras A satisfying g0 = 1.

Since the above definition of temporal algebras is equational, O is a variety. We will
illustrate the above definition by giving two useful examples of temporal algebras. Actually,
the second is a particular case of the first, and it is given using the standard method to
construct a temporal algebra from a structure.

Example 1. Let 〈B,∧,∨,¬, 1〉 be a Boolean algebra and k : B −→ B a map defined by k(x) = 1,
for all x ∈ B. The algebra 〈B,∧,∨,¬, k, k, 1〉 is an element of O. In the particular case that
B = {0, 1}, we will write E0 to represent the simple temporal algebra 〈B,∧,∨,¬, k, k, 1〉.

Example 2. Let us consider the structure 〈T, σ〉, where T 6= ∅ and σ = ∅, and the temporal
algebra 〈T, σ〉+. It is clear, from the definition of gσ(X), that gσ(∅) = T. Hence, 〈T, σ〉+ is an
element of O.

From property T.3, it is straightforward to show that the equality g0 = 1 holds if
and only if any of the equalities f 1 = 0, h0 = 1, and p1 = 0 hold. This brings three
new equivalent definitions of O. Furthermore, if A is a temporal algebra and g0 = 1,
then g is constant since it is increasing (see Lemma 1) and 0 is the minimum of the lattice
〈A,∧,∨,¬, 1〉; obviously, the converse holds too. It is easy to show from the axioms of
temporal algebras that g is constant if and only if any function in the set {h, f , p} is constant.
So, we have four new definitions of O.

In any elements of O, it occurs that the relation ≺ is equal to ∅. Furthermore, this
gives a characterization of elements in O involving ≺.

Theorem 1. Let A be a temporal algebra. A ∈ O if and only if ≺= ∅.

Proof. Let us assume that A ∈ O, and let D, D′ ∈ Ult(A). If D ≺ D′, then p∗(D) ⊆ D′.
Since p1 = 0, it follows that 0 ∈ D′, which is impossible since D 6= A. Conversely, let
us assume that ≺= ∅. From Example 2, 〈Ult(A), ∅〉+ is in O. Moreover, since A is a
subalgebra of 〈Ult(A), ∅〉+ then A ∈ O.

For every temporal algebra in O, both g and h are constantly 1; then, L is the identity
map in A. It follows that each filter of each temporal algebra A in O is closed for the map
L, and so Tsp(A) coincides with Sp(A). This is not a characterization of algebras in O;
nevertheless, O is a distinguished subclass of the class (actually a subvariety of the variety)
of temporal algebras A verifying the property Sp(A) = Tsp(A).

From the equality Tsp(A) = Sp(A), it follows at once that Mtsp(A) = Ult(A) and
so Radmt(A) = {1}. Moreover, the equality Mtsp(A) = Ult(A) implies that, for all
D ∈ Mtsp(A), A/D = E0. Therefore, any temporal algebra in O is a subdirected power of
the algebra E0. So, the variety O is semisimple and generated by E0.

Corollary 1. The variety O is minimal in the lattice of subvarieties of T.

Proof. Let us assume that X is another subvariety of T such that X ⊆ D. Let A ∈ X and
D ∈ Mtsp(A). As A/D is equal to E0 and X is a variety, it follows that E0 ∈ X. Therefore,
X contains the variety generated by E0, that is, it includes D. It follows immediately
that X = D.

Definition 2. Let A be a temporal algebra. The set O(A) is defined by the following equality:

O(A) = {x ∈ A : px = f x = 0}

Given a temporal algebra A and an element a ∈ A, Ult(A) is the disjoint union of two
sets, namely, that of ultrafilters containing a, Ua, and that of ultrafilters containing ¬a, U¬a.
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When a ∈ O(A), the following theorem holds (of course ≺| Ua represents the restriction of
≺ to the set Ua).

Theorem 2. Let A be a temporal algebra and a ∈ O(A). Then, ≺| Ua = ∅.

Proof. Let a be an element of O(A), D an ultrafilter such that a ∈ D, and D′ ∈ Ult(A).
If D ≺ D′, then p∗(D) ⊆ D′, so 0 = pa ∈ D′ and this is impossible if D′ is maximal.
If D′ ≺ D, we again obtain the above contradiction, now using f instead of p. So, the
theorem follows.

By means of elements of O(A), it is possible to distinguish subsets of isolated ultrafil-
ters with regard to ≺. In the following for all a, b ∈ A, [a, b] = {x ∈ A : a ≤ x ≤ b}.

Lemma 4. Let A be a temporal algebra and a ∈ O(A). The set [0, a] is a temporal ideal.

Proof. Obviously, [0, a] is an ideal. Furthermore, [0, a] is temporal since if x ≤ a then
px ≤ pa = 0, i.e., px = 0 ∈ [0, a]. Analogously, f x = 0 ∈ [0, a] and so Mx ∈ [0, a].

Theorem 3. For any temporal algebra A, O(A) = [0, g0∧ h0].

Proof. The proof is given by double-inclusion. Let us take x ∈ A such that x ≤ g0 ∧ h0.
Hence, x ≤ g0 and x ≤ h0. Since p and f are both two increasing functions (see Lemma 1),
we have px ≤ pg0 ≤ 0 and f x ≤ f h0 ≤ 0. So, f x = px = 0. Conversely, let us suppose
that x ∈ O(A), i.e., f x = px = 0. By Lemma 2, we have x ≤ h f x ∧ gpx. Therefore,
x ∈ [0, g0∧ h0].

Corollary 2. Let A be a temporal algebra. Then, O(A) is a temporal ideal.

Proof. It is an inmediate consequence of Lemma 4 and the fact that g0∧ h0 ∈ O(A).

Definition 3. For all temporal algebra A, we define F0 and F1 by the following equalities:

F0 = [g0∧ h0, 1] and F1 = [ f 1∨ p1, 1]

Theorem 3 gives a very concrete description of the set O(A). It is indeed the principal
ideal generated by g0∧ h0. Lemma 5 follows immediately from this remark and Corollary 2
(note that F1 = ¬O(A)).

Lemma 5. Let A be a temporal algebra. Then, F1 is a temporal filter of A.

Given a temporal algebra A, we can consider the temporal ideal O(A). Our inmediate
aim is to study the algebras A with extreme value of O(A). Obviously, a temporal algebra
A for which O(A) = A belongs to O.

Definition 4. Let W be the class of temporal algebras A satisfying O(A) = {0}.

Theorem 4. W is a variety.

Proof. For all temporal algebra A, A ∈ W if and only if g0∧ h0 = 0; then, the members of
W admit an equational definition, so W is a variety.

Theorem 5. Let A be a temporal algebra. The following statements are equivalent:

1. A ∈ W.
2. For all D ∈ Ult(A) there is D′ ∈ Ult(A) such that D ≺ D′ or D′ ≺ D.
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Proof. First, let us assume that A ∈ W, i.e., g0∧ h0 = 0. As A is isomorphic to a subalgebra
of 〈Ult(A),≺〉+, then g≺∅ ∩ h≺∅ = ∅. If D ∈ Ult(A) and there is no D′ ∈ Ult(A) such
that D ≺ D′ or D′ ≺ D then D ∈ ∅, and this is impossible. So the second statement follows.
The converse can be showed analogously.

Now, given a temporal algebra A we can consider two subsets of temporal filters: one
made up by temporal filters D such that A/D ∈ O and one made up by temporal filters
such that A/D ∈ W. As a consequence, we dispose of two radicals, understanding this
concept as in ring theory.

