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Abstract

INTRODUCTION:Accumulation and interaction of amyloid-beta (Aβ) and tau proteins
during progression of Alzheimer’s disease (AD) are shown to tilt neuronal circuits away

from balanced excitation/inhibition (E/I). Current available techniques for noninva-

sive interrogation of E/I in the intact human brain, for example, magnetic resonance

spectroscopy (MRS), are highly restrictive (i.e., limited spatial extent), have low tempo-

ral and spatial resolution and suffer from the limited ability to distinguish accurately

between different neurotransmitters complicating its interpretation. As such, these

methods alone offer an incomplete explanation of E/I. Recently, the aperiodic compo-

nent of neural power spectrum, often referred to in the literature as the ‘1/f slope’, has

been described as a promising and scalable biomarker that can track disruptions in E/I

potentially underlying a spectrum of clinical conditions, such as autism, schizophrenia,

or epilepsy, as well as developmental E/I changes as seen in aging.

METHODS: Using 1/f slopes from resting-state spectral data and computational

modeling, we developed a newmethod for inferring E/I alterations in AD.

RESULTS: We tested our method on recent freely and publicly available electroen-

cephalography (EEG) and magnetoencephalography (MEG) datasets of patients with

AD or prodromal disease and demonstrated the method’s potential for uncovering

regional patterns of abnormal excitatory and inhibitory parameters.

DISCUSSION: Our results provide a general framework for investigating circuit-level

disorders in AD and developing therapeutic interventions that aim to restore the

balance between excitation and inhibition.
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1 INTRODUCTION

Abnormal accumulation and circuit-level interactions of amyloid-beta

(Aβ) and tau proteins in the cortex are the neuropathologic hallmarks

of Alzheimer’s disease (AD), starting decades before the emergence

of clinically measurable cognitive deficits.1–3 Previous findings sug-

gest that neuronal and circuit level modes of dysfunction (i.e., hyper-

and hypoexcitability) can arise from the neuronal effects mediated

by AD-related proteins. Interestingly, Aβ and tau have shown to

exhibit opposing effects on local circuit dynamics. There is strong

evidence that Aβ plaques, as well as soluble forms of Aβ, are a

key player in driving neuronal hyperexcitability in AD, which might

ultimately give rise to epileptiform activity.4–7 In direct contrast

to Aβ-mediated effects, tau is associated with suppression of neu-

ronal activity (hypoexcitability) and progressive loss of connectivity.8,9

Moreover, Aβ and tau may not act independently; recent evidence

suggests that both pathologies have synergistic effects.1 During AD

progression, Aβ and tau show different temporal evolution profiles

(in which tau pathology is delayed), are initially deposited in different

brain regions (Aβ plaques are particularly found in medial prefrontal

and medial parietal regions, while tau aggregates in the medial tem-

poral lobe), and propagate across other cortical regions as the disease

progresses.1–3,10,11 Given the complexity of the competing and syner-

gistic functional effects between AD-related proteins, disambiguating

their influence on neural dynamics and identifying how they modulate

circuit excitation and inhibition (E/I balance) remains a topic of intense

research.2,12,13

Direct and indirect in vivo measurement of E/I is especially chal-

lenging in the human brain. Current noninvasive assessments of

E/I in humans are largely restricted to magnetic resonance spec-

troscopy (MRS) measurements of in vivo concentrations of primary

excitatory (glutamate) and inhibitory (γ-aminobutyric acid, GABA)

neurotransmitters.14–17 This approach presents several methodolog-

ical challenges: the relatively low signals of glutamate and GABA

complicate their interpretation because of their overlap with signals

from other metabolites, it has low temporal and spatial resolution, and

their measurements are usually restricted to one or few brain regions.

For these reasons, current MRS approaches have limited utility for

tracking variations of E/I across cortical regions or behavioral states.

Recently, a range of novel features derived from electroencephalogra-

phy (EEG) and magnetoencephalography (MEG) recordings have been

described as robust proxy makers for noninvasive real-time measure-

ments of changes in E/I balance.18–22 One of the most promising

candidate E/I biomarkers is the exponent of the 1/f spectral power law,

often referred to in the literatureas the ‘1/f slope’. Convergingevidence

from neuroimaging, pharmacological, chemogenetic, and computa-

tional modeling studies has linked changes in this marker to conditions

related to altered E/I balance,23 such as autism,19,24 schizophrenia,21

epilepsy,25,26 and attention-deficit/hyperactivity disorder.27,28 The 1/f

slope has been additionally shown to exhibit strong changes both

across healthy aging29,30 and during early development,31,32 which

have been associated to alterations in the relative E/I ratio.

