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ABSTRACT. From any poset isomorphic to the poset of gaps of a numerical semigroup S with the
order induced by S, one can recover S. As an application, we prove that two different numerical
semigroups cannot have isomorphic posets (with respect to set inclusion) of ideals whose minimum
is zero. We also show that given two numerical semigroups S and T , if their ideal class monoids are
isomorphic, then S must be equal to T .

1. INTRODUCTION

A numerical semigroup S is a submonoid of (N,+) such that N \ S has finitely many elements,
where N denotes the set of non-negative integers. A set of integers I is said to be a relative ideal of
S if I +S ⊆ I and I has a minimum (see for instance [1, Chapter 3] for some basic background on
ideals of numerical semigroups). Relative ideals of S contained in S are known as integral ideals. In
this manuscript, we use the term ideal to refer to a relative ideal of S. On the set of ideals of S, we
define the following relation: I ∼ J if there exists an integer z such that I = z + J . The set of ideals
modulo this equivalence relation is known as the ideal class monoid of S, denoted C ℓ(S). Addition
of two classes [I ] and [J ] is defined in the natural way: [I ]+ [J ] = [I + J ].

The ideal class monoid of a numerical semigroup was introduced in [2] inspired by the defini-
tion of ideal class group of a Dedekind domain. In [5], we proved that from some combinatorial
properties of the ideal class monoid of a numerical semigroup we can recover relevant information
of the numerical semigroup like, for instance, its genus, multiplicity, type, and number of unitary
extensions.

We say that an ideal I of S is normalized if min(I ) = 0; we denote by I0(S) the set of normalized
ideals I of S. The map C ℓ(S) → I0(S), [I ] 7→ −min(I )+ I is bijective. Moreover, for I , J ∈ I0(S), the
ideal I + J is also in I0(S). Thus, the mapping [I ] 7→ −min(I )+ I is a monoid isomorphism.

In [5, Section 4.3], we studied some of the properties of the poset (I0(S),⊆). It is natural to
wonder if (I0(S),⊆) completely determines S in the following sense: if T is a numerical semigroup
and (I0(S),⊆) is isomorphic to (I0(T ),⊆), then S = T ? Recall that two posets (P,≤P ) and (Q,≤Q )
are isomorphic if there exists an order isomorphism f from P to Q, that is, f is bijective and for
every a,b ∈ P , a ≤P b if and only if f (a) ≤Q f (b). We translate this problem of poset isomorphism
of normalized ideals of a numerical semigroup to an isomorphism problem of posets of gaps with
respect to the order induced by the semigroup.

For a numerical semigroup S, the order induced by S on the set of integers, denoted ≤S , is de-
fined as a ≤S b if b−a ∈ S. The poset (Z,≤S) (withZ the set of integers) has been studied for several
families of numerical semigroups, and more particularly the Möbius function associated to ≤S (see
[7] or [6] for a generalization to affine semigroups).
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The set G(S) =N \ S is the gap set of S; its elements are called gaps of S. It was already shown in
[2, Proposition 2.6] that the set C ℓ(S) is in one-to-one correspondence with the set of antichains
of gaps with respect to ≤S (these antichains are called S-Leans in [11]). For every gap g of S, the set
{0, g }+S is an ideal of S, and so G(S) is embedded naturally in I0(S). Moreover, if g ′ is another gap
of S, then g ≤S g ′ if and only if {0, g ′}+S ⊆ {0, g }+S (Lemma 8). If we are able to characterize the
ideals of the form {0, g }+S from their properties in the poset (I0(S),⊆), then we can extract a poset
isomorphic to (G(S),≤S) and thus recover S. This is actually the strategy we use to prove that if the
posets (I0(S),⊆) and (I0(T ),⊆) are isomorphic, then S and T must be equal.

The ideal class monoid of a numerical semigroup is a monoid. Thus, it is natural to ask if two
different numerical semigroups will have isomorphic ideal class monoids [5, Question 6.1]. The
answer is no. Theorem 18 states that if S and T are numerical semigroups, and their ideal class
monoids are isomorphic, then S and T must be equal.

