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A R T I C L E I N F O A B S T R A C T

Editor: A. Ringwald This study investigates the interconnections between the traditional Fokker-Planck Equation (FPE) and its 
fractal counterpart (FFPE), utilizing fractal derivatives. By examining the continuous approximation of fractal 
derivatives in the FPE, it derives the Plastino-Plastino Equation (PPE), which is commonly associated with Tsallis 
Statistics. This work deduces the connections between the entropic index and the geometric quantities related to 
the fractal dimension. Furthermore, it analyzes the implications of these relationships on the dynamics of systems 
in fractal spaces. To assess the effectiveness of both equations, numerical solutions are compared within the 
context of complex systems dynamics, specifically examining the behaviours of quark-gluon plasma (QGP). The 
FFPE provides an appropriate description of the dynamics of fractal systems by accounting for the fractal nature 
of the momentum space, exhibiting distinct behaviours compared to the traditional FPE due to the system’s 
fractal nature. The findings indicate that the fractal equation and its continuous approximation yield similar 
results in studying dynamics, thereby allowing for interchangeability based on the specific problem at hand.
1. Introduction

Since the pioneering work by Haussdorff, more than a century ago, 
the field of complex geometrical spaces with fractional dimensions has 
flourished as one of the most active areas of scientific investigation. To-

day objects with fractional dimensions are known as fractals, a term 
coined by Mandelbrot [1]. The fundamentals of the mathematical as-

pects related to those systems can be found in Ref. [2].

The advances in the formal aspects of fractals have evolved to in-

clude Calculus and several possible generalizations of the standard 
derivative have been considered, such as the fractional derivatives [3,4]

and the fractal derivatives [5–7]. Many of the proposed derivative forms 
have problems being defined in a general way [8]. This work will use 
the fractal derivative proposed by Parvate and Gangal [9,10], which 
is rooted in Haussdorff’s measure and dimension. A comprehensive 
account of fractal calculus can be found in Ref. [11,12], where the 𝑞-

fractal calculus was introduced to derive 𝑞-Gaussian, generalized stable, 
and the Lévy distributions on fractal sets.

One important consequence of the nonextensivity of systems with 
non-local correlations is the fact that the collisional term of the Boltz-

mann Equation (BE) is modified, with the correlation functional as-
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suming a different form [13,14]. In Ref. [15], it was shown that this 
new functional form leads to the Plastino-Plastino Equation (PPE) [16], 
which was previously introduced as the framework for dealing with 
nonextensive systems, in substitution to the Fokker-Planck Equation 
(FPE), and has been applied in many studies [17–21]. In this context, it 
is important to point out that a fractional derivative version of the FPE 
(FFPE) was proposed in Ref. [7].

The statistical aspects of fractal systems have often been associated 
with Tsallis’ nonextensive statistics [22,23]. In this context, studies 
of anomalous diffusion have benefitted from the generalized statis-

tics. The multiparticle production occurring in high-energy collisions, 
as well, is a field where the nonextensive statistics have an important 
impact. Thermofractals are systems that have fractal structures in the 
thermodynamical distribution [24,25], and they are described by the 
nonextensive statistics. This kind of structure explains the emergence of 
𝑞-exponential distributions in multiparticle production at high energy 
collisions [26].

The present work investigates the dynamic equation for diffusion 
in fractal spaces. It introduces fractal derivatives into the Fokker-

Planck Equation and employs a continuous approximation to derive 
the Plastino-Plastino Equation, which is commonly associated with sys-
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tems demonstrating non-local correlations and non-extensive statistics 
in their dynamics. The relationships between the quantities character-

izing fractal geometry and the entropic index are determined. As an 
illustrative application, the study explores the intriguing problem of a 
heavy-quark motion within the Quark-Gluon Plasma. Both the fractal 
version of the Fokker-Planck Equation and the Plastino-Plastino Equa-

tion are used to investigate this problem, and the results demonstrate 
the effectiveness of the formalism developed here.