Definition 5. For all temporal algebra A, we define the spectrum Osp(A) and the radical Rado(A)
by the following equalities:

Osp(A) = {D ∈ Tsp(A) : A/D ∈ O} and Rado(A) =
⋂

Osp(A)

Similarly, we define the spectrum Wsp(A) and the radical Radw(A) by the equalities:

Wsp(A) = {D ∈ Tsp(A) : A/D ∈ W} and Radw(A) =
⋂

Wsp(A)

Lemma 6. Let A be a temporal algebra. Then,

g∗(A) ∪ h∗(A) ⊆ F0

Proof. Let x ∈ A. Since 0 ≤ x and g are increasing (see Lemma 1), then we have that
g0 ≤ gx, so h0∧ g0 ≤ g0 ≤ gx. Analogously, we have h0∧ g0 ≤ h0 ≤ hx.

Corollary 3. In any temporal algebra A, the following statements hold:

1. F0 ∈ Osp(A),
2. F1 ∈Wsp(A).

Proof. First, from Lemma 6 it follows that F0 ∈ Tsp(A). Next, we will prove that A/F0 ∈ O.
Since f hx ≤ x, for all x ∈ A, it follows that f h0 = 0. Moreover, since f is monotone we
have that f (h0∧ g0) ≤ f h0; hence, f (h0∧ g0) = 0 and so f (1/F0) = 0/F0. This proves the
first statement since 1/F0 = (h0∧ g0)/F0.

Moreover, it is clear that (g0 ∧ h0)/F1 = 0/F1. So, g(0/F1) ∧ h(0/F1) = 0/F1. This
implies that A/F1 ∈ W.

Lemma 7. Let A be a temporal algebra and D ∈ Tsp(A). Then,

1. If D ∈ Osp(A) then h0∧ g0 ∈ D.
2. If D ∈Wsp(A) then p1∨ f 1 ∈ D.

Proof. If D ∈ Osp(A), then g(0/D) = h(0/D) = 1/D and so (g0 ∧ h0)/D = g(0/D) ∧
h(0/D) = 1/D. This implies that g0∧ h0 ∈ D. Moreover, if D ∈Wsp(A) then A/D ∈ (O).
It follows that g(0/D) ∧ h(0/D) = 0/D, i.e., g0∧ h0 ∈ ¬D, equivalently f 1∨ p1 ∈ D.

Theorem 6. Let A be a temporal algebra. Then, Rado(A) = F0 and Radw(A) = F1.

Proof. It follows from Corollary 3 that Rado(A) ⊆ F0 and Radw(A) ⊆ F1. The converse
inclusions are straightforward from Lemma 7.

Remark 1. We have, from Theorem 6 and Lemma 5, a clear relation between O(A) and Radw(A),
namely, ¬O(A) = Radw(A). In the following, A/Rado(A) (resp. A/Radw(A)) will be repre-
sented by Ao (resp. Aw).

Theorem 7 and (its) Corollary 4 are the central applications/results of this section. In
the Theorem, we establish that every temporal algebra is the product of two, one of which
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satisfies g0 = 1 and the other satisfies g0 ∧ h0 = 0; it is in fact the announced structure
theorem. This result will be used of the Section 7.

Theorem 7. For all temporal algebra A, A ∼= Ao ×Aw.

Proof. Since any two congruences of a Boolean algebra permute, it is enough to show that the
temporal filter generated by Rado(A) ∪ Radw(A) is A and that Rado(A) ∩ Radw(A) = {1}.
Both facts occur according to Theorem 6.

Corollary 4. The variety T is generated by the class O∪W.

In order to complete our study of the defined varieties, we give a new result about T
and the lattice of its subvarieties.

Corollary 5. W is maximal in the lattice of subvarieties of T.

Proof. Let X be a subvariety of T such that W ⊂ X, and let A ∈ X \W. Since A /∈ W, then
F0 6= A, and so Ao is on one hand non-trivial and on the other an out-of-joints algebra, as
follows from Corollary 3. Let D ∈ TspM(Ao). It is clear that E0 = Ao/D is in the variety
X. Since E0 generates O, then O ⊆ X and so O ∪W ⊆ X. We conclude by Theorem 7
that X = T.

4. A Characterization of Simple Temporal Algebras

Our aim in this section is to prove that in any simple temporal algebra, an element
different from 1 can be diminished progressively to 0 by means of consecutive applications
of the operator L. Furthermore, this is not possible except in a simple algebra. Of course, in
this statement L can be changed by M, whenever the roles of 1 and 0 are interchanged.

Given a temporal algebra A, for all a ∈ A we set by definition L0a = a (resp. M0a = a)
and Ln+1a = L(Lna) (resp. Mn+1a = M(Mna)). The following lemma describes the
elements of Dt(X).

Lemma 8. Let A be a temporal algebra, X ⊆ A, and H(X) the set defined by the equality:

H(X) = {a ∈ A : there exists Y ∈ Pω(X)∗ and n ∈ ω such that Ln(∧Y) ≤ a}

Hence Dt(X) = H(X).

Proof. It is easy to check that 1 ∈ H(X) and that H(X) is a closed order filter for L;
thus, H(X) is a temporal filter. Moreover, if we take a, b ∈ H(X) then na, nb ∈ ω, and
Ya, Yb ∈ Pω(X)∗ exist such that Lna(∧Ya) ≤ a and Lnb(∧Yb) ≤ b. The natural number
m = max na, nb verifies Lm(∧Ya) ≤ Lna(∧Ya) and Lm(∧Yb) ≤ Lnb(∧Yb). Therefore,

Lm(∧(Ya ∪Yb)) ≤ a ∧ b

and so a ∧ b ∈ H(X). Since H(X) is a filter and X ⊆ H(X), we have that Dt(X) ⊆ H(X).
For the reciprocal inclusion, let a ∈ H(X); then, Ya ∈ Pω(X)∗ and na ∈ ω must exist such
that Lna(∧Ya) ≤ a. However, X ⊆ Dt(X) and Dt(X) are closed for operations ∧ and L;
therefore, a ∈ Dt(X).

Remark 2. In the sequel, the symbol→ will denote the binary operation in the universe of any
temporal algebra defined by a→ b = ¬a ∨ b.

In the case that X = D ∪ {a}, D ∈ Tsp(A) and a ∈ A, Dt(X) has a special description.
The following result, actually an algebraic formulation of the “deduction theorem”, gives
this description.
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Theorem 8 (Deduction theorem). Let A be a temporal algebra. For all D ∈ Tsp(A) and a ∈ A,
the equality:

Dt(D, a) = {x ∈ A : there exists n ∈ ω such that Lna→ x ∈ D}

holds.

Proof. For convenience in the proof, let F be the right hand member of the conjunctive
equality of the statement. The assertion is that F is a temporal filter of A containing D ∪ {a}
and that it is also the smallest among those verifying this property.

It is immediate to verify that F is a filter of order and that D ∪ {a} ⊆ F. Moreover,
L0a→ 1 = 1 ∈ D, thus 1 ∈ F. If we assume that x, y ∈ F, then two natural numbers n and m
(e.g. n ≤ m) exist such that Lna→ x, Lma→ y ∈ D. It follows that Lma→ x, Lma→ y ∈ D,
and hence Lma→ (x ∧ y) ∈ D. We thus conclude that F ∈ Sp(A). Moreover, F is temporal
because if m ∈ ω exists such that Lma→ x and D is temporal, then L(Lma→ x) ∈ D and
so Lm+1a→ Lx ∈ D; hence, the temporality of F follows.

Finally, suppose that D′ is an element of Tsp(A) containing D ∪ {a} and let x ∈ A and
m ∈ ω such that Lma → x ∈ D. In such a case, Lma, Lma → x ∈ D′, which implies that
x ∈ D′. This concludes the proof.

