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A B S T R A C T

The current surge in the need for Li-ion batteries to power electric vehicles has also translated in a need for
more advanced models that can predict their behavior, but also quantify the uncertainty in their predictions,
given the amount of variables involved and the varying operating conditions. This manuscript proposes a
new Bayesian physics-informed recurrent neural network, where the battery discharge curve is described
using the Nernst and Butler–Volmer equations, the activity correction term within such equations is modeled
with two multilayer perceptrons, and approximate Bayesian computation by subset-simulation is used to train
the weights, bias and the physical parameters representing the maximum charge available and the internal
resistance. The challenges found during the adaptation and implementation of the Bayesian training algorithm
to the recurrent physics-informed cell are described, along with the approaches proposed to overcome them.
The performance of the Bayesian hybrid model presented in this paper has also been evaluated using data
from NASA Ames Prognostics Data Repository, and the results show comparable accuracy to the standard
approach with backpropagation, and a flexible and realistic quantification of the uncertainty. Furthermore,
the uncertainty related to the physical parameters of the hybrid model can be evaluated in semi-isolation
of the weights and bias of the MLPs, providing a sensitivity tool to assess the relative importance between
different parameters.
1. Introduction

The importance of electrical batteries in modern society is un-
doubted, and their demand is increasing at a fast pace, from about
700 GWh in 2022 to around 4.7 TWh by 2030, according to ‘‘Battery
2030: Resilient, sustainable, and circular’’ a report elaborated by McK-
insey (Fleischmann et al., 2023). Some of the reasons for this growth
is the key role that they play in enabling the integration of renewable
energy sources into the power grid, by storing the excess energy that
is generated during periods of high production and releasing it when
renewable sources are not generating electricity. However, it is foreseen
that the vast bulk of such demand will come from electric vehicles
(EVs), from cars to unmanned aerial vehicles (UAVs), where batteries
provide the energy needed for propulsion and the operation of their
systems (Diampovesa et al., 2021). This is also the case in the field
of space exploration, where satellites, spacecraft, and rovers use them
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to control a wide range of instruments (Berri et al., 2021). Therefore,
there is a need for new and more advanced models that enable us to
monitor the health of the battery in real-time, but also predict their
performance (Petrillo et al., 2020). The end-of-discharge (EOD) of a
battery is subject to multiple factors, such as unpredictable changes
in environmental conditions, thus quantifying the uncertainty in the
predictions can be crucial.

Different electrochemical models can be found in the literature,
which provide a robust tool to understand and predict the performance
of Li-ion batteries. Among them, Doyle et al. (1993) modeled the
galvanostatic charge and discharge of a full cell using concentrated
solution theory. Ning and Popov (2004) proposed a charge–discharge
model to simulate the capacity fade of Li-ion batteries, based on the
reduction of active lithium ions and the rise of the anode film resis-
tance. Rong and Pedram (2006) developed an analytical formulation
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for predicting the EOD of a lithium-ion battery, based on current and
voltage measurements and taking into account the temperature and ag-
ing effects. Karthikeyan et al. (2008) presented a framework to describe
the equilibrium potential as a function of the concentration, based on
thermodynamic principles. Those type of models have proven to be
accurate, but at the expense of being computationally costly given the
differential equations that need to be solved. M. Daigle and C. Kulkarni
proposed a electro-chemical model in Daigle and Kulkarni (2013) that
can be run in-time for diagnostic applications and time to discharge
predictions. The proposed method presented in this manuscript is built
upon the principles of such model, and further information can be
found in Section 2.1.

Data-driven methods have also been applied extensively to predic-
tion of EOD and remaining useful life (RUL) in Li-ion batteries (Venu-
gopal et al., 2021; Cheng et al., 2020; Tang and Yuan, 2022). However,
these methods require great amounts of data for training, and extrapo-
lation performance is often an issue (Haley and Soloway, 1992). Hence,
new methods which combine physics-based models and data-driven
algorithms have appeared in the recent years. Among those, physics-
informed neural networks (PINNs) have provided promising results.
For example, Shi et al. (2022) combined physics-based degradation
models with LSTM neural networks into a hybrid model to predict the
degradation behavior and the RUL of Li-ion batteries under different
operating and environmental conditions. More in line with the work
of Raissi et al. in Raissi et al. (2019), Wen et al. (2023) fused semi-
empirical partial differential equations with neural networks to model
the degradation behavior of Li-ion batteries, including an uncertainty-
based weighting method to balance the different learning tasks during
training. Similarly, S. Singh et al. proposed introducing the PDE of
Fick’s law of diffusion into the training process of a neural network, to
predict not only the state of charge but also the state of health of Li-ion
batteries. A completely different approach can be found in Nascimento
et al. (2021), where R.G. Nascimento et al. presented a recurrent cell,
with an architecture that resembles LSTM networks, which includes the
equations in Daigle and Kulkarni (2013) in a recursive manner, but
where the non-ideal voltage correction is modeled using two multilayer
perceptrons (MLPs). This hybrid model also takes into account the
aging effect by modeling the decrease in the total available charge and
the increase of the internal resistance. Furthermore, the uncertainty in
its predictions is quantified by using variational Bayesian layers, and
an ensemble of different MLPs to capture the inter-specimen variabil-
ity. However, this method is subject to the drawbacks of variational
inference and the backpropagation algorithm, which may also result in
a rigid quantification of the uncertainty due to the use of predefined
probability density functions to describe the weights.