It order to solve the isomorphism problem for ideal class monoids of numerical semigroups, we
study what are the consequences of having an isomorphism between (I0(S),+) and (I0(T ),+), with
S and T numerical semigroups. In particular, we show that oversemigroups of S are in correspon-
dence with oversemigroups of T , and their corresponding ideal class monoids must be isomorphic.

Most of the computations in the examples presented in this manuscript where performed using
the GAP [9] package numericalsgps [8]. The code used for these calculations can be found at

https://github.com/numerical-semigroups/ideal-class-monoid.
The package numericalsgps was also used to draw Hasse diagrams of the posets mentioned

above for several numerical semigroups, providing in this way clues on what where the results
needed to proof our main theorems.

2. DETERMINING A NUMERICAL SEMIGROUP FROM THE ORDER INDUCED IN ITS GAP SET

Suppose that we are given a numerical semigroup S as a sequence {s0, s1, . . . , sn , . . . } of which the
only data we know is whether si ≤S s j for i , j ∈N. The ν sequence νi = |{ j ∈N : s j ≤S si }| completely
determines S (see [4]; here |X | denotes the cardinality of the set X ). Thus, if S and T are numerical
semigroups whose respective posets (S,≤S) and (T,≤T ) are isomorphic, then S = T .

Now, suppose that what we have is an enumeration H = {h1, . . . ,hg } of the gap set of S, G(S), and
how these elements are arranged with respect to ≤S . We want to recover S from this information.

Recall that the multiplicity of S is the least positive integer in S. From [2, Lemma 2.5(1)], we
know that multiplicity of S is the cardinality of Minimals≤S (H) plus one. The argument used in the
proof of that lemma also shows that the maximal number of elements in an antichain (with respect
to ≤S) is precisely the multiplicity of the semigroup minus one.

For h ∈ H , and inspired by the ν sequence described above, define

DH (h) = {h′ ∈ H : h′ ≤S h},

and set ndH (h) = |DH (h)|. In particular,

(1) Minimals≤S (H) = {h ∈ H : ndH (h) = 1}.

As a consequence of the following result, the map ndH is non-decreasing.

Lemma 1. Let h ∈ H. Then,

DH (h) = {h − s : s ∈ S ∩ [0,h]}.

In particular, ndH (h) = |S ∩ [0,h]|, and if h′ ∈ H, with h < h′, then

|S ∩ [h,h′]| = ndH (h′)−ndH (h).
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Proof. Take h′ ∈ H . Then, h′ ≤S h if and only if h −h′ = s for some s ∈ S. Clearly, s ∈ S ∩ [0,h] and
h′ = h − s.

Now, take t ∈ S ∩ [0,h]. Then, h − t ̸∈ S, since otherwise h would be in S. So h − t ∈ DH (h).
The second assertion follows from the first. □

Let S be a numerical semigroup. A (finite) run of elements in S is an interval {s, s +1, . . . , s +k} of
elements of S such that s −1 ̸∈ S and s +k +1 ̸∈ S. Analogously, a run of gaps of S, or desert, is an
interval {h,h+1, . . . ,h+ l } of gaps of S such that h−1 ∈ S and k+ l +1 ∈ S. Let C(S) be the conductor
of S, that is, the least integer c such that c +N⊆ S. The numerical semigroup S can be expressed as
S = S0 ∪S1 ∪·· ·∪Sr ∪C(S)+N, such that Si is a run of elements of S and max(Si )+1 < min(Si+1)
for all i , that is, all the elements in Si are smaller than those in Si+1 (and so, there is at least a gap
of S between these two sets). If S ̸=N, then S0 = {0}.

Theorem 2. Let S be a numerical semigroup, S ̸=N.

(1) If R is a run of gaps and h ∈ R, then

R = {h′ ∈ H : ndH (h) = ndH (h′)}.