Remark 3. Let A a temporal algebra. We consider that the precedence of the operator L is greater
than that of the operator→ (for all a, b ∈ A, a→ b = ¬a ∨ b). So, La→ b means L(a)→ b. For
all nonempty finite subset X = {x0, . . . , xn} of A, ∧X is by definition the element x0 ∧ · · · ∧ xn.

Corollary 6. Let D ∈ Tsp(A) and X = {a1, . . . , an} a finite subset of A. The temporal filter
generated by D∪X is the set of x ∈ A such that there is m ∈ ω verifying Lm(a1 ∧ · · · ∧ an)→ x ∈ D.

Lemma 9. Let A be a simple temporal algebra. If X ∈ P(A) \ {∅, {1}} and a ∈ A, then there is
Ya ∈ Pω(X)∗ and na ∈ ω such that Lna(∧Ya) ≤ a.

Proof. If X /∈ {∅, {1}}, then {1} ⊂ Dt(X). As A is simple, we have Dt(X) = A and so
a ∈ Dt(X). The lemma follows at once from the definition of Dt(X).

Lemma 10. Let A be a temporal algebra. Then, the statements:

1. For all X ∈ P(A) \ {∅, {1}} and a ∈ A, there is Ya ∈ Pω(X)∗ and na ∈ ω such that
Lna(∧Ya) ≤ a.

2. For all x ∈ A \ {1}, there is nx ∈ ω such that Lnx x = 0.

are equivalent.

Proof. Let us assume the first statement and let x ∈ A \ {1}. For X = {x} and a = 0
there is nx ∈ ω such that Lnx x ≤ 0. Conversely, if the second statement is true, X ∈
P(A) \ {∅, {1}}, a ∈ A, and x ∈ X \ {1}, then nx ∈ ω verifies Lnx x = 0, and so Lnx x ≤ a.
If we select Ya = {x} and na = nx, the first statement is established.

Corollary 7. Let A be a simple temporal algebra. For every a ∈ A \ {1}, na ∈ ω exists such that
Lna a = 0.

Theorem 9 is the main result of the section and is very satisfactory because it charac-
terises simple temporal algebras by means of an arithmetical criterion. The criterion consists
in being able to reduce to 0 any element of the algebra, except 1, by iterated applications of
the operator L. Of course, the dual criterion states that any non-zero element may be raised
to 1 by iterated applications of the operator M.
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Theorem 9. Let A be a temporal algebra. Then, the statements:

1. A is simple.
2. For every a ∈ A \ {1}, there is na ∈ ω such that Lna a = 0.
3. For every a ∈ A \ {0}, there is ma ∈ ω such that Mma a = 1.
4. For all non-trivial temporal algebra B, if φ : A −→ B is a morphism of temporal algebras,

then φ is a monomorphism.

are equivalent.

Proof. The first statement implies the second, as assured by Lemma 9 and Lemma 10. It
is obvious that the second implies the third. Let us assume the third statement and let
φ be a morphism from A to a non-trivial algebra B. If φ is non-injective, then there is
a ∈ Ker(φ) \ {1} and m ∈ ω such that Mn¬a = 1. We have:

1 = ¬Mm0 = ¬Mmφ(¬a)

= φ(¬Mm¬a) = φ(0)

= 0

Therefore, B should be trivial, and this is impossible by hypothesis. So, the fourth statement
is established. The first follows from the fourth since every temporal filter of A is the kernel
of a morphism of temporal algebras.

5. The Skew Product

In Definition 6, we introduce the modified product of temporal algebras, which serves
our objective. The term “skew-product” comes from the fact that the definition of temporal
operations is not componentwise, but it is in all modified components—except at least
in one, the “not–skew” (i.e., the temporal operations of the usual product of Universal
Algebra)—based on a specific condition of the adjacent components in the argument tuple.
As we will see later on, our reasoning is about formulas α such that pπ(α) 6= 0 or f π(α) 6= 0;
hence, we consider, for example in Definition 6, the condition b ≤ pa because if pa 6= 0 in
a finite temporal algebra, then an atom b must exist that is less than or equal to pa. The
choice of the “skew factor” B will be made on purpose, as we will see, in order to cause
effects or to catch them. In this section, we will make implicit use of Lemma 1, Lemma 2,
and Lemma 3 almost everywhere; the applicability of these lemmas will be evident from
the situation.

Definition 6. Let A and B be finite temporal algebras. Let us assume that a, b ∈ Atm(A),
c ∈ Atm(B), k ∈ ω∗, and b ≤ pa. We define in Ak × B the unary operations g and h as follows.
For all 〈y0, . . . , yk〉 ∈ Ak × B:

πi(h〈y0, . . . , yk〉) =


hyi, if i = 0 or (i > 0 and a ≤ yi−1),
hyi ∧ ¬b, if 1 ≤ i ≤ k− 1 and a � yi−1,
hyi ∧ ¬c, if i = k and a � yk−1.

πi(g〈y0, . . . , yk〉) =


gyi, if i = k or (i = k− 1 and c ≤ yk)

or (i < k− 1 and b ≤ yi+1),
gyi ∧ ¬a, if (i < k− 1 and b � yi+1)

or (i = k− 1 and c � yk).

The proof of the following Lemma 11 boils down to a simple routine check.

Lemma 11. Let A and B be two finite temporal algebras. Suppose that a, b ∈ Atm(A), c ∈
Atm(B), k ∈ ω∗, and b ≤ pa. The algebra Ak

a,b × Bc = 〈Ak × B,∧,∨,¬, g, h, 1〉 where ∧, ∨, ¬,
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and 1 are the operations componentwise on the product Ak × B and the operations g y h are as in
Definition 6, is a temporal algebra. In fact, for this algebra the operations f and p are as follows:

πi(p〈y0, . . . , yk〉) =


pyi, if i = 0 or (1 ≤ i ≤ k− 1 and a � yi−1)

or (i = k and a � yk−1),
pyi ∨ b, if 1 ≤ i ≤ k− 1 and a ≤ yi−1,
pyi ∨ c, if i = k and a ≤ yk−1

πi( f 〈y0, . . . , yk〉) =


f yi, if (0 ≤ i < k− 1 and b � yi+1)

or (i = k− 1 and c � yk) or i = k,
f yi ∨ a, if (0 ≤ i < k− 1 and b ≤ yi+1)

or (i = k− 1 and c ≤ yk).

Remark 4. In the hypotheses of Lemma 11 and according to its content we know that Ak
a,b × Bc is

a temporal algebra; well, we suggest giving it the name skew product of A and B regarding to the
atoms a, b, and c.

To shorten in this paper we will implicitly assume that A and B are both finite temporal
algebras. Moreover, when we write Ak

a,b × Bc we presupose that: a, b ∈ Atm(A), c ∈
Atm(B), b ≤ pa, k ∈ ω∗, and, finally, that the temporal operations are according to
Definition 6. Sometimes, we will represent the universe of Ak

a,b × Bc by Ak
a,b × Bc, though

this universe is in fact the set Ak × B.
Nevertheless, the skew value of g0 matches with its componentwise value. In effect,

we have the following simple but important lemma.

Lemma 12. In Ak
a,b × Bc the equality g0 = 〈g0, k+1). . . , g0〉 holds.

Proof. We have the equality g0 = 〈¬a ∧ g0, k). . .,¬a ∧ g0, g0〉. Since b ≤ pa, we have that
a ≤ ¬g0, or equivalently, g0 ≤ ¬a; hence, ¬a ∧ g0 = g0.