This manuscript proposes a new Bayesian PINN to model the EOD
of Li-ion batteries, which combines and adapts the physics proposed
in Daigle and Kulkarni (2013), the recurrent architecture proposed
in Nascimento et al. (2021), and the Bayesian training proposed in Fer-
nández et al. (2022). The non-parametric formulation of the weights,
the absence of likelihood function and the gradient-free nature of
approximate Bayesian computation by subset simulation (ABC-SS) pro-
vides a flexible and realistic quantification of the uncertainty. However,
the use of ABC-SS as the training algorithm also poses a series of chal-
lenges, which are described in the following sections, along with the
proposed solutions. The performance of this Bayesian hybrid algorithm
is evaluated using a publicly available battery usage data set from
NASA AMES Prognostics Data Repository (Saha and Goebel, 2007; Bole
et al., 2014).

The remaining of this manuscript is organized as follows. Section 2
provides the foundations on which the proposed methodology is based.
Section 3 presents the proposed hybrid algorithm including the chal-
lenges and solutions found during pre-training, training and testing
stages, as well as the results of the experiments. Finally, the conclusions
2

obtained are given in Section 4.
2. Background

This section presents the fundamental principles on which this
manuscript is based, from physics-based electrochemical models, to
physics-informed neural networks and the Bayesian approach to train-
ing.

2.1. Lithium-ion battery physics-based model

Lithium-ion battery physics-based models are mathematical repre-
sentations which attempt to describe the chemical reactions that take
place at the positive and negative electrodes inside the batteries during
the charge and discharge phases, including their electrical performance
under different operating conditions, based on the fundamental princi-
ples of physics. These models also incorporate the movement of lithium
ions between the electrodes and electrolyte solution, which is critical
for understanding the battery’s behavior.

More specifically, this manuscript is based upon the principles
described in Daigle and Kulkarni (2013), where M. Daigle and C.
Kulkarni proposed a new electrochemistry-based model for monitoring,
diagnosis and prognosis purposes. This model aims at predicting the
end-of-discharge, which occurs when the voltage reaches a defined
value, also known as the cut-off voltage. To this end, the voltage in
the battery is modeled as a function of two different variables, namely
time and the current drawn from the battery at each precise time-step.
Hence, the model has a recursive nature, where data about the current
drawn from the battery is fed into the model sequentially throughout all
time-steps. Given that the final goal is the application of the model to
prognostics, the lumped-parameter ordinary differential equations form
was used, as they are more efficient for this type of tasks.

In this model, the voltage of the battery at a given time step 𝑉 (𝑡)
s defined by the difference between the potential at the positive and
egative current collectors, and then deducting the resistance losses at
ach of the collectors, as per Eq. (1).

= 𝑉𝑈,𝑝 − 𝑉𝑈,𝑛 − 𝑉𝑜 − 𝑉𝜂,𝑝 − 𝑉𝜂,𝑛 (1)

The voltage at any time-step depends on the equilibrium potential
n both the positive 𝑉𝑈,𝑝 and negative 𝑉𝑈,𝑛 collectors, the drops caused

by the electrolyte ohmic resistance, the solid-phase ohmic resistances
including those at the current collectors (which are combined into
a lumped constant 𝑅0 used to compute 𝑉𝑜), and the surface overpo-
tentials 𝑉𝜂,𝑝 and 𝑉𝜂,𝑛 coming from the solid-electrolyte interface (SEI)
kinetics and the charge transfer resistance (described by the Butler-
Volmer equation). The equilibrium potential, expressed in Eq. (2),
includes the non-ideal voltage expressed as the activity coefficient term
𝑉𝐼𝑁𝑇 ,𝑖 (Karthikeyan et al., 2008), shown in Eq. (3) (null for ideal
conditions). The latter is related to excess Gibbs free energy and defined
by the Redlich–Kister expansion where the parameters 𝐴𝑖,𝑘 were, in the
original work, fitted using the Nelder–Mead simplex method and real
data.

𝑉𝑈,𝑖 = 𝑈0 +
𝑅𝑇
𝑛𝐹

ln
(

1 − 𝑥𝑖
𝑥𝑖

)

+ 𝑉𝐼𝑁𝑇 ,𝑖 (2)

𝑉𝐼𝑁𝑇 ,𝑖 =
1
𝑛𝐹

( 𝑁𝑖
∑

𝑘=0
𝐴𝑖,𝑘

(

(2𝑥𝑖 − 1)𝑘+1 −
2𝑥𝑖𝑘(1 − 𝑥𝑖)
(2𝑥𝑖 − 1)1−𝑘

)

)

(3)

The resulting model was then originally introduced in a model-
based prognostics architecture (Daigle and Goebel, 2012), which com-
prises of an estimation problem to define the joint state-parameter
estimate based on previous observations, and the prediction problem to
identify the end of discharge. Finally, battery aging was also evaluated,
observing that model predictions could be adapted to describe such
aging by an increase of the internal resistance 𝑅𝑜 and a decrease of
the total available charge 𝑞 .
𝑚𝑎𝑥
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2.2. Physics-informed recurrent cell

