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Abstract: Phase-type distributions (PHDs), which are defined as the distribution of the lifetime up to 

the absorption in an absorbent Markov chain, are an appropriate candidate to model the lifetime of any 

system, since any non-negative probability distribution can be approximated by a PHD with sufficient 

precision. Despite PHD potential, friendly statistical programs do not have a module implemented in 

their interfaces to handle PHD. Thus, researchers must consider others statistical software such as R, 

Matlab or Python that work with the compilation of code chunks and functions. This fact might be an 

important handicap for those researchers who do not have sufficient knowledge in programming 

environments. In this paper, a new interactive web application developed with shiny is introduced in 

order to adjust PHD to an experimental dataset. This open access app does not require any kind of 

knowledge about programming or major mathematical concepts. Users can easily compare the graphic 

fit of several PHDs while estimating their parameters and assess the goodness of fit with just several 

clicks. All these functionalities are exhibited by means of a numerical simulation and modeling the 

time to live since the diagnostic in primary breast cancer patients. 
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1. Introduction  

In a wide sense, reliability analysis is a branch of statistics in charge of measuring the probability 

that a system performs correctly during a specific time duration, usually called ‘lifetime’ (or failure 
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time). These systems have undergone continuous wear by uncontrollable variables, so that each of 

them is going to fail (randomly) at different instants of time. In this context, the Probability Theory 

plays a fundamental role in the field of reliability analysis, since identifying the probability distribution 

of the lifetime might shed light on the existing variability behind the systems operation. Many of the 

traditional probability distributions such as Exponential, Weibull or Gamma have been employed for 

these purposes [1,2], even for modeling count data by constructing their discrete analogues [3]. 

However, due to the apparition of increasingly complex systems, these probability distributions display 

a pretty poor fit in many occasions. To solve this problem, a solution might be considering some kind 

of transformation for the data (see, for example, [4]) or applying a probability distributions mixture 

(see, for instance, [5,6]). Another suitable option is to consider an approach based on Phase-type 

distributions (PHD) [7,8].  

PHDs are defined as the distribution of the lifetime up to the absorption in an absorbent Markov 

chain with finite state space (for more information about Markov processes, see, for example, [9,10]). 

Its matrix-algebraic form makes it possible to model complex systems with well-structured results, 

which facilitates the posterior interpretation. The main characteristics of PHD are reviewed in depth 

in [11]. An interesting result is that any non-negative probability distribution may be approximated 

arbitrarily closely by a PHD, since this class of distributions is dense in the set of probability 

distributions on the non-negative half-line [12,13]. Thanks to these characteristics, PHDs are highly 

considered in many areas of knowledge. Among other many contributions, PHDs have shown better 

behavior than Weibull or Exponential distributions to model data associated with non-volatile 

memories [14,15]; in [16], PHDs are used to predict the length of stay in hospital for elderly 

patients; in [17], PHDs are applied in the sector of risk theory; and a new class of distributions called 

Linear PHDs was introduced to model the functional principal component analysis in [18]. 

The inherent problem that many researchers face when they are using PHD is that most friendly 

statistical software such as SPSS or Statgraphics do not have a module available to handle PHD. Then, 

researchers must resort to programs such as R, Matlab or Python, in which it is necessary to run code 

chunks and collections of functions to obtain the outcomes. This fact may cause an important rejection 

due to the lack of knowledge in programming concepts and researchers would look for other 

alternatives, although the results are not good enough. Hence, there is a great need to develop new 

tools in which no kind of knowledge about programming or mathematical concepts are required to use 

them. In this way, researchers could apply complex statistical analysis, no matter their area of research 

and education.  