Lemma 13. Let k ∈ ω such that 2 ≤ k and 〈y0, . . . , yk〉 ∈ Ak
a,b × Bc. If there is m ∈ ω∗ such

that m ≤ k − 1 and yi = y0, for all 0 ≤ i ≤ m, then for all 0 ≤ i ≤ m, πi(h〈y0, . . . , yk〉) =
π0(h〈y0, . . . , yk〉) and for all 0 ≤ i ≤ m− 1, πi(g〈y0, . . . , yk〉) = π0(g〈y0, . . . , yk〉).

Proof. From the hypotheses of the lemma we have m ≤ k− 1. Suppose that j ≤ k− 1 and
that a � yj or, equivalently, that yj ≤ ¬a. Since b ≤ pa, it follows that hyj ≤ ¬b, that is,
hyj ∧ ¬b = hyj. Hence, if 0 ≤ i ≤ m, then πi(h〈y0, . . . , yk〉) = hy0, from which the first
statement follows. Moreover, according to the definition of g in Ak

a,b × Bc we have, for all
0 ≤ i ≤ m,

πi(g〈y0, . . . , yk〉) =


gy0, if (i = k− 1 and c ≤ yk)

or (i < k− 1 and b ≤ yi+1),
gy0 ∧ ¬a, if (i = k− 1 and c � yk)

or (i < k− 1 and b � yi+1).

From this, it follows that each 0 ≤ i ≤ m− 1 satisfies the equality πi(g〈y0, . . . , yk〉) = gy0
or πi(g〈y0, . . . , yk〉) = gy0 ∧ ¬a, depending on whether b ≤ y0 holds or not.

The following lemma indicates what can we expect about conmutativity between
M and πi. Its proof follows easily by induction on m given that pyi ≤ πi(p〈y0, . . . , yk〉),
f yi ≤ πi( f 〈y0, . . . , yk〉) and that M is an increasing function.
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Lemma 14. Let A and B be finite temporal algebras. For all m ∈ ω and 0 ≤ i ≤ k, in Ak
a,b × Bc

the inequality Mmπi(〈y0, . . . , yk〉) ≤ πi(Mm〈y0, . . . , yk〉) holds.

Now, we introduce the hypothesis of simplicity in the factors of the new product. The
simplicity of A and B implies that Ak

a,b × Bc is simple and conversely. Nevertheless, we
will prove a weaker result.

Theorem 10. Let A and B be two finite simple temporal algebras and y ∈ A \ {0}.
If 〈y, k−1). . . , y, z〉 ∈ Ak

a,b × Bc, then m ∈ ω∗ exists such that Mm〈y, k−1). . . , y, z〉 = 〈1, k−1). . . , 1, z′〉, for
some z′ ∈ B satisfying Mmz ≤ z′.

Proof. Since A is simple and y 6= 0, by Theorem 9, m ∈ ω∗ exists such that Mmy = 1. This
and Lemma 14 imply that there is z′ ∈ B such that Mm〈y, k−1). . . , y, z〉 = 〈1, k−1). . . , 1, z′〉. It is
clear from Lemma 14 that Mmz ≤ z′.

Remark 5. If B = A and c = b, the symbol Ak+1
a,b (resp. A) will represent the algebra Ak

a,b ×Ab

(resp. A1
a,b).

Corollary 8. Let a A be a finite simple temporal algebra and y ∈ A \ {0}. If 〈y, . . . , y〉 ∈ Ak
a,b

then there exists m ∈ ω∗ such that Mm〈y, . . . , y〉 = 〈1, . . . , 1〉 and Mmy = 1.

In the arguments that we will give later, finding bounds requires a more careful
approach in the case g0 6= 0. In Definition 7, we define the necessary parameters, except
the notion of degree (see Definition 9), to build the appropriate algebra Ak

a,b × Bc to cover
what we need. Moreover, in Definition 8 we give a specific temporal algebra that we are
interested in using as algebra B in a specific skew-product Ak

a,b × Bc.

Definition 7. Let A be a finite simple temporal algebra for which the condition g0 6= 0 holds and
there are a, b ∈ Atm(A) such that b ≤ pa. From Lemma 12 and Corollary 8, the set of all j ∈ ω
such that Mjg0 = 1 at the same time in Ak

a,b and A is non-empty; so, it is possible to take the
minimum s of this set. Let

r = min{j ∈ ω : 〈0, k−1). . . , 0, a〉 ≤ Mjg0} (1)

and
l = max{s− r, 1}. (2)

We define the value t(A, a) by the equality

t(A, a) = min{2j : j ∈ ω and l + 1 ≤ 2j}. (3)

Finally, let us define σ : B −→ B by σ(y) = ghy.

Definition 8. Given q ∈ ω∗, if B represents the set {0, 1} then we define the functions

g, h : B2q −→ B2q

as follows (0 ≤ i ≤ 2q− 1):

πi(h〈y0, . . . , y2q−1〉) =


y0 ∧ y1, if i = 0,
0, if i is odd,
yi−1 ∧ yi ∧ yi+1, otherwise.
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πi(g〈y0, . . . , y2q−1〉) =


yi, if i is even,
y2q−2, if i = 2q− 1,
yi−1 ∧ yi+1, otherwise.

Remark 6. Let q ∈ ω∗. It is clear that the algebra B2q = 〈B2q,∧,∨,¬, g, h, 1〉 is a temporal
algebra. For B2q, the operations f and p are as follows:

πi( f 〈y0, . . . , y2q−1〉) =


yi, if i is even,
y2q−2, if i = 2q− 1,
yi−1 ∨ yi+1, otherwise.

πi(p〈y0, . . . , y2q−1〉) =


y0 ∨ y1, if i = 0,
0, if i is odd,
yi−1 ∨ yi ∨ yi+1, otherwise.

Moreover, in B2q the equality g0 = 0 holds.

Lemma 15 is a necessary tool to show Theorem 15. In order to grasp its meaning,
understand that in increasing j, Mjg0 “saturates” the algebra Ak

a,b × B2q
c . Having 0 ≤ j ≤ r,

the construction is designed so that the skew-factor B2q
c does not have any effect on the

first k components of Mjg0; the component k + 1 remains at 0; and when j equals r, the
value of the kth component of Mjg0 exceeds or equals a. Nevertheless, when the value of
j exceeds r, the k + 1 component of Mjg0 (i.e., the component of Mjg0 in the skew-factor
B2q

c ) leaves the value 0, and its evolution is helpful to measure the progress of j by means
of a progressive spread of the value 1 from the first component to the last. Regarding
“well chosen” q, the replacement of the value 0 in the (k + 1)th component is not complete.
Actually, the reason for our definitions is to enunciate and demonstrate Lemma 15.

Lemma 15. Let A be a finite simple temporal algebra such that g0 6= 0, and let a, b ∈ Atm(A) be
such that b ≤ pa. Let s be the least j ∈ ω satifying Mjg0 = 1 at the same time in Ak

a,b and A. If r
is the value given by Equation (1), c = 〈1, 0, . . . , 0〉, and q ∈ ω∗ then the following properties hold:

1. For all j ≤ r and 0 ≤ i ≤ k− 1, the value of πi
(

Mjg0
)

in Ak
a,b × B2q

c coincides with its
value in Ak

a,b.

2. For all j ≤ r, πk
(

Mjg0
)
= 0 in Ak

a,b × B2q
c .

3. a ≤ πk−1
(

Mrg0
)

in Ak
a,b × B2q

c .

4. If r < s and s − r < 2q, then for all r < j ≤ s, πk
(

Mjg0
)
= 〈1, j−r). . . , 1, 0, . . . , 0〉 in

Ak
a,b × B2q

c .