Physics-based models, such as the one presented in Section 2.1,
can provide valuable insights about how the system works and its
fundamental properties (Coll and Lajium, 2011). At the other end of
the spectrum, data-driven algorithms can make predictions based on
patterns and correlations found in large data sets (Vaish et al., 2021).
Moreover, they may uncover complex relationships and patterns that
may be challenging for humans to describe as mathematical formu-
lations. Therefore, in those situations where the underlying physics is
uncertain or very expensive to compute, and there is a certain amount
of real data available, the combination of data-driven and physics-based
models into a hybrid algorithm may provide a clear advantage. To that
end, and mainly based on Yucesan and Viana (2021), Nascimento et al.
presented a hybrid physics-informed neural network to forecast the
remaining useful life of Li-ion batteries (Nascimento et al., 2021), using
the physics presented in Section 2.1 and Daigle and Kulkarni (2013),
and real data from NASA Ames Prognostics Data Repository (Saha and
Goebel, 2007; Bole et al., 2014).

This hybrid model comprises of a recurrent cell where physics
is coded in the form of a non-linear ordinary differential equation,
allowing for a state update per time step. Thus, the resulting recurrent
cell updates the state vector at time 𝑡, given by ℎ𝑡, based on the
state vector at the previous time step ℎ𝑡−1 and the input information
𝑢𝑡 at the present time-step. The recurrent model produces one-step-
ahead predictions, given by 𝑦𝑡, throughout all time-steps. This recursive
forward pass is described in Eq. (4), and the recurrent cell containing
the physics is shown in Fig. 1, originally presented in Nascimento et al.
(2021).

ℎ𝑡 = 𝑔1(𝑢𝑡, ℎ𝑡−1) and 𝑦𝑡 = 𝑔2(ℎ𝑡) (4)

The activity correction terms 𝑉𝐼𝑁𝑇 ,𝑖, computed with a polynomial
expansion in Eq. (3) (defined 𝑉𝑛𝑖,𝑖 in Nascimento et al. (2021)) are
substituted by two multi-layer perceptrons (MLPs) as per Eq. (5), where
𝑤, 𝑏 are weights and biases, and the input to the MLPs is given by
the mole fractions 𝑥𝑝 and 𝑥𝑛. The internal resistance 𝑅𝑜 and the total
available charge 𝑞𝑚𝑎𝑥 are modeled as trainable parameters within the
hybrid recurrent neural network, so the aging process of the battery
can also be taken into account. Finally, uncertainty about the inter-
battery variability was evaluated using K-fold cross-validation, and the
uncertainty regarding battery aging was assessed through an ensemble
of variational Bayesian layers coded with Tensorflow (Abadi et al.,
2015).

𝑉𝑛𝑖,𝑝 = 𝑀𝐿𝑃𝑝(𝑥𝑝, 𝑤𝑝, 𝑏𝑝) and 𝑉𝑛𝑖,𝑛 = 𝑀𝐿𝑃𝑛(𝑥𝑛, 𝑤𝑛, 𝑏𝑛) (5)

This hybrid model was tested in several experiments about predict-
ng the voltage discharge curve with constant and random loading.
he flexibility of the MLPs to correct for missing physics was evident,
nd the aging effect was also successfully captured using variational
ulti-layer perceptrons. The model was trained with backpropaga-

ion (Rumelhart et al., 1986).

.3. Bayesian neural networks trained with ABC-SS

Bayesian neural networks (BNN) are a probabilistic approach to
raining artificial neural networks (ANN). Contrary to standard ANNs,
hich use the backpropagation algorithm (Rumelhart et al., 1986)

o find the optimal deterministic values of the weights and biases,
NNs treat them as random variables with probability distributions.
NNs uses Bayes’ theorem, given in Eq. (6), to infer the posterior
istribution of the weights and bias that is consistent with the training
ata set . Hence their ability to quantify the uncertainty in their
redictions through probabilistic outputs. Many techniques such as
arkov Chain Monte Carlo (MCMC) methods (Gilks et al., 1995) can
3

e used to sample from the posterior distribution of the weights,
ut they can be computationally expensive. This issue led to the de-
elopment of approximations and more scalable methods, such as
ariational Bayesian inference (VI) (Blundell et al., 2015), probabilistic
ackpropagation (PBP) (Hernández-Lobato and Adams, 2015), Hamil-
onian Monte Carlo (HMC) (Betancourt, 2017) and Bayesian dropout-
ased approaches (Gal and Ghahramani, 2016). While these meth-
ds have provided promising results, they also suffer from gradient-
elated problems such as vanishing and exploding gradients (Pascanu
t al., 2013). Furthermore, they often force the model parameters 𝜃
weights and bias) and the likelihood function to follow a predefined
robability density function (PDF), typically Gaussian, which results
n ignoring possible non-negligible multi-modalities of the posterior
istribution (Ghahramani, 2015).

(𝜃 ∣ ,) =
𝑝 ( ∣ 𝜃,) 𝑝 (𝜃 ∣ )

𝑝 ( ∣ )
(6)

We explore a potential mitigation strategy of those issues with ap-
proximate Bayesian computation by subset simulation (ABC-SS) (Chia-
chio et al., 2014), using it as the Bayesian inference engine. ABC (Marin
et al., 2012) is a computational Bayesian framework that avoids the
formulation of the likelihood function 𝑝 ( ∣ 𝜃,), replacing it by
forcing the probability of the prediction �̂� to lie within a specific area 
around the observed data 𝑦, based on a tolerance value 𝜖 which limits
how far �̂� can be from 𝑦 using a metric function 𝜌. Eq. (7) shows the new
the posterior distribution of the parameters using the ABC formulation.