The Fokker-Planck Equation (FPE) is an important tool for investi-

gating the dynamic properties of complex systems. It has applications in 
Astrophysics, Cosmology, hydrodynamics, and granular dynamics. The 
dynamical aspects of the quarks in a hot and dense quark medium have 
been of intense investigation since they can give information on the 
properties of the QGP [27,28]. Aside from the QGP, the study of neu-

tron star properties is another field which can benefit from a deeper 
understanding of the quark and gluon dynamics. This work investigates 
the relationships between the fractal derivatives and the nonextensive 
distributions. In particular, we show that the “special derivative” used 
in Ref. [15] to derive the PPE from the BE for systems with non-local 
correlation can be described as the inverse of the fractal derivative. 
Then we describe the FFPE and compare it with the PPE.

This work is organized as follows: Section 2 describes the frac-

tal version of the Fokker-Planck Equation and applies the continuous 
approximation to obtain the Plastino-Plastino Equation, relating the rel-

evant fractal geometry quantities to the entropic parameter in the PPE. 
Section 3 presents an analysis of the FFPE and PPE equations, and finds 
the relationship between the geometrical quantities and the entropic in-

dex, showing that they are identical to those obtained previously based 
on the fractal geometry. Section 4 uses the problem of the heavy-quark 
dynamics in the QGP to show how the developed formalism works in 
practice. The results are discussed and compared aiming to verify the 
consistency of the formalism developed in the previous sections.

2. Fractal derivatives and Fokker-Planck equation

A fundamental quantity in Haussdorff’s approach to geometries with 
fractional dimension is the mass distribution, 𝛾(𝔽 , 𝑎, 𝑏), where 𝔽 is a 
fractal space, and 𝑎, 𝑏 ∈ 𝔽 . Based on the mass distribution, the staircase 
function is defined by

𝑆𝛼
𝐹 ,𝑎𝑜

=

{
𝛾(𝔽 , 𝑎𝑜, 𝑥) for 𝑥 > 𝑎𝑜

𝛾(𝔽 , 𝑥, 𝑎𝑜) for 𝑥 < 𝑎𝑜
, (1)

where 𝑎𝑜 ∈ 𝔽 .

Let 𝔽 be a fractal space embedded in ℝ and 𝑆𝛼
𝔽 ,𝑎𝑜

(𝑥) be the 𝛼-

dimensional staircase function at 𝑥. The fractal derivative is defined 
as

𝐷𝛼
𝔽 ,𝑎𝑜

𝑓 (𝑥𝑜) =
⎧⎪⎨⎪⎩
𝐹 lim𝑥→𝑥𝑜

𝑓 (𝑥)−𝑓 (𝑥𝑜)
𝑆𝛼
𝐹 ,𝑎𝑜

(𝑥)−𝑆𝛼
𝐹 ,𝑎𝑜

(𝑥𝑜)
𝑥,𝑥𝑜 ∈ 𝔽

0 otherwise
, (2)

for any function 𝑓 ∶ 𝔽 →ℝ.

Ref. [29] extends the fractal derivative on fractal space, where the 
domain space is fractal, to include a derivative of fractal functions, 
where the image space is fractal. In this case, the fractal function deriva-

tive is

[𝐷𝛼
𝔽 ,𝜑]

−1ℎ(𝑥𝑜) = 𝐹 lim
𝑥→𝑥𝑜

𝑆𝛼
𝐹 ,𝜑

[ℎ(𝑥)] −𝑆𝛼
𝐹 ,𝜑

[ℎ(𝑥𝑜)]

𝑥− 𝑥𝑜

, (3)

where 𝜑 = 𝑓 (𝑎𝑜) has the same role as 𝑎𝑜 in the staircase function. Ob-

serve that in this case, the image space and the domain space of the 
function ℎ, are the same, i.e., function ℎ ∶ 𝔽 → 𝔽 . The fractal derivative 
is well defined for any pair 𝑥, 𝑥𝑑 ∈ 𝔽 , so it results in a fractal function 
with the same dimension as the function 𝑓 . The implication of employ-

ing the staircase function to define distances in the fractal space is that 
2

fractal functions become continuous but not necessarily differentiable.
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The same work introduces the continuous approximation for the 
staircase differential as