5. If 2q is the number t(A, a), defined in (3), and 〈y0, . . . , y2q−1〉 is πk
(

Msg0
)

in Ak
a,b × B2q

c ,
then y2q−1 = 0.

Proof. We will prove the first two statements at the same time by induction on j. Actually,
in the two algebras the values of g0 are 〈g0, k). . . , g0, 0〉 and 〈g0, k). . . , g0〉, respectively. So, the
properties follow in the case j = 0. Let us assume that the properties hold for j < r. It is
easy to verify the first one in the cases 0 ≤ i < k− 1. When i = k− 1, since πk(Mjg0) = 0 in
Ak

a,b × B2q
c then the value of πk−1( f Mjg0) is f πk−1(Mjg0). In the case of Ak

a,b, the value of
πk−1( f Mjg0) is f πk−1(Mjg0), but, by the inductive hypothesis, πk−1(Mjg0) has the same
value in the two algebras under consideration, so the result holds for k− 1. Since r is the
least natural i such that 〈0, k−1). . . , 0, a〉 ≤ Mig0, it follows that a � πk−1(Mjg0) in Ak

a,b × B2q
c ,

and so πk(pMjg0) = p0 and πk( f Mjg0) = f 0. This implies that πk(Mj+1g0) = 0. The
third property is obvious from the first one. The fourth statement also follows by induction.
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For j = r + 1, the result holds. Actually, according to property 2 and property 3 we have
πk
(

Mrg0
)
= 0 and a ≤ πk−1

(
Mrg0

)
; then, πk

(
pMrg0

)
= 〈1, 0, . . . , 0〉 and, furthermore,

πk
(

Mr+1g0
)
= 〈1, 0, . . . , 0〉. Let us assume that 1 ≤ i, r + i + 1 ≤ s and that the result

holds for r + i. If 〈y0, . . . , y2q−1〉 stands for πk
(

Mr+ig0
)
, the inductive hypothesis means

that y0 = · · · = yi−1 = 1 and yi = · · · = y2q−1 = 0. It is clear that

πk
(

Mr+i+1g0) = p〈y0, . . . , y2q−1〉 ∨ 〈y0, . . . , y2q−1〉 ∨ f 〈y0, . . . , y2q−1〉

Hence, all we need is to examine the right-hand side of this equality. Represent by
〈z0, . . . , z2q−1〉 (resp. 〈u0, . . . , u2q−1〉) the value p〈y0, . . . , y2q−1〉 (resp. f 〈y0, . . . , y2q−1〉).
Since Mr+1g0 ≤ Mr+ig0, then y0 = 1 and so z0 = u0 = 1. On the other hand, y2q−2 = 0;
hence, z2q−1 = u2q−1 = 0. When j /∈ {0, 2q− 1}, the values of zj and uj are as follows:

1. yj = 1; in this case, the result is obvious,
2. yj−1 = 1 and yj = 0; if j is even (resp. odd), then zj = 1 (resp. uj = 1),
3. yj−1 = 0, yj = 0; therefore, yj+1 = 0, and so, if j is either even or odd, zj = 0 and

uj = 0.

So, the fourth property is established. The fifth follows from the fourth and the given
definitions since the equality

〈y0, . . . , y2q−1〉 =


〈0, 0〉, if s = r,
〈1, . . . , 1, 0〉, if s 6= r and l is odd,
〈1, . . . , 1, 0, 0〉, if s 6= r and l is even,

holds.

Remark 7. In the sequel, we adopt the following notational use. On the one hand, for all 0 ≤ i ≤
2q− 1 let zi be the element of B2q satisfying for all 0 ≤ j ≤ 2q− 1 the condition:

πj(zi) =

{
1, if i = j,
0, otherwise.

On the other hand, if y = 〈y0, . . . , yk〉 is in Ak
a,b × B2q

c , then for every 0 ≤ i ≤ 2q− 1, ϑi(y) will
be the abbreviation of πi(yk).

Lemma 16. Let A be a finite simple temporal algebra such that g0 6= 0 and a, b ∈ Atm(A) such
that b ≤ pa. Let q ∈ ω∗, and let c be the atom z0 of B2q. If 〈0, . . . , 0, z2q−1〉 � Msg0 in Ak

a,b×B2q
c

for some s ∈ ω, then 〈0, . . . , a, 0〉 � σq(Msg0
)
.

Proof. Let us assume that 〈0, . . . , 0, z2q−1〉 � Msg0, and use induction to show that for all 0 ≤
i ≤ q− 1, 〈0, . . . , 0, z2(q−i)−1〉 � σi(Msg0). In the case i = 0, the result follows directly from
the hypotheses. Suppose that 0 ≤ i < q− 1, 〈0, . . . , 0, z2(q−i)−1〉 � σi(Msg0); nevertheless,
〈0, . . . , 0, z2(q−(i+1))−1〉 ≤ σi+1(Msg0). Hence, 〈0, . . . , 0, z2(q−i)−3〉 ≤ ghσi(Msg0). This
implies that ϑ2(q−i)−3

(
ghσi(Msg0)

)
= 1. According to the definition of g, since 2(q− i)− 3 is

odd and different from 2q− 1, we conclude that ϑ2(q−i)−2
(
hσi(Msg0)

)
= 1. Since 2(q− i)− 2

is even, i < q− 1; therefore, by the definition of h, the equality ϑ2(q−i)−1
(
σi(Msg0)

)
= 1 holds

or, equivalently, 〈0, . . . , 0, z2(q−i)−1〉 ≤ σi(Msg0), which is contradictory with the inductive
hypothesis. In particular, we have 〈0, . . . , 0, z1〉 � σq−1(Msg0). By contradiction, let us
suppose now that 〈0, . . . , a, 0〉 ≤ ghσq−1(Msg0

)
, that is, a ≤ πk−1

(
ghσq−1(Msg0)

)
. Since

a 6= 0 and z0 = c, we have that z0 ≤ πk
(
hσq−1(Msg0)

)
; hence, z0 ≤ hπk

(
σq−1(Msg0)

)
and, consequently, z1 ≤ πk

(
σq−1(Msg0)

)
, which is contradictory. Therefore, 〈0, . . . , a, 0〉 �

σq(Msg0
)
.
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6. The Bound g0 ∧ h0

It is intuitively clear that for formulas π(α), with α ∈ F(X), such that pπ(α) 6= 0 or
f π(α) 6= 0 it will be possible to find in Ft(X) non-zero lower bounds. To fix ideas, here
we show the reasoning in the case of pπ(α) 6= 0, and we leave the case f π(α) 6= 0, which
deserves similar treatment in an obvious way. In order to determine which formulas are
atoms, we will show that it is sufficient to study these cases.

Given α ∈ F(X), we need an algebra Aα with appropriate properties, including
simpleness, in order to build a skew-product Ak

a,b × Bc that is useful for our purposes. The
existence of this algebra, as we shall see, is warranted by the results of [9,20] and is here
where we bring to our argument—and this is essential—the concept of filtration studied in
[9]. Later, we will set the temporal algebra B, which in this case will be very simple: the
Boolean algebra with two elements: g a constant function, and h = g; having done this, the
choice of the atom c is univocal.

Theorem 11. Let α ∈ F(X) such that pπ(α) 6= 0. A finite simple temporal algebra Aα and a
morphism ṽ : Ft(X) −→ Aα exist such that ṽ

(
π(α)

)
6= 0 and ṽ

(
pπ(α)

)
6= 0.