𝑝𝜖 (𝜃, �̂� ∣ ) ∝ 𝑃
(

�̂� ∈ 𝜖(𝑦) ∣ 𝜃
)

𝑝(�̂�|𝜃)𝑝(𝜃) (7)

Additionally, the Subset Simulation technique (Au and Beck, 2001)
enhances the efficiency of ABC during sampling, by transforming a
rare event simulation problem into a sequence of nested simulations
with larger probabilities and intermediate 𝜖 values. BNNs trained with
ABC-SS (BNN by ABC-SS) were proposed in Fernández et al. (2022)
and compared against the state-of-the-art BNNs in an experiment about
fatigue in composite materials, providing comparable accuracy and a
more flexible and non-parametric quantification of uncertainty. The
success of this type of BNN lies in the non-parametric formulation of
the PDF of the weights, the absence of likelihood function, and the fact
that the gradient (partial derivatives) of a cost/likelihood function with
respect to the model parameters does not need to be evaluated. BNN
by ABC-SS was also combined with physics, into a hybrid model known
as PG-BNN by ABC-SS (Fernández et al., 2023), which demonstrated
to improve significantly the extrapolation capabilities of the neural
network, and reduced the need for data.

3. Hybrid model for lithium-ion batteries trained with ABC-SS

In this section, the proposed Bayesian hybrid model and its imple-
mentation are described. This approach aims at harnessing the potential
of ABC-SS to quantify the uncertainty in the observed data, the flexibil-
ity of artificial neural networks to capture non-linear patterns, and the
knowledge and extrapolation capabilities of the physics-based Li-ion
battery model.

The overall model architecture presented in this manuscript is in-
spired by the proposals in Nascimento et al. (2021), this is, two dif-
ferent MLPs are used to model the positive and negative non-ideal
voltage 𝑉𝑛𝑖,𝑖, while the rest of the battery output voltage is given by
the physics-based model, as per Eq. (1) in Section 2.1. Furthermore, the
total resistance 𝑅𝑜 and the maximum charge 𝑞𝑚𝑎𝑥 are also considered
as trainable parameters in the proposed hybrid model, being them
correlated to aging effects as observed in previous studies (Daigle and
Kulkarni, 2013). These two parameters have a considerable impact in
the final voltage output of the model, and their value vary from battery
to battery and throughout the life-span of each battery.

As explained in Section 2.1, a number of simplifications are used
in the reduced order physics-based model, and the value of some

elements, such as 𝑉𝑛𝑖,𝑖, 𝑅𝑜 and 𝑞𝑚𝑎𝑥, are fitted using experimental
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Fig. 1. Physics-informed RNN proposed in Nascimento et al. (2021).
data, which means that there exists an indeterminate amount of epis-
temic uncertainty. Indeed, both the data available to train the model
parameters and our understanding of the complex physico-chemical
processes that occur inside Li-ion batteries are limited. Moreover, the
data collected during the experiments, which are then used to train
the models, are subject to noise and possibly human errors. Therefore,
quantifying the uncertainty in the outputs could be of great importance
if these are to be used as inputs to other models in a wider system, or
more generally, for any subsequent decision making-process.

In the following subsections, the pre-training and training of the hy-
brid model parameters using ABC-SS is explained. Also, the experiments
undertaken are described and the results obtained are discussed.

3.1. Pre-training of the MLPs

Two MLPs are used to model the positive and negative non-ideal
voltage 𝑉𝑛𝑖,𝑖, which are the correction terms required to calculate 𝑉𝑈,𝑖,
as per Eq. (3). The MLP for the positive side 𝑉𝑛𝑖,𝑝 comprises two hidden
layers with 8 and 4 neurons respectively, tangent hyperbolic as the
activation function in both layers, and a linear function for the output
layer. The MLP for the negative side 𝑉𝑛𝑖,𝑛 has a simpler architecture
with only one hidden layer and one neuron, using a linear function as
the activation function. It should also be noted that the input data to
the MLPs are normalized, and their outputs denormalized before they
are introduced in 𝑉𝑈,𝑖.

Given the formulation of the hybrid model, training the MLP for
the positive side with random initialization render poor results. This is
very common in neural networks, and was also observed in Nascimento
et al. (2021). In addition, the training data is imbalanced, as the
characteristic sudden drop in voltage when the battery is reaching the
end of discharge is represented by around 5% of the total data only.
This makes it difficult for the neural network to fit that section of the
curve when ABC-SS is used and mean squared error (MSE) is chosen as
the metric function 𝜌. The reason behind this issue lies in the rejection
criteria of the ABC-SS algorithm, where a sample is accepted only
if the value of its metric 𝜌 is lower than the intermediate tolerance
𝜖𝑗 . This means that even if the last data points of the training curve
are ignored, the sample can still achieve an acceptable average error,
which translates in an overall good metric 𝜌 and therefore, be accepted.
Moreover, the output from the positive MLP 𝑉 is only a part of
4

𝑛𝑖,𝑝
the total output voltage 𝑉 that is used to calculate the metric 𝜌 for
each sample, being the rest defined by the physics-based model. Thus,
the influence of the last points of the training curve in the overall
metric 𝜌 is further diluted. The aforementioned issues can be solved
by pre-training the MLPs with a synthetic curve.