𝑑𝑆𝛼
𝐹 ,𝑎𝑜

(𝑥) = 𝐴(𝛼)
𝛼

𝑑𝑥𝛼 , (4)

where 𝐴(𝛼) ∶= 2𝜋𝛼∕2∕Γ(𝛼∕2), with Γ(𝑥) being the Euler Gamma Func-

tion. If 𝑥 or 𝑥 +𝑑𝑥 are not in the fractal space 𝔽 , then 𝑑𝑆𝛼
𝐹
(𝑥) = 0, so in 

this case the continuous approximation is such that 𝑑𝑥𝛼 = 0. Using the 
equations above in the equation for the inverse of the fractal derivative, 
we note that the space where the derivative is applied is the image space 
of the fractal function ℎ(𝑥), so we have 𝑑𝑆𝛼

𝐹 ,𝜑
[ℎ(𝑥)] = (𝐴(𝛼)∕𝛼)𝑑ℎ𝛼(𝑥)

and then

[𝐷𝛼
𝔽 ,𝜑]

−1ℎ(𝑥) = 𝐴(𝛼)
𝛼

𝑑ℎ𝛼 (𝑥)
𝑑𝑥

=𝐴(𝛼)ℎ𝛼−1(𝑥)𝑑ℎ
𝑑𝑥

(𝑥) . (5)

The derivative in the equation above can be associated with the 𝑞-

deformed calculus, introduced in Ref. [30], and also with some impor-

tant versions of fractional derivatives.

The work in Ref. [15] used the 𝑞-derivative to derive the Plastino-

Plastino Equation (PPE) from the Boltzmann Equation for systems 
strongly correlated. This investigation elucidated a potential correla-

tion between fractal geometry and the equation governing non-linear 
dynamics, thereby substantiating the motivation for a comprehensive 
comparative analysis of both the conventional PPE and its fractal vari-

ant.

An application of the formalism discussed above is the Fractal 
Fokker-Planck Equation (FFPE). It generalizes the traditional Fokker-

Planck Equation (FPE), which is given by

𝜕ℎ

𝜕𝑡
− 𝜕

𝜕𝑝𝑖

[
𝐴𝑖(𝐩)ℎ+ 𝜕

𝜕𝑝𝑗

(
𝐵𝑖𝑗 (𝐩)ℎ

)]
= 0 , (6)

by using the fractal derivatives [7], resulting in

[𝐷𝛽

𝐹 ′ ,𝑡
]ℎ(𝐩, 𝑡) = [𝐷𝛼

𝐹 ,𝑝𝑜,𝑖
]
(
𝐴𝑖ℎ(𝐩, 𝑡) + [𝐷𝛼

𝐹 ,𝑝0,𝑗
](𝐵𝑖𝑗ℎ(𝐩, 𝑡))

)
. (7)

Notice that the fractal dimensions for the momentum (𝛼) and time 
(𝛽) spaces can be different. This aspect brings interesting consequences 
since there are many possibilities for addressing the effects of fractal 
spaces in dynamical systems, i.e. if the fractal dimension is a character-

istic aspect of the system and must be the same for the function and its 
derivatives, the parameter 𝑞 must be the same for the function and its 
derivatives, as well.

In Ref. [29] it was argued that a fractal function and its deriva-

tive have the same dimensions. The continuous approximation should, 
conveniently, present the same property, which in this case manifests 
itself in the same parameter 𝑞 for both the function and its derivative. 
This property is present also in those systems governed by the non-

additive entropy, as explained in Ref. [15], where it was used to derive 
the Plastino-Plastino Equation. The essential aspect, present also in the 
𝑞-deformed calculus, is that

ℎ1−𝑞 𝜕ℎ

𝜕𝑥
∝ 𝜕ℎ2−𝑞

𝜕𝑥
. (8)

Comparing the equation above with Eq. (5), it follows that the entropic 
index, 𝑞, present in the PPE can be related to the fractal dimension 𝛼, 
present in the fractal derivative, by the equation

1 − 𝛼 = 𝑞 − 1 , (9)

assuming 𝛼 < 1. The possibility of relating the entropic index and the 
fractal dimension indicates the deep relationship between Tsallis Statis-

tics and Fractal Geometry, and it deserves to be investigated further.