(2) If R is a run of elements of S, with R ̸= {0}, then

R = {ndH (h)+d ,ndH (h)+d +1, . . . ,ndH (h′)+d −1},

with h = min(R)−1, h′ = max(R)+1 and d = |{g ∈ G(S) : ndH (g ) ≤ ndH (h)}|.
Proof. Set H =N \ S, and let R be a run of gaps. By Lemma 1, the map ndH is non-decreasing and
it is constant when restricted to a desert. Moreover, two gaps h and h′ are in the same desert if and
only if ndH (h) = ndH (h′). Therefore, the first assertion follows.

Now, let R be a run of elements of S with h and h′ as in the hypothesis of the second assertion.
Let r = min(R), and so h = r −1. From the previous paragraph, we deduce that d = |H ∩ [0,h]|. Let
t = |S∩[0,h]|. Clearly, h+1 = d + t , and thus r = d + t . By Lemma 1, t = |S∩[0,h]| = ndH (h). Finally,
by using again Lemma 1, we have that |R| = |S∩ [h,h′]| = ndH (h′)−ndH (h), and this completes the
proof by taking into account that R is an interval of elements in S. □

Remark 3. Notice that Theorem 2 is telling us that if we know n : {1, . . . , g } → N, n(i ) = ndH (hi ),
with H = {h1, . . . ,hg } the set of gaps of a numerical semigroup S, then we can fully reconstruct S.
Observe also that ndH is fully determined by the poset (H ,≤S).

As the referee suggests, if we are able to count all possible n : {1, . . . , g } →N that correspond with
some ndH , with H the set of gaps of a numerical semigroup with genus g , then we would know the
number of numerical semigroups with genus g . The map n is non-decreasing, and it only increases
when we move between different runs of gaps by Lemma 1. The problem resides in determining
when a given non-decreasing map n : {1, . . . , g } → N corresponds to some ndH with H the set of
gaps of a numerical semigroup. Probably, a deeper understanding of the maps ndH could provide
bounds for the number of numerical semigroup with a given genus (as it was done in [3] with the
use of Dyck paths) and shed some light on the different conjectures associated to the number of
numerical semigroups with a given genus (see [14] and the references therein).

Example 4. Assume that H = {g1, . . . , g8} with ndH (g1) = ·· · = ndH (g4) = 1; ndH (g5) = 2; ndH (g6) =
ndH (g7) = 3; and ndH (g8) = 6.

By [2, Lemma 2.5(1)] and (1), from ndH (g1) = ·· · = ndH (g4) = 1, we know that the multiplicity
of S is five. In light of Theorem 2, S1 = {5} = {1 + 4, . . . ,2 + 4 − 1}, S2 = {7} = {2 + 5, . . . ,3 + 5 − 1},
S3 = {10,11,12} = {3+7, . . . ,6+7−1}, and the last desert is {13}, since there is only one gap having
ndH (h) = 6. Thus, S = {0,5,7,10,11,12}∪ (14+N).
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Corollary 5. Let S and T be numerical semigroups. If the posets (G(S),≤S) and (G(T ),≤T ) are iso-
morphic, then S = T .

Let PF(S) = Maximals≤S (Z\ S), which is known as the set of pseudo-Frobenius numbers of S. The
cardinality of PF(S) is the type of S, denoted t(S). The Frobenius number of S, defined as F(S) =
max(Z \ S), is always a pseudo-Frobenius number, and so the type of a numerical semigroup is a
positive integer. Clearly, C(S) = F(S)+1.

Notice that if we consider the Hasse diagram of (G(S),≤S) as an undirected graph, then this graph
has at most t(S) connected components.

Example 6. Let H = {1,2,3,4,5,9,10}, which is the set of gaps of S = {0,6,7,8}∪ (11+N). Then the
Hasse diagram of H with respect to ≤S looks like this:

1 2 3 4

59 10

The type of S is three and the undirected graph has two connected components.

Recall that an affine semigroup is a finitely generated submonoid of (Nn ,+) for some positive
integer n. The poset of the set of gaps does not uniquely determine an affine semigroup as the
following example shows.