RESEARCH INCONTEXT

Systematic review: We conducted a review of PubMed-

indexed articles investigating neuroimaging biomarkers that

can track disruptions in excitation/inhibition (E/I) potentially

underlyingAlzheimer’s disease (AD).While biomarkers of E/I

imbalance are not yet as widely studied as other biomarkers

of AD, there have been some recent publications stressing

the importance of studying E/I imbalance at the circuit level,

which could be the most effective scale for neuroscientific

investigation and intervention. These relevant citations are

appropriately cited.

Interpretation: Our results support the hypothesis that E/I

imbalance in AD is reflected by and thus could be inferred

from the readout of spectral slope and demonstrate the

potential of this biomarker to be used alone or in combina-

tion with other biomarkers to investigate circuit dysfunction

in ADmodels.

Future directions: Recently, a range of novel E/I biomark-

ers has been described that are noninvasive and applicable

in humans and which can be deployed on a large scale.

Although each of these markers has been mapped to a dif-

ferent level of neural inference in the brain, they are likely

intercorrelated with one another, and potentially estimate

overlapping aspects of the same underlying signal at dif-

ferent scales. Further work would be needed to examine

the relationship between neural variables measured by each

biomarker and to investigate whether they can be used in

combination for a more comprehensive interrogation of E/I

balance.

Here, we introduce an approach that combines 1/f slopes from

resting-state spectral data and simulation of a cortical microcircuit

model with recurrent interactions between excitatory and inhibitory

neuronal populations33–35 for inferring E/I alterations in AD. We used

ourmodel-based inferenceapproach to interrogate two recentpublicly

available datasets of EEG36 andMEG37 recordings of patients with AD

or mild cognitive impairment (MCI). Finally, we assessed the potential

of our approach for revealing the specific shifts in E/I occurring across

cortical regions distinctively associated with tau and Aβ depositions at
different stages of AD.

2 MATERIALS AND METHODS

2.1 Participants

We used resting-state EEG and MEG data of people with AD or pro-

dromal disease from open and publicly available datasets. The EEG
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dataset36 included recordings of individuals between the ages of 40

and 90 that were collected at four sites in the United Sates: Advanced

Brain Monitoring (ABM) in Carlsbad, California; Advanced Neurobe-

havioral Health (ANH) in SanDiego, California;Massachusetts General

Hospital (MGH) in Boston, Massachusetts; and Mayo Clinic (MAYO)

in Rochester, Minnesota. Healthy controls were in two age groups:

between40 and60 (HC2, n=62) andbetween60 and90 (HC3, n=52).

Participants in the AD group (n = 26) were in the age range of 58 to

90. Patients were diagnosed with AD according to neurological eval-

uation and neuropsychological testing based on criteria developed by

the National Institute of Neurological and Communicative Disorders

and Stroke and the Alzheimer’s Disease and Related Disorders Associ-

ation (NINCDS-ADRDA)38 and based on the Diagnostic and Statistical

Manual of Mental Disorders (DSM-5) criteria for major neurocogni-

tive disorder (i.e., dementia) due to AD. Participants were excluded

if they reported known neurological or psychiatric disorders, cardiac

arrhythmias, heart failure (e.g., myocardial infarction), epilepsy, HIV+

diagnosis, bipolar disorder, or major depression (see ref. 36 for more

details).

MEG data were acquired from the BioFIND project,37 which

included individuals with clinically diagnosed MCI and healthy con-

trols pooled over a number of different projects from two sites: the

MRC Cognition & Brain Sciences Unit (CBU) in Cambridge, England,

and the Centre for Biomedical Technology (CTB) in Madrid, Spain. The

MCI diagnosis of patients from CBU included Addenbrooke’s Cogni-

tive Examination (ACE) and ACE Revised (ACE-R), and Mini Mental

StateExamination (MMSE) tests as standard. Positronemission tomog-

raphy (PET) and fluidic biomarkers were not performed to patients,

although magnetic resonance imaging (MRI) was used for clinical

follow-up in support of thediagnosis. Controls fromCBUwere selected

from thepopulation-derivedCamCAN39 cohort of healthy people from

the same geographic region and having similar age and sex distribu-

tion. Controls were diagnosed based on MMSE (and indeed ACE-R)

