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Development of a two-stage imputation approach for multivariate energy time series.
Estimation of missing value distribution using a recurrent neural network.
Imputation of missing values based on the estimated distribution of missing values.
Promising results for several evaluation metrics and benchmark methods.
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A B S T R A C T

Multivariate time series with missing values are common in a wide range of applications, including energy data.
Existing imputation methods often fail to focus on the temporal dynamics and the cross-dimensional correlation
simultaneously. In this paper we propose a two-step method based on an attention model to impute missing
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values in multivariate energy time series. First, the underlying distribution of the missing values in the data is
learned. This information is then further used to train an attention based imputation model. By learning the
distribution prior to the imputation process, the model can respond flexibly to the specific characteristics of
the underlying data. The developed model is applied to European energy data, obtained from the European
Network of Transmission System Operators for Electricity. Using different evaluation metrics and benchmarks,
the conducted experiments show that the proposed model is preferable to the benchmarks and is able to
accurately impute missing values.
1. Introduction

Multivariate time series occur through a wide range of applications,
such as energy, finance or meteorology. In the context of energy data,
multivariate time series can be energy demand or supply, energy stock
market prices, energy storage levels or many more. Missing values are
very common in this type of data, due to communication or measure-
ment errors and can have a large impact on further downstream usage
of the time series in energy system analysis applications. A variety of
methods have been developed for the purpose of imputing missing val-
ues in multivariate time series. However, classical imputation methods
usually only focus either on the temporal dynamics of the time series or
the cross-dimensional correlations, rarely both. On the other hand there
has been an increase in the usage of deep learning methods for time
series analysis and in particular time series imputation. While these
methods are usually based on sequence-to-sequence networks [1–3],
other approaches have been transferred to the task of imputing, in-
cluding adversarial networks [4], autoencoders [5] and attention based
models [6]. This paper proposes a two-step imputation method that
is centered around an attention based neural network. The approach
consists of a first stage model that learns the multivariate distribution
of the missing values and a second stage model that estimates the actual
missing data. Since the distribution of missing values is learned prior
to the imputation, it can be used to generate artificial missing values
for the training of the imputation model, making it flexible to learn
the specific characteristics of the data. For readability, our approach is
referred to as MVTSI (multivariate time series imputation) throughout
the article. While the presented model is applicable to any type of
(multivariate) time series, the focus is on an application to energy data
obtained from the ENTSO-E transparency platform. This article includes
the following contributions:

• We design a LSTM-based model that learns the distribution of the
missing values in the multivariate time series data. After training,
the model can be used to generate synthetic missing values that
follow the distribution of the data. There are no restrictions
or assumptions regarding the type of the data or the temporal
dynamics.

• We implement an attention based estimation model that uses the
predicted distribution from the LSTM model for its own training
process. The interaction between both models allows for flexible
adaptation to the input data. The imputation model can learn
temporal and cross-dimensional correlations at the same time and
estimates all missing values for a given timeframe simultaneously.

• We design and evaluate our model specifically for the purpose
of imputing missing values in the ENTSO-E data. We carry out
extensive analysis on the performance of our model in comparison
to several benchmarks and on different subsets of the data. Our
model shows favorable results in comparison to the benchmark
methods.

he paper is structured as follows. Section 2 starts with a literature
eview, followed by an overview of the ENTSO-E data in Section 3.
ection 4 introduces the setup and methodology of the proposed model,
hile Section 5 includes the experiments, as well as results. Section 6
2

oncludes with a discussion.
2. Related work

This section contains a review of related work used in this article.
Section 2.1 provides a brief overview of the literature on the impor-
tance and effect of missing values in energy data. Section 2.2 concludes
with a review of different methods for time series analysis.

2.1. Importance of missing values in energy data

While missing data occurs in nearly every field of study, it is
especially important in the context of energy data, since most energy
system models require complete data. These models cover a huge
variety of tasks, for example proposing a future energy system, obtain-
ing measures to reduce CO2 or to estimate investment expenditures.
Ruggles et al. [7] show that after filling the gaps only in electricity
demand time series, the results of a power system model can vary
by 5% between using two sophisticated data imputation approaches,
even for a very simple analysis considering only one region. Since
energy system models cannot operate with missing data, some choice of
imputing has to be made. Besides, the paper also shows that the results
from simple data imputation methods are generally not of sufficient
quality. These insufficiency is highlighted for models that are planning
power generation capacity and production for the long term. Since
security of supply must be ensured and electricity demand must be
met at all times, differences in estimated missing values can lead to
different planning strategies. However, even for short-term forecasting
models this can pose a problem. In the case of wind farms, short-term
planning is important to balance electricity supply and demand [8].
Since electricity demand and supply must be in balance at all times,
incorrect assumptions and estimates can lead to instabilities in the
electricity grid and require additional grid stabilization measures. In
such cases, operators of renewable power generation plants pay penal-
ties due to their incorrect estimates. For such estimates, the statistical
data forecasting methods are usually preferred [9]. These methods
however, require recent observations of power and wind speed from
potentially several wind farms. These observations are prone to data
loss, due to reasons like maintenance, communication errors or delays.
For example, Akçay and Filik [10] use a dataset providing wind speed
measures for five different stations in Turkey and report an average
of 2.17% values missing. Two frequently used data sources for energy
system analysis are the PJM data [11] in the US and the transparency
platform ENTSO-E [12] in Europe. These datasets contain time series
with information about the national electricity demand, prices, as well
as the energy production of all available technologies. In this article we
will focus on the latter. Compiling these measurements for a very large
number of electricity production units, including small generation such
as rooftop solar plants, is difficult and produces time series with many
missing values. For instance, in the ENTSO-E transparency platform an
average of 1000 values per week are missing in the production mix data
for 2015 and 2016 [13]. As mentioned before, this can have a huge
impact on energy models that require (sufficiently) complete data. In
order to deal with this problem, it is necessary to impute the data in
some way.
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2.2. Models for time series prediction and imputing

