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A B S T R A C T

A new physics-guided Bayesian recurrent neural network is proposed in this manuscript. This hybrid algorithm
benefits from the knowledge in physics-based models, the capability of recurrent neural networks to handle
sequential data, and the flexibility of Bayesian methods to quantify the uncertainty. The introduction of physics
in the forward pass of the neural network significantly improves the results in multistep-ahead forecasting, and
the gradient-free nature of the Bayesian learning engine provides great flexibility to adapt to the observed data.
The proposed algorithm has been applied to a data-driven problem about fatigue in composites, and a case
study about accelerations in concrete buildings, where a comparison against the state-of-the-art algorithms
is also provided. The results revealed: (1) the accuracy of the proposals, comparable to the state-of-the-art
recurrent neural networks; (2) its stability during multiple runs of the algorithm, proving that it is a more
reliable option; (3) its precise quantification of the uncertainty, which provides useful information for the
subsequent decision-making process. As potential future applications to real world scenarios, the proposed
Bayesian recurrent neural network could be used in on-board PHM systems in the aerospace industry, or as
an on-site prediction tool in buildings for seismic events and/or aftershocks.
1. Introduction

When the records of a data set are stored consecutively, and there
exists a dependence between them, this data set is considered to be
sequential. Time-series data are a good example, such as gene se-
quences, weather data, heart rate or stock prices. But they are also
found in engineering problems, like failure rate prediction of water
distribution networks [1] or remaining useful life (RUL) predictions [2],
and they play a fundamental part in reliability engineering, system
health monitoring (SHM) and prognostics. Although these kind of data
can be processed by different well-known methods, like Autoregressive
Integrated Moving Average [3] or Exponential Smoothing [4] models,
artificial neural networks (ANN) [5] have increased in popularity for
the last two decades. More specifically, recurrent neural networks
(RNN) have provided an outstanding performance when applied to
time-series data. There are many different variants of RNN, from Long
Short Term Memory (LSTM) [6] to Gated Recurrent Unit (GRU) [7,8],
and they are responsible for many tools and software we use in our
daily lives. To name a few, speech recognition [9], machine trans-
lation [10], image captioning [11], sentiment analysis [12], music
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generation [13] or video activity recognition [14], were made possible
thanks to RNN. The engineering industry has also become increasingly
interested in the use of RNN [15–17], even in construction related
tasks [18]. Their success in so many different fields of application
mainly lies in their capacity to store useful information from the past,
and then use it to make predictions about the future.

Nevertheless, RNN also present some issues, mostly related to the
use of the backpropagation algorithm to train the weights of the neural
network, namely vanishing and exploding gradients [19]. While these
problems are not exclusive of RNN, the fact that the gradient of the
loss function is backpropagated through many time-steps makes this
type of neural network more prone to suffer from them [19]. Differ-
ent solutions have been proposed but the gated algorithms, such as
LSTM and GRU, have provided the best results [20]. Another usual
drawback of neural networks is their poor performance when data
is scarce and/or imbalanced [21], which is a common situation in
reliability engineering problems, and their inability to extrapolate [22].
Both issues have been addressed by hybrid methods, which introduce
physics-based models into data-driven algorithms. Furthermore, we
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can find in the literature different RNN that have been combined
with physics to create hybrid RNN. Depending on the nature of the
laws of physics, these are inserted in the RNN in a different manner.
For example, Zhonghai Ma et al. [23] proposed using the physics-of-
failure information from an Electro-Hydrostatic Actuator (EHA) system
to construct a LSTM neural network, thus enhancing the prediction
capability of the model. Zhanhang Li et al. [24] presented a new
hybrid method for degradation prediction, by combining bidirectional
LSTM neural networks with degradation tendency information from
the physics-based model. Abhinav Subramanian et al. [25] developed
a physics-informed machine learning approach for response prediction
in dynamic systems, where the probabilistic machine learning model
is recursively trained to predict the discrepancy between the output
of the physics-based model and the observed data. Primarily based on
the works of Raissi et al. [26], some authors have successfully applied
physics-informed RNN to problems where the physics are governed by
partial differential equations [27–31]. In these cases the neural network
is forced to minimize a loss function that includes the physics-based dif-
ferential equations and boundary conditions. RG Nascimiento et al. [32,
33] developed a recurrent cell that combined physics-based and data-
driven models for fleet prognosis and cumulative damage modeling.
Physics-guided recurrent neural networks are another family of hybrid
algorithms that are increasing in popularity, where the physics are
often introduced in the loss function. Thus, the neural network needs
to balance the deviation of its outputs from both, the observed data
and the physics-based model. In this line of research, Xiaowei Jia
et al. [34,35] successfully combined RNN and physics-based models
for simulating temperature profiles in lakes, and predicting flow and
temperature in river networks. Bayesian methods, such as Monte Carlo
Dropout (MC Dropout), have also been combined with physics-guided
RNN for quantification of the uncertainty, as can be seen in the works of
Arka Daw [36]. Despite the promising results provided by those hybrid
RNN, they are still subject to the drawbacks of backpropagation and
the evaluation of the gradient of a predefined loss function [37].

In this manuscript, a new gradient-free training method for RNN
based on Approximate Bayesian Computation with Subset Simulation
(ABC-SS) is presented, hereafter called BRNN by ABC-SS. Also, its
physics-guided version (PG-BRNN by ABC-SS) is proposed and applied
to an engineering case study about accelerations in concrete build-
ings during an experimental seismic event. The performance of these
Bayesian algorithms is evaluated in two experiments and compared
against the state-of-the-art RNN, including MC Dropout. The results
showed that the proposed Bayesian RNN achieve comparable accuracy
to the state-of-the-art RNN but with a realistic quantification of the
uncertainty, which may be critical in reliability engineering problems.
Furthermore, the absence of gradient evaluation and loss function,
coupled with the non-parametric formulation of the weights, explain
the stability and reliability of the proposed algorithms. Finally, the
introduction of physics-based models in PG-BRNN by ABC-SS signifi-
cantly improves the extrapolation capabilities of the neural network,
which may be key when making operational decisions, in predictive
maintenance tools, and in prognostics and health management (PHM)
systems.