Example 7. The affine semigroups N2 \ {(1,0), (0,1)} and N2 \ {(0,1), (0,2)} have isomorphic posets
of gaps, but the first is minimally generated by seven elements, while the second is by six, and thus
they cannot be isomorphic.

3. THE POSET OF NORMALIZED IDEALS OF A NUMERICAL SEMIGROUP UNDER INCLUSION

Let S be a numerical semigroup. Recall that the set of normalized ideals of S is

I0(S) = {I ⊆N : I +S ⊆ I ,min(I ) = 0}.

For I ∈ I0(S), set I∗ = I \ {0}; in particular, S∗ = S \ {0}.

Lemma 8. Let S be a numerical semigroup and let g and g ′ be gaps of S. Then, g ≤S g ′ if and only if
{0, g ′}+S ⊆ {0, g }+S.

Proof. Notice that {0, g ′}+ S ⊆ {0, g }+ S if and only if g ′ ∈ {0, g }+ S, or equivalently, g ′ = g + s for
some s ∈ S, and this means that g ≤S g ′. □

Define

P0(S) = {
{0, g }+S : g ∈ H

}
.

In light of Lemma 8, the poset (P0(S),⊇) is isomorphic to (H ,≤S). Thus, if we find a way to recover
the set P0(S) from (I0(S),⊆), we will be able to recover S from (I0(S),⊆) by using Remark 3.

Observe that for I ∈ I0(S), we have that I = Minimals≤S (I )+S, and that every X ⊆ N , for which
I = X +S holds, contains Minimals≤S (I ). Thus, Minimals≤S (I ) is a minimal generating system of I
and it is included in G(S)∪{0}. Also, Minimals≤S (I ) = I \(I +S∗). The elements of Minimals≤S (I ) are
called the minimal generators of I .
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Lemma 9. Let S be a numerical semigroup and let I ∈ I0(S). For x ∈ I∗, the set I \ {x} ∈ I0(S) if and
only if x is a minimal generator of I .

Proof. If x ̸∈ Minimals≤S (I ), then x = g + s, with g ∈ Minimals≤S (I ) and s ∈ S∗. Hence, x = g + s ̸∈
I \ {x}, and consequently I \ {x} is not an ideal of S.

If I \ {x}, with x ∈ Minimals≤S (I ), is not an ideal (notice that 0 = min(I \ {x})), then there exists
y ∈ I \ {x} and s ∈ S, such that y + s ̸∈ I \ {x}. But y ∈ I , and thus y + s ∈ I , which forces y ̸= y + s = x,
contradicting that x is minimal in I with respect to ≤S . □

Given two ideals I and J in I0(S) we say that I covers J if J ⊊ I and there is no other K ∈ I0(S)
such that J ⊊K ⊊ I .

Lemma 10. Let S be a numerical semigroup and let I , J ∈ I0(S), with J ⊊ I . Then, I covers J if and
only if |I \ J | = 1.

Proof. Suppose that there is K ∈ I0(S) such that J ⊊ K ⊊ I . Take x ∈ I \ K and y ∈ K \ J . Then, x ̸= y
and x, y ∈ I \ J , which forces |I \ J | ≥ 2.

For the converse, suppose that |I \ J | ≥ 2. Let m = max(I \ J ). Then, J ⊊ J ∪{m}⊊ I . Let x ∈ J ∪{m}
and s ∈ S. If x ∈ J , then x + s ∈ J ⊂ J ∪ {m}; if x = m and s = 0, then x + s = m ∈ J ∪ {m}; if x = m
and s ∈ S∗, then m < x + s ∈ I , which implies that x + s ∈ J ⊂ J ∪ {m}. Thus, J ∪ {m} ∈ I0(S) and
consequently I does not cover J . □

Lemma 11. Let S be a numerical semigroup and let I ∈ I0(S). Then, the number of ideals in I0(S)
covered by I equals the number of non-zero minimal generators of I .

Proof. The proof easily follows from Lemmas 9 and 10. □

Theorem 12. Let S and T be numerical semigroups. If (I0(S),⊆) and (I0(T ),⊆) are isomorphic, then
S = T .