A vast amount of literature focuses on the problem of imputing
missing data in time series. Simple ‘‘naive’’ methods include mean im-
puting, interpolation or last observation carried forward. These meth-
ods however, fail to incorporate more complex time dependencies.
Autoregressive methods, for example ARIMA or GARCH models remove
the trend from the time series and estimate the relationships between
the individual timesteps. State space models further extend the use
of ARIMA with Kalman filters [14]. Approaches centered around k-
nearest-neighbor estimation [15] aim to replace the missing value with
a value of the most similar neighborhood. These methods have proven
to perform quite well in time series imputing and can be applied in
different areas [16,17].

However, the advances in machine and deep learning have led to
an increasing number of such methods used for imputation. A frequent
approach is using sequence models like recurrent neural networks
(RNNs or LSTMs), to impute time series data [1–3]. The approach
described by Zhang et al. [1] proposes a deep neural network based on
bi-directional LSTMs to recover missing values in sensor data. Applying
the model to water quality data of the Great Barrier Reef led to
an improvement of up to 70% on evaluation metrics against chosen
benchmark models. Cao et al. [18] propose BRITS, a self-supervised
algorithm based on a network of bidirectional LSTMs. Their approach
can be used for univariate time series imputing, as well as for multi-
variate time series with correlated features. The study compares the
method against various baselines, including RNN-based methods, and
achieve an improvement in accuracy over three different independent
datasets. Further approaches exist, making use of different state-of-
the-art neural network architectures. Generative Adversarial Networks
(GANs) can be used efficiently to learn the distribution of a multivariate
time series [4]. This can then be further used to estimate the missing
values in the data. The method GRUI, as proposed by Luo et al. [4],
shows an improved accuracy against chosen baselines on different time
series datasets. Fortuin et al. [5] use a combination of variational
autoencoders and Gaussian processes to estimate the distribution of
missing values with a focus on the application in medical data. The
study compares the model on different datasets, including medical time
series data. The performance on different tasks (imputing, classification
after imputing) is significantly higher than most baselines methods and
similar to state-of-the-art methods like BRITS [18].

Some recent approaches focus on using an attention based archi-
tecture to learn dependencies in multivariate time series. The self-
attention mechanism introduced by Vaswani et al. [19] has become the
state-of-the-art in several different fields of machine learning, mainly in
natural language processing. However, the approach itself can also be
applied to computer vision or sequential modeling. Zerveas et al. [20]
use an attention framework for time series regression and classification.
Their model consists of an attention based neural network encoder
that is adapted to dealing with multivariate time series. The study
shows that the model is able to obtain a higher performance than
the respective baselines, both in regression and classification tasks.
However, it is also mentioned that the approach is transferable to fore-
casting or imputation. Ma et al. [6] propose CDSA, a cross-dimensional
self-attention architecture with application to multivariate geo-tagged
time series. They propose to use a decomposition of the attention map
of the model architecture in order to incorporate cross-dimensional
dependencies while keeping the computational costs low. The model
shows a lower imputation error than chosen baseline metrics over
several geo-tagged time series datasets. Table 1 shows a summary of
the review literature on time series imputing. While many approaches
are available, we are not aware of any deep learning methods focusing
3

specifically on the area of energy time series.
Table 1
An overview of relevant models and literature.