Proof. Since ¬pπ(α) 6= 1, a finite temporal algebra A and a morphism ũ : Ft(X) −→ A
exist (see [9]) such that ũ

(
¬pπ(α)

)
6= 1; hence, ũ

(
pπ(α)

)
6= 0. Since A is finite, it is

isomorphic to a product of finite simple temporal algebras (see [20]). Composing ũ with
the canonical projection over the convenient simple factor of A, Aα, we obtain the mapping
ṽ of the statement. It is clear that ṽ

(
pπ(α)

)
6= 0. Therefore, the equality ṽ

(
π(α)

)
= 0

is impossible.

In the following, we will consider that π(α) ∈ Ft(X) satisfies pπ(α) 6= 0. So, Aα and
ṽ will represent the algebra and the morphism of Theorem 11. We will also assume that
a, b ∈ Atm(Aα) are such that a ≤ ṽ

(
π(α)

)
and b ≤ ṽ

(
pπ(α)

)
. Moreover, if B is a temporal

algebra, we define the map τ : B −→ B by the equality τy = f py. The reason for involving
E0 here (see Example 1) is exactly to be able to count on Equation (4) as a valid result; it is
the key to Theorem 14 obtained through Corollary 9.

Theorem 12. Let A be a finite temporal algebra. In the algebra Am+1
a,b × (E0)c, where m ∈ ω∗ and

c = 1, the equality:

τi(〈0, m). . . , 0, a, 0〉) = 〈0, m−i). . . , 0, a, τ(a), τ2(a), . . . , τi(a), 0〉 (4)

holds for all 0 ≤ i ≤ m.

Proof. The proof is by induction on i. For i = 0, the statement is obviously true. Let us
assume that the property holds for j, and let us take i = j + 1. It is straightforward to show
that a ≤ τa. Since τ is an increasing funtion, {τ ja}j∈ω increases with j; hence, for all j ∈ ω,
a ≤ τ ja and so b ≤ pτ j(a). By definition of f and p we have:

τi(〈0, m). . . , 0, a, 0〉) = f p〈0, m−j). . . , 0, a, τ(a), τ2(a), . . . , τ j(a), 0〉

= f 〈0, m−j). . . , 0, pa, pτ(a), pτ2(a), . . . , pτ j(a), 1〉

= 〈0, m−j−1). . . , 0, a, a ∨ τ(a), a ∨ τ2(a), . . . , a ∨ τ j+1(a), 0〉

= 〈0, m−i). . . , 0, a, τ(a), τ2(a), . . . , τi(a), 0〉

which is just what we wanted to show.

Equation (4) is valid when i = m, even if m = 0; therefore, the following corollary holds.
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Corollary 9. Let A be a finite temporal algebra. In the algebra Am+1
a,b × (E0)c, where m ∈ ω and

c = 1, the equality τm(〈0, m). . . , 0, a, 0〉) = 〈a, τ(a), τ2(a), . . . , τm(a), 0〉 holds.

In order to apply Corollary 9 within the proof of Theorem 14, we need to assign an
appropriate value for m; this value will be selected by means of a concept of degree for
formulas α derived from their unique writing. In exchange for involve in our reasoning, a
notion of degree conceptually simpler to the others used in the literature, we need to define
two functions. In Definition 9, the function deg is given, which should actually be called
degg; similarly, we should give and use a function degh in the case f π(α) 6= 0. Our notion
of degree for a formula α, degg(α), counts the maximum number of nested g-symbols in
the formula α.

Remark 8. In the following, we will assume that X is the finite set {x1, . . . , xn}, where n ∈ ω∗.

Definition 9. Let α ∈ F(X); the degree of α, deg(α), is defined as follows:

deg(α) =



0, if α ∈ X,
deg(β), if α = ¬β,
max{deg(β), deg(γ)}, if α = β ∧ γ or α = β ∨ γ,
deg(β), if α = hβ,
deg(β) + 1, if α = gβ.

The proof of the following theorem follows by induction over the complexity of the
formula α. It is straightforward after the definition of degree and Lemma 13. Indeed,
validity of Theorem 13 is the reason underlying our definition of degree.

Theorem 13. Let v : X −→ A be a temporal valuation and v̄ its extension as a morphism to
F(X). Let us consider the temporal valuation w : X −→ Ak

a,b × Bc defined, for all 1 ≤ i ≤ n,
by w(xi) = 〈v(xi), v(xi), . . . , v(xi), 0〉. For all α ∈ F(X) and 0 ≤ j ≤ k −

(
deg(α) + 1

)
,

πj
(
w̄(α)

)
= v̄(α) (or equivalently, πj

(
w̃(π(α))

)
= ṽ

(
π(α)

)
), whenever deg(α) < k.

Now, we give the referred lower bounds. Everything was based on α ∈ F(X) such that
pπ(α) 6= 0 and some simple algebra Aα selected from α ∈ F(X) in Theorem 11. The case
study is suggested by the different behavior of the skew-product depending on whether
the equality g0 = 0 occurs in Aα. In the case g0 = 0, the bound is given in Theorem 14;
moreover, in the case of that g0 6= 0, then our bound is given in Theorem 16.

Theorem 14. Let α ∈ F(X) be such that pπ(α) 6= 0; Aα a finite simple temporal algebra;
ṽ : Ft(X) −→ Aα such that ṽ

(
pπ(α)

)
6= 0; and consider the element τm( f g0) ∈ Ft(X), where

m = deg(α). If in Aα the equality g0 = 0 holds, then 0 < π(α) ∧ τm( f g0) < π(α).

Proof. We have ṽ
(
τm( f g0)

)
= τm( f ṽ(g0)

)
= τm( f 0) = 0. Since ṽ

(
π(α)

)
6= 0, the

inequality π(α) ≤ τm( f g0) is not possible; therefore, 0 ≤ π(α)∧ τm( f g0) < π(α). Now, all
we need is to show that 0 < π(α) ∧ τm( f g0). For this, take the algebra Ak

a,b × (E0)c, where
c = 1 and k = deg(α) + 1, and define the temporal valuation w : {x1, . . . , xn} −→ Ak

a,b × Bc

by the equality w(xi) = 〈v(xi),
k). . ., v(xi), 0〉. According to Theorem 13, π0

(
w̃
(
π(α)

))
=

ṽ
(
π(α)

)
; hence, 〈a, 0, k). . ., 0〉 ≤ w̃

(
π(α)

)
. Since g0 = 0 holds in Aα, the value of f g0 in

Ak
a,b × (E0)c is 〈0, k−1). . . , 0, a, 0〉, where A is the algebra Aα. According to Corollary 9, we

have 〈a, 0, k). . ., 0〉 ≤ w̃
(
τm( f g0)

)
. Since w̃

(
π(α)

)
∧ w̃

(
τm( f g0)

)
= w̃

(
π(α) ∧ τm( f g0)

)
, it

follows that π(α) ∧ τm( f g0) 6= 0, and so 0 < π(α) ∧ τm( f g0) < π(α).
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Theorem 15. Let α ∈ F(X) be such that pπ(α) 6= 0 and both Aα and ṽ the algebra and the
morphism whose existence ensures Theorem 11. Let us assume that condition g0 6= 0 holds in Aα

and take the atoms c = 〈1, 0, . . . , 0〉 and d = 〈0, . . . , 0, 1〉 of Bt(Aα ,a). If deg(α) = m, k = m + 1,
A is Aα, and w̃ is the extension to Ft(X) of the temporal valuation:

w : X −→ Ak
a,b × Bt(Aα ,a)

c

defined by w(xi) = 〈v(xi),
k). . . , v(xi), 0〉, then the properties:

1. ṽ
(
σm+

t(Aα ,a)
2 (Msg0)

)
= 1.

2. 〈0, k). . . , 0, d〉 � w̃(Msg0).