scores above conventional cutoffs. TheMCI diagnosis of patients from

CTB was determined with intermediate probability according to the

National Institute on Aging-Alzheimer Association criteria40 that is

given by a clinician based on clinical and cognitive tests, self- and

informant-report, and in the absence of full dementia or obvious other

causes. For some patients, there was additional biomarker evidence

of atrophy from MRI or long-term follow-up and genotyping for the

apolipoprotein E (APOE) ε4 allele. The CTB controls had a full neu-

ropsychological assessment to confirm normal cognition, and the same

type of biomarker assessment as that done for the MCI group. For a

subset ofMCI patients, additional informationwas provided indicating

whether or not they subsequently progressed to dementia (“probable

AD”) over subsequent years, according to their managing clinician. We

only used MCI patients from this subset so that our results can be

interpreted in terms of neural changes associated with probable AD

(converted) or with patients who later did not convert to a demen-

tia diagnosis (not converted). Additionally, and provided that age is

the most important risk factor for developing AD,2,13 we limited our

study of the BioFIND dataset to elder individuals (older than 75 years),

including n= 50MCI patients (n= 27 converted, n= 23 not converted)

and n= 51 controls.

2.2 Preprocessing and power spectral analysis

We used the same preprocessing methods as described in the respec-

tive publications of the MEG and EEG datasets.36,37 We refer the

reader to the corresponding publications for a detailed description of

the preprocessing steps.

Briefly, EEGandMEGrecordingswere gatheredduring resting state

with eyes closed (during 5 minutes for EEG recordings and 481.5

and 180 seconds for controls and MCI in MEG recordings) and band-

pass filtered (1-49 Hz for EEG data and from 0.5 to 48 Hz for MEG

data). Bad channels of EEG data were detected and removed, as well

as sources other than brain, for example, eye blinks (less than 0.01%

of total data were excluded). EEG data were then epoched into 1-

second non-overlapping windows at each channel. The first step of

theMEG analysis pipeline included Signal Space Separation (SSS) using

MaxFilter version 2.2.12.41 The full parameters used by MaxFilter

are described in the corresponding publication.37 Briefly, in the first

call to MaxFilter, the MaxFilter’s “autobad” option was used to detect

bad channels and MaxFilter’s “headpos” option to estimate head posi-

tion every second. In the second call, MaxFilter was passed the list of

channels that were bad in more than 5% of buffers for a given partic-

ipant before carrying out SSS. Other parameters, such as MaxFilter’s

“temporal” SSS option, MaxFilter’s “mvcomp” and MaxFilter’s “trans”

option were not used. The other steps of the MEG preprocessing

included epoching (2-second window), bad epoch detection (number

of bad epochs = 4.1 and 4.7 for controls and MCI), beamforming and

region-of-interest (ROI) extraction (further details can found in ref. 37).

EEG power spectral densities (PSD) were available out of the box in

the EEGdataset.36 EEGPSDswere computed using LabXEEGprocess-

ing software (Advanced Brain Monitoring Inc., Carlsbad, California).

LabX employs modified periodogram PSD estimates with a 1-second-

long Kaiser window (b = 6) and 50% overlap (see ref. 36 for further

details). We computed MEG PSDs of ROIs by ourselves using a simi-

lar approach.MEGPSDswere defined by time averaging spectrograms

computed with a 1-second-long Kaiser window (b = 6) and 50% over-

lap. We normalised PSDs by dividing each EEG channel’s or ROI’s PSD

by its mean power.

We parameterized power spectra into periodic and aperiodic com-

ponents using the FOOOF algorithm42 with the following configura-

tion: frequency range = (1, 40) Hz, maximum number of peaks = 3,

peak threshold = 1, peak width limits = (2, 50) Hz. In this study, we

disregarded the periodic (oscillatory) properties of spectral fittings.

Aperiodic activity is described by a 1∕f𝜒 distribution, with exponen-

tially decreasing power across increasing frequencies.Whenmeasured

in the log-log space, the 𝜒 parameter, referred to as the aperiodic

component, is computed as the negative slope of the log-log power

spectrum (1/f slope). The aperiodic component is additionally param-

eterized with an “offset” parameter, which reflects a shift of power
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F IGURE 1 Changes of spectral properties in AD and E/I imbalance predictions from the recurrent networkmodel. (A) Overview of the
networkmodel that includes recurrent connections between two types of populations: excitatory cells (E) and inhibitory cells (I). (B) 1/f slopes
frommodel simulations as a function of the ratio between synaptic conductances (gE∕gI) and fit of the polynomial regressionmodel. (C) Normalized
power spectrum across all individuals from the HC2, HC3, and AD groups and over all electrode locations. Dash lines correspond to spectral fits
including aperiodic and periodic components. (D) Topographic representation of mean differences in gE∕gI. (E) Predictions of changes in gE∕gI for
specific subsets of electrodes (p and d indicate p-value of the two-sided t-test and Cohen’s effect size, respectively).

spectrum. Since power spectrum normalization modifies relative dif-

ferences in the offset of power spectrum, we did not include this

parameter in our study to avoidmisinterpretation of results.