Method Study Approach Application

KNN [15] K-nearest-neighbor Power data
SSIM [1] LSTM Sensor data
BRITS [18] LSTM Medical data, sensor data
GRUI [4] GAN Medical data, sensor data
GP-VAE [5] Autoencoder Medical data
CDSA [6] Attention based Sensor data
MVTSI This study Attention based Energy data

3. Data

This section describes the data used in the experiments in more
detail. The data originates from the ENTSO-E transparency platform.1
ENTSO-E, the European Network of Transmission System Operators for
Electricity, is the association for the cooperation of different European
transmission system operators (TSOs). The association includes 39 TSOs
from 35 different countries. Details about ENTSO-E, for example the
mission statement and the individual members are accessible on the
project’s website.2 The ENTSO-E transparency platform offers a way to
easily access data on the European electricity system, via an API. A
systematic review of the platform would extend the scope of this article
and can be found in Hirth et al. [13]. However a short analysis of the
data quality is given below with a special focus on the distribution of
missing values. For that purpose this section will briefly cover the study
by Hirth et al. [13], which provides an in-depth analysis of the data
quality of the ENTSO-E data. However, since it only refers to the years
2015–2016, an additional statistical analysis is included.

Hirth et al. [13] provide an extensive study about the ENTSO-
E transparency platform, considering its ambitions, characteristics,
methodology as well as data quality and usability. Since for the pre-
sented model the main focus is on data quality, further information
about the platform is not discussed here. Hirth et al. [13] use data
retrieved in April 2017. This means, the more recent data that is used
in this study might differ, due to adjustments. It is shown that the
amount of missing values heavily depends on the country, year and the
covered variable. For example in Denmark there is a 100% coverage
of all variables, except for ‘‘Hydro Run-of-river and poundage’’, where
32.4% of values are missing. Similarly, Italy only has a reported
coverage of around 50%, since one year is missing in most features. The
Completeness of ‘‘Aggregated Generation per Type’’ table from Hirth
et al. [13] is replicated using all available data from 2015–2020 and
can be found in Fig. A.8 in the Appendix. However, for further data
analysis the focus is not on the completeness of the raw ENTSO-E data,
but on the data as it is processed for the model presented in this article.

The used data includes 29 countries provided by ENTSO-E. These
countries contain the EU27 excluding Cyprus and Malta, but including
Switzerland, Serbia, Norway, and the United Kingdom. However, the
countries Luxembourg and Germany are added together, as they form
a bidding zone on the electricity market. The data covers all years from
2015 to 2020 (inclusive) and was retrieved using the public API on
09.06.2021. Furthermore, several features were aggregated. The reason
being that the model is evaluated only on a reduced subset of the data,
but also because a lot of the features do not carry important informa-
tion. For example the feature ‘‘Fossil Peat’’ does only exist for three
out of 29 countries and is therefore removed. The remaining features
were aggregated in the following way: The features ‘‘Hydro Run-of-
river and poundage’’ and ‘‘Hydro Water Reservoir’’ were summed up
into ‘‘Hydro’’. The features ‘‘Fossil Peat’’, ‘‘Other renewable’’, ‘‘Waste’’,
‘‘Fossil Oil’’, ‘‘Fossil Coal-derived gas’’, ‘‘Geothermal’’ were added on
top of ‘‘Other’’. Missing values were carried through the aggregation

1 https://transparency.entsoe.eu/
2 https://www.entsoe.eu/about/

https://transparency.entsoe.eu/
https://www.entsoe.eu/about/
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Fig. 1. Weekly load profile for five different countries. During the weeks there are two gaps of different length with missing values for the bidding zone DE-LU (Germany &
Luxembourg), indicated by the red ellipses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Histogram of the amount of missing values per day and country, including only incomplete days.
t
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Table 2
Summary statistics of different aggregation schemes for the missing values.

Aggregation method Mean Min 25% 50% 75% Max

Per day & countrya 10.33 0 0 0 13 242
Per day & countryb 31.51 1 13 24 27 242
Per day & featurea 21.58 0 0 16 45 150
Per day & featureb 34.23 1 24 28 49 150
Per timestampa 11.69 3 7 10 15 72
Per timestampb 11.69 3 7 10 15 72
Gap lengthb 21.36 1 1 3 6 46222

aRefers to complete data.
bOnly includes data with missing values in the specific aggregation.

process, meaning that if one feature was missing, the summed feature
is also declared as missing, since the actual value cannot be determined.
This process resulted in a total of 𝑛 = 13 features. More information on
the processing step can be found in the Appendix. Fig. 1 shows an
example of the used data.

A closer look on the distribution and characteristics of the missing
values in the data is given in the following. Table 2 shows summary
statistics for different aggregation levels of the missing values. For
example, the amount of missing values during one day per country
4

p

is analyzed, which shows that on average 10.33 values are missing.
However, for more than 50% of the days the data is complete, as can
be seen in Table 2. Since the goal is to impute the missing values later
on, it is more interesting to focus on the amount of daily missing values,
when data is actually missing. Because in any day that has no missing
value nothing needs to be imputed. Summary statistics for this data can
also be found in Table 2. Fig. 2 shows a histogram for the amount of
missing values per day and country, only including incomplete days. It
is noticeable that if data is missing during one day, it is most likely
that the amount of missing values is 24. This is probably due to a
whole feature missing for the day. Furthermore, we analyze the length
of consecutive missing values (gap length). While on average about
21 consecutive timesteps are missing, this value is highly distorted,
since for some features almost all of the data from one year is missing.
Table 2 shows that the 75%-quantile of the gap length is 6, implying
hat 25% of the gaps are made up of 6 consecutive missing values or
ore. Our analysis of the missing values shows that the general amount