The fractal space that is represented in Eq. (9) by its fractal dimen-

sion 𝛼 is the image space of the distribution 𝑓 that appears in the PPE. 
Up to now, the discussion is restricted to a single spatial dimension, 
but it is possible to advance a geometrical interpretation for Eq. (9) by 
identifying 1 − 𝛼 with the fraction of the space dimension that is re-
moved to form the fractal space with dimension 𝛼 = 𝑑𝑓 . The result can 
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be generalized to any fractal dimension, by introducing the symbol ⌈𝑥⌉
to represent the integer such that

⌈𝑥⌉− 1 < 𝑥 < ⌈𝑥⌉ , (10)

and defining the dimension 𝑑 = ⌈𝑑𝑓 ⌉. Then, we have

𝑞 − 1 =
𝑑 − 𝑑𝑓

𝑑
. (11)

The geometrical significance of 𝑞 − 1 is kept and, when 𝑑 > 1, instead 
of a fractal function one has a fractal vector field [29].

The results obtained above can be tested by evaluating the effects of 
Eq. (11) in the observable aspects of the fractal. This work shows that 
the dynamic aspects of a fractal, as described by a fractal derivative 
version of the Fokker-Planck Equation, agree with that assumption. It 
will be convenient to introduce the fractal dimension gap, 𝛿𝑑𝑓 , defined 
as

𝛿𝑑𝑓 ≡ 𝑑 − 𝑑𝑓 . (12)

The results obtained above are useful to relate the PPE with the 
fractal derivative of a fractal function, that is when the image space is 
fractal, but not necessarily the function domain. However, works have 
been done relating the dynamical equations to the fractal dynamical 
equations when the domain is a fractal space. It is useful to find a 
method to relate the parameter 𝑞 and the image fractal dimension 𝛼
with the dimension in the domain space, to have the same dynamical 
properties. In other words, what is the dimension of a fractal space nec-

essary to produce the same fractal properties described in the dynamical 
equation?

In Eq. (7), the Fokker-Planck Equation was written in terms of the 
fractal derivatives, where the momentum and the time are considered 
as fractal spaces. According to the methodology proposed above, it is 
convenient to express the fractal gap in terms of the whole fractal di-

mension of the joint space formed by momentum and time, so that the 
fractal dimension is 𝑑𝐹 ≥ 𝑑𝐹𝑡+𝑑𝐹𝑝 [2], with 𝑑𝐹𝑡 and 𝑑𝐹𝑝 being, respec-

tively, the time and momentum fractal dimensions. With the dimension 
𝑑𝐹 and Eq. (12), one can write Eq. (7) as

[𝐷𝜁

𝐹 ′ ,𝑡
]ℎ(𝐩, 𝑡) = [𝐷𝜁

𝐹 ,𝑝𝑜,𝑖
]
(
𝐴𝑖ℎ(𝐩, 𝑡) + [𝐷𝜁

𝐹 ,𝑝0,𝑗
](𝐵𝑖𝑗ℎ(𝐩, 𝑡))

)
, (13)

where we have defined 𝜁 ≡ 2 − 𝑞. The whole fractal dimension fraction 
contains all the information about the fractal. Even in the fractal equa-

tion, we consider the isotropic case. The justification for assuming an 
isotropic distribution in a fractal is supported by a well-known theorem 
that demonstrates the fractal dimension is almost-always independent of 
axis orientation within a fractal space (see Ref. [2], page 100).

Using the equation above and the continuous approximation in 
Eq. (7), one obtains the continuous approximation for the fractal FPE as

𝜕ℎ

𝜕𝑡
= 𝜕

𝜕𝑝𝑖

[
𝐴𝑖(𝐩)ℎ+ 𝜕

𝜕𝑝𝑗

(
𝐵𝑖𝑗 (𝐩)ℎ2−𝑞𝜁

)]
, (14)

where 𝑞𝜁 = 2 − 𝜁 , which is the Plastino-Plastino Equation (PPE). This 
result shows that the PPE is the continuous approximation of the fractal 
version of the FPE.