In this regard, many friendly and interactive applications are being built in recent years on R 

package shiny [19], which significantly reduces the barriers to produce webpage-style representations 

of analysis results in R. The interfaces produced by the shiny framework are rendered locally by a web 

browser. These apps can be hosted publicly and might be incorporated as important parts of reports 

and scientific papers [20]. In the literature, there are already a wide variety of shiny apps for different 

purposes. In [21], an interactive graphics for functional data analyses is introduced, while the app 

called shinyMethyl is aimed at the visualization of high-dimensional genomic data [22]. [23] built a 

shiny application that produced daily updates about the evolution of the SARS-CoV-2 epidemic 

worldwide. Within the field of reliability analysis, shinystan is developed for exploring Bayesian 

models fit using Markov Chain Monte Carlo [24]; and a new methodology is presented in [25] to 

compare Kaplan-Meier curves by means of a shiny app. Likewise, multiple shiny apps have been 

developed for purely practical purposes. For instance, [26,27] for applications in the food field and [28,29] 
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for applications in the industrial sector.  

A new open access shiny app for modeling lifetimes through PHD is proposed in the current paper, 

with no programming skills required to use it. This interactive web application is composed by two 

blocks: An introductory part where the major features of PHD are explained graphically when different 

structures are considered for the transition matrix; and a module where the user can estimate the best 

PHD for a dataset using multiple estimation options available in the R package mapfit [30]. Here, the 

user can compare the graphic fit of several PHD while estimating their parameters and assess the 

goodness of fit. This same methodology is extended in the developed shiny app for the case of one cut-

point PHD [31]. This new class of distributions aims to reduce the number of parameters to be 

estimated and to improve the quality of the fit, especially in the tails of heavy distributions where the 

classical PHD might provoke an inaccurate fit. Note that for fitting classical probability distributions, 

R contains a package called rriskDistributions [32], in which users can also choose the most 

appropriate distribution without any knowledge of the R syntax. 

Apart from this introduction, the rest of the manuscript is organized as follows: The major 

theoretical concepts related to PHD and one cut-point PHD are described in Section 2. Section 3 

contains a detailed explanation of the developed shiny app. An illustrative example about how to use 

the app from a users’ perspective is displayed in Section 4. Besides, a real dataset that contains the 

survival time since the diagnostic in primary breast cancers patients has been modeled in Section 5. 

Section 6 contains a brief discussion about future improvements on the app and the possibilities of 

using PHD on Matlab and Python. Conclusions are given in Section 7. 

2. Materials and methods 

In this Section, the major theoretical concepts related with Phase-type distributions and one cut-

point Phase-type distributions are detailed.  

2.1. Phase-type distributions 

As it was stated in the introduction, PHD are defined as the distribution of the lifetime up to the 

absorption in an absorbent Markov chain with finite state space. Intuitively, this means that the process 

is initially found in some of the states (not necessarily in the first one) in which it stays a certain time 

up to jumping towards another state. This process is repeated a number of times up to reaching the 

absorbent state in which the process dies.  

Formally, a non-negative random variable X is phase-type distributed with representation (𝜶, 𝐓) 

if its cumulative distribution function is given by the following expression 

𝐹(𝑥) = 𝑃[𝑋 ≤ 𝑥] = 1 − 𝜶exp(𝐓𝑥) 𝒆,     𝑥 ≥ 0, 

where 𝒆  is a column vector of ones with appropriate order, 𝜶 = (𝛼1, … , 𝛼𝑚)  is the vector that 

represent the initial distribution of the process with 𝛼𝑖 being the probability of being initially in the 

state 𝑖 and 𝐓 is the matrix (sub-generator of order m) that contains the transition intensities among 

the transient states.  

From this definition, other interesting functions employed in the field of reliability analysis can 

be obtained: 
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• Density probability function:  

𝑓(𝑥) = 𝜶 exp(𝐓𝑥)𝐓0 ,   𝑥 ≥ 0, 

with 𝐓0 = −𝐓𝒆 being the vector that encloses the transition intensities from a transient state 

up to the absorbent state. Note that 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥 + 𝑑𝑥) − 𝐹(𝑥)  is the probability of the 

event occurs in the infinitesimal interval (𝑥, 𝑥 + 𝑑𝑥). 