f missing data over a specific time period (day, timestamp) is quite
igh, if we exclude complete data. Due to consecutive missing values
cross different dimensions, univariate and simple statistical methods
re not suitable to solve this kind of imputation problem, hence the
roposed method of this paper.
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Fig. 3. The left figure shows the raw multivariate time series, as obtained by the ENTSO-E data. Additional features, like the masking vector, are added before the data is fed into
the model. The right figure shows an imputing example for a complete input sample. However, dealing with additional missing values across the time domain is not a problem
for the imputation model.
It is worth noting at this point that we assume the data to be
missing completely at random or missing at random. The first would
suggest that missing data exists just because of random distortions. In
the context of this study this seems to be a strong assumption, since a
lot of missing values are time dependent, e.g. if exactly 24 hours are
missing. Missing at random would imply that the fact that specific data
is missing might be due to measured characteristics. For example, the
probability that data is missing for one country might be higher than
for another country. While missing completely at random might be an
extreme assumption, missing at random should be justifiable for the
proposed model, as the information that can influence the probability
of missing values is incorporated in the model. However, the data
could also be missing not at random. This would suggest that there is
additional information, not reflected in the data, that determines the
missingness of data. In that case the model estimations can potentially
be biased.

4. Methodology

This section explains the proposed approach in detail and includes
the methodology behind the two-stage model. Fig. 3(a) shows the
structure of the processed data used as input to the model. Let 𝐶 =
{𝐶1,… , 𝐶𝑚} be a set of 𝑚 countries (e.g., ‘‘France’’, ‘‘Germany’’) and
𝑆 = {𝑆1,… , 𝑆𝑛} a set of 𝑛 time series types (e.g., ‘‘electricity production
from solar’’, ’’electricity prices’’). 𝑌 = {𝑌1,… , 𝑌𝑙} represents the years
and 𝑇 = {𝑇1,… , 𝑇8760} an hourly timestamp of the year, including
information about the day, week, month and hour.

For a specific country the features can be expressed as a multivariate
time series 𝐒 = {𝐬1.… 𝐬𝑇 } with 𝑇 observations. Any observation from
a timestamp 𝑡 consists of 𝑁 features, 𝐬𝑡 = {𝑠1𝑡 ,… , 𝑠𝑁𝑡 } ∈ R𝑁 . In
order to model the missing data, a masking vector 𝐱𝑡, that includes the
information, whether a feature is missing or not, is used. It is defined
in the following way:

𝐱𝑛𝑡 =

{

1 if 𝑠𝑛𝑡 is missing
0 otherwise

Similar to before, this can be interpreted as a multivariate time series
𝐗 = {𝐱1.… 𝐱𝑇 }. In order to take the interdependencies of the time
series into account, the input data is transformed into a specific for-
mat. For each country, a multivariate time series is extracted using a
sliding-window approach, with a 24 hour shift. Therefore, each sample
includes a window of five days over all features. The MVTSI approach
aims at imputing the missing values in the middle day, as can be seen
5

in Fig. 3(b). This approach has the advantage that the model is able to
directly incorporate the data temporarily close to the missing values.
The further relations are learned implicitly from the data. Since the
model receives the masking vector as an input it is flexible in dealing
with additional missing values across all days and features. In principle,
different window sizes can be chosen for the approach. However, since
an attention architecture scales quadratically in memory, large window
sizes can lead to computational infeasibility, depending on the available
memory. In addition, the window size can be treated as one of many
parameters of the model that could potentially be optimized. Since the
approach already shows promising results without extensive parameter
tuning, the window size is kept fixed as five days.

The proposed approach to imputing missing values consists of the
steps that are depicted in Fig. 4. After the data is prepared and trans-
formed using the sliding window, in the first stage, a LSTM based
neural network is implemented to learn the distribution of missing
values in the data. This model is then used to create artificial missing
values in the data, that are similar to the original distribution. Because
the imputation cannot be evaluated on actual missing data, since the
true value is unknown, this step is necessary to calculate the loss and
actually train the imputation model in the second step. This model is
then trained using the generated missing values and therefore learns to
predict missing values in the way they actually occur in the underlying
data. For the inference, in order to predict the missing values, only the
attention model is needed. Although this approach incorporates two
specific model architectures, they could in principle be exchanged. One
could for example use the first stage of the model in the first step and
train any suitable neural network as described above, or vice versa. In
the following the two mentioned models are described in more detail.