The remainder of this manuscript is structured as follows. Section 2
provides a brief theoretical background about the main principles that
form the foundations of the proposed algorithms. Section 3 describes
how RNN can be trained with ABC-SS, and how physics-based mod-
els are introduced in the forward pass of the neural network. The
experimental framework, comprising a data-driven problem and an
engineering case study, is presented in Section 4. A discussion about
the results obtained in both experiments is given in Section 5. Finally,
2

the conclusions are provided in Section 6.
2. Background

This section provides an overview of the methodologies and prin-
ciples that form the foundations of the proposals presented in this
manuscript. The fundamentals of RNN and their applications are briefly
described, followed by how ABC-SS can be used to train the weights of
ANN, and finally, the benefits of combining physics-based models with
ANN are outlined.

2.1. Recurrent neural networks

The concept of RNN was born in the 1980s [38–40], motivated by
the need of ANN to handle sequential data. Indeed, RNN have tackled
two major challenges inherent in such type of data: input information of
varying lengths, and the fact that previous inputs may influence future
inputs and outputs. All that is possible thanks to ‘parameter sharing’,
where the same weights are recursively applied through each time step
of the neural network. This way, information about the immediate past
is stored and added to the present, to then make predictions about the
future. This principle is illustrated in Fig. 1, and the formulation of
the forward pass for the most basic form of RNN is shown in Eq. (1)
(note that 𝑡𝑎𝑛ℎ and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 are interchangeable by any other activation
function, and 𝑏 and 𝑐 are bias parameters).

𝑎𝑡 = 𝑏 +𝑊 ℎ𝑡−1 + 𝑈𝑥𝑡
ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑎𝑡)

𝑜𝑡 = 𝑐 + 𝑉 ℎ𝑡
𝑦𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑜𝑡)

(1)

Many different types of RNN can be found in the literature. De-
pending on the input–output relationship present in the data, there
exist several design patterns: one to one, one to many, many to one
or many to many [41]. Sentiment analysis or text classification are
good examples of many to one patterns, just as machine translation
is of many to many. The number of variables will also determine if
the model is uni-variate or multi-variate. Furthermore, the original
concept of RNN has evolved into more sophisticated and complex
algorithms, such as Bidirectional RNN [42], GRU or LSTM [6,7]. The
interested reader is referred to [41] (Chapter 10) for further details
about the implementation of the different versions of RNN and their
characteristics.

Despite the great success achieved by RNN in various applications,
they are not without drawbacks. They mostly rely on the backpropaga-
tion algorithm [39], which becomes more complex in RNN and is the
source of issues such as vanishing and exploding gradients. Also, RNN do
not perform well when making predictions outside the domain of the
training data, just like any other ANN. In fact, this problem is aggra-
vated in univariate multistep-ahead forecasting, where the predicted
value of the current time step is used to determine the value of the
next time step, recursively. Interestingly, this situation is common in
engineering, and more specifically, in SHM and prognostics and health
management (PHM) [43], where the updated information about the
health state of the structure is recursively used to prognosticate the
future health states of the system. While those issues can be mitigated
in varying degrees, like using LSTM for gradient-related problems,
Sections 2.2 and 2.3 will present a different approach to avoid such
drawbacks.

2.2. ABC-SS as a learning engine

Bayesian methods are a family of uncertainty quantification and
probabilistic approaches, which are used to update our degree of belief
about the value of uncertain parameters in a model, in light of new
data and in a systematic manner. All these methods are based on the
Bayes’ theorem [44–46], shown in Eq. (2) below:

𝑝 (𝜃|,) =
𝑝 (|𝜃,) 𝑝 (𝜃|) (2)
𝑝 (|)
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Fig. 1. Schematic representation of the folded and unfolded RNN.
here  refers to the model class (e.g. the neural network architec-
ure), 𝜃 = {𝑊 ,𝑈, 𝑉 , 𝑏, 𝑐} ∈ 𝛩 ⊆ R𝑑 are the uncertain parameters of the
odel, and (𝑥, 𝑦) is the observed data. The prior degree of belief about

he model parameters is given by 𝑝 (𝜃|), and the updated/posterior
nformation about those parameters is given by the probability density
unction (PDF) 𝑝 (𝜃|,). The likelihood function, which provides

the probability of the observed data to be reproduced by the model
 (specified by 𝜃) is represented by 𝑝 (|𝜃,). The evidence, or
probability of the overall model class to represent the observed data, is
given by 𝑝 (|).

Bayesian methods have become a popular inference engine in sci-
ence and engineering, which also quantifies the uncertainty about the
inferred parameters based on our prior knowledge and the information
available. However, in most real cases, the likelihood function become
very complex and the evidence function practically intractable, hence
finding the posterior distribution of the parameters may be unfeasible.
Here is where Approximate Bayesian Computation (ABC) [47] plays
a major role, given that it avoids the formulation of the evidence
function [48] and replaces the likelihood function by a binary function,
which will take the unity when the output �̂� of the model is close
enough to the real data 𝑦. Such distance is measured by a user-defined
metric function 𝜌(⋅) based on summary statistics 𝜂(⋅) [49], and the limit
on how close it needs to be is defined by a tolerance value 𝜖. Then,
the Subset Simulation method [50] helps to reduce the computational
cost [51,52] by transforming the simulation of a rare event (i.e., �̂� is
close enough to 𝑦 under a predefined 𝜖) in a sequence of simulations
with larger probabilities. The interested reader is referred to [53] for
further information about ABC-SS and its implementation.

This Bayesian method has been applied to different fields [54],
including feed-forward ANN [55], providing accurate results along
with a realistic representation of the uncertainty. The gradient-free
nature of the algorithm, the absence of likelihood function and the
non-parametric formulation of the weights are responsible for its good
performance. This suggests that RNN could significantly benefit from
ABC-SS, given its sensitivity to gradient-related problems found in the
backpropagation algorithm.

The ABC-SS training process starts by using the prior information
PDF 𝑝(𝜃) to generate 𝑁 samples of the model parameters, in our case
the weights and bias 𝜃 = {𝑊 ,𝑈, 𝑉 , 𝑏, 𝑐}. Subsequently, all samples are
used to run the model, or the forward pass in the case of ANN/RNN, and
the error made on training data is measured using the metric function
𝜌. Based on such metric, 𝑁𝑃0 samples with the lowest value 𝜌 are
selected as seeds for the next subset, and the tolerance value 𝜖𝑗 is fixed.
Using the Modified Metropolis Algorithm, (1∕𝑃0 −1) samples are drawn
from each seed, until the sub-region is repopulated with 𝑁 −𝑁𝑃0 new
samples. This process is repeated until the desired tolerance value is
reached. Fig. 2 provides an schematic representation of the ABC-SS
3

training process.
Fig. 2. Schematic representation of ABC-SS training for ANN.