• Survival function (also called reliability function):  

𝑅(𝑥) = 1 − 𝐹(𝑥) =  𝜶 exp(𝐓𝑥) 𝒆,     𝑥 ≥ 0. 

This measure represents the probability that the system does not fail in the interval (0, 𝑥). 

• Hazard rate: 

ℎ(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
=
𝜶 exp(𝐓𝑥)𝐓0

𝜶exp(𝐓𝑥) 𝒆
,   𝑥 ≥ 0. 

This function is the instantaneous rate of failure and its evolution determines the tendency to 

the failure in each instant. It is usual that this measure is not decreasing in certain periods of 

time, since as time goes by the failure tends to increase.  

• Cumulative hazard rate: 

𝐻(𝑥) = − ln(1 − 𝐹(𝑥)) = − ln(𝜶 exp(𝐓𝑥) 𝒆),   𝑥 ≥ 0. 

It can also be computed as the integral of hazard rate. Then, if 𝐻(𝑥) evolves in a linear way, 

the hazard rate is constant (constant failure rate); if the growth is quicker than linear, the 

function is convex and the hazard rate is increasing (increasing failure rate); if the growth 

is slower than linear, the function is concave and the hazard rate is decreasing (decreasing 

failure rate).  

• Mean and variance: 

E[𝑋] = −𝜶𝐓−1𝒆; 

VAR[𝑋] = 2𝜶𝐓−2𝒆 − (−𝜶𝐓−1𝒆)2. 

The real form of all these functions will depend on the structure of the transition intensities matrix, 

since PHDs do not have a unique representation. In fact, PHDs characterize a large number of well-

known distributions. Some of these are detailed with the corresponding PHD representation: 

1. Exponential distribution: 

𝐹(𝑥) = 1 − exp(−𝜆𝑥),   𝑥 ≥ 0: 𝜶 = 1, 𝐓 = −𝜆 and 𝑚 = 1. 

2. Erlang distribution: 𝐹(𝑥) = 1 − ∑ exp(−𝜆𝑥)(𝜆𝑥)𝑗/𝑗!𝑚−1
𝑗=0  for 𝑥 ≥ 0,𝑚 ≥ 1 and 𝜆 > 0, 



1512 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1508–1526. 

𝜶 = (1, … ,0);   𝐓 = (

−𝜆 𝜆
−𝜆 ⋱

⋱ 𝜆
−𝜆

)

𝑚×𝑚

. 

3. Hypo-exponential distribution: 𝐹(𝑥) = 1 − ∑ ∑ 𝜆𝑖 exp(−𝜆𝑖𝑣) (∏
𝜆𝑗

𝜆𝑗−𝜆𝑖

𝑚
𝑗=1
𝑗≠𝑖

)𝑚
𝑖=1

𝑥
𝑣=0  for 𝑥 ≥

0 and 𝜆𝑖 ≠ 𝜆𝑗 for 𝑖 ≠ 𝑗 with 𝜆𝑖, 𝜆𝑗 > 0, 

𝜶 = (1,… ,0);   𝐓 = (

−𝜆1 𝜆1
−𝜆2 ⋱

⋱ 𝜆𝑚−1
−𝜆𝑚

)

𝑚×𝑚

. 

4. Hyper-exponential distribution: 𝐹(𝑥) = 1 − ∑ 𝛼𝑖(1 − exp(−𝜆𝑖𝑥))
𝑚
𝑖=1  for 𝑥 ≥ 0 and 𝜆𝑖 >

0, 

𝜶 = (𝛼1, … , 𝛼𝑚);   𝐓 =

(

 

−𝜆1
−𝜆2

⋱
−𝜆𝑚)

 

𝑚×𝑚

. 

5. Coxian distribution: for 𝜆𝑖 > 0 with 𝑖 = 1,… ,𝑚 and 0 < 𝑔𝑗 ≤ 1 with 𝑗 = 1,… ,𝑚 − 1, 

𝜶 = (1,… ,0);   𝐓 =

(

 

−𝜆1 𝑔1𝜆1
−𝜆2 ⋱

⋱ 𝑔𝑚−1𝜆𝑚−1
−𝜆𝑚 )

 

𝑚×𝑚

. 