4.1. Modeling of missing data distribution

The first step of the modeling approach is to estimate the distribu-
tion of missing values in the data that is to be used. In order to estimate
the distribution, a LSTM-based sequence model is used. Fig. 5(a) shows
how data in the form of a time series is processed in this model. First a
start-of-sequence (SOS) token is added to tell the model to predict the
first value of the time series. The model then sequentially predicts the
next value in the time series. In the training process teacher-forcing is
used, which means that after each prediction, the model uses the true
value for the next prediction. This approach can significantly reduce
the training time of a neural network [21]. In the inference process,
the whole time series is estimated using the step-wise predictions of
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Fig. 4. An abstract scheme for the model workflow. In the training process, missing data are generated artificially by the first stage model and then further used to train the
attention model. For performing inference on unseen data, only the second model is used to impute the actual missing values.
Fig. 5. The LSTM model for estimating the distribution of missing data. In the training process the true data is used as an input for the next step, while in the inference process
the predictions are fed back into the model. The model consists of several embedding and concatenation layers, followed by the bi-directional LSTM units. The final output is the
probability of each individual value being missing.
the model. Fig. 5(b) shows the basic structure of the LSTM sequence
model. Instead of using the whole time series, subsets of 24 h are used
as input to the model, since the aim is to estimate missing values in
this specific time horizon. The input time series is concatenated with
feature embeddings, like positional encoding or country embeddings.
For the MVTSI approach the time series is a binary vector, containing
the information whether a specific datapoint is missing or not. As a start
token the value −1 is used. In the model, the data is first fed through
one (or several) LSTM layers and afterwards a final Dense layer with a
sigmoid activation function:

𝑆(𝑥) = 1
1 + 𝑒−𝑥

.

ince 𝑆(𝑥) ∈ [0, 1] the output of the model can be interpreted as
the probability that the next value is missing. In the training process
the binary cross entropy loss is minimized using teacher-forcing, as
mentioned before. For the inference process, the model uses its own
step-wise predictions, to predict the whole time series. However, the
probability predictions of the model are converted into a binary vector
6

using a Bernoulli random variable with the predicted probability.
4.2. Attention model for imputation

This section describes the second stage of the proposed approach,
the attention based imputation model. Attention based models do not
process time series sequentially, but learn the dependencies between
all time steps across all dimensions at the same time. To simplify the
learning process for the model, positional encodings are added to the
data, carrying information about the relative position in the time series.
The model also incorporates categorical embeddings for the year, the
country and the feature, as can be seen in Fig. 6(a). Embedding layers
can learn multidimensional representations of the discrete input data.

The actual attention mechanism mainly consists of the matrices
𝑄,𝐾, 𝑉 ∈ R𝑇 ,𝑑 (query, key, value) and the attention mask 𝑀 ∈ R𝑇 ,𝑇 .
In our case, 𝑇 is the dimension of the stacked inputs, as described in
Fig. 6(a) and 𝑑 is a hyperparameter called the embedding dimension.
Since our proposed approach incorporates self-attention, the matri-
ces 𝑄,𝐾, 𝑉 are equal. Furthermore, the causal attention mask is not
needed, because an imputation approach is used and the model is
‘‘allowed’’ to see all data. In forecasting for example, the mask 𝑀

would ensure, that no future values are incorporated in the prediction.
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Fig. 6. The proposed attention model. Several embedding layers are used to implement categorical features, for example the country, into the model. The data is fed through
the attention layers and the model learns to impute missing values in the middle day of the time window. In the setting of self-attention, the three matrices are equal and of
dimension 𝑄,𝐾, 𝑉 ∈ R𝑇 ,𝑑 , where 𝑇 is the input dimension and 𝑑 is the embedding dimension.
The attention is then calculated as 𝐀(𝑄,𝐾, 𝑉 ) = softmax(𝑄𝐾⊤
√

𝑑
)𝑉 . This

is referred to as scaled dot-product attention [19]. One can interpret
this mechanism in the following way. Using the softmax activation,
the model can learn to focus its ‘‘attention’’ on specific parts of the
data, in dependence of the input. In the energy context for example,
the model could learn not to put attention on the feature Nuclear in
Denmark, since the values are always zero (Denmark does not produce
nuclear energy). Fig. 6(b) shows the structure of the proposed attention
model. As mentioned before, the input data is created using a sliding-
window approach of 5 days, shifted by one day, including all features
and countries. In each sample the previously described first stage model
is used to estimate the distribution of missing values in the middle day.
Using this artificial data, the attention model is trained to impute these
missing values, using the mean squared error.