The data created for pre-training is a 3-piece linear curve that
approximates the decreasing non-ideal voltage given originally by the
Redlich–Kister expansion. However, two different data sets are pro-
duced, one where the pre-training data points follow the same imbal-
anced distribution as per the training data, and another one where the
pre-training data is distributed along the three sections of the piece-
wise linear curve in a way that there is a higher density of points in
the last section. Also, two different metric functions are used, namely
MSE and maximum absolute error (MaxE). This last metric is calculated
by identifying the maximum absolute error made by the neural network
among all training points. The hyperparameters used are: 𝑁 = 100,000,
𝜌 = MSE/MaxE, 𝑃0 = 0.1 and a Gaussian proposal function with an
initial standard deviation 𝜎0 = 1.5 and a decrease rate of 0.5 per
simulation level. No threshold 𝜖 is used, but instead the training process
is done through 4 iterations of 10 simulations levels each, where the
posterior distribution of the parameters at the end of one iteration
becomes the prior distribution of the subsequent iteration. The results
of the pre-training with the two data sets are shown in Fig. 2 where the
following was observed:

• Panel (a): When data is imbalanced, using MaxE for the metric
function provides better results. This is because the neural net-
work is forced to minimize the error for every training data point
individually, without taking into account the average error. That
means that every point in the data set is equally important and
needs to be fitted as closely as possible. Conversely, the results
given by MSE are poor, given that closely fitting the first two
sections of the curve was enough to achieve a low average error.
That resulted in failing to fit the last part, which is arguably the
most important one given that it is there where the voltage drops
and defines the end of discharge.

• Panel (b): The increased density of data points in the last section
of the pre-training curve forces the neural network trained with
MSE to closely fit the whole length of the curve, as only fitting
the first two sections is no longer enough to reach a low average
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Fig. 2. Pre-training of the MLP for the positive side. The continuous grey line represents the synthetic data, the dashed black line is the prediction of the MLP using MaxE as metric
function, and the continuous black line refers to the prediction of the MLP with MSE as metric function. In panel (a) the pre-training synthetic data is imbalanced resembling the
real battery data, while in panel (b) the pre-training data has been distributed to increase the density of points in the last drop of the curve. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
error. As expected, when MaxE is used as the metric function, the
results are very similar to those achieved with imbalanced data.

Both approaches, MSE with balanced data and MaxE with either
balanced or imbalanced data, have provided good results and could be
used as the prior knowledge of the parameters when training the hybrid
model. While MaxE has not provided better results than MSE with
balanced data, it can be an alternative in those situations where the
training data is imbalanced and pre-training with synthetic balanced
data is not an option.

3.2. Training of hybrid model

The pre-training of the weights and bias of the MLP for the posi-
tive side was undertaken using ABC-SS as the learning engine, which
means that the posterior distribution of the parameters after such stage
becomes the prior distribution at the start of the subsequent training
stage. The MLP for the negative side could also be pre-trained, however,
this is not necessary and a using a standard Gaussian distribution
 (0, 1) as the prior distribution provided comparable results.

In order to train the proposed hybrid model with ABC-SS, the
training algorithm proposed in Fernández et al. (2022) needs to be
modified, given that now the parameters from two different MLPs
along with the physical parameters 𝑅0 and 𝑞𝑚𝑎𝑥 need to be adjusted.
It seems sensible to expand the ABC-SS matrix to accommodate all
the parameters in the hybrid model, and train them simultaneously.
However, this approach renders the following two main issues:

• As explained in Section 2.3, ABC-SS is a Bayesian inference al-
gorithm where the posterior distribution of the parameters is
defined through iterative sampling and a rejection criteria. This
sampling process is repeated through 𝓁 simulation levels, and 𝑁
samples are evaluated on each of them. As a result, training the
overall hybrid model entails evaluating the training data set 𝑁
x 𝓁 times. The computational cost of training MLPs with ABC-
SS is reasonable and comparable to that of backpropagation, as
demonstrated in Fernández et al. (2022). However, the evaluation
of the physics-based model lasts approximately one second, thus
running the model for thousands of times to produce the full
posterior distribution is prohibitive, and may take more than 27 h
for this specific example.

• The number of samples 𝑁 required to train the MLPs with the
Li-ion battery data sets is in the order of tens of thousands, thus
even after the hybrid model was trained, the physics-based model
would need to be evaluated 𝑁 times when making predictions on
test data, or real data when the model was deployed. This would
limit the applicability of the proposed hybrid model.
5

Thus, the main limitation of training the recurrent hybrid model
with ABC-SS lies in the computational cost of running the physics-based
model iteratively. To that end, the architecture of the recurrent cell is
modified, by separating the MLPs from the physics-based models so
they can be run independently. Also, a 2-stage training approach is
proposed, where in the first stage the physical parameters are fixed
and the MLPs are trained, and vice-versa for the second stage. This
allows us to define a different number of samples 𝑁 for the MLPs and
physical parameters, respectively 𝑁𝑀𝐿𝑃 and 𝑁𝑝ℎ𝑦. Thus, the physics-
based model only needs to be evaluated one single time when training
the MLPs, and 𝑁𝑝ℎ𝑦 times when training the physical parameters. The
modified architecture is shown in Fig. 3, and the training process can
be summarized as follows:

• First stage: The physical parameters 𝑅0 and 𝑞𝑚𝑎𝑥 are fixed to
default values of 0.117215 and 7600, respectively, from historical
data and manufacturing specifications. Then, the MLP for the
negative side is initialized with a standard Gaussian  (0, 1) and
the weights and bias of the MLP for the positive side, which
were previously pre-trained, are loaded. Note that the number of
samples 𝑁𝑀𝐿𝑃 is the same for both MLPs, and was defined at the
pre-training stage. At this point, the hybrid model represented by
the grey boxes in Fig. 3 is fully initialized and training starts.
The physics-based battery model is run through all time steps
of the training data only once, and three outputs are stored in
separate arrays, namely the mole fractions [𝑥𝑝]𝑡=𝑇𝑡=1 and [𝑥𝑛]𝑡=𝑇𝑡=1 ,
and the voltage [𝑉 ∗]𝑡=𝑇𝑡=1 . This last element 𝑉 ∗ represents the total
voltage without the correction terms 𝑉𝑛𝑖,𝑖, which are the outputs
of the MLPs. Then both MLPs can be trained separately using
ABC-SS as the learning engine and [𝑥𝑝]𝑡=𝑇𝑡=1 and [𝑥𝑛]𝑡=𝑇𝑡=1 as inputs.
The weights and bias are adjusted based on the ABS-SS metric
𝜌([𝑉 ]𝑡=𝑇𝑡=1 , [𝑉 ]𝑡=𝑇𝑡=1 ), where 𝑉 represents the observed voltage and 𝑉
is the predicted voltage, given by 𝑉 = 𝑉 ∗ + 𝑉𝑛𝑖,𝑝 − 𝑉𝑛𝑖,𝑛.

• Second stage: In the same way that 𝑅0 and 𝑞𝑚𝑎𝑥 where fixed in
the first stage, now it is the MLPs that are fixed, and to that
end, the sample of weights and bias that provided the lowest
training error in the first stage is selected. Then, the number of
samples 𝑁𝑝ℎ𝑦 for the physical parameters is defined, which is
in the order of hundreds, instead of the tens of thousands used
for the MLPs. The physical parameters are trained with ABC-SS,
metric 𝜌([𝑉 ]𝑡=𝑇𝑡=1 , [𝑉 ]𝑡=𝑇𝑡=1 ), and following the forward pass shown in
Fig. 3. To complete this second stage, the physics-based battery
model needs to be run only 𝑁𝑝ℎ𝑦 𝑥 𝓁 times.

With the proposed architecture and phased training process, the
computational cost and training time is reduced to 23 min approx-
imately, which is comparable to the 21 min that takes the original
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rchitecture in Fig. 1 with backpropagation. This training time depends
eavily on the number of samples and simulation levels, thus finer tun-
ng of those hyperparameters might help to reduce the computational
ost. Furthermore, if the samples were run in parallel with several
rocessors the training process could be accelerated significantly.

Once the hybrid model is trained, predictions on test/validation
ata are made to evaluate its performance. Because of the 2-stage
raining and the modified architecture, when the overall model is
ssembled with all trained parameters, it means that the output of the
ybrid model will have a dimension 𝑇 𝑥 (𝑁𝑀𝐿𝑃 𝑥 𝑁𝑝ℎ𝑦), and again,

the computation cost of running the full model escalates. To solve
this issue, the resulting joint distribution of the physical parameters
is described by 5 different features, namely their percentiles 𝑃5, 𝑃50,
𝑃95, the sample with the lowest training error, and the sample with
the highest training error. Thereby, the physics-based model only needs
to be evaluated 5 times when making predictions on test data. While
those features do not fully represent the overall joint distribution, they
provided an acceptable approximation given the quasi-lineal behavior
of the physical parameters 𝑅0 and 𝑞𝑚𝑎𝑥.

The proposed multi-stage training method also allows us to quantify
he uncertainty in the MLPs and the physical parameters separately.

hile some uncertainty may be shared between them, given that
uring training they would also try to compensate for the other, this
s considered a reasonable approximation based on the information
vailable. The only way to completely isolate the uncertainty from each
arameter would be if the real values of 𝑅0, 𝑞𝑚𝑎𝑥, 𝑉𝑛𝑖,𝑝 and 𝑉𝑛𝑖,𝑛 where

known. In Section 3.3 the quantification of the uncertainty is shown
and discussed. Finally, it is worth noting that the proposed architecture
in Fig. 3 is fully compatible with gradient-based methods.