2.3 Cortical network model and computation of
field potentials

The cortical network model included an excitatory and an inhibitory

population of leaky integrate-and-fire (LIF) spiking neuron models

that interact through recurrent connections24,33,34,43 (Figure 1A). Each

population received two different Poisson signals: an external input

with constant-rate (𝜐0) that can represent sensory or cortico-cortical

inputs, and a noise input that captures intracortical fluctuations of neu-

ral activity. We used the same network configuration with the same

parameters as described in previous publications.24,33,44 Briefly, the

network consists of 5000 conductance-based LIF neuron models, 80%

of which are excitatory (i.e., they form α-Amino-3-hydroxy-5-methyl-

4-isoxazole propionic acid (AMPA)-like excitatory synapses with other

neurons) and 20% are inhibitory (forming GABA-like synapses). Neu-

rons in the network are randomly connected with each other (connec-

tion probability = 0.2). To account for neural activity with different

E/I ratios, we performed several simulations of the recurrent network

model where we systematically varied the ratio between excitatory

and inhibitory synaptic conductances (gE∕gI) across the range 0.06

– 0.2 (Figure 1B). We additionally set 𝜐0 = 3 spikes/s, a low input

strength that drives the network into a spontaneous activity regime.

We repeated simulations for a given value of gE∕gI with different ran-

dom initial conditions (e.g., recurrent connections of the network). All

simulationswere performed usingNEST v2.16.045 and parallelized in a

high-performance computing server (32-core CPU and 128GBRAM).

Field potentials cannot be directly computed from LIF neuron mod-

els because in a LIF model all transmembrane currents collapse into a

single point in space and the resulting extracellular potential (and in

turn, the resulting field potential) is zero. An approximation of field

potentials can be calculated using variables available from simulation

of the network model (e.g., synaptic currents). Here we computed

an approximation of M/EEG signals as the sum of absolute values of

AMPAandGABApostsynaptic currents on excitatory cells (
∑|IAMPA| +∑|IGABA|). This simple approach was shown to perform remarkably

well in predicting simulated field potentials at different spatial scales,

from local field potentials (LFPs)34 to EEGs33 and in capturing more

than 90% of variance of empirical data recorded in neocortex.35,46

2.4 Regression model for estimating E/I ratio and
statistical tests

We computed a least-squares polynomial regression model

(degree = 2) with data from the whole set of simulations of the
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recurrent neural network (varying gE∕gI across the range 0.06 –

0.2 and 𝜐0 = 3 spikes/s). The regression model was computed using

x = 1/f slopes from simulated field potentials and y = gE∕gI values.

Estimated parameters of the regression model were used to predict

changes in gE∕gI from slopes of empirical M/EEG data. Measures of

slopes and predictions of gE∕gI followed a normal distribution and

had equal variances. We determined whether there was a significant

difference between two groups of measures (e.g., control vs. AD) using

a two-sided t test. Significant effects between more than two groups

of measures (e.g., control, MCI converted and non-converted) were

tested using a one-way analysis of variance (ANOVA) test and post-hoc

pairwise comparisons with Tukey honestly significant difference (HSD)

confidence intervals (alpha = 0.05). We used Cohen’s d to account for

effect size. In all statistical tests, data were pooled over all epochs and

individuals.

3 RESULTS

3.1 Opposing E/I shifts in posterior and anterior
cortical areas of patients with AD

We first investigated whether variations in spectral slopes could be

related to changes in E/I using computational modeling.We performed

several simulations of a LIF neural network model with interacting

excitatory and inhibitory neuronal populations24,33,34 (Figure 1A) in

which we systematically varied the ratio between synaptic conduc-

tances (gE∕gI) (Figure1B). From thismodel,we computed thenetwork’s

M/EEGs as the sum of absolute values of all synaptic currents, an

approximation that has demonstrated to capture the main properties

of field potentials at different spatial scales and has been validated

on both simulated and real cortical data.33–35,46 Consistent with pre-

vious work,22,24 1/f slopes computed from simulated field potentials

decreased (flatter slopes) with increasing gE∕gI. Using simulation data,

we computed a polynomial regression model to fit the relationship

between gE∕gI and slope values ( R2 = 0.77, p < 0.001, Figure 1B).