It is worth noting, that the presented model is used for deterministic
forecasting of missing values and does not consider the uncertainty in
the predictions. However, to change into a more probabilistic forecast-
ing setting can be very helpful in order to quantify the uncertainty
that goes along with the predictions. Several approaches are available
specifically for turning deterministic into probabilistic forecasts. A
simple way is the Single Gaussian technique [22] that uses the model
output to create a predictive density based on the normal distribution.
Lakshminarayanan et al. [23] propose deep ensembles, an algorithm
that trains several ensembles of a neural network by using a proper
scoring rule [24] as a training criterion. Gal and Ghahramani [25]
suggest to use dropout in the training process of neural networks to
represent the model uncertainty. These are just examples of several
approaches available, tailored specifically to deep neural networks.
However, since most approaches are independent of the specific net-
work architecture, this article focuses on deterministic forecasting and
the uncertainty prediction is left open as possible future research.

4.3. Implementation details

Each sample 𝐬𝑡 is normalized by subtracting the mean and dividing
by the standard deviation of the training data. Every missing datapoint
7

is set to zero, since the neural network itself cannot handle non en-
coded missing values. Both model stages are trained using the Adam
optimizer [26], minimizing the mean squared error (MSE). A batch size
of 32 and a custom learning rate scheduler, that includes early stopping
is used. For that purpose the training data is split into a training and
validation set. The model will stop training, if the validation loss has
not improved for a set number of steps. The model is implemented in
python and tensorflow and was trained on different GPUs using Google
Colab. The aggregated runtime of all experiments did not exceed ∼ 3
hours. The accompanying code can be found on github.3

5. Results

The following section describes the experimental setup, as well as
the model evaluation process. The evaluation process is split into two
parts, since the two model stages are evaluated separately. First, the
evaluation focuses on the first stage model and its ability to estimate
the distribution of missing values. Afterwards a detailed analysis of the
performance of the attention model is provided across different metrics
and in comparison to several benchmarks.

5.1. Evaluation of distribution modeling

In order to evaluate the first stage model, it is helpful to take a look
at what the model is actually supposed to estimate. The aim is not
to overfit on the missing data, since this would lead to an estimator
that learns the exact location of missing values. Instead, the goal is to
obtain a model that creates a distribution that is in general similar to
the distribution of missing values. Due to the stochastic nature of the
model, the created missing values can be different for each iteration,
but should generally reflect the properties of the original data. Since the
model estimates a different distribution for every time series, it is not
practical to compare every single estimated distribution to its original

3 https://github.com/cbuelt/transformer-imputing

https://github.com/cbuelt/transformer-imputing
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Fig. 7. Both figures show the estimated and true (empirical) distribution of the amount of missing values per day in the test data. The left plot shows the values in a histogram,
while the right plot shows the corresponding empirical cumulative distribution function.
Table 3
Distance measures between the model predictions and the test data over different
variants of distribution characteristics. A smaller value indicates a higher similarity
between the two distributions.

Missing values Hellinger Wasserstein

Per day 0.2978 0.0014
Per feature (Mean over all features) 0.1343 0.0048
Per timestep (Mean over all timesteps) 0.1231 0.0105
Sequence length (per feature and day) 0.3391 0.0154

one. Instead we evaluate the performance of our model by comparing
summary statistics over all test samples, in order to determine whether
the approach can generally reflect the properties of the true distribution
of missing values. For this purpose we chose several specific summary
statistics. First, we compare the distribution of the amount of missing
values per day over all features. Furthermore, we compare the amount
of missing values per feature and per timestep. Finally, we also compare
the sequence length of missing values per feature and day. All of these
summary statistics can be transformed into a histogram or an estimated
distribution function. Therefore we need tools or measures to compare
the similarity of two (empirical) distributions. For that purpose, we use
two distance measures, the earth mover’s distance (also referred to as
the first Wasserstein metric) and the Hellinger distance. Both measures
have a value of zero, if the (empirical) distributions are identical. The
Hellinger distance for discrete distributions is defined as

𝐻(𝑃 ,𝑄) = 1
√

2
‖

√

𝑃 −
√

𝑄‖2,

here 𝑃 ,𝑄 are probability vectors. In our case they refer to the prob-
ability of a specific value being missing. 𝐻(𝑃 ,𝑄) fulfills the property
0 ≤ 𝐻(𝑃 ,𝑄) ≤ 1. Let 𝑈, 𝑉 be distributions with cumulative distribution
unctions 𝐹𝑈 , 𝐹𝑉 , respectively. The first Wasserstein distance is then

defined as:

𝑊1(𝑈, 𝑉 ) = ∫

∞

−∞
|𝐹𝑈 (𝑥) − 𝐹𝑉 (𝑥)|𝑑𝑥.

See Nguyen [27] for further information on characteristics of the
Wasserstein metric and Meshgi and Ishii [28] for further ways to
measure the similarity of histograms.