6. Generalized Coxian distribution: for 𝜆𝑖 > 0 with 𝑖 = 1,… ,𝑚 and 0 < 𝑔𝑗 ≤ 1 with 𝑗 =

1, … ,𝑚 − 1, 

𝜶 = (𝛼1, … , 𝛼𝑚);   𝐓 =

(

 

−𝜆1 𝑔1𝜆1
−𝜆2 ⋱                    

⋱ 𝑔𝑚−1𝜆𝑚−1
−𝜆𝑚 )

 

𝑚×𝑚

. 

The estimation of the parameters is not a simple issue because PHD representation is not unique, 

which complicates the problem of optimization. In the field of reliability analysis, it is very common 

to employ a graphical analysis when the estimation process of the parameters by maximum likelihood 

method presents serious problems of calculus. This parametric graphical technique is based on the 

principle of least squares and enables a first graphical idea of the fit [33]. However, this method cannot 

be used in the context of PHD, because PHDs cannot be linearized. Consequently, an iterative method 

called EM-algorithm must be used to estimate the PHD parameters by maximum likelihood [34, 35]. 

This algorithm is already implemented in most statistical software. An interesting adaption of this 

method was proposed in [36], in which a partial imputation EM-algorithm was developed for time-to-
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event modeling of survival data.  

2.2. One cut-point phase-type distributions 

This class of distributions was introduced to improve the quality of the fit and to reduce the 

number of parameters to be estimated in comparison with the classical PHD, especially in those 

situations where the distribution presents heavy tails or has two modes [31]. The underlying idea is to 

determine a suitable cut-point that delimits properly the distribution. Once both zones are defined, two 

transition intensities matrices are defined to control the behavior in each interval. Given that the 

transition intensities are different in each zone, the internal performance of the states is not the same 

over time (non-homogeneous Phase-type distributions).  

Formally, a non-negative random variable Y is one cut-point phase-type distributed with 

representation (𝜶, 𝐓𝟏, 𝐓𝟐, 𝑎) if its density probability function adopts the following expression 

𝑓(𝑦) = {
𝜶exp (𝐓𝟏𝑦)𝐓𝟏

𝟎                                ; 𝑦 ≤ 𝑎

𝜶exp (𝐓𝟏𝑎)exp (𝐓𝟐(𝑦 − 𝑎))𝐓𝟐
𝟎 ; 𝑦 > 𝑎

   , 

with 𝑎 being the cut-point, 𝐓𝟏 and 𝐓𝟐 the transition intensities matrix of order 𝑚 for each zone 

and 𝜶 the vector of order 𝑚 that contains the probabilities of being initially in any state. Note that 

𝐓1 and 𝐓2 can have different internal structures.  

In a similar way than the classical PHD, the survival function, the hazard rate, the cumulative 

hazard rate as well as the mean and variance can be derived from the definition.  

• Survival function:  

𝑅(𝑦) = {
𝜶exp (𝐓𝟏𝑦)𝒆                                ; 𝑦 ≤ 𝑎

𝜶 exp(𝐓𝟏𝑎) exp(𝐓𝟐(𝑦 − 𝑎)) 𝒆 ; 𝑦 > 𝑎
   . 

• Hazard rate: 

ℎ(𝑦) =
𝑓(𝑦)

𝑅(𝑦)
=

{
 
 

 
 
𝜶exp (𝐓𝟏𝑦)𝐓𝟏

𝟎

𝜶exp (𝐓𝟏𝑦)𝒆
                               ; 𝑦 ≤ 𝑎

𝜶exp (𝐓𝟏𝑎)exp (𝐓𝟐(𝑦 − 𝑎))𝐓𝟐
𝟎

𝜶exp(𝐓𝟏𝑎) exp(𝐓𝟐(𝑦 − 𝑎)) 𝒆
; 𝑦 > 𝑎

   . 