These modeling results indicate that changes in synaptic E/I ratio are

reflected by and thus could be potentially inferred from the readout of

spectral slope.

We next analyzed EEG data from an open EEG dataset36 that

included resting-state EEG recordings of healthy individuals across dif-

ferent ages (HC2 and HC3 groups) and patients with AD. Comparing

power spectra of AD patients and age-matched controls (HC3), we

found that spectral recordings of AD patients displayed, as described

in various studies (for review, see13), slower brain oscillatory activ-

ity with a prominent reduction of alpha (8–12 Hz) and beta (12–

30 Hz) rhythms, and increased delta/theta (0.5 – 8 Hz) band activity

(Figure 1C). Additionally, we observed a flattening of power spectrum

in HC3 (older) individuals (Figure 1C), as well as smaller slopes (Figure

S1A), compared toHC2 (younger) group,whichwas consistentwith the

hypothesis of increasing neural noise in healthy aging.29,30

To test whether slopes can be used to predict changes in E/I,

we computed 1/f slopes of individuals in AD and HC3 groups and

used the regression model to produce gE∕gI predictions from these

empirical slope measures. The topographic representation of changes

in gE∕gI (Figure 1D) revealed an interesting pattern in AD with

opposing effects suggesting a coexistence of excitation- and inhibition-

dominated regions. This is consistent with Aβ and tau effects at

advanced stages of the disease, in which Aβ and tau pathologies are

coestablishedandcoexist.2 Importantly,wecompared local differences

in gE∕gI across subsets of electrodes (Figure 1E) and found that some

regions, such as prefrontal locations (Fp2), exhibited stronger shifts in

gE∕gI toward excitation (p= 0.1, d= 0.26) compared to other locations

(but not significant), while gE∕gI in temporal electrode locations (T6)

showed significant shifts toward inhibition (p = 0.04, d = −0.32). Dif-

ferences in gE∕gI betweenADpatients and controls weremuchweaker

and insignificant when pooling data from all electrode locations (All,

Figure 1E), which suggests that local synaptic excitatory and inhibitory

drives cancelled each other out at the global network level. Direction

and strength of changes in slopes (Figure S1B and C) were largely in

agreement with the patterns of differences in gE∕gI but less prominent

at Fp2 and T6 electrode locations.

3.2 Cortex-wide hyperexcitability in MCI patients

We examined MEG data from a different publicly available dataset,

the BioFIND dataset.37 This dataset included resting-state MEG data

of MCI patients and healthy controls. Additional labels were provided

for MCI patients indicating whether they subsequently progressed to

probable AD (converted) or did not convert to a dementia diagnosis

(not converted). We computed averageMEG power spectra and found

substantial differences in spectral properties between controls (Ctrl)

and MCI patients (Figure 2A). Power spectrum shapes of controls and

not-convertedMCI patients (MCIn) largely overlapped across a broad-

band of low frequencies from 0.5 to 12 Hz. In contrast, the power

spectrum of converted MCI patients (MCIcv) comparatively captured

someof thedefining features ofADat lower frequencies, such as atten-

uation of alpha rhythm and increased delta/theta power. At higher

frequencies (> 25 Hz), power spectra of MCIn and MCIcv eventually

converged and showed higher power than control spectra.

We then computed 1/f slopes (Figure S3) and their corresponding

gE∕gI estimates (Figure 2B and C, and Figure S2) for every one of the

38 ROIs of the parcellation used here (described in ref. 47). Hyper-

excitability (i.e., increased gE∕gI) ostensibly dominated along cortical

regions in bothMCI groups and agreedwith clinical data ofAβhyperac-
tivity in earlyAD.2 Consistently, slopes ofMCIn andMCIcv were overall