Proof. Notice that by Lemma 11, P0(S) is precisely the set of ideals in I0(S) that cover exactly one
ideal in I0(S). Hence, the isomorphism between (I0(S),⊆) and (I0(T ),⊆) restricted to (P0(S),⊆)
and (P0(T ),⊆), yields, by Lemma 8, an isomorphism between (G(S),≤S) and (G(T ),≤T ). By Corol-
lary 5, we conclude that S = T . □

4. ISOMORPHIC IDEAL CLASS MONOIDS

In this section, we prove that if S and T are numerical semigroups, then the existence of an
isomorphism between (I0(S),+) and (I0(T ),+) forces S and T to be equal.

We start by proving that some notable elements of the ideal class monoid of a numerical semi-
group are preserved under isomorphisms. To this end, we recall some definitions given in [5, Sec-
tion 5]; for the definitions on a general monoid, please refer to [13].

Given I , J ∈ I0(S), we write I ⪯ J if there exists K ∈ I0(S) such that I +K = J . We use the notation
I ≺ J when I ⪯ J and I ̸= J (in general this is not the usual definition, though in [5, Section 5] it is
shown that in our setting the usual definition is equivalent to this one).

We say that I ∈ I0(S) is irreducible if I ̸= J +K for all J ,K ∈ I0(S)\{S} such that J ≺ I and K ≺ I . By
[5, Lemma 5.4], I is irreducible if and only if I ̸= J +K for all J ,K ∈ I0(S) \ {I }. Irreducible elements
are important since they generate (I0(S),+) as a monoid [5, Proposition 5.5]. Clearly, if f : I0(S) →
I0(T ) is a monoid isomorphism, then it sends irreducible elements to irreducible elements.

An ideal I ∈ I0(S) is a quark if there is no ideal J ∈ I0(S) \ {S} such that J ≺ I , that is, there is no
J ∈ I0(S) \ {I ,S} and K ∈ I0(S) such that I = J +K . Every quark is irreducible but the converse does
not hold in general (see for instance [5, Example 5.3]). Again, quarks go to quarks under monoid
isomorphisms of ideal class monoids.



6 P. A. GARCÍA-SÁNCHEZ

The concepts of oversemigroup and irreducible numerical semigroup are crucial in the proof of
the main result of this section. So, next we spend some time recalling the basic facts associated to
these notions.

Let S and T be numerical semigroups. We say that T is an oversemigroup of S if S ⊆ T . By [5,
Proposition 5.14], T is an idempotent of I0(S) if and only if T is an oversemigroup of S. Denote by
O (S) the set of oversemigroups of S. Then, (O (S),+) is a submonoid of (I0(S),+).

If T is an oversemigroup of S with |T \ S| = 1, then we say that T is a unitary extension of S. In
this setting, T = S ∪ {x}, and x must be a special gap of S, that is x ∈ PF(S) and 2x,3x ∈ S. The set of
special gaps of S is denoted by SG(S) and its cardinality coincides with the set of unitary extensions
of S (see for instance [12, Section 3.3]).

A numerical semigroup S is irreducible if S cannot be expressed as the intersection of two nu-
merical semigroups properly containing S. Every irreducible numerical semigroup is either sym-
metric or pseudo-symmetric. A numerical semigroup S is symmetric if for every z ∈Z\ S, the inte-
ger F(S)− z is in S. And it is pseudo-symmetric if F(S) is even and for every z ∈Z\ (S ∪ {F(S)/2}), we
have that F(S)− z ∈ S. If S is not irreducible, then it can be expressed as the intersection of finitely
many irreducible oversemigroups of S (for basic characterizations of irreducibility, symmetry and
pseudo-symmetry, see [1, Chapter 2] or [12, Chapter 3]).

It is well known that S is irreducible if and only if the cardinality of SG(S) is at most one [12,
Corollary 4.38]. If S ̸=N, then F(S) ∈ SG(S). Thus, for S ̸=N, if S is irreducible, then S ∪ {F(S)} is the
only unitary-extension of S, and thus every proper oversemigroup of S contains S ∪ {F(S)}.