• Cumulative hazard rate: 

𝐻(𝑦) = − ln(1 − 𝐹(𝑦)) = {
−ln(𝜶 exp(𝐓𝟏𝑦) 𝒆)                                ; 𝑦 ≤ 𝑎

−ln (𝜶 exp(𝐓𝟏𝑎) exp(𝐓𝟐(𝑦 − 𝑎)) 𝒆) ; 𝑦 > 𝑎
    

• Mean and variance: 

E[𝑌] = −𝜶𝐓1
−1𝒆 + 𝜶exp(𝐓𝟏𝑎) (𝐓1

−1 − 𝐓2
−1)𝒆; 
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E[𝑌2] = 2𝜶𝐓1
−2𝒆 − 2𝜶 exp(𝐓𝟏𝑎)[𝐓2

−1(𝑎𝐈 − 𝐓2
−1) − 𝐓1

−1(𝑎𝐈 − 𝐓1
−1)] 𝒆; 

VAR[𝑌] = 𝐸[𝑌2] − (𝐸[𝑌])2 

with 𝐈 being the identity matrix of appropriate order.   

The probability density function and the hazard rate are discontinuous at point 𝑎, but the rest of 

functions do present continuity at this point.  

Finally, an interesting result associated with this new class of distributions is that the one cut-

point PHD inherits the features of classical PHD. The details about the estimation of parameters can 

be checked in [31]. 

3. Shiny app 

The developed Shiny App aims to provide a new tool to use Phase-type distributions in a friendly 

environment for those researchers who do not have enough skills of programming and whose area of 

interest covers survival and reliability analysis. This open access app is placed at a storage cloud 

belonging to the authors. The instructions to access the app are described in the Supplementary 

materials.  

The Shiny App is composed by four modules at present. Next, these modules are described. 

3.1. Module 1: Phase-type distributions (PHD) 

This part contains the definition for a random variable with Phase-type distribution. Furthermore, 

the expressions that the transition intensities matrix and the initial distribution vector adopt for different 

internal structures appear (i.e. Exponential distribution, Erlang distribution, Coxian distribution, etc.). 

Finally, once the distribution is chosen, the user can see how 𝑓(𝑥), 𝑅(𝑥), ℎ(𝑥) and 𝐻(𝑥) change 

graphically when the number of states and the values belonging to 𝜶 and 𝐓 are modified. Figure 1 

displays a screenshot of this first module, in which a general distribution with two phases is taken as 

an example. Note that “maximum time of domain” represents the X-axis longitude, that is, the period 

of observation.   

3.2. Module 2: Estimation using Phase-type distributions (PHD) 

This module is aimed at modeling an experimental dataset through PHD. First, the user must load 

the file that contains the experimental observations. The app admits files in txt or csv format, while 

observations must be registered in a single column with the first row being the header. The second step 

would be selecting the estimation method. The following methods are available in the app: 

• Point data (recommended): Estimation of the parameters by maximum likelihood from point 

and weighted point data.  

• Pooled data: Estimation of the parameters by maximum likelihood from grouped and truncated 

data [37–39].  

• Density function: Estimation of the parameters from a density function defined on the non-

negative half-line. This option calls the estimation of point data after making weighted point 

data, which are generated by numerical quadrature.  
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Finally, once the user chooses the number of states, the app obtains the results automatically (see 

Figure 2). In particular, the estimation of the parameters for different PHD together with the p-value 

related to the Anderson-Darling goodness-of-fit test are shown. In addition, both the experimental 

mean and variance and the associated one with each of these distributions are also computed. The 

quality of the fitting can be checked graphically by means of the density function, the survival function, 

the hazard rate and the cumulative hazard rate. 

 

 

Figure 1. Window of shiny app for the first module. 