The next step is to analyze the performance of the LSTM model
that is used to predict the distribution of missing values in the data.
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Table 4
Result metrics and their respective standard deviations. The lowest result
is highlighted in bold. For all models the standard deviation is quite
high, since some time series are hard to replicate, which leads to high
errors, affecting the aggregated MSE.
Model MSE MAE

MVTSI 0.0610 ± 0.5822 0.0845 ± 0.2321
LSTM 0.0687 ± 0.5810 0.1217 ± 0.2320
LOCF 0.1030 ± 0.9196 0.0959 ± 0.3062
KNN 0.0668 ± 0.5645 0.0927 ± 0.2412

Fig. 7 shows the histogram and the empirical cumulative distribution
function (ECDF) of the true and estimated distribution. It can be seen
that the empirical distributions are quite similar, meaning that the
model is able to match the general distribution of missing values in
the data. As explained earlier, different metrics are used to quantify
the similarity of the two distributions. Table 3 shows the distance
measures for the summary distributions. As already mentioned, a value
of zero would determine a perfect fit. Therefore, the results show
that the proposed model is able to generate a distribution of missing
values which accurately reflects the characteristics of the underlying
distribution. In the next step this model is used to predict missing values
in the test data and train the attention model on the imputation task.

5.2. Evaluation of imputation model

To evaluate the quality of the data imputing different metrics are
used to examine the performance of each method. The mean squared
error (MSE) and the mean absolute error (MAE) are very common meth-
ods to evaluate the deviance of the original value from the prediction.
In order to evaluate the model properly, the data needs to be split into
a training and a test set. Since the data is ordered, in the sense of a
time series, it is not possible to only take random samples from the
data. However, if only one time slice is taken as a test set, for example
one year, the evaluation might be biased. In our approach a test set
with a monthly resolution is used. From all unique countries, years
and months, which is a total of 1958 different monthly data samples,
10% of the data is chosen as the test set. The data is then transformed
using the rolling window approach, as described earlier. In this way the

timely nature of the data is considered, while still keeping it random
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Table 5
Mean squared error calculated per individual feature, as well as share of total missing
values. The best model for each feature is highlighted in bold.

Feature Missing MVTSI LSTM LOCF KNN

Hard coal 23% 0.0222 0.0291 0.0369 0.0380
Other 21.46% 0.0108 0.0209 0.0209 0.0169
Pumped Storage 16.93% 0.1662 0.1785 0.3110 0.1929
Fossil Gas 16.11% 0.0636 0.0607 0.1150 0.0719
PV 10.45% 0.0778 0.0990 0.0660 0.0662
Hydro 9.49% 0.0194 0.0527 0.0237 0.0268
Biomass 5.97% 0.0110 0.0343 0.0144 0.0160
Day ahead price 5% 0.1012 0.0942 0.1865 0.0957
Wind Offshore 4.14% 0.2103 0.1429 0.3651 0.1311
Load 3.15% 0.0060 0.0205 0.0107 0.0074
Wind Onshore 2.52% 0.1107 0.0871 0.1845 0.1129
Nuclear 1.71% 0.0102 0.0338 0.0077 0.0054
Lignite 1.32% 0.0040 0.0251 0.0199 0.0209

Table 6
Different technologies for electricity production, as well as their respective greenhouse
gas emissions [29], calculated for 2021 in Germany [30]. The right column shows the
Model with the lowest MSE per feature.

Feature CO2 eq [kg/MWh] CO2 eq [Mt] Best model

Lignite 1229 121.55 MVTSI
Hard Coal 1227.3 56.95 MVTSI
Fossil gas 488.4 24.96 LSTM
Biomass 201.4 8.68 MVTSI
PV 85.8 4.15 LOCF
Pumped storage 56.8 0.22 MVTSI
Wind Onshore 27.1 2.43 LSTM
Nuclear 11.7 0.76 KNN
Wind Offshore 27.1 0.65 LOCF
Hydro 4.6 0.07 MVTSI
Other – – MVTSI

enough to create a stable evaluation process. The first stage model, is
used to estimate the underlying distribution of the missing values. It
is trained only on the training data and predicts a missing value mask
for the test data. This mask is put on top of the data and determines
where the missing values are located. Since some of these values might
be completely missing in the ENTSO-E data, the evaluation metrics
are only calculated over the data that the LSTM model predicts to be
missing, but is not actually missing. Since the true value is not known
in that case, an evaluation would not be possible. For the evaluation,
the LSTM model is only trained on data which includes missing values.
The reason is that the focus is on imputing missing values and a model
that predicts a lot of complete days is not useful in that case. By
training only on incomplete data, the model tends to predict more days
with missing values than can be seen in the original data. However,
since complete days are not relevant for our imputation models, this
method can be justified. The attention model is tested against several
other methods for time series imputing, including classical statistical
models, as well as deep learning approaches. The first ‘‘naive’’ method
is LOCF (Last Observation Carried Forward). This methods replaces
missing values by using the observation from the previous day. The
second method we use as a comparison is the k-nearest-neighbor-
imputing (KNN-imputing). Furthermore, we are comparing our method
to another deep learning method, namely a bidirectional LSTM, which
is similar to the approach proposed by Cao et al. [18].