3.3. Experiments and results

The battery usage data utilized in this experimental framework is
publicly available and can be found in Saha and Goebel (2007), Bole
et al. (2014). These data have been extensively used in the field of
prognostics applied to Li-ion battery, thus only the main characteristics
are explained in this section. All batteries comprise a single cell, and
their discharge profiles are recorded from a fully charged state with
approximately 4.2 V to the point in which the voltage drops below
6

3.2 V, when the battery is considered to be discharged. Two types of
tests were performed, using constant loading with 1 A current draw,
and another with random loading where the current varied between
1 A and 4 A following a uniform distribution 𝑖 = 𝑈 [1, 4]. In this

anuscript, data from batteries 2, 3 and 4 are used. Specifically, 1
onstant discharge curve and 2 random discharge curves are used for
raining, and then 1 of each type are used for testing. The reason behind
his particular choice of training curves is an attempt to reproduce

real-world scenario, where the battery is first characterized with a
onstant discharge cycle, and then iteratively trained with such first
urve and data coming from random discharge curves as they become
vailable. The first curves from the repository are selected, so the aging
ffects are not yet present in the data.

A hyperparameter sensitivity analysis was carried out, so their
ptimal value can be selected based on their impact in the performance
f the hybrid model when evaluated on a hold-out validation data set,
onsisting of a constant discharge curve different from the training and
esting data sets. In terms of architecture of the MLPs, this was covered
n previous Sections 3.1 and 3.2, and are the same as per the deter-
inistic version used in Nascimento et al. (2021), so we can compare

nd evaluate if the accuracy remains in the same order of magnitude.
egarding the model hyperparameters, generally it is observed that

or more complex architectures the number of samples 𝑁 needs to be
ncreased, opposite to 𝑃0 that needs to be smaller. The values for 𝜎0 and
, which affect the proposal function and how new samples are drawn,
eed to be adjusted simultaneously and iteratively. The tolerance value
defines when the simulation stops, thus low values will potentially

esult in more accuracy, but will also affect the quantification of the
ncertainty and require more simulation levels. Specifically in this case
tudy, the following values of the model hyperparameters (MLPs) were
sed: 𝑁𝑀𝐿𝑃𝑠 = 100,000, 𝜌 = MSE, 𝑃0 = 0.1, threshold 𝜖 = 0.00056,
nd a standard Gaussian proposal function with an initial standard
eviation 𝜎0 = 1.5 and a decrease rate of 0.5 per simulation level.

The hyperparameters used to train the physical parameters are: 𝑁𝑝ℎ𝑦 =
500, 𝜌 = MSE, 𝑃0 = 0.5, threshold 𝜖 = 0.00024, initialization of 𝑅0 =
0.117215, initialization of 𝑞𝑚𝑎𝑥 = 7600, and again a standard Gaussian
proposal function with an initial standard deviation of 10% of the
initial value of the physical parameters, and a decrease rate of 0.5 per

simulation level.
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Fig. 4. Predictions on constant and random discharge test data made by the proposed hybrid model, trained with data from battery 3. The dashed-black line shows the measured
(experimental) data, and the solid black line with the shaded grey area represents the average of the prediction with 90% confidence band. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Predictions made by the proposed hybrid model on random discharge test data, as per panel (b) in Fig. 4, at different time steps. The dashed-black line shows the
measured (experimental) data, and the shaded grey area with the solid black line represent the probabilistic prediction and the average value respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
The results obtained by the proposed method, in terms of accuracy,
are shown in Table 1. It can be seen that the RMSE obtained for the
three batteries are acceptable, and comparable to those achieved by
the hybrid model in Nascimento et al. (2021), with the architecture
shown in Fig. 1 and trained with standard backpropagation, reportedly
0.055 V in average and below 0.088% of the true voltage. The accuracy
obtained by the pure physics-based model in Daigle and Kulkarni
(2013) is not far from those values either. In any case, the results from
the proposed method could be improved if the threshold 𝜖 was set to
a lower value, prompting the Bayesian neural network to undertake
further simulation levels. However, this would be detrimental for the
quantification of the uncertainty, given that the diversity of samples
would decrease in favor of a greater representation of the samples with
lower training error. This is a trade-off inherited from the principles
of ABC-SS, where the user needs to tune 𝜖 to find the right balance
between precision and a good representation of the uncertainty present
in the observed data. Being ABC-SS a gradient-free training algorithm,
weights and bias parameters are updated probabilistically according to
Bayesian principles, instead of using partial derivatives like in the tra-
ditional training method with backpropagation. This removes problems
such as ‘‘vanishing gradient’’ or ‘‘Dying ReLU’’ without the need for more
complex architectures like LSTM with gated units.

Fig. 4 shows predictions and uncertainty bounds against the test
data for both constant and random discharge cycles. As can be seen,
the uncertainty bounds enclose the majority of the test data points.
Furthermore, it is observed that such uncertainty varies in different
sections of the curves, and it is often greater in those parts where
7

Fig. 6. Scatter plot of physical parameters samples drawn on each simulation level
during training with data from battery 3. The different simulation levels are represented
by different shades of grey, from light grey for simulation level 1 to dark grey for
simulation level 6. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

the prediction is less accurate. This can also be understood as a mea-
surement of credibility, where narrower uncertainty bounds might be
related to more accurate predictions, and vice-versa.

A closer look at the uncertainty in the predictions is shown in panels
(a) and (b) of Fig. 5, which represent a cross-section of panel (b) in
Fig. 4 at time steps 340 and 550. It can be seen that the uncertainty
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Fig. 7. Evolution of the joint distribution of the physical parameters through the different simulation levels during training with data from battery 3.
Fig. 8. Final joint distribution of physical parameters after training with data from
Battery 3.

in panel (b) is approximately double than in panel (a), where the
prediction is clearly more accurate. This is a good example of how the
proposed Bayesian neural network conveys information about its trust,
or lack of trust, in its own predictions. This uncertainty depends on
several factors, such us variability or lack of training data points near
the region of the test data point.