The next parts of the present work will make a comparative study 
of the solutions of each of those equations associated with the dynamic 
evolution of complex systems. Understanding the similarities and dif-

ferences among the solutions for these equations can help in finding the 
possible connections between the non-additive equation and the fractal 
equation. Despite the use of QGP physics to make this comparison, the 
results that will be obtained here are of general interest.

3. Dynamics in a fractal medium

Fractional derivatives, such as those derived in the preceding sec-
3

tion through a continuous approximation of a fractal function, find 
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numerous applications in the examination of dynamics within non-

linear media. In this section, their utility is extended to dynamic systems 
described by the Fokker-Planck Equation. While the following discus-

sion remains quite general, for the sake of clarity and the provision of 
numerical examples the present work applies these concepts to the spe-

cific scenario of a heavy-quark moving in the quark-gluon plasma. This 
problem is well-established and has been previously addressed using 
both the conventional Fokker-Planck Equation and the Plastino-Plastino 
Equation [31]. For the microscopic determination of transport coeffi-

cients, we adhere to the methodology outlined in Ref. [27].

3.1. PPE in a 𝑑-dimensional space

In this section, a detailed investigation of the solutions for both the 
PPE and the fractal FPE (FFPE) will be undertaken. The objective is to 
find, from a dynamical point of view, the relation between the param-

eter 𝑞 in the PPE and the fractal space dimension in the FFPE. It will 
be shown that Eq. (11) is exactly the relation needed to get the correct 
dynamical description of the dynamical behaviour in fractal space.

The PPE in 𝑑 spatial dimensions is given by

𝜕𝑓

𝜕𝑡
=

𝑑∑
𝑖=1

𝜕

𝜕𝑝𝑖

[
𝐴𝑖(𝑝2)𝑓 +

𝑑∑
𝑗=1

𝜕

𝜕𝑝𝑗

(
𝐵𝑖𝑗 (𝑝2)𝑓 2−𝑞

)]
. (15)

The transport coefficients may be decomposed as

𝐴𝑖(𝐩) = 𝑝𝑖 𝐴(𝑝2) , (16)

𝐵𝑖𝑗 (𝐩) =
(
𝛿𝑖𝑗 −

𝑝𝑖𝑝𝑗

𝑝2

)
𝐵0(𝑝2) +

𝑝𝑖𝑝𝑗

𝑝2
𝐵1(𝑝2) . (17)

The coefficients 𝐵0(𝑝2) and 𝐵1(𝑝2) differ by a negligible amount, so we 
use the approximation 𝐵0(𝑝2) = 𝐵1(𝑝2) ≡ 𝐵(𝑝2), and in this case, we 
have 𝐵𝑖𝑗 (𝐩) = 𝛿𝑖𝑗𝐵(𝑝2).

The transport coefficients 𝐴(𝑝2) and 𝐵(𝑝2) are slowly increasing 
with 𝑝 in the relevant region of the present study, so we approximate 
both to constants 𝐴 and 𝐵, respectively. These approximations were 
discussed in some detail in Ref. [28]. A thorough discussion of the so-

lutions of the PPE can be found in Ref. [15], and a comparison with 
the FPE solutions was presented in Ref. [31]. The main objective of the 
present work is to compare the PPE and the FFPE solutions and investi-

gate the role of the fractal dimension in the dynamics of the system in 
a fractal medium.

This equation has the following solution

𝑓 (𝐩, 𝑡) = 𝜆𝑑(√
2𝜋𝜒𝑞𝜎(𝑡)

)𝑑 exp𝑞
[
−
(𝐩− 𝐩𝑀 (𝑡))2

2𝜎(𝑡)2

]
, (18)

where 𝜆 is a multiplicative factor that has dimensions of energy, and 
the parameters 𝐩𝑀 (𝑡) and 𝜎(𝑡) write

⎧⎪⎨⎪⎩
𝐩𝑀 (𝑡) = 𝐩𝑜 exp[−𝐴𝑡]