Quarks are relevant since they can be used to decide if the semigroup is symmetric or pseudo-
symmetric, and thus to determine if the semigroup is irreducible; see Propositions 5.17 and 5.19,
and Theorem 5.20 in [5]. Unitary extensions of a numerical semigroup S are precisely the idempo-
tent quarks of I0(S) [5, Propostion 5.13].

For every idempotent E ∈ I0(S), define

CE = {I ∈ I0(S) : I +E = I }.

This definition is inspired by [10, Section 2].

Proposition 13. Let S be a numerical semigroup, and let T be an oversemigroup of S. Then,

CT = I0(T ).

Proof. Let I ∈ CT . Then, min(I ) = 0 and I +T = I , whence I ∈ I0(T ). Now, let I ∈ I0(T ). Then,
min(I ) = 0 and I +T ⊆ I . Hence, I + S ⊆ I +T ⊆ I , and thus I ∈ I0(S). As I ⊆ I +T ⊆ I , we get
I +T = I , which yields I ∈CT . □

Let S be a numerical semigroup. Observe that if f is an isomorphism between (I0(S),+) and
(I0(T ),+), then from Proposition 13 (and its proof), we obtain the following consequences.

(1) The restriction of f to O (S) is an isomorphism between (O (S),+) and O (T ),+).
(2) Also, for O and O′ oversemigroups of S, O ⊆ O′ if and only if O +O′ = O′. Thus, we also obtain

an isomorphism between the posets (O (S),⊆) and (O (T ),⊆).
(3) If O is an oversemigroup of S, then f (CO) = C f (O). To prove this, take I ∈ f (CO). Then, there

exists J ∈CO such that I = f (J ). As J +O = J , we deduce that I + f (O) = f (J )+ f (O) = f (J +O) =
f (J ) = I , and thus I ∈C f (O). For the other inclusion, let J ∈C f (O). Then, as f is surjective, there
exists I ∈ I0(S) such that f (I ) = J . Since J + f (O) = J , we have f (I +O) = f (I )+ f (O) = J + f (O) =
J = f (I ), and as f is injective, I +O = I , which means that I ∈ CO and so J = f (I ) ∈ f (CO).
Therefore, the restriction of f to I0(O) is an isomorphism between (I0(O),+) and (I0( f (O)),+).
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Unfortunately, from the poset (O (S),⊆) it is not possible to recover S as the next example shows.
As usual, for a set A of non-negative integers, we denote by

〈A〉 = {n1a1 +·· ·+nk ak : k ∈N,n1, . . . ,nk ∈N, a1, . . . , ak ∈ A},

which is a submonoid of (N,+), and it is a numerical semigroup if and only if gcd(A) = 1 (see for
instance [12, Lemma 2.1]).

Example 14. The numerical semigroups 〈3,5,7〉 and 〈2,7〉 have isomorphic posets of over-semi-
groups with respect to set inclusion.

Notice that if E is an idempotent of I0(S), then (CE ,+) is a monoid, but it is not a submonoid
of (I0(S),+) unless E = S. There is a dual construction that allows us to construct submonoids of
(I0(S),+) associated to its idempotents. Let T be an oversemigroup of S. Then, T ∈ I0(S) and T is
idempotent. Define

T↓ = {I ∈ I0(S) : I ⊆ T }.

Proposition 15. Let S be a numerical semigroup, and let T be an oversemigroup of S. For every
I ∈ I0(S), I ∈ T↓ if and only if I +T = T . In particular, (T↓,+) is a submonoid of (I0(S),+).

Proof. Let I ∈ I0(S). If I +T = T , as I ⊆ I +T , we obtain that I ⊆ T . Now, let I ∈ I0(S) with I ⊆ T .
Then, T ⊆ I +T ⊆ T +T = T (recall that T is idempotent), and so I +T = T .