2.3. Physics-guided neural networks

Physics-based models aim to explain natural phenomena and pro-
cesses through mathematical expressions, and have provided predictive
tools for the last few centuries by using relatively small amounts of
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Fig. 3. Generic diagram of physics-guided artificial neural networks.
data. However, despite their good performance in many fields, it is fair
to say that they are just a representation of a hypothesized physical
reality, which will always differ from the true reality. This is because
physics-based models cannot take into account every single subtlety of
the real world. Furthermore, the closer to reality, the more complex
these models need to be [56], reaching computational inefficiency and
becoming unsuitable for large-scale real-time prediction activities. In
addition, the amount and frequency of data collection nowadays may
aggravate the need for computation power in such complex physics-
based models. On the contrary, ANN have the flexibility of capturing
patterns and processes by learning directly from real-world data. They
have excelled in many fields and different tasks, such as regression
or classification problems. However, they also suffer from some draw-
backs, and their need for huge amounts of data is an important one. In
simplistic terms, the performance of ANN depends on the amount and
quality of the data used to train them. Unfortunately, data is still scarce
and noisy in many industries.

Therefore, it seems just sensible to make use of both approaches and
create hybrid models [57,58] that benefit from the knowledge gained
through physics-based models and the flexibility of ANN to learn from
data. These models can be found in the literature under different names,
such as Physics-Informed Neural Networks (PINN) [26], Neural Networks
Augmented Physics Models (NNAP) [59] or Physics-Guided Neural Net-
orks (PGNN) [60]. The main difference between them lies in their
rchitecture, and how the physics are introduced in the overall model.
hile PGNN is a more generic term, it normally refers to hybrid models

hat merge the output from the physics-based model and from the ANN
o create a single output. PINN usually refers to hybrid models where
he physics are formulated through differential equations, including
ertain boundary conditions. Conversely, NNAPs blend physics-inspired
ayers and neural layers, so that the later compensate for the unknown
arameters or conditions. Also, the way physics and ANN are combined
epends on the nature of the physics-based models and their formula-
ion, influencing different parts of the hybrid model, such as the loss
unction or the forward pass. In this manuscript we will focus on PGNN
Residual Model), given their ability to fill the gaps between reality
nd the physics and to extrapolate outside the training data domain.
ig. 3 illustrates the concept of physics-guided ANN. This methodology
ay help the problem presented in Section 2.1, about extrapolation and
ultistep-ahead forecasting.

. PG-BRNN by ABC-SS

This manuscript proposes a novel RNN, which combines the three
ethods described in Sections 2.1–2.3, to avoid some of the drawbacks

f the state-of-the-art approaches. Starting from a vanilla RNN, the
ost basic form of the forward pass is maintained in the proposed
NN, as per Eq. (1). However, the hidden states no longer need to be
tored, given that the weights are now trained with ABC-SS instead of
ackpropagation, and the gradient of the loss function does not need
o be evaluated. For this same reason, long-term dependencies may
e learnt without the need for more complex architectures with gated
4

Fig. 4. Schematic representation of the folded Physics-guided BRNN by ABC-SS.

units, as ABC-SS do not suffer from vanishing gradients. A detailed
pseudocode is provided in Algorithm 1, which describes the adaptation
of the ABC-SS method to train RNN. So far in this section, the principles
and algorithms presented in Sections 2.1 and 2.2 have been combined
into a data-driven Bayesian RNN, hereafter called BRNN by ABC-SS.

The next step consists of introducing the physics-based model into
the proposed BRNN by ABC-SS. As stated in Section 2.3, this manuscript
follows the physics-guided approach, illustrated in Fig. 3, where the
physics are introduced in the forward pass through the output neurons,
like an extra bias parameter. Fig. 4 illustrates the proposed physics-
guided forward pass, and Eq. (3) provides its mathematical formulation
(note that 𝑓1 and 𝑓2 represent the activation functions chosen by the
user).

𝑎𝑡 = 𝑏 +𝑊 ℎ𝑡−1 + 𝑈𝑥𝑡
ℎ𝑡 = 𝑓1(𝑎𝑡)

𝑜𝑡 = 𝑐 + 𝑉 ℎ𝑡 + 𝑃ℎ𝑦𝑠𝑖𝑐𝑠(𝑥𝑡)

𝑦𝑡 = 𝑓2(𝑜𝑡)

(3)

The result is a physics-guided RNN trained with ABC-SS, hereafter
called PG-BRNN by ABC-SS, which provides probabilistic outputs based
on physics-based knowledge and observed data. The Bayesian training,
and more specifically, the absence of gradient evaluation and non-
parametric formulation of the weights, may provide a series of benefits,
such as: avoid problems like exploding/vanishing gradients or getting
stuck at an undesired local minima of the loss function; probabilistic
predictions coupled with a flexible quantification of the uncertainty;
and a Bayesian regularization effect in the inference of the weights
thanks to the prior PDF. Finally, the physics-based model is part of
the forward pass, thus it is expected to improve the extrapolation
capabilities of the neural network. These benefits are evaluated and

discussed in the experimental section.
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Algorithm 1 Training algorithm for RNN with ABC-SS
1: Begin:
2: Create ABC-SS matrix 𝑀𝑅𝑁𝑁 , with 𝑁 rows and as many columns

as the total number of parameters (𝜃) in 𝑈 , 𝑊 , 𝑉 , 𝑏 and 𝑐, plus one
additional column to store the metric 𝜌

3: for 𝑛 ∶ 1, ..., 𝑁 do
4: Sample initial parameters 𝜃(𝑛)0 , a vector containing all the weights

and bias in the RNN, from prior PDFs, such as  (0, 𝐼), and store
them in 𝑀𝑅𝑁𝑁

5: Rearrange 𝜃(𝑛)0 in matrices 𝑈 , 𝑊 , 𝑉 , 𝑏 and 𝑐
6: for 𝑡 ∶ 1, ..., 𝑇 do
7: ℎ0 ← Initiate the hidden state at time-step 𝑡 = 0 with a zero

matrix
8: �̂�(𝑛)0 ← Recurrent forward pass using Equation (1) (or Equation

(3) for physics-guided RNN), 𝑈𝜃(𝑛)0
, 𝑊𝜃(𝑛)0

, 𝑉𝜃(𝑛)0
, 𝑏𝜃(𝑛)0

and 𝑐𝜃(𝑛)0
,

and input 𝑥 from 
9: end for

10: 𝜌(𝑛)0 ← 𝜌(𝜂(�̂�(𝑛)0 ), 𝜂(𝑦))
11: Store 𝜌(𝑛)0 in 𝑀𝑅𝑁𝑁 = {𝜃(𝑛)0 , 𝜌(𝑛)0 }𝑁𝑛=1
12: end for
13: Set 𝑗 ← 1, 𝓁 ← Maximum number of simulations, and 𝐿𝜖 ←