𝜎(𝑡) = 𝜎𝑜

[
(1 − 𝜅) exp [−𝜉𝐴𝑡] + 𝜅

] 1
𝜉

, (19)

with

𝜅 ≡ (2 − 𝑞)
(
2𝜋𝜒𝑞

) 𝑑

2 (𝑞−1) 𝐵

𝐴𝜎2
𝑜

(𝜎𝑜

𝜆

)𝑑(𝑞−1)
, (20)

and

𝜒𝑞 ≡ 1
𝑞 − 1

⎛⎜⎜⎜⎝
Γ
(

1
𝑞−1 −

𝑑

2

)
Γ
(

1
𝑞−1

) ⎞⎟⎟⎟⎠
2
𝑑

𝑞 > 1 . (21)

In the equations above, the quantity 𝜉 is
𝜉 = 2 + 𝑑(1 − 𝑞) = 2 − 𝛿𝑑𝑓 , (22)
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where Eqs. (11) and (12) have been used. The distribution is normalized 
as

∫ 𝑑𝑑𝑝𝑓 (𝐩, 𝑡) = 𝜆𝑑 . (23)

From the solution of the PPE, it is clear that the fractal dimension 
gap 𝛿𝑑𝑓 is fundamental in the determination of the distribution width at 
every time. This is reasonable if one takes into account that the medium 
porosity has strong effects on the diffusion process. When the fractal 
dimension vanishes, so that 𝛿𝑑𝑓 → 0, 𝑞 → 1, and 𝜉 → 2, it recovers the 
values observed in the FPE solutions. In this case, the fractal solution 
and the PPE solution become identical to the standard Fokker-Planck 
Equation solution for any dimension 𝑑.

3.2. FFPE in a 𝑑-dimensional space

The next step is the investigation of the FFPE solutions in 𝑑 spatial 
dimensions. The equation follows directly from Eq. (13), and is given 
by

[𝐷𝛽

𝐹 ′ ,𝑡
]𝑓 (𝐩, 𝑡) =

𝑑∑
𝑖=1

[𝐷𝛼
𝐹 ,𝑝𝑜,𝑖

]

(
𝐴𝑖𝑓 (𝐩, 𝑡) +

𝑑∑
𝑗=1

[𝐷𝛼
𝐹 ,𝑝0,𝑗

](𝐵𝑖𝑗𝑓 (𝐩, 𝑡))
)

. (24)

The general solution for the equation above is

𝑓 (𝐩, 𝑡) = (𝜆𝛼)𝑑(√
2𝜎𝐹 (𝑡)

)𝑑∕𝛼
Γ
[

1
2𝛼

]𝑑 exp
⎛⎜⎜⎝−

(
𝑆𝛼

𝐹
(𝐩) −𝑆𝛼

𝐹
(𝐩𝑀 (𝑡))

)2
2𝜎𝐹 (𝑡)2

⎞⎟⎟⎠ , (25)

where

𝑆𝛼
𝐹
(𝐩) =

(
𝑑∑

𝑖=1
(𝑆𝛼

𝐹
(𝑝𝑖))2

)1∕2

, (26)

𝑆𝛼
𝐹
(𝐩𝑀 (𝑡)) = 𝑆𝛼

𝐹
(𝐩𝑜) exp[−𝐴′𝑆𝛽

𝐹
(𝑡)] , (27)

and

𝜎𝐹 (𝑡) = 𝜎′
𝑜

√√√√(
1 − 𝐵′

𝐴′𝜎′ 2
𝑜

)
exp[−2𝐴′𝑆𝛽

𝐹
(𝑡)] + 𝐵′

𝐴′𝜎′ 2
𝑜

. (28)

This distribution is normalized also as in Eq. (23).

The solution of Eq. (24) is derived through the application of fractal 
calculus conjugacy [10,32]. The conjugacy is a result of the isomor-

phism between standard calculus and fractal calculus, allowing the 
transformation of a fractal differential equation into a corresponding 
transformed differential equation. The isomorphism allows for a local 
smooth representation of the fractal derivative. This representation is 
called conjugacy.

If 𝐴 and 𝐵 are time-independent, the transformation 𝑡𝛽 → 𝜏 trans-

forms the solution into a distribution formally equivalent to setting 
𝛽 = 1. This case, which represents a common situation where the prop-

erties of the medium and its interaction with the dynamic system do 
not change with time, allows for a simple connection between the frac-

tal properties and the parameter 𝑞, as will be shown in the next section.