Finally, take I , J ∈ T↓. Then (I + J )+T = I + (J +T ) = I +T = T , and so I + J ∈ T↓. The identity
element of (T↓,+) is S. □

Take T and T ′ two oversemigroups of S (equivalently, two idempotents of I0(S)) with T ⊆ T ′
(equivalently, T +T ′ = T ′). Then, (T ′

↓∩CT ,+) is a monoid with identity element T . Neither (T↓,+)

nor (T ′
↓∩CT ,+) need to be isomorphic to the ideal class monoid of a numerical semigroup as the

next example shows.

Example 16. Let S = 〈4,6,9〉 and T = 〈4,5,6,7〉 = {0,5,7}+S. Then, S ⊆ T and

T↓ = {S, {0,11}+S, {0,7}+S, {0,5}+S,T }.

Its Hasse diagram with respect to ⪯ has height four (the maximal strictly ascending chain with re-
spect to ⪯ has length four). If (T↓,+) is isomorphic to (I0(R),+), with R a numerical semigroup,
then by [5, Remark 5,1], R must have genus three. Among the numerical semigroups with genus
three, the only one whose ideal class monoid has cardinality five is R = 〈3,4〉. However, as the ref-
eree kindly pointed out, all the elements in T↓ are idempotents while {0,1}+R is not an idempotent.
This proves that there is no numerical semigroup R such that (T↓,+) is isomorphic to (I0(R),+).

Let I1 = {0,7}+S and I2 = {0,2,3,5}+S. Both I1 and I2 are idempotents, and thus they are over-
semigroups of S; moreover, I1 ⊆ I2. The monoid (I2↓ ∩C I1 ,+) has eight elements, and its Hasse
diagram with respect to ⪯ has height four. Again, according to [5, Remark 5,1], if (I2↓∩C I1 ,+) is
isomorphic to I0(T ) for some semigroup T , then the genus of T should be three. Among the semi-
groups of genus three, the only one whose ideal class monoid has cardinality eight is T = 〈4,5,6,7〉.
However, I0(T ) has only three irreducible elements while (I2↓ ∩C I1 ,+) has four irreducible ele-
ments. Thus, (I2↓∩C I1 ,+) is not isomorphic to the ideal class monoid of a numerical semigroup.

We are now ready to prove that if (I0(S),+) is isomorphic to (I0(T ),+), with S and T numerical
semigroups, then S = T . To this end, we proceed by induction on the genus of S (which must be
the same as the genus of T by [5, Corollary 5.2]). Once we know (I0(S),+) all the unitary extensions
of S will be uniquely determined by the induction hypothesis.

Lemma 17. Let S be a numerical semigroup, S ̸=N. If S is irreducible, then the intersection of all its
unitary extensions is S ∪ {F(S)}. Otherwise, this intersection is S.
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Proof. Recall that as S ̸= N, we have that F(S) ∈ SG(S). Notice that S is irreducible if and only if
|SG(S)| = 1 [12, Corollary 4.38]. Also, every unitary extension of S is of the form S ∪ {h} with h ∈
SG(S). Hence, if S is irreducible, then the intersection of all its unitary extensions (it has only one),
is S ∪ {F(S)}. If S is not irreducible, then take h ∈ SG(S) \ {F(S)}. Clearly, S = (S ∪ {F(S)})∩ (S ∪ {h}),
and thus S =⋂

g∈SG(S)(S ∪ {g }). □

Theorem 18. Let S and T be numerical semigroups. If (I0(S),+) is isomorphic to (I0(T ),+), then
S = T .

Proof. Denote by ϕ the isomorphism between I0(S) and I0(T ).
Notice that S = N if and only if I0(S) is trivial. Thus, we may assume that S and T are different

from N. Notice also that the number of quarks of I0(S) and I0(T ) must be the same. Thus, S is
irreducible if and only if T is irreducible. Also, by [5, Corollary 5.2], g(S) = g(T ).

We proceed by induction on the genus of S (which is the same as the genus of T ). For g(S) = 0
there is nothing to prove, since in this case S = T =N. So, suppose that the assertion is true for all
semigroups having genus g and let us prove it for genus g +1.