Tolerance threshold
14: while 𝑗 < 𝓁 and 𝜖𝑗 < 𝐿𝜖 do
15: Renumber rows in 𝑀𝑅𝑁𝑁 [𝜃(𝑛)𝑗−1, 𝑛 ∶ 1,… , 𝑁] so that 𝜌(1)𝑗−1 ⩽ … ⩽

𝜌(𝑛)𝑗−1 ⩽ … ⩽ 𝜌(𝑁)
𝑗−1

16: 𝜖𝑗 ← 𝜌𝑁𝑃0
𝑗−1

17: 𝜎𝑗 ← 𝜎𝑗−1 ∗ 𝑝 {where 𝑝 represents the decrease rate of standard
deviation per simulation level}

18: 𝑀𝑆𝑢𝑏𝑆𝑒𝑡 ← Initiate the SubSet matrix with 𝑁𝑃0 rows and same
number of columns than 𝑀𝑅𝑁𝑁

19: 𝐶 ← 1 {Initiate counter}
20: for 𝑖 ∶ 1,… , 𝑁𝑃0 do
21: 𝜃(𝑖)𝑗 ← 𝜃(𝑖)𝑗−1 and 𝜌(𝑖)𝑗 ← 𝜌(𝑖)𝑗−1
22: end for
23: 𝑀𝑆𝑒𝑒𝑑𝑠 = {𝜃(𝑛)𝑗 , 𝜌(𝑛)𝑗 }𝑁𝑃0

𝑛=1 {Create the Seeds matrix}
24: for 𝑘 ∶ 1,… , 𝑁𝑃0 do
25: 𝜇 ← 𝜃(𝑘)𝑗
26: for 𝑖 ∶ 1,… , (1∕𝑃0 ) − 1 do
27: 𝜃∗ ∼  (𝜇, 𝜎𝑗 )
28: Rearrange 𝜃∗ in matrices 𝑈 , 𝑊 , 𝑉 , 𝑏 and 𝑐
29: for 𝑡 ∶ 1, ..., 𝑇 do
30: ℎ0 ← Initiate the hidden state at time-step 𝑡 = 0 with a

zero matrix
31: �̂�∗ ← Use Equation (1), or (3) for physics-guided RNN, to

run a recurrent forward pass with 𝑈𝜃∗ , 𝑊𝜃∗ , 𝑉𝜃∗ , 𝑏𝜃∗ and
𝑐𝜃∗

32: end for
33: 𝜌∗ ← 𝜌(𝜂(�̂�∗), 𝜂(𝑦))
34: if 𝜌∗ ⩽ 𝜖𝑗 then
35: Store 𝜃∗ and 𝜌∗ in 𝑀𝑆𝑢𝑏𝑆𝑒𝑡 as {𝜃(𝑁𝑃0+𝐶)

𝑗 , 𝜌(𝑁𝑃0+𝐶)
𝑗 }

36: 𝜇 ← 𝜃∗

37: else
38: Store 𝜃𝑘𝑗 and 𝜌𝑘𝑗 in 𝑀𝑆𝑢𝑏𝑆𝑒𝑡 as {𝜃(𝑁𝑃0+𝐶)

𝑗 , 𝜌(𝑁𝑃0+𝐶)
𝑗 }

39: end if
40: 𝐶 ← 𝐶 + 1
41: end for
42: end for
43: Update 𝑀𝑅𝑁𝑁 = {𝜃(𝑛)𝑗 , 𝜌(𝑛)𝑗 }𝑁𝑛=1 as the concatenation of 𝑀𝑆𝑒𝑒𝑑𝑠

and 𝑀𝑆𝑢𝑏𝑆𝑒𝑡
44: 𝑗 ← 𝑗 + 1
45: end while
5
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4. Experimental framework

The proposed BRNN by ABC-SS has firstly been applied to a data-
driven experiment about fatigue damage evolution in composite mate-
rials, so as to illustrate the benefits of Bayesian training over conven-
tional backpropagation in RNN. Next, PG-BRNN by ABC-SS is demon-
strated in an engineering case study about accelerations in concrete
buildings during an experimental earthquake, which represent the main
application of this manuscript. The experimental framework for both,
the data-driven example and the engineering case study, is set out in
this section, including a description of the experiments and informa-
tion about the data source and the data preparation process. Finally,
the proposed algorithms have been compared with the state-of-the-art
RNN, and the details of their implementation along with the metrics
used in the experiments are presented at the end of the section.

4.1. Data-driven example: Fatigue in composite materials

Composite materials, and especially carbon fiber polymer com-
posites (CFRP), have become very popular in several industries such
as wind energy and aerospace, thanks to their outstanding perfor-
mance and characteristics. Indeed, these materials can reach strength-
to-weight and stiffness-to-weight ratios up to 5 times larger than grade
steel, and they are corrosion resistant [61]. However, they are het-
erogeneous materials and their damage response is very complex to
understand [62], let alone predicting with accuracy the damage behav-
ior of several interacting parts subjected to fatigue loads. In simplistic
terms, fatigue damage in CFRP comprises different families of in-
tralaminar and interlaminar cracks, which in turn may or may not
influence the propagation of each other. That uncertainty is one of
the reasons why CFRP are still not massively used in safety-critical
applications [63].

In this manuscript, RNN are used to determine the evolution of
micro-crack density in a CFRP coupon subjected to tension–tension fa-
tigue loading. The data used are taken from the NASA Ames Prognostics
Data 283 Repository (CFRP Composites Dataset) [64], corresponding
to the cross-ply laminates TD19 and TD21 ([02∕914]𝑠). The damage
data were collected using Lamb wave signals and piezoelectric sen-
sors located on either side of the coupon. Each coupon underwent
500,000 loading cycles, and measurements from each pair of sensors
(36 possible combinations) were taken at 18 specific cycles during
the experiment, resulting on 648 data points per specimen. For this
illustrative example, only information about micro-crack density is
used, which is lagged to form the inputs and outputs as shown below,
resulting in univariate forecasting. The data have been structured in
72 sequential samples, where each sample includes the micro-crack
density for the full loading history of each pair of sensors. The full
loading cycle of the first pair of sensors in TD19 has been held out
as test data. Both training and test data have been normalized.