3. 〈a, 0, k). . . , 0〉 � w̃
(
σm+

t(Aα ,a)
2 (Msg0)

)
.

hold.

Proof. According to the choice of s (see Definition 7), the equality Msg0 = 1 holds in A.

Since for all j ∈ ω we have that σj(1) = 1, it follows that σm+
t(Aα ,a)

2 (Msg0) = 1 and so

ṽ
(
σm+

t(Aα ,a)
2 (Msg0)

)
= 1. The second property is an immediate consequence of part 5 in

Lemma 15. For the third property, we will show that, under the hypotheses of the theorem,
if q represents to t(Aα, a)/2(≥ 1) and, for all 0 ≤ i ≤ k− 1, ui is the element of Ak × B2q−1

satisfying for 0 ≤ j ≤ k:

πj(ui) =

{
a, if j = i,
0, otherwise,

then in Ak
a,b × B2q

c the condition um−i � σi+q(Msg0) holds for all 0 ≤ i ≤ m. If i = 0, the
result is true by Lemma 16. Let us suppose that 0 ≤ i < m and that the result holds for
i, i.e., um−i � σi+q(Msg0). If um−i−1 ≤ ghσi+q(Msg0), then a ≤ πm−i−1

(
ghσi+q(Msg0)

)
and, so long as m− i− 1 < k− 1, we have

b ≤ πm−i
(
hσi+q(Msg0)

)
(5)

Since m− i ≤ k− 1, we deduce from (5) that b ≤ hπm−i
(
σi+q(Msg0)

)
; but, b ≤ pa, hence

um−i ≤ σi+q(Msg0), which contradicts the inductive hypothesis. In particular, we have
u0 � σm+q(Msg0); that is to say, 〈a, 0, k). . . , 0〉 � σi+q(Msg0), which proves part 3.

Theorem 16. Let α ∈ F(X) such that pπ(α) 6= 0, and let us assume that in Aα the condition
g0 6= 0 holds. Let m = deg(α) and both s and t(Aα, a) the values defined in Definition 7. Then,

0 < π(α) ∧ σm+
t(Aα ,a)

2 (Msg0) < π(α)

Proof. The morphism v̄ : Ft(X) −→ Aα satisfies that v̄
(
σm+

t(Aα ,a)
2 (Msg0)

)
= 1 and that

v̄
(
π(α)

)
6= 0. So, 0 < v̄

(
π(α)∧ σm+

t(Aα ,a)
2 (Msg0)

)
. For w̄ : Ft(X) −→ Ak

a,b×Bt(Aα ,a), where
A is here the algebra Aα and a is the selected atom satisfying a ≤ v̄

(
π(α)

)
, the condition

〈a, 0, k). . . , 0〉 � w̄
(
σm+

t(Aα ,a)
2 (Msg0)

)
holds (see Theorem 15). Nevertheles, since k = m + 1,

Theorem 13 ensures that π0
(
w̄(π(α))

)
= v̄

(
π(α)

)
; therefore, 〈a, 0, k). . . , 0〉 ≤ w̄

(
π(α)

)
. It

follows that
π(α) � σm+

t(Aα ,a)
2 (Msg0)

and so 0 < π(α) ∧ σm+
t(Aα ,a)

2 (Msg0) < π(α).

Gathering the information provided by Theorem 14 and Theorem 16, we obtain in
Corollary 10 an upper bound of the elements in Atm

(
Ft(X)

)
.
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Corollary 10. Let α ∈ F(X) be such that π(α) ∈ Atm
(

Ft(X)
)
. Then, π(α) ≤ g0∧ h0.

Proof. If π(α) � g0∧ h0, then pπ(α) 6= 0 or f π(α) 6= 0. If pπ(α) 6= 0, then take β equal to

τm f g0 or σm+
t(Aα ,a)

2 (Msg0) as needed (see Theorem 14 and Theorem 16). It follows that

0 < π(α) ∧ β < π(α),

hence the result. In case that f π(α) 6= 0, it is feasible to give a dual reason.

7. Atoms of Free Temporal Algebras

In this section, we show an application of the construction presented above and its
properties, namely, the exposition and counting of the atoms of any finitely generated
free temporal algebra. This result is well known (see [7]), although our proof is different
from the one given there. In fact, Corollary 10 provides a necessary condition for “being
atom”; therefore, it is appropriate to select the atoms between the formulas that verify this
condition. The technique is to give a particular bijection between the set of atoms under
investigation and other that is well known. Schematically, the main idea of this last section
is to split up the temporal algebra Ft(X) into two pieces, one of which provides no “atoms”
and the other —a “trivialization” of Ft(X) that makes it practically a free Boolean algebra
finitely generated— that provides all the atoms.

Our interest is now focused on free temporal algebras finitely generated. Let us
denote the free temporal algebra of O (resp. W) over the non-empty set X by Fo(X) (resp.
Fw(X)). From the results obtained in Section 3, we can easily deduce these others. We
have Ft(X) ∼= Fo(X) × Fw(X). It is straightforward to verify that Fo(X) (resp. Fw(X))
is isomorphic to Ft(X)/F0 (resp. Ft(X)/F1). Moreover, Ft(X)/F0 is freely generated by
X/F0 = {x/F0 : x ∈ X}. The temporal algebra Fo(X) is isomorphic to 〈B(X),∧,∨,¬, k, k, 1〉,
where B(X) = 〈B(X),∧,∨,¬, 1〉 is the free Boolean algebra freely generated by X, and
k : B(X)→ B(X) is the map defined by k(a) = 1 for all a ∈ B(X). Let n ∈ ω∗, σ ∈ {−1, 1}n,
and X = {x1, . . . , xn}; define ξσ ∈ Ft(X)/F0 by the equality ξσ =

∧{yσi
i : 1 ≤ i ≤ n},

where yi = xi/F0 and

αr =

{
α, if r = 1,
¬α, if r = −1.

Then, Fo(X) has 2n atoms and Atm(Fo(X)) = {ξσ : σ ∈ {−1, 1}n}.
It is straightforward to show that if π(α)/F0 ∈ Atm(Ft(X)/F0) then g0∧ h0∧ π(α) ∈

Atm
(
Ft(X)

)
. Moreover, if π(α)/F0, π(β)/F0 ∈ Ft(X)/F0 then it is clear that π(α)/F0 6=

π(β)/F0 if and only if h0∧ g0∧ π(α) 6= h0∧ g0∧ π(β). Therefore, the mapping

Ψ : Atm
(
Ft(X)/F0

)
−→ Atm

(
Ft(X)

)
given by Ψ(α/F0) = h0 ∧ g0 ∧ π(α), for all π(α)/F0 ∈ Atm

(
Ft(X)/F0

)
, is well defined.

Now, our goal is to show that Ψ is in fact a bijective map; for this, we will find an inverse.

Lemma 17. Let α be an element of F(X). If π(α) ∈ Atm(Ft(X)), then π(α)/F0 ∈ Atm(Ft(X)/F0).

Proof. Let us assume that π(α) ∈ Atm(Ft(X)). It follows from Corollary 10 that π(α) ∧
g0∧ h0 = π(α). Since π(α) is an atom, it is different to 0; therefore, π(α) ∧ g0∧ h0 6= 0, so
π(α)/F0 6= 0/F0. Then, suppose that π(β)/F0 ≤ π(α)/F0. It follows that h0∧ g0∧ π(β) ≤
π(α), and this implies that either h0 ∧ g0 ∧ π(β) = 0 or h0 ∧ g0 ∧ π(β) = π(α). The first
equality is equivalent to π(β)/F0 = 0/F0 and the second one to π(β)/F0 = π(α)/F0.