3.3. Fractal effects in the dynamics

To study the fractal effects on the dynamics of a system diffusing 
in a fractal space it is necessary to establish a connection between the 
fractal quantities and the parameter 𝑞 in the PPE. It will be found that 
the dimensional gap 𝛿𝑑𝑓 , defined in Eq. (12) is a relevant quantity to 
describe the dynamics.

By definition, the width of the distribution, Δ𝑝𝑀 , is such that
4

𝑓 (𝑝𝑀 +Δ𝑝𝑀, 𝑡) = 𝑒−1∕2𝑓 (𝑝𝑀, 𝑡) , (29)
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which is the momentum for which the probability distribution is re-

duced by a factor 𝑒−1∕2. For the fractal distribution resulting form the 
FFPE, i.e. Eq. (25), one has

Δ𝑝(𝑡) = 𝜎𝐹 (𝑡)1∕𝛼 . (30)

The dynamical behaviour of the system governed by the PPE will be 
similar to the one controlled by the FFPE if the widths of both distribu-

tions are equal for any instant 𝑡, resulting in

𝜎(𝑡) = 𝜎𝐹 (𝑡)1∕𝛼 . (31)

From here, one gets

𝛼 = 𝜉∕2 = 1 − 𝛿𝑑𝑓∕2 , (32)

𝛽 = 1 , (33)

and in addition

𝐴′ = 𝛼𝐴 =
(
1 − 𝛿𝑑𝑓∕2

)
𝐴, (34)

𝐵′ = 𝜅𝐴′𝜎′ 2
𝑜

= (2 − 𝑞)
[
1 − 𝛿𝑑𝑓∕2

](2𝜋𝜒𝑞

𝜆2

) 𝛿𝑑𝑓

2
𝐵 , (35)

𝜎′
𝑜
= 𝜎𝛼

𝑜
. (36)

4. Discussion and conclusions

As an example of the application of the formalism developed above, 
this work will address the heavy-quark dynamics in the QGP, which is 
a problem of relevance in the understanding of the system formed at 
high-energy nuclear collisions. This discussion will compare the fractal 
dynamics, as described by the distribution in Eq. (25), with its continu-

ous approximation, namely the solution of the PPE given by Eq. (18).

The numerical computation is performed for two different values 
of the medium temperature: 𝑇 = 200 MeV and 500 MeV. The value 
𝑞 = 1.10 is adopted, following the discussion in Ref. [33], and the nor-

malization indicated in Eq. (23) is done with 𝜆 = 1 GeV. The embedding 
Euclidean space has dimension 𝑑 = 3. It is assumed that 𝐩𝑀 (𝑡) = 𝑝𝑀 (𝑡)𝐤. 
The values of the constants 𝐴 and 𝐵 have been taken from Ref. [31], 
and agree with Ref. [27]. For comparison with the standard FPE solu-

tion, the distributions were computed also with the value 𝑞 = 1.

With the conditions determined above for the calculation and from 
the formalism developed in the present work, it results

𝛼 = 5 − 3𝑞
2

, (37)

𝛽 = 1 , (38)

𝐴′ = 𝛼𝐴 = 5 − 3𝑞
2

𝐴, (39)

𝐵′ = 1
2
(2 − 𝑞)(5 − 3𝑞)

(2𝜋𝜒𝑞

𝜆2

) 3
2 (𝑞−1)

𝐵 , (40)

𝜎′
𝑜
= 𝜎𝛼

𝑜
. (41)

These equations establish the correct relationship between the transport 
coefficients in the PPE (𝐴 and 𝐵) and the corresponding coefficients in 
the FFPE (𝐴′ and 𝐵′), as well as the relationship between the initial 
values of the parameters 𝜎𝑜 and 𝜎′

𝑜
for the PPE and FFPE, respectively.