Lagged micro-crack density data
{

Input array → (𝑥1, 𝑥2,… , 𝑥17)
Output array → (𝑥2, 𝑥3,… , 𝑥18)

While these data have been used in several publications [65]
bout fatigue diagnostics in composites, [55] used several feed-forward
ayesian neural networks to predict the micro-crack density given the
umber of cycles, while quantifying the uncertainty. Therefore, this
ata-driven example will also provide a fair evaluation of the benefits
f using RNN to process sequential data, over standard feed-forward
rchitectures.

.2. Engineering case study: Accelerations in seismic events

In this subsection, the potential of PG-BRNN by ABC-SS to become
art of a wider engineering system is explored. Specifically, a case
tudy about an SHM framework to evaluate the response of build-
ngs during seismic events is presented. The application of machine
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learning algorithms to SHM has already been studied in the existing
literature [66,67], however, those approaches usually consist on using a
computational model of the structure to produce synthetic data, which
are then used to train a neural network, by generating scenarios of
damage and evaluating its impact on the response of specific parts of
the structure. The trained neural network is then utilized to predict
the health of the structure, using accelerations measurements of the
real structure. This approach relies on the capabilities of the model
and mainly, on the decisions made during the development of the data
set to train the neural network. Therefore, it does not benefit from all
the advantages of both, the model and the data. The application of
PG-BRNN by ABC-SS allows to compensate and improve the structural
model using the observed data, resulting in a hybrid model that can
be used in the context of an SHM system to predict the response of
buildings, in terms of accelerations, and inform the post-earthquake
decision-making process.

The data used in this case study comes from a experimental seismic
test of a 17-story concrete structure on a shake table, performed by [68]
(data available in https://datacenterhub.org/deedsdv/publications/vi
ew/564). The specimen was subjected to several impulsive seismic
records and the response was measured in terms of displacement and
acceleration in some floors of the building. In particular, the accelera-
tion data used in this experiment corresponds to TS1-Run2, 9th floor.

he input signal at the base of the building is also available in that data
et.

Unlike the previous data-driven example, where the data comprised
2 full loading cycles with 18 time-steps each, the data in this exper-
ment consist of a single sequence of accelerations measured at the
th floor of the experimental structure during the simulated seismic
vent. In order to make those data suitable for training RNN, they were
agged and divided in 10-time-steps long samples, as shown below.
herefore, we face univariate time-series forecasting, where predictions
bout the target variable are made based on historic values of the same
ariable. The data set is split into training and test data with a 60/40
atio, meaning that the RNN are trained only with the first 60% of the
ccelerations. Furthermore, the test data is not fed into the RNN, but
tarting from the last sample of training data the RNN are asked to
ecursively predict the next values, where the output from the single-
tep ahead prediction becomes the last time-step in the input for the
ext prediction, also known as multi-step ahead forecasting. The test
ata is used to calculate the metric, and evaluate the performance of
he algorithms.

agged acceleration data

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Input array (1) → (𝑥1, 𝑥2,… , 𝑥10)
Output array (1) → (𝑥2, 𝑥3,… , 𝑥11)
Input array (2) → (𝑥2, 𝑥3,… , 𝑥11)
Output array (2) → (𝑥3, 𝑥4,… , 𝑥12)

⋮

The physics-based model used in the hybrid neural networks is
ased on the computational model proposed in [69]. The model com-
rises 17 masses of 250 kg that are jointed in series by elastic perfectly
lastic springs and linear dashpots. The stiffness and damping of the
uilding specimen were not defined in the available information of
he test, therefore, Barros et al. [69] applied the method called 2BC-
ubSim to obtain the values of the model parameter that better explain
ccelerations in the monitored floors. Table 1 shows the maximum a
osteriori (MAP) values of the parameters, together with the mean, me-
ian and standard deviation of each parameter distribution. The MAP
alue of such parameters has been used to create the physics-based
odel.

.3. Baseline algorithms

The proposed algorithms have been applied to two different ex-
6

eriments, as per Sections 4.1 and 4.2. Their performance have been
valuated and compared against the state-of-the-art RNN. The details
f each algorithm and their implementation are given below. An ar-
hitecture with one input neuron, one output neuron and one single
idden layer with 5 hidden units has been chosen as the baseline for
ll algorithms, unless specified otherwise. The results and discussion
an be found in Section 5.

• BRNN by ABC-SS: A vanilla RNN trained with ABC-SS, as detailed
in Section 3. The values of the hyperparameters are: 𝑃0=0.2,
𝑁=10,000, 𝜎0=0.9 and 𝑝 = 0.50. In the data-driven example (Sec-
tion 4.1) the activation function for the hidden layer is tanh, and
ReLU in the engineering case study (Section 4.2). The tolerance
value also varies depending on the experiment, with 𝜖=0.003 and
0.005 respectively.

• LSTM RNN: This advanced type of RNN was first published in
1997 [6], and is still very popular in the scientific commu-
nity. The LSTM cell comprises a series of gates that allows the
algorithm to forget irrelevant information, add or update new
information, and finally pass such updated information forward.
This process allows the network to remember long-term depen-
dencies, while mitigates the vanishing gradient problem. In our
case, the algorithm has been implemented using Tensorflow [70]
and the hyperparameters used are: minimum squared error (MSE)
as the loss function, the optimizer Adam [71] and batchsize=1.
The number of epochs varies depending on the experiment, with
200 for the data-driven example and 100 for the engineering case
study.

• Bidirectional LSTM RNN: First proposed in 2005 [72], this neural
network is used primarily on natural language processing. In
brief, this type of RNN adds an extra LSTM layer that conveys
the information on the other direction, so input information flows
back and forth. Therefore, the output information at a certain
time-step is influenced by past, present and future inputs. This
algorithm has been implemented using Tensorflow and the hyper-
parameters used are: minimum squared error (MSE) as the loss
function, the optimizer RMSprop and batchsize=1. The number
of epochs varies depending on the experiment, with 25 for the
data-driven example and 50 for the engineering case.

• GRU RNN: This type of recurrent neural network first appeared in
2014 [7], and like LSTM, it is a gated algorithm but with fewer
parameters. While it has a forget gate, it lacks the output gate,
making it slightly less complex. GRU also mitigates the vanishing
gradient problem and its performance is comparable to that of
LSTM. This algorithm has been implemented using Tensorflow
and the hyperparameters used are: minimum squared error (MSE)
as the loss function, the optimizer Adam and batchsize=1. The
number of epochs varies depending on the experiment, with 200
for the data-driven example and 100 for the engineering case.