Unitary extensions of S correspond to idempotent quarks in I0(S) [5, Proposition 5.13]. Thus, for
every unitary extension O of S, ϕ(O) is also unitary extension of T , and by Proposition 13, I0(O) =
CO is isomorphic to Cϕ(O) = I0(ϕ(O)). Unitary extensions of S have genus g (the same holds for T ).
Thus, by induction hypothesis S and T have the same unitary extensions.

If S is not irreducible, then T cannot be irreducible by the arguments given above. As S and T
are not irreducible, they are the intersection of all their unitary extensions, and consequently S = T
(Lemma 17).

If S is irreducible and symmetric, then so is T , since in this setting both have a single quark
[5, Proposition 5.18]. In this case, by Lemma 17, the intersection of the unitary extensions of S is
S ∪ {F(S)}, which must be equal to T ∪ {F(T )}. We also know that g(S) = g(T ), and as S and T are
symmetric, by [1, Corollary 6], F(S) = 2g(S)−1 = 2g(T )−1 = F(T ). Thus, S = (S ∪ {F(S)}) \ {F(S)} =
(T ∪ {F(T )}) \ {F(T )} = T .

The remaining case is when S and T are both irreducible and pseudo-symmetric (S is pseudo-
symmetric if and only if I0(S) has two quarks; see [5, Proposition 5.19]). In this setting, by using
again [1, Corollary 6], F(S) = 2g(S)−2 = 2g(T )−2 = F(T ), and arguing as in the preceding paragraph,
we conclude that S = T . □

5. THE POSET OF THE IDEAL CLASS MONOID INDUCED BY ADDITION

We solved [5, Question 6.1], but we still do not know how to recover a numerical semigroup by
looking at a poset isomorphic to (I0(S),⪯) [5, Question 6.2]. There are several options to tackle this
problem. The first could be to recover ⊆ from ⪯, while the second could pass through identifying
idempotent quarks in the Hasse diagram of (I0(S),⪯).

Clearly, if I ⪯ J , then I ⊆ J . But the converse does not hold. Actually, J covers I with respect to set
inclusion if and only if |J \ I | = 1 (Lemma 10). However, it may happen that J covers I with respect
to ⪯ and |J \ I | > 1.

Example 19. Take S = 〈5,9,17,21〉, I = {0,3}+S and J = {0,12}+S. Then, I ⪯-covers J and |I \ J | = 3.
This example was obtained by looking at the Hasse diagram of (I0(S),⪯).

Figure 1 shows the Hasse diagram of (I0(〈4,6,9〉),⪯). The edges displayed as a dashed line are
not part of the diagram, and correspond to the coverings with respect to set inclusion that are not
coverings with respect to ⪯. A possible approach would be “repair” those missing edges.

As for the other approach. Quarks are easy to distinguish in the poset (I0,⪯), since they are the
ones with “height” one. However, even in simple examples, it is not possible to discern from the
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{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3,5}

{0,1} {0,2,5,7} {0,3,5}

{0,5,7}

{0,2,3}

{0,2,5} {0,2,7}

{0,5} {0,2}

{0,11}

{0,3}

{0,7}

{0}

FIGURE 1. The Hasse diagram of (I0(〈4,6,9〉,⪯); the nodes are labeled with the
minimal generating sets of the ideals. Dashed edges are those edges missing from
the Hasse diagram of (I0(〈4,6,9〉),⊆). Idempotents are displayed in gray.

{0,1,2}

{0,1} {0,2}

{0}

FIGURE 2. The Hasse diagram of (I0(〈3,4,5〉,⪯); nodes labeled with the minimal
generating sets of the ideals. Idempotents are displayed in gray.

poset which ones are idempotent. The Hasse diagram of I0(〈3,4,5〉) is shown in Figure 2. It is not
possible from the poset with respect to ⪯ to distinguish between {0,1}+S and {0,2}+S; the latter
being idempotent, while the first is not. Notice that in this case the genus is two, and there are only
two numerical semigroups with this genus. The posets of the corresponding set of normalized
ideals are different.
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