Fig. 1 shows the distributions obtained by using both the FFPE and 
the PPE for two distinct medium temperatures, namely, 𝑇 = 200 MeV

(left panel) and 500 MeV (right panel). The entropic index was set to 
𝑞 = 1.10, and this choice is based on the relevant quark flavours in-

volved in the dynamics, which depend on their masses [31]. The curves 
evidence a remarkable agreement of the solutions of the PPE and the 
FFPE if the equations obtained in the present work are considered, 
specifically the equations between 𝑞 and the fractal dimension (Eq. (9)

and Eq. (12)), and the equations for the correspondence among the 

transport coefficients (Eq. (34) and Eq. (35)).
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Fig. 1. Plots of the distribution functions integrated out in transverse momenta, 𝑓 (𝑝𝑧, 𝑡) ≡ ∫ ∞
−∞ 𝑑𝑝𝑥𝑑𝑝𝑦𝑓 (𝐩, 𝑡) with 𝑓 (𝐩, 𝑡) ≡ 𝑓 (𝐩, 𝑡)∕𝜆3, as a function of 𝑝𝑧 for several 

values of 𝑡, for temperatures 𝑇 = 200 MeV (left) and 𝑇 = 500 MeV (right). Solid and dashed lines correspond to 𝑞 = 1.10, and dotted lines to 𝑞 = 1. We have 
considered the rest mass of the heavy quark 𝑚0 = 1.5 GeV, its initial momentum 𝑝𝑜 = 0.47 GeV in the 𝑧-direction corresponding to the initial speed 𝑣𝑜 = 0.30 𝑐, the 
initial width 𝜎𝑜 = 0.2 GeV, while (𝐴 = 0.0820 fm−1, 𝐵 = 0.0216 GeV2∕fm) for 𝑇 = 200 MeV (left panel) and (𝐴 = 0.381 fm−1, 𝐵 = 0.228 GeV2∕fm) for 𝑇 = 500 MeV

(right panel). We have considered 𝜆 = 1 GeV for the multiplicative factor of the distribution function.
The agreement between the curves is remarkably good, which shows 
that the relationship between the transport coefficients is correct. These 
relationships result from the correct interpretation of the fractal aspects 
that are relevant for the dynamics of the system and the correct rela-

tionship between the entropic parameter 𝑞 and the fractal gap 𝛿𝑑𝑓 .

The dimension 𝑑 = ⌈𝑑𝑓 ⌉ = 3 sets an upper limit for the fractal di-

mension in the heavy-quark dynamics. Using 𝑞 = 1.10, Eq. (32) gives 
𝛿𝑑𝑓 = 0.3, therefore 𝑑𝑓 = 2.7 is the fractal dimension of the momen-

tum space. In the cases where the transport coefficients are time-

independent, the fractal aspects of the time-space seem to be of limited 
effects in the dynamics, provided one takes into account the possibility 
of transforming 𝑡 → 𝜏 = 𝑡𝛽 , as discussed previously.

The distribution with 𝑞 = 1, which corresponds to the standard FPE, 
presents a similar shape, but its peak moves faster to a stationary state 
position. This result is explained by the modification in the transport co-

efficient 𝐴 with the fractal dimension, as given by Eq. (34). The width 
of this distribution, however, remains always smaller than in the frac-

tal cases. This is also a consequence of the fractality of the momentum 
space due to the modifications in the transport coefficient 𝐵, as de-

scribed by Eq. (35).

This work has explored the interconnections between the traditional 
Fokker-Planck Equation (FPE) and its fractal counterpart, the Fractal 
Fokker-Planck Equation (FFPE), which is derived using the formalism 
of fractal derivatives. The study examined the solutions of both equa-

tions and compared their behaviours in the context of the dynamics of 
complex systems, particularly in the study of the quark-gluon plasma 
(QGP). The results evidence that the FFPE can provide a reasonable 
approximation for the dynamics of fractal systems while taking into ac-

count the non-local correlations present in such systems. The solutions 
of the FFPE exhibit behaviours that differ from those of the traditional 
FPE, which can be attributed to the fractal nature of the system.

The work performed here can interest researchers in areas such as 
the study of neutron stars [34–37], the study of strongly interacting 
particles, solar plasma [38] and ionic diffusion [39], for instance. The 
micro-calculation of the transport coefficients for hadronic matter has 
been under debate [37], with implications in hydrodynamical models. 
The results obtained here imply modifications in both the form of the 
solution for the dynamical equation and on the transport coefficients 
and can be of interest to researchers in those fields.
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