• Monte Carlo Dropout RNN (MC Dropout): The Dropout method,
published in 2014 [73], meant to mitigate the overfitting prob-
lem. This was the origin of a new Bayesian training algorithm for
neural networks, MC Dropout [74,75]. This algorithm provides
probabilistic outputs with quantification of the uncertainty, and
has demonstrated better performance than other state-of-the-art
Bayesian methods such as Variational Inference [76]. Furthermore,
such uncertainty is a combination of epistemic uncertainty (re-
lated to model architecture, when different sets of neurons are
switched off) and aleatoric uncertainty (related to the variabil-
ity/noise in the data). Both types are captured by this method and
blended into the final output of the model, a probability density
function. In our case, MC Dropout LSTM has been implemented
following [77] and the code in GitHub1, with Pytorch [78]. The
dropout method is based on some neurons being dropped on each

1 https://github.com/PawaritL/BayesianLSTM
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Table 1
Values of the model parameters proposed in [69].

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8
MAP 9.60E+07 7.90E+07 2.50E+08 2.30E+07 9.10E+07 1.80E+08 2.80E+08 2.50E+08
𝜇 9.30E+07 8.00E+07 2.40E+08 2.40E+07 9.10E+07 1.80E+08 2.70E+08 2.50E+08
𝜎 9.50E+06 1.60E+07 4.00E+06 2.60E+06 3.50E+06 9.30E+06 2.50E+07 1.80E+07

𝜃9 𝜃10 𝜃11 𝜃12 𝜃13 𝜃14 𝜃15 𝜃16
MAP 2.46E+08 1.03E+08 2.39E+08 1.06E+08 1.77E+08 1.85E+08 1.22E+07 1.76E+08
𝜇 2.47E+08 1.02E+08 2.36E+08 1.07E+08 1.79E+08 1.85E+08 1.30E+07 1.75E+08
𝜎 5.14E+06 5.84E+06 3.00E+07 8.68E+06 3.41E+06 1.83E+07 3.41E+06 1.32E+07

𝜃17 𝜃18 𝜃19 𝜃20 𝜃21 𝜃22 𝜃23 𝜃24
MAP 1.70E+08 3.92E+07 1.75E+07 3.50E+07 3.21E+07 3.88E+07 4.50E+07 4.53E+07
𝜇 1.70E+08 3.89E+07 1.72E+07 3.54E+07 3.22E+07 3.85E+07 4.45E+07 4.55E+07
𝜎 3.54E+06 2.38E+06 1.70E+06 1.97E+06 390 594 2.66E+06 2.31E+06 2.66E+06

𝜃25 𝜃26 𝜃27 𝜃28 𝜃29 𝜃30 𝜃31 𝜃32
MAP 3.77E+07 1.13E+07 3.05E+07 1.23E+07 4.25E+07 4.32E+07 1.24E+07 2.93E+07
𝜇 3.77E+07 1.23E+07 3.03E+07 1.29E+07 4.25E+07 4.33E+07 1.20E+07 2.96E+07
𝜎 895 961 5.07E+06 3.18E+06 4.28E+06 4.84E+06 697 790 1.12E+06 1.83E+06

𝜃33 𝜃34 𝜃35
MAP 4.00E+07 2.04E+07 7424.2
𝜇 4.04E+07 2.01E+07 7529.9
𝜎 2.40E+06 1.05E+06 278.306

Note: 𝜃1 to 𝜃17 are the corresponding elastic stiffness of each floor. 𝜃18 to 𝜃34 are the corresponding yield strength of each floor. 𝜃35 is the damping coefficient
of every floor.
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forward/backward pass with a given probability. That means that
a higher number of hidden units are required for the RNN to
work. In our experiments, the architecture of MC Dropout RNN
has been chosen so it reaches a similar performance than the other
state-of-the-art approaches. That is, two LSTM layers with 128
and 32 hidden units respectively. Regarding the hyperparameters,
the dropout probability is 0.5, the loss function is MSE and batch
size=8. The number of epochs and the learning rate (lr) varies
between experiments: in the data-driven example the number of
epochs is 150 and lr=0.01, while in the engineering case we need
50 epochs and lr=0.0001.

• PG-BRNN by ABC-SS: A physics-guided RNN trained with ABC-SS
as per Section 3. The physics-based model, specified in Sec-
tion 4.2, is introduced into the RNN through the output neuron.
The hyperparameters are: 𝑃0=0.2, 𝑁=10,000, 𝜎0=0.9 and 𝑝 =
0.50. The activation function in the hidden layer is ReLU and the
tolerance value 𝜖=0.0047.

• PG-LSTM RNN: A physics-guided LSTM RNN, with the physics-
based model introduced in the output neuron, as per Section 2.3.
The hyperparameters are: MSE as the loss function, the optimizer
Adam, batchsize=1 and 10 epochs.

• PG-Bidirectional LSTM RNN: A physics-guided Bidirectional LSTM
RNN, with the physics-based model introduced in the output
neuron, as per Section 2.3. The hyperparameters are: MSE as the
loss function, the optimizer RMSprop, batchsize=1 and 30 epochs.

• PG-GRU RNN: A physics-guided GRU RNN, with the physics-
based model introduced in the output neuron, as per Section 2.3.
The hyperparameters are: MSE as the loss function, the optimizer
Adam, batchsize=1 and 10 epochs.

• PG-MC Dropout LSTM RNN: A physics-guided MC Dropout LSTM
RNN, with the physics-based model introduced in the output neu-
ron, as per Section 2.3. The hyperparameters are: dropout prob-
ability is 0.5, the loss function is MSE, batch size=8, lr=0.0001
and 40 epochs.

• PbM: Physics-based model to be used as a reference in the en-
gineering case study. Details about the model can be found in
Section 4.2.

The performance of the different algorithms has been evaluated
fter 30 independent runs for each experiment. The accuracy of each
7

lgorithm is determined by the average and median MSE obtained, S
hile the stability and reliability of the algorithm is measured by the in-
erquartile range (IQR). The ability to quantify the uncertainty, in those
lgorithms trained with Bayesian methods, is evaluated both using the
idth of the confidence bounds and graphically. Such uncertainty, un-
erstood as the degree of belief in the predictions, comprises epistemic
ncertainty arising from the model architecture and/or lack of data,
nd aleatoric uncertainty related to the inherent randomness or natural
ariability in the data. Both types of uncertainty are combined and
xpressed through the probabilistic outputs of the Bayesian algorithms.