 

Figure 2. Window of shiny app for the second module. 
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3.3. Module 3: One cut-point Phase-type distribution 

The definition and the link for the paper where the one cut-point Phase-type distribution was 

introduced can be seen in this node. Just like in the first module, once the internal structure is selected, 

the user can see how 𝑓(𝑦), 𝑅(𝑦), ℎ(𝑦) and 𝐻(𝑦) change graphically when the number of states 

and the values belonging to tuple (𝜶, 𝐓𝟏, 𝐓𝟐, 𝑎)  are modified (see Figure 3). Note that in the app 

current version, 𝐓𝟏  and 𝐓𝟐  are designed with the same internal structure, although it is not a 

necessary condition from a theoretical viewpoint.   

 

 

Figure 3. Window of shiny app for the third module. 

3.4. Module 4: Estimation using the one cut-point Phase-type distribution 

This node aims to model an experimental dataset through one cut-point PHD. The user must only 

load the file (in txt or csv format, with the observations registered in a single column with the first row 

being the header) and select the number of states and introduce the cut-point value (by default, the 

number of state is two and the cut-point value is the mean of the experimental data with two decimals). 

Subsequently, the Shiny App obtains the outcomes automatically (see Figure 4). Besides, the fitting 

obtained by the one cut-point PHD is compared with the adjustment reached by the classical PHD. 

This comparison is made both via goodness-of-fit test and graphically. 

To reduce the computational cost in the estimation process, and due to the Erlang distribution, 

has shown good behavior in the one cut-point PHD, 𝐓, 𝐓𝟏 and 𝐓𝟐 have Erlang structure in the app 

current version.  



1517 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1508–1526. 

 

Figure 4. Window of shiny app for the fourth module. 

4. Numerical example with the app 

In this Section, a practical example is carried out to improve the description of app and explain 

how to obtain the results from users’ perspective. Given that Module 1 and Module 3 aims to introduce 

theoretically the classical and one cut-point Phase-type distributions, these modules will not be used 

hereinafter. In fact, these distributions have already been defined in Section 2. 

4.1. Preparing the dataset 

A dataset with 500 sample points has been simulated from a Weibull distribution with values 3 

and 0.5 for shape and scale parameters, respectively. Data has been simulated through the R software, 

fixing the seed in 5. As it was reported in Section 3, the file that contains the observations must be 

recorded in .txt or .csv format with header and in a single column (see Figure 5). Note that the decimal 

separator must be set with points and the header name should be simple and written between quotes.   

4.2. Obtaining the results 

Let us suppose that a dataset contains the information about the lifetime of some system. The first 

step is to test if some classical PHD can be considered to model the dataset. This analysis is done in 

Module 2. Once the file is loaded and the estimation method is selected (here, the best one is the point 

data method because data are not truncated or grouped), results are obtained automatically for a 

transition matrix with two internal states (value defined by default). Although the app shows multiple 

measures, users must first pay attention to goodness-of-fit tests and the cumulative hazard rate plot. 

Goodness-of-fit tests are useful to check if the corresponding distribution is suitable to model the 
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dataset, while cumulative hazard rate is highly used in reliability and survival analysis because of its 

interpretation. Then, the procedure would consist of increasing the number of states up to reach a 

good fitting. Table 1 and Figure 6 contains the results by considering different internal phases for 

a transition matrix. 

 

Figure 5. Simulated data saved in .txt format with header and in a single column. 

Table 1. Results of Anderson-Darling goodness-of-fit test for different number 

of states for each distribution considered. 

Number of states Distribution Anderson Darling test (p-value) 

4 

PH (general structure) <0.00001 

<0.00001 

<0.00001 

CF1 (canonical structure) 

HErlang (Hyper-Erlang structure) 

6 

PH (general structure) 0.0292 

0.0292 

0.0257 

CF1 (canonical structure) 

HErlang (Hyper-Erlang structure) 

8 

PH (general structure) 0.2044 

0.1988 

0.0291 

CF1 (canonical structure) 

HErlang (Hyper-Erlang structure) 
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Figure 6. Experimental cumulative hazard rate and the corresponding fits. The fit with 

four states is in the top panel, with six states in the central panel and eight states in the 

bottom panel. 