Theorem 17 and Corollary 11 (neither stated nor proved before) are the main results
of this section. In Theorem 17, we take advantage of a well-known algebra to establish a
bijection between its atoms and those of the finitely generated temporal algebra; this allows
us to count its atoms and to know their form.
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Theorem 17. Let n ∈ ω∗ and X = {x1, . . . , xn} be a finite set with cardinality n. Ft(X) has 2n

atoms and Atm
(
Ft(X)

)
= {ξσ ∧ h0∧ g0 : σ ∈ {−1, 1}n}.

Proof. Let us consider the mapping Υ : Atm
(
Ft(X)

)
→ Atm

(
Ft(X)/F0

)
given by

Υ
(
π(α)

)
= π(α)/F0, which is also well-defined, as indicated by Lemma 17. On the

one hand,

(Υ ◦Ψ)(π(α)/F0) = Υ
(
h0∧ g0∧ π(α)

)
=
(
h0∧ g0∧ π(α)

)
/F0

= (h0∧ g0)/F0 ∧ π(α)/F0 = 1/F0 ∧ π(α)/F0

= π(α)/F0

and, on the other hand, (Ψ ◦Υ)(π(α)) = Ψ(π(α)/F0) = h0∧ g0∧π(α). Since 0 ≤ h0∧ g0∧
π(α) ≤ π(α) and π(α) ∈ Atm

(
Ft(X)

)
, then either h0∧ g0∧ π(α) = 0 or h0∧ g0∧ π(α) =

π(α). The first case is impossible, since then we would have π(α)/F0 = 0/F0 and so
π(α)/F0 would not be in Atm

(
Ft(X)/F0

)
, in contradiction with Lemma 17. Therefore,

h0 ∧ g0 ∧ π(α) = π(α) and so (Ψ ◦ Υ)(π(α)) = π(α), for all π(α) ∈ Atm
(
Ft(X)

)
. It

follows that Ψ and Υ are mutually inverse and bijective mappings. Hence, the cardinality
of Atm

(
Ft(X)

)
coincides with the cardinality of Atm

(
Ft(X)/F0

)
. From the definition of Ψ,

it follows that Atm
(
Ft(X)

)
= {ξσ ∧ h0∧ g0 : σ ∈ {−1, 1}n}.

The proof of Corollary 11 is a straightforward consequence of Lemma 17 and
Theorem 17. It establishes the non-existence of atoms in the free time algebra when it is
generated by a non-finite set and announces the non-existence of atoms in the free algebra
of the variety W. Finally, it establishes that the free time algebra generated by a finite set is
not atomic even if it has atoms.

Corollary 11. Let X be a non-empty set. The following statements hold:

1. If X is infinite, then Ft(X) is atomless.
2. Fw(X) is atomless.
3. If X is finite, then Ft(X) is not atomic.

Proof. For the first statement, let us assume that Atm(Ft(X)) 6= ∅; then, by Lemma 17,
Atm(Ft(X)/F0) 6= ∅. But, Ft(X)/F0 is atomless whenever X is infinite. So, if X is infinite
then Atm(Ft(X)) = ∅. For the second, we apply Ft(X) ∼= Ft(X)/F0 × Ft(X)/F1 (see
Theorem 7) and Fw(X) ∼= Ft(X)/F1. If X is infinite, we apply that Ft(X) is atomless
(the first statement) to obtain that Atm

(
Fw(X)

)
= ∅; moreover, if X is finite then, from

Theorem 17, we have |Atm(Ft(X))| = |Atm(Fo(X))|; hence, Atm
(
Fw(X)

)
= ∅. For the

third statement, the second makes impossible to be Fo(X)× Fw(X) atomic; therefore, Ft(X)
is not atomic.

8. Conclusions

In this paper, we have investigated how the element g0∧ h0 intervenes in the order
of the temporal algebra A = 〈A,∧,∨,¬, g, h, 1〉. We have studied the varieties of temporal
algebras for which [0, g0 ∧ h0] has extreme values, i.e., {0} and A; this has provided the
varieties W and O, respectively. This has allowed us to obtain that every temporal algebra
is isomorphic to one, which is a product of a certain element of O and another in W; this
is the content of Theorem 7. Subsequently, this result has been particularized to the free
temporal algebra generated by X, and this has allowed one, in the application of the 7
section, to count atoms the contributed by the O factor (all) and those contributed by the W
factor (nothing). We consider this approach to be one of the essential aspects of the original
methodology we propose in our article.

As a second contribution, we have been able to obtain an original characterization of
simple temporal algebras. The characterization we provide makes use of the operators L
and M. The characterizing fact (see Theorem 9) is to be able, for each element of A other
than 1 (resp. 0), to take it to 0 (resp. 1) by a (finite) iteration of the application of L (resp.
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M). The study of simplicity in algebraic structures is a classical topic in universal algebra;
in this case, we have been able to obtain a very satisfactory criterion due to the clarity of
the information it provides and being arithmetical in nature.

On our way to investigate the role played by the element g0 ∧ h0, we have devised
an unconventional product of temporal algebras that we have provisionally called skew-
product (see Definition 6). It is based on finite temporal algebras and their previously
selected atoms. The definition of the temporal operations in this “product” algebra is not
componentwise, and in applications it must be tailored to the purpose; in our case, it was
the study of the role of g0∧ h0.

Section 5 is very technical, but we highlight Lemma 15 in it. Also of interest are
Corollary 8 and Lemma 16, where we establish the behavior of the construction with
respect to the simplicity of the skew–factors.

Theorem 14 and Theorem 16 show the use of the product construction introduced
above. They show how given a formula of the free temporal algebra satisfying certain
conditions compatible with nonatoms, it is possible to take advantage of the properties
of some conveniently constructed skew-product algebra in order to find a nonzero lower
bound of it. This allows one to prove easily, as we have done, that every atom of the free
temporal algebra is bounded by g0∧ h0. It is here that we see something reminiscent of the
classical lifting technique.

Finally, as an application, we give another proof of Theorem 1.1 of [7] (p. 61) about the
number of atoms of Ft(X), whenever X is of cardinality n (see Theorem 17). Specifically,
the technique of proof is to give a particular bijection between the set of atoms under
investigation and another well known finite set that we specify. As an original contribution,
we add the information on atomicity provided by Corollary 11. Along the way, we have
particularized the structure theorem we gave based on O and W to the case of the free
temporal algebra, noting the key role it plays in the study of atomicity. As far as we know,
the statement of Theorem 1.1 is the only known thing that has been included in this work;
however, the proof that we give as an application of the previous constructions and the
results are totally novel; in fact, what we present here is a technique.

We believe that we have introduced a tool that could be useful as part of a demon-
stration technique. In the future, we will investigate the role of this construction in the
field of polymodal algebras (see [11,14,17,19]). However, in the short term, contributing to
the study of order and atomicity in temporal varieties along the lines of [7] will be a high
priority for us. In [22], we presented an approach to the study of independently introduced
Dn varieties in [8]. There, we sensed the need to organize the ideas contained in this article
before delving into varieties that contemplated the stabilization of the powers of L starting
from a given one; in fact, when studying [8] we see the profuse use it makes of g0 ∧ h0,
which has been deeply studied in this work. Note that an important point of connection
between this work and [8] is in Theorem 8. We strongly believe that our general results
could be used to study the finitely generated free algebra on the variety Dn. On the other
hand, Tomasz Kowalski has left his study onD2 so we could make progress in the subscript.
In fact, as far as we know the current state of the problem is that left by those papers.
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Abbreviations
The following abbreviations are used in this manuscript:

iff if and only if
def. definition
induc hyp. induction hypothesis
resp. respectively
p. page
pp. pages
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