. Results and discussion

In this section, the results from the data-driven example and the
ngineering case study are presented and discussed. The performance of
he proposed algorithms are evaluated in detail, and compared against
he state-of-the-art RNN.

.1. Data-driven example

The uncertainty about the long term behavior of CFRP materials
nder fatigue conditions and our inability to accurately predict their
emaining useful life, are among the main obstacles for these materials
o be massively used as main structural materials in industries such as
erospace engineering. There is a clear need for efficient physics-based
odels that could unify all the different damage modes into a single

ormulation. Moreover, these models should also take into account
mall imperfections that appear during the manufacturing process.
hile this could be extraordinarily complex, data-driven methods are

roviding promising results and are becoming a solid alternative for the
valuation of fatigue and its propagation in composites.

In this experiment, the proposed BRNN by ABC-SS along with
he state-of-the-art RNN have been trained using full sequences about
atigue damage evolution, and then tested on unseen data, as per
ection 4.1. During testing, the RNN were provided with the first
time-steps of the sequence, corresponding to 22% of such loading

equence, and were then asked to make predictions about future time-
teps, taking as inputs their own output from the previous time-step,
lso called recursive multi-step forecasting. That way, the ability of
he different RNN to make long-term predictions about the progres-
ion of micro-crack density can be assessed. The results are shown
n Table 2. In terms of accuracy, it can be seen that BRNN by ABC-

S have comparable performance to LSTM and MC Dropout, although
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Table 2
Performance of Recurrent Neural Networks, evaluated using MSE after 30 independent runs of the algorithms.
Statistics of MSE obtained in 30 independent runs of the training algorithms

Average Q1(𝑃25) Median(𝑃50) Q3(𝑃75) IQR(Q3-Q1)

RBNN by ABC-SS 0.00149 0.00141 0.00150 0.00155 0.00014

MC Dropout LSTM RNN 0.00161 0.00144 0.00152 0.00191 0.00047

LSTM RNN 0.00153 0.00126 0.00148 0.00172 0.00047

Bidirectional LSTM RNN 0.05857 0.04420 0.06019 0.06835 0.02414

GRU RNN 0.00220 0.00167 0.00207 0.00256 0.00089
Fig. 5. Predictions made by RBNN by ABC-SS and MC Dropout LSTM RNN on test data. The green line represents one-step-ahead predictions at time ‘t’, where the input data is
the real value of the target variable at time ‘t-1’. The red line are multi-steps-ahead predictions, where the input data are the previous predictions made by the RNN. The dashed
black line represents the target values. The grey hatches are the uncertainty bounds (𝑃5 − 𝑃95).
this last one required a more complex architecture with significantly
more neurons. GRU obtained slightly less accurate results, while the
performance of Bidirectional LSTM was significantly worse than the
rest of the algorithms for this experiment. The lowest values of MSE,
on an individual basis, were achieved by LSTM, as can be seen from its
𝑃25. In terms of reliability, BRNN by ABC-SS achieved a low IQR value,
circa 4 times lower than the state-of-the-art algorithms. This means
that throughout the 30 runs of the algorithm, the proposed Bayesian
RNN consistently obtained similar results, with little deviation. The
ability to quantify the uncertainty can be observed in Fig. 5, where
the proposed BRNN by ABC-SS is compared against the state-of-the-
art Bayesian RNN, namely MC Dropout. The uncertainty bounds of
BRNN by ABC-SS naturally increases as we move rightwards along the
time-steps axis. Furthermore, the width of this uncertainty bounds at
time-steps/cycles 0, 4 and 16 are 0.09, 0.12 and 0.17 (normalized
data) respectively, which makes sense given that, in a real world
scenario, predictions about the structural behavior of an asset in the
far future tend to be more uncertain than those ones about the near
future. Contrarily, the width of the uncertainty bounds predicted by
MC Dropout for those time-steps are 0.31, 0.04 and 0.21, which does
not follow the expected monotonically increasing behavior. In addition,
the uncertainty bounds of RBNN by ABC-SS encapsulates most target
values. As a note, the results obtained improve those in [55], which
confirm that RNN generally perform better on sequential data than
feed-forward neural networks.

Overall, RBNN by ABC-SS has demonstrated great accuracy, compa-
rable to that of LSTM and MC Dropout, while showing more stability,
becoming a more reliable option. The absence of gradient evaluation
is behind such stability, given that ABC-SS does not rely on finding a
local minima of a loss function which, in the case of the state-of-the-
art RNN, varies on each run of the algorithm. The quantification of the
uncertainty is significantly more accurate in BRNN by ABC-SS, mostly
thanks to the non-parametric formulation of the weights, which provide
great flexibility to adapt to the observed data. Providing that enough
data was available, BRNN by ABC-SS might become a useful option for
an onboard structural health monitoring system.
8

5.2. Engineering case study

As explained in Section 4.2, the engineering case study can be
considered a multi-step-ahead time-series forecasting task. This is one
of the greatest challenges that RNN face nowadays, that is, making pre-
dictions many time-steps ahead based on its own previous predictions.
Multi-step-ahead forecasting might be seen as a form of extrapolation,
where the neural network needs to make predictions about data it has
not seen before. And that is exactly where physics-based models may
help, as explained in Section 2.3, given their capacity to generalize
well through the whole domain of the data space. Therefore, PG-BRNN
by ABC-SS along with the physics-guided version of the state-of-the-art
RNN are applied to this case study.

The results from the experiment, after 30 independent runs of each
algorithm, are shown in Table 3. Overall, it can be seen that the physics-
guided version of the different RNN have clearly achieved better results
than their data-driven counterparts. The neural networks seemed to
have learnt a pattern in the discrepancy between the physics-based
model and the observed reality during training, and then applied such
pattern to the test data, also improving the results obtained from the
stand-alone physics-based model. This superiority is even more obvious
when looking at the violin plot in Fig. 6, where the left side of each
plot represents the distribution of the MSE obtained by the physics-
guided versions, and the right side refers to the data-driven versions of
each RNN. Clearly, the error made by the physics-guided algorithms
is negligible in comparison with their data-driven counterpart. The
main reason behind the poor performance of the data-driven RNN lies
in their inability to extrapolate, and the fact that the error of each
prediction is sequentially added up, thus new predictions are built upon
increasingly wrong predictions. That leads to unreliable outputs just
a few time-steps away from the starting point. In this case, making a
comparison between the different data-driven approaches seems irrele-
vant, given their volatility and instability. Regarding the physics-guided
versions of the RNN, they provide accurate results with comparable
precision across all the algorithms. PG-GRU RNN and PG-LSTM RNN
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Table 3
Performance of data-driven Recurrent Neural Networks, Physics-Guided Recurrent Neural Networks and the Physics-based Model, evaluated
using MSE after 30 independent runs of the algorithms.
Statistics of MSE obtained in 30 independent runs of the training algorithms