As already mentioned, the models are evaluated using the mean
squared- and the mean absolute error. Table 4 shows the two error
metrics for each model, including their respective standard deviations.
Both, in terms of MSE and MAE, the attention model obtains the
lowest error and a standard deviation similar to the benchmark models.
It is noticeable that for all methods the standard deviation is quite
high compared to the mean value. This is due to some missing values
9

being very hard to predict, thus leading to an abnormally large error
and affecting the standard deviation. A possible explanation could be
that some missing data occurs completely at random and is therefore
difficult to predict by a model. However, since this is the case for all
models equally, the results are still comparable. Table 5 shows the MSE
of the different models grouped by the individual features of the data.
It can be seen that the attention model has the lowest error for the
most features. More importantly, the model shows a good performance
for features with a lot of missing values. This means that the proposed
approach is suitable to estimate the features, responsible for the most
gaps in the data. The dependency between the amount of missing values
in the data and the model accuracy is highly interesting and could
be analyzed further. The first stage model can easily be modified in
order to simulate a distribution with more or less missing values and
the imputation approaches could be analyzed accordingly. However,
since the focus of this study is tailored to the ENTSO-E dataset and
its characteristics, these experiments are left as a direction for future
research.

This last section aims to give a brief outlook on further processing of
the imputed data. For that purpose, the imputed features are compared
in terms of their greenhouse gas emissions. Table 6 shows the kilogram
CO2 equivalent per MWh for each specific feature, as well as the
model with the lowest MSE. The respective values are taken from
Xu et al. [29]. It is noticeable, that the MVTSI model obtains the
best performance for technologies with the highest carbon emissions,
especially Lignite and Hard coal. However, the performance is worse
for highly volatile technologies, such as wind power or photovoltaic.
The results suggest that the chosen approach could be suitable for
imputing data that is to be used in an energy system model, which
aims at estimating future technology dispatch and impact of greenhouse
gas emissions. However, a more detailed study of this topic would be
needed, extending the scope of this paper.

6. Conclusion

Imputing missing data in multivariate time series is an important
task in many areas of application, including energy time series. A lot
of research has been put into developing such methods, more recently
using machine learning approaches. This paper proposes a two-step
attention based data model for imputing multivariate time series. In
the first part of the model the distribution of missing values in the
original data is learned. This information is further used to train an
attention based neural network that imputes the missing values. While
we focus on the use-case of the ENTSO-E data, our model is flexible
for any kind of multivariate time series and any desired time frame.
Our experimental results show that the model can estimate missing
data more accurately than the chosen benchmark methods. Apart from
the evaluation with a focus on time series metrics, we also give more
detail on the model performance in dependence of a specific technology
for electricity generation. These results show that our approach shows
the lowest error (in terms of the MSE) for most features. However,
this is not the case for all features and also heavily depends on the
distribution of the missing values. Further analysis of the feature and
model dynamics in dependence on the amount of missing values can
offer interesting insights. Further improvement and tuning of the model
could potentially lead to an improvement for these features as well,
while keeping the ability to generalize over all features. As previously
mentioned, several approaches are available to shift into a probabilistic
imputing setting. Further use of different approaches and an analysis of
the uncertainty in the predictions of our model is a promising area of
future research. As for the model structure, implementing the cross-
dimensional self-attention [6] for the proposed architecture could be
an interesting approach to further improve performance and reduce
computational complexity. In addition to the mentioned results, we
provide an outlook on the potential of using the proposed approach for
imputing missing values for further processing of the data, for example
in energy system models. Further work could go into examining how
the choice of an imputation methods affects the output of a model that
further processes the data, for example an energy system model.
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Fig. A.8. Amount of missing values of chosen features in the used ENTSO-E data. Country availability refers to the country submitting any data at all in the period 2015–2020.
The figure is restricted to a subset of available technologies.
Data availability

Data is publicly available via an API, but the author has no permis-
sion to share it.
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Appendix. Processing of ENTSO-E data

This section gives a more detailed overview of the data processing
of the ENTSO-E data, since this has an influence on the characteristics
of the missing data. First, if a whole year (or part of a year) is missing
for a country, the data is treated as not existent and not as missing.
This is for example the case in Serbia, where the whole year of 2015
is not available. The same applies if a country does not incorporate a
specific production feature. In this case, the production is just set to
0 MWh, since removing the feature does not make sense, due to the
structure of our model. This is the case for example with Denmark
and the feature ‘‘Nuclear’’. Furthermore, some countries incorporated
features after the transparency platform was already running, leading
to ‘‘n/e’’ for some years and actual data for others. Here the ‘‘n/e’’
is again replaced with a production of 0 MWh. For instance, Poland
10
only started submitting data for the feature ‘‘Solar’’ from 10.04.2020
onwards. These processing steps are not heavily important for the data
or the model, but they do change the characteristics of the missing
values. Therefore the processed data in this article does not necessarily
show the same characteristics as the data used in Hirth et al. [13].
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