reduced across ROIs (Supp. Figure 3). The analysis of gE∕gI predictions

pooled across all ROIs (All, Figure 2C) revealed statistically significant

global differences between controls and MCIn, and between controls

and MCIcv (p < 0.001 in both cases) although small size effects (d ≤

0.17). We finally compared regional gE∕gI variations across subsets of

ROIs (R1,R2,R3, andR4, Figure2C) andobserved thatmost gE∕gI shifts

of MCIcv with respect to controls were insignificant or marginally sig-

nificant,while gE∕gI variations betweenMCIn and controlswereoverall

stronger and significant (p < 0.01, d ≥ 0.2 in all subsets of ROIs). The
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F IGURE 2 Spectral changes and E/I shifts inMCI. (A) Normalized power spectrum across all individuals from the control (Ctrl), MCIn, and
MCIcv groups and over all ROIs. (B) Surface plots (lateral view) representingmean differences in gE∕gI. (C) Predictions of gE∕gI pooled across all
ROIs (All), and for a subset of selected ROIs (R1, R2, R3 and R4) represented in the upper surface plots (p and d indicate p-value of the post-hoc
Tukey HSD test and Cohen’s effect size respectively).

weaker increase in local and global excitability of MCI converters may

be linked to the presence of inhibitory influences that may reflect a

more advanced stage of the disease and the onset of tau pathology.

4 DISCUSSION

Wehave described a newmethod for inferring alteration in the E/I bal-

ance of neuronal circuits in AD using EEG and MEG measures. It is

based on a recent neuroimaging biomarker, the 1/f slope, which has

been proposed as a robust proxy marker for noninvasive real-time

interrogation of E/I imbalance in many neuropsychiatric conditions.18

We used a regression model to map empirical 1/f slopes onto E/I

estimations obtained from computational simulations of a recurrent

cortical microcircuit model of spiking neurons that has shown to cap-

ture the main properties of simulated and real field potentials.24,33,34

Weevaluated the ability of our approach to identify potential E/I imbal-

ancesusing recordingsof patients at prodromal andclinical stages from

publicly available EEG36 and MEG37 datasets. Collectively, our results

support thehypothesis thatE/I imbalance inAD is reflectedbyand thus

could be inferred from the readout of spectral slope and demonstrate

thepotential of this biomarker tobeused to investigate circuit dysfunc-

tion in AD models. We discuss the implications and limitations of our

method below.

4.1 Predictions of E/I imbalances are potentially
associated with spatiotemporal progression of tau
and Aβ in AD pathophysiology at circuit level

Aβ and tau dynamically modulate neuronal and circuit activity dur-

ing AD progression.1,2,10,13,48 At earlier stages, Aβ plaques accumulate

and predispose neuronal circuits toward neuronal hyperexcitability

(Figure 3). Importantly, epileptic activity and enhanced seizure suscep-

tibility are phenomena often observed in early AD.49,50 A key finding

from the current study is consistentwith these observations.We found

that E/I prediction results from the cohort of patients with MCI, a pro-

dromal state of AD (likely between early and mid stages in Figure 3),
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MARTÍNEZ-CAÑADA ET AL. 7 of 12

F IGURE 3 Schematic representation of the spatiotemporal progression of Aβ and tau biomarker levels during AD progression. As the disease
progresses, Aβ and tau show different temporal evolution profiles in which Aβ plaque deposition precedes cortical tau pathology. Aβ and tau
pathologies initially start in different brain regions. Aβ plaques are initially deposited inmedial prefrontal andmedial parietal regions, while tau
aggregates first become evident in themedial temporal lobe, probably starting in the entorhinal cortex. During AD progression, Aβ and tau spread
through different areas of cortex andmay interact synergistically. Blue and red shaded areas indicate the areas affected by tau and Aβ pathology,
respectively. This schematic plot was created based on refs. 1, 2, 10, 11

consistently displayed a generalized pattern of hyperexcitability along

cortical regions. Tau pathology, which is primarily associated with sup-

pression of neuronal activity, by contrast, becomes evident in later

stages of AD progression, at advancing disease stages.10 Indeed, it

has been shown that increase in tau pathology correlates much more

strongly than Aβ pathology with neurodegeneration and cognitive

impairment, the hallmarks of the clinical stage of AD. The tau aggre-

gates are commonly found in the medial temporal lobe, starting in

the parahippocampal gyrus, which includes the entorhinal cortex, from

which they spread to limbic areas, and from there to the associ-

ation areas.1 At advanced stages of the disease, thus, Aβ and tau

pathologies coexist and interact, and their effects, in combination,

can shift neuronal circuits from balanced E/I toward hyperexcitability

or hypoexcitability. Our findings based on E/I estimations using EEG

data from patients with AD draw remarkable potential parallels to

the spatiotemporal evolution profiles of Aβ and tau between probably
occurring at mid and late stages (Figure 3). First, topographic repre-

sentation of E/I estimates revealed a coexistence of excitation- and

inhibition-dominated regions. Second, we found significant patterns of

hyperexcitability in prefrontal locations (regions associated with initial

Aβ deposition) and of hypoexcitability in the temporal lobe (associated

with initial tau accumulation). Taken together, these results show the

potential of our inference method to track E/I disruptions during AD

progression both spatially and over time.