Average Q1(𝑃25) Median(𝑃50) Q3(𝑃75) IQR(Q3-Q1)

PG-RBNN by ABC-SS 0.00046 0.00045 0.00046 0.00048 0.00003

PG-MC Dropout LSTM RNN 0.00076 0.00071 0.00076 0.00081 0.00010

PG-LSTM RNN 0.00053 0.00042 0.00044 0.00057 0.00015

PG-Bidirectional LSTM RNN 0.00052 0.00046 0.00049 0.00055 0.00008

PG-GRU RNN 0.00049 0.00042 0.00045 0.00057 0.00015

RBNN by ABC-SS 0.06020 0.03319 0.05689 0.08901 0.05281

MC Dropout LSTM RNN 0.09804 0.08399 0.10925 0.11719 0.0332

LSTM RNN 0.28129 0.10344 0.17070 0.33212 0.22868

Bidirectional LSTM RNN 0.07643 0.04177 0.06278 0.08725 0.04548

GRU RNN 0.21473 0.09021 0.14304 0.21798 0.12776

Physics-based Model 0.00825
Fig. 6. Violin plot showing the distribution of the MSE obtained by the physics-guided and data-driven version of each algorithm after 30 independent runs. The left side of each
plot represents the errors made by the physics-guided version, and the right side represents the data-driven version of each algorithm.
have achieved the lowest 𝑃25 and median MSE values respectively,
which demonstrates their capacity to find the optimal local minimum
of the loss function, while PG-BRNN by ABC-SS provided the lowest
average MSE and 𝑃75. That, added to the low IQR value, reinforces the
stability and reliability of PG-BRNN by ABC-SS over the state-of-the-
art PG-RNN. Also, the quantification of the uncertainty of PG-BRNN
by ABC-SS is more realistic than that of its Bayesian competitor PG-
MC Dropout, as shown in Fig. 7. PG-BRNN by ABC-SS seems slightly
more confident as well as precise. Another reading from Fig. 7 is
that both Bayesian RNN are quite confident about the point when
accelerations change in direction, but not so much about when those
reach the highest levels. This suggest that the inflexion point between
accelerating and decelerating is the most difficult part to predict.
Finally, the computational cost of the top-performing algorithms is also
comparable. The training time of PG-BRNN by ABC-SS in this case study
is 36 s, PG-LSTM RNN 32 s, PG-GRU RNN 46 s and PG-MC Dropout
71 s (presumably due to its more complex architecture). Nonetheless,
the performance of PG-BRNN by ABC-SS in terms of computational cost
could be improved if parallel computing was used during the sampling
phase, or by using optimized machine learning libraries.

The predictions provided by PG-BRNN by ABC-SS have also been
evaluated in the frequency domain after applying the fast Fourier trans-
form (fft) [79], as shown in Fig. 8. These values are used in structural
engineering to identify the modal characteristics of a dynamical system,
such as their fundamental frequency. It can be seen that the physics-
based model captures the dynamic characteristics of the specimen, as
9

it correctly predicts the fundamental frequency of the system, how-
ever, it clearly overestimates the amplitude of the movement. On the
other hand, PG-RNN by ABC-SS clearly corrects the deficiency of the
physics-based model, providing an accurate estimation of the fft. This
information could become valuable for future assessments about the
structural integrity of the building.

6. Conclusions

The success of RNN in all their different versions is unquestionable,
however, their performance heavily rely on big training data sets, and
those are a rare sight in the civil and structural engineering industry.
Furthermore, the training process of the state-of-the-art RNN is based
on the evaluation of a loss function and the use of the backpropagation
algorithm, which implies some well known drawbacks such as vanishing
and exploding gradients, or reaching different local minima in each run
of the algorithm, providing varying results.

In this manuscript, a novel physics-guided Bayesian RNN trained
with ABC-SS was proposed. The physics-based models are introduced in
the forward pass of the RNN, which mitigates the problems related to
lack of data and allows for extrapolation. This is especially important
when multistep-ahead forecasting is required. At the same time, the
use of ABC-SS as the learning engine translates into non-parametric
probabilistic weights, Bayesian regularization, and probabilistic outputs
with accurate quantification of the uncertainty. Also, the absence of
gradient evaluation in ABC-SS allows for long-term dependencies to be
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Fig. 7. PDF (𝑃5 - 𝑃95) of the predictions made by PG-RBNN by ABC-SS (green) PG-MC Dropout LSTM RNN (blue). The black line represents the target value and the dashed grey
line is the prediction made by the physics-based model.
Fig. 8. Comparison of the Fourier amplitudes provided by the physics-based model [69] (dashed-grey), PG-BRNN by ABC-SS (green), and experimental measurements (black).
learnt without the need for more complex architectures. The proposed
Bayesian RNN has been applied to two different structural engineer-
ing experiments about fatigue damage progression in composites and
seismic accelerations in reinforced concrete buildings. The results have
shown that while PG-BRNN by ABC-SS provide comparable accuracy
to the state-of-the-art PG-RNN, its predictions in different runs of the
algorithm present very little deviation, resulting in a more reliable
option. Also, when compared with its Bayesian competitor MC Dropout,
the proposed algorithm provided a more precise and realistic quantifi-
cation of the uncertainty. In relation to real-world applications, BRNN
by ABC-SS could be explored as a quasi-real time predictor for onboard
SHM systems, provided that enough real data is available. Likewise,
PG-BRNN by ABC-SS has demonstrated potential to become an on-site
prediction tool for seismic events and/or aftershocks in buildings, thus
helping to evaluate its structural integrity and the safety of the utility
systems.

Finally, ABC-SS training is currently limited by the dimension of the
parameter space, and may not be suitable to train very large RNNs with
millions of neurons, such as those used for video activity recognition.
Also, such complex model architectures would require a large number
of samples 𝑁 , which would result in a significant increase in com-
putational cost. Considering those limitations, future lines of research
should focus on solving the dimensional problem, potentially through
new and more efficient sampling techniques. The computational cost
could also be reduced if parallel computing was used during sampling.
Lastly, the benefits of adding the forget, input and output gates to
the forward pass of BRNN by ABC-SS, like in LSTM and GRU, may be
assessed.
10
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