As it was expected, the quality of the fit is better as the number of states increases. In fact, all 

distributions are rejected when four internal states are considered but they are accepted for the case of 

six phases whether the significance level is established in 0.01 (all p-values are greater than the 

significance level). Oppositely, if the significance level is 0.05 (a common choice for statistical tests), 

eight phases are required for the case of a distribution with canonical structure or general structure 

(distribution with hyper-Erlang structure would need more states to be accepted). However, as it is 

reported in the cumulative hazard rate plots, the improvement with eight phases is not significant in 

comparison with the fit through six states. Therefore, six internal states is the optimum to avoid 

increasing the number of parameters to be estimated in the optimization process unnecessarily. 

Next, one cut-point PHD is adjusted in order to overcome the fits obtained in Module 2. This 

analysis is carried out in Module 4, in which data must be loaded again. Again, the app shows the 

results systematically (by default the cut-point is the mean of experimental data and the number of 

internal states for the transition matrices is two). Remember that the fit via one cut-point PHD is 

compared with the adjustment reached by a classical PHD with the Erlang structure in this Module. 

An advisable practice is to start the analysis fixing the number of states obtained in Module 2, as the 

number of phases required in the one cut-point PHD is always less or equal. Once the number of phases 

is established, detecting a change trend in the cumulative hazard rate helps to enclose the range of 

values for the cut-point (users must follow a trial-and-error policy in the current version of app). In 

particular, the cut-point is settled in 0.58 for this numerical example. As it can be seen in Table 2 and 

Figure 7, the quality of the fit improves significantly when one cut-point PHD is considered.  
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Table 2. Results of Anderson-Darling goodness-of-fit test for each distribution considered. 

Number of states Distribution Anderson Darling test (p-value) 

6 
PHD (Erlang structure) 0.0257 

0.2442 One cut-point PHD  

 

Figure 7. Experimental cumulative hazard rate and the corresponding fits. 

Finally, several attempts might be done by reducing the number of states with the purpose of 

finding a more parsimonious model. However, the value of cut-point may be altered slightly as 

consequence of modifying the dimension of transition intensities matrices.   

5. Breast cancer dataset 

This public dataset contains the information of 2982 primary breast cancer patients whose records 

were incorporated in the Rotterdam tumor bank [40]. This dataset can be found in the R package 

survival. In the current paper, the time elapsed (in days) since the diagnostic up to the death in those 

patients who had a recurrence of the illness is analyzed, with a final sample size of 1077.  

First, different classical probability distributions such as Lognormal, Weibull or Cauchy, among 

others, were considered without success (p-value associated with the Anderson-Darling goodness-of-

fit test is less than 0.05 in all cases). Then, an approach based on PHD is suggested. On the one hand, 

a Phase-type distribution with general structure was estimated. After the analysis, the optimum value 

is reached for 3 state with the following representation  

𝜶 = (0,0,1);  𝐓 = (
−0.001254913 0 0
0.006190975 −0.007093341 0.0009023664

0 0.001480004 −0.001483781
).  
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On the other hand, a Phase-type distribution with Erlang structure was considered. In this case, 

the optimum number of phases is two with 𝜆̂ = 0.00116. Finally, a one cut-point PHD was adjusted, 

in which an Erlang structure was also assumed for the transition intensities matrices. In particular, a 

one cut-point PHD with the following representation (𝜶, 𝐓𝟏, 𝐓𝟐, 𝑎) is estimated 

𝜶 = (1,0); 𝐓1 = (
−0.00113 0.00113

0 −0.00113
) ; 𝐓2 = (

−0.00175 0.00175
0 −0.00175

) ;  𝑎 = 3250. 

Table 3 contains the goodness-of-fit of each of these distributions. Only the PHD with general 

structure and the one cut-point PHD must not be rejected (p-values greater than 0.05). However, the 

best option is the one cut-point PHD (see Figure 8 and the Akaike Information Criterion (AIC) value 

in Table 3). This choice is supported by the fact that the general PHD does not have a good behavior 

in the distribution tail (the fitting is not enough accurate in this region). Consequently, relying on the 

general PHD might lead to ignoring information from patients who lived more than ten years 

(approximately), as the classical PHD shows a poor fitting around 3600 days.  