4.2 Impact of our method to investigate brain
dysfunction at the circuit level and monitor
responses to drug treatments that aim to restore the
balance between excitation and inhibition

A leading theory holds that many neurodevelopmental disorders, from

autism to schizophrenia, and neurodegenerative diseases, such as AD,

are the result of an imbalance in the activity of excitatory and inhibitory

neurons.2,13,51–54 Brain dysfunctionhas been traditionally investigated

and diagnosed entirely at the behavioral level, whereas interventions

aimed to correct alterations pharmacologically focused on the molec-

ular level. A recent viewpoint argues that the most effective scale

for neuroscientific investigation and intervention could be the cir-

cuit level,2,3,13,51 which is the intermediary scale bringing the gap

between molecular and genetic changes at the microscopic level and

macroscopic alterations in behavior. Our modeling approach provides

a mechanistic framework linking abnormal E/I ratio at the level of cir-

cuits (where neuronal and synaptic changes mediated by AD-related

proteins possibly converge) to properties of macroscopic brain signals

(M/EEG). Results of this study indicate that computational modeling

at the circuit level could help integrate neurophysiological aspects of

AD at the micro-, meso-, and macroscale. Moreover, we have shown

that our inference method largely tracks directionality of expected

E/I shifts during AD progression; thus, our approach could be used

to estimate changes in excitatory and inhibitory circuit parameters in

response to administration of pharmacological drugs commonly used

for treatment of different clinical disorders (e.g., memantine, ketamine,

or lorazepam).

4.3 Novel noninvasive E/I proxy markers

Recently, a range of novel E/I biomarkers has been described that

are noninvasive and applicable in humans and that can be deployed

on a large scale.18 These markers represent a key translational link

across species and recording scales and can be applied in resting-state

experiments and tasks that do not require extensive cognitive pro-

cessing. They have been used to make inferences of E/I disruptions

across many psychiatric and neurodevelopmental disorders, often

combined with pharmacological or chemogenetic manipulations

that modulate the level of inhibition and excitation,19,21,24 or to

uncover the neural circuit basis of some key brain processes such

as development31,32 or aging.29,30 Some of these novel E/I markers

are aperiodic 1/f signal,22,24 neuronal avalanches,55,56 long-range
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temporal correlations (LRTC),57 neural entropy,58,59 and

microstates.60 Although each of these markers has been mapped

to a different level of neural inference in the brain, they are likely

intercorrelatedwith one another, and potentially estimate overlapping

aspects of the same underlying signal at different scales. Further work

would be needed to examine the relationship between neural variables

measured by each biomarker and to investigate whether they can be

used in combination for a more comprehensive interrogation of E/I

balance. Additionally, combining these biomarkers with other imaging

techniques, such as MRS and PET,12,61,62 will allow us to gain a better

insight into the mechanisms of E/I by leveraging the strengths of each

method.

4.4 Biophysical modeling in AD research

Previous models in AD research have lumped neural populations at

each brain region into neural masses (neural mass models).12,63–68

Using neural mass models, recent studies have found a relation-

ship between abnormal excitatory and inhibitory time-constants and

spatial depositions of Aβ and tau,12,66 have linked neuronal hyper-

activity in preclinical AD to oscillatory slowing,64,66 and have devel-

oped a successful strategy to preserve network integrity during AD

progression.68 A recent work has also used neural mass models to

extract information about the excitatory/inhibitory balance in sin-

gle subjects and suggested that AD subjects were characterized by

increased global coupling and increased inhibition.63

Neural mass models have been proven useful to explain large-scale

neuronal processes and structure-function coupling at macroscopic

scales. Spiking and multicompartment models rather focus on describ-

ing neural phenomena at the micro- and mesoscopic scales and allow

researchers to simulate synaptic connectivity, individual spike events

and/or whole-cell dynamics, as well as heterogeneous parameter

distributions in network populations. Due to limited computational

resources and the higher level of complexity of point neuron models

and especially multicompartment models, appropriateness and inter-

pretability of these models at whole-brain scale has been questioned.