The proposed training method also provides information about the
uncertainty in the MLPs and physical parameters 𝑅0 and 𝑞𝑚𝑎𝑥; their
distributions can be monitored through the different simulation levels.
Fig. 6 shows a scatter plot of all the samples 𝑁𝑝ℎ𝑦 of the physical
parameters drawn in each simulation level during training with data
8

Table 1
Accuracy of the proposed method when tested on random
discharge data.

Battery 2 Battery 3 Battery 4

RMSE [V] 0.0434 0.0392 0.0327

from battery 3, using different shades of grey. This is a very represen-
tative image of ABC-SS training, where the prior information is updated
simulation after simulation and the posterior distribution becomes
more and more accurate, until it reaches the predefined threshold 𝜖
and the training stops.

The individual and joint distributions of the physical parameters
throughout the different simulations are provided in Fig. 7, where we
see more clearly how the joint posterior distribution starts from a prior
Gaussian function, and it is updated step by step to reach its final
form. The relation between 𝑅0 and 𝑞𝑚𝑎𝑥 can also be read from those
figures. Finally, Fig. 8 shows the final joint distribution of the physical
parameters after training, along with the features used to represent it
when making predictions on test data, as explained in Section 3.2. It
can be seen that the distributions of the physical parameters inferred
by the proposed Bayesian training is consistent with the information
available from historical data and manufacturing specifications. The
median value of the PDF inferred for 𝑞𝑚𝑎𝑥 is 7593, with plausible values
ranging from 7568 to 7668. Considering that the starting point was
anything between 6840 and 8360 (panel (a) in Fig. 7), the inferred
distribution is close to the default value of 7600. The same applies to
𝑅0 with a median value of 0.127, which again is close to the default
value of 0.117. In this case, panel (f) in Fig. 7 shows more uncertainty
about the value of 𝑅0 than 𝑞𝑚𝑎𝑥. It should also be noted that the
quality of the prior information may affect the limits of the search
space in the first simulation level, as this would need to be larger in
case the initial guesses were far from the target values. Nevertheless,
vague prior information is not an issue, as setting the initial standard
deviation 𝜎0 of the proposal function in ABC-SS to a high value ensures
a comprehensive exploration of the parameter space. Equally, a high
decrease rate may help to accelerate convergence.
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In summary, training hybrid models with ABC-SS provided us with
valuable information about the uncertainty in the predictions, which
not only translates into a range of plausible values but also pro-
vides us with a measure of confidence in the predictions. Additionally,
monitoring the joint distribution of parameters with ABC-SS conveys
information about their relationship and importance in the overall
model relative to each other. Thus, it may also be used to undertake
a sensitivity analysis among the model parameters. Lastly, a series of
drawbacks have also been unveiled, mostly related to the computa-
tional cost of the training method. But these issues are not specific
of ABC-SS but common to any inference algorithm based on iterative
sampling, such as Markov chain Monte Carlo (MCMC) methods. The
use of parallel computation may also help to reduce the computational
resources needed.

4. Conclusions

The demand for Li-ion batteries is increasing at a fast pace, mostly
due to a surge in electric vehicles that use them for powering their en-
gines, or operating their systems. For that very reason, new algorithms
are constantly being developed to model the behavior and performance
of these batteries. Among those, PINNs are a promising line of research,
as they benefit from both physics-based knowledge and data-driven
approaches.

In this manuscript, a new Bayesian PINN is proposed, where the
recurrent architecture presented in Nascimento et al. (2021) was modi-
fied and adapted to be trained with ABC-SS instead of backpropagation.
This Bayesian training method provides non-parametric weights, and
avoids the formulation of a likelihood function, as well as the evalua-
tion of its gradient. Those advantages translate into flexibility to adapt
to the training data, and a realistic and coherent quantification of the
uncertainty. Nonetheless, the method still poses some challenges, such
as the difficulties found to fit the last part of the non-ideal voltage
curve during pre-training, or the computational inefficiencies during
training and testing. Regarding pre-training, balancing the training
data and/or using maximum absolute error as the metric function in
ABC-SS proved to solve the issue satisfactorily. With respect to the
computational inefficiencies, adjusting the recurrent cell architecture
so the data-driven and physics-based parts could be run separately
clearly accelerated the training process. Furthermore, thanks to a multi-
stage training approach, the physical parameters and the weights of
the MLPs could be trained independently, which not only improved
the computational cost of the hybrid model but also allowed for the
uncertainty related to each type of parameter to be quantified in semi-
isolation. This may also cast light into the relative importance of each
parameter with respect to the others, with the potential to become a
tool to evaluate the sensitivity of the model parameters. The experiment
section demonstrated the accuracy of the proposed method, comparable
to the standard backpropagation algorithm, as well as its ability to
capture the uncertainty within the training data in a realistic manner.

Regarding future work, further research should undertaken about
the aging effect in Li-ion batteries and how to include them in the
proposed Bayesian hybrid model. Also, parallel computing should also
be tested for the sampling stage, as it could also help to further reduce
the overall computational cost of running the hybrid model.
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