In particular, a distinct internal behavior in the illness is observed. That is, there is a non-

homogeneity in the performance of the illness before and after the cut-point. In both cases, the illness 

goes through two evolutionary internal states, where it stays around 894 days (on average) in the first 

phase and approximately 571 days in the second phase. Therefore, the mean time is reduced roughly 

35.43% in the second part. This means that the evolution of the illness up to the death is hastened from 

3250 days. In conclusion, the model detects two hidden internal states in the behavior of the illness 

evolution, and the velocity of change in the illness is accelerated from the cut-point, so that the sojourn 

mean time decreases in each state.   

 

Figure 8. Experimental cumulative hazard rate and the corresponding fits. 
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Table 3. Summary for the PH and one cut-point adjustments for dataset. 

Distribution Anderson Darling test (p-value) logL AIC value 

General PHD 0.3439 -8912.38 17846.75 

Erlang PHD 0.02395 -8925.59 17857.17 

One cut-point PHD 0.1131 -8915.34 17834.67 

6. Discussion 

The current app contains a brief introduction, in a theoretical way, where users can graphically 

see how the major functions (density function, survival function, etc.) associated with a random 

variable phase-type distributed change when its parameters are modified. On the other hand, users can 

model the lifetime of any system by adjusting some Phase-type distribution. In this panel, users can 

choose multiple estimation methodologies and compare the quality of the fit both via goodness-of-fit 

tests and graphically. All these options are extended for the case of one cut-point PHD.  

While it is true that this app can already carry out complex statistical analysis, authors aim to 

introduce some improvements in the following versions. Some of the most pressing would be including 

a module where different classical probability distributions might be adjusted and adding the multiple 

cut-points Phase-type distributions [41]. In the background, inserting more options for the transition 

intensities matrices of one cut-point PHD or incorporating an estimation method based on moments 

(see, for example, [42,43]) would be interesting. Likewise, reducing the computational cost in the 

estimation process of parameters is a big challenge for the future as well. 

Finally, as complementary material for those readers who are familiarized with multiple 

programming environments, some packages available on R, Matlab and Python associated with Phase-

type distributions are listed below: 

Table 4. Options available on R, Matlab and Python to handle PHD. 

R Matlab Python 

• Package mapfit 

• Package PhaseTypeR 

• Function PhaseType 

from Package actuar 

• Package BuTools [44] 

• 1Github: mochamadnurq/ 

reliability-basicsystem-

phasetype 

• Package pyphase [46] 

• Package BuTools [44] 

1 This folder contains MATLAB scripts related to the results obtained in [45]. 

7. Conclusions 

A new interactive shiny app is presented in the current manuscript to offer the possibility of fitting 

Phase-type distributions to an experimental dataset with just some clicks. This open access app has 

been developed as an installable and standalone local desktop application, making our shiny app 

accessible to users from all technical levels. In particular, the app has been used to model a simulated 

dataset and the time to live since the diagnostic in primary breast cancer patients. This app is not only 

functional in biomedicine and with other types of cancer but also for any kind of illness, as well as in 

other fields such as survival, reliability, engineering and electronics, where the goal is to model the 

lifetime of some systems (lifetime of tires, supplied voltage in which a device breaks, sojourn time as 
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unemployed, etc.). As far as we know, it is the first web application available to deal with Phase-type 

distributions, so we look forward to its use in any area of science.   
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Supplementary  

To open the shiny app, the following steps are required: 

1. Download the PHD-Desktop-APP.zip hosted at the following URL: 

https://www.ugr.es/local/jeloy/PHD-Desktop-App.zip 

2. Once the file is downloaded, the zip must be decompressed. Users must run the file called “phd.bat” 

in the unzipped folder. After this step, the shiny app will be open in the browser.   
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