However, these models are uniquely positioned at an intermediary

scale of biophysical description, which facilitates interpretation of

the relationship between neuronal and synaptic changes mediated

by molecular and cellular mechanisms with circuit-level dynamics

and properties of field potentials. Moreover, a range of studies have

developed biophysics-based methods for computing “proxies” of field

potentials that provide accurate approximations of extracellular sig-

nals from simulations of spiking network models.33,34,69,70 Recently,

large-scale network models of cortex incorporating point neuron or

multicompartment models and data-driven long-range connectivity

between areas have shown to reproduce both experimental spiking

statistics and cortico-cortical interaction patterns measured in func-

tional MRI.71,72 Spiking and multicompartment models offer a new

perspective for unifying local and large-scale accounts of cortical

dynamics and provide a promising platform for future studies of brain

function and dysfunction.

4.5 Limitations and future work

Our findings should be considered in the context of the following

limitations.Our approach is basedon a spiking networkmodel of recur-

rently connected excitatory and inhibitory neuronal populations that

has been constructed to approximate circuit phenomena with high

accuracy at the local scale level.35,44,73,74 However, we did not model

brain structure and function at the scale ofmacroscopic networks, that

is, among brain regions and their long-range cortico-cortical connec-

tions. Mean field or neural mass models75–78, coupled using anatomic

connectivity information, have been employed to account for whole-

brain macroscopic phenomena, such as the emergence of patterns of

coherent activity across regions in the cerebral cortex and propaga-

tionof sloweroscillatory rhythms. Themost effective scale for studying

AD (and other clinical conditions) and for intervention remains an area

of active research.2,13 The challenge for future research on neural

functional impairment will be to devise and implement the necessary

multilevel computational modeling approaches that can integrate local

circuitry and long-range circuit dynamics.71,72,79

Another limitation of our approach is that the cortical circuit

model in its current form does not include some important synaptic

mechanisms such as N-methyl-D-aspartate (NMDA) synapses. NMDA

receptors are critically involved in persistent cortical activity under-

lying working memory and evidence accumulation.79,80 Disruptions in

cortical NMDA receptor signalling have been associated with certain

brain disorders, including AD,81 and likely affect E/I balance.21,82–84

Using our simplified model of recurrent AMPA and GABA synaptic

currents, we have demonstrated here that E/I imbalances across corti-

cal regions can be consistently associated to spatiotemporal evolution

profiles of AD-related proteins. An interesting topic for a future study

would be to extend the spiking network model to include NMDA

synapses and to assess their impact on the current prediction results

of E/I alterations in AD.

The range of frequencies used to fit the aperiodic component of

power spectrum varies across studies.21,22,24,30 A recent study that

investigated E/I changes in AD has also incorporated the aperiodic

exponent of power spectrum as a proxy marker to determine differ-

ences in E/I balance.85 Using a range of frequencies between 30 and

48 Hz, they observed a lower aperiodic exponent (a shift of E/I toward

excitation) in AD dementia patients. Future studies should method-

ically quantify how the E/I ratio changes as a function of the range

of frequencies employed and identify the most appropriate frequency

range to compute the 1/f slope that could produce the most accurate

estimates of E/I imbalances in AD.

Finally, it is noteworthy to mention that the experimental proto-

cols for recording the open EEG and MEG data used in this study

and for recruiting participants, though they are out of our control,

include additional limitations. First is the fact that the data come from

different sites. Although the recording machine models were identi-

cal, there are still differences in individual devices (e.g., in their noise

level). The clinical assessments followed international guidelines but

the precise categorization as AD, MCI, and control is likely to dif-

fer across clinicians at different sites. The tasks performed prior to
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resting were different and likely had different levels of fatigue, which

could have contributed to noise in the data. The groups also differ in

other respects, such as age and education.

5 CONCLUSION

A prominent view is that circuit-level effects mediated by AD-related

proteins provide diagnostic and prognostic information and offer a

unique framework to understand AD and develop effective thera-

peutic interventions. Disambiguating the complexity of Aβ and tau

excitatory and inhibitory influences and their interacting effects at

the synaptic and circuit scales will be a crucial next step to iden-

tify rational therapeutic targets in AD. The approach presented here,

consisting of recurrent network modeling and multimodal neuroimag-

ing data, provides a general framework for investigating circuit-level

excitatory/inhibitory imbalances and could help in linking micro- and

macroscopic scales of investigation in AD.
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