
Best practices for energy-thrifty evolutionary
algorithms in the low-level language zig

Juan J. Merelo-Guervós1[0000−0002−1385−9741], Antonio M.
Mora2[0000−0003−1603−9105], and Mario García-Valdez3[0000−0002−2593−1114]

1 Department of Computer Engineering, Automatics and Robotics and CITIC
University of Granada, Granada, Spain

2 Department of Signal Theory, Telematics and Communications, University of
Granada, Granada, Spain

3 Department of Graduate Studies, National Technological Institute of Mexico,
Tijuana, Mexico

jmerelo@ugr.es, amorag@ugr.es, mario@tectijuana.edu.mx

Abstract. The most fruitful way of making evolutionary algorithms
spend the least amount of energy is to consider all possible program-
ming techniques and platform choices that could, theoretically, affect
performance, and carry out experiments using EA workloads in different
platforms, eventually choosing those techniques that yield the minimum
amount of energy expenses. These techniques include a choice of differ-
ent data structures, as well as affecting compilation in such a way that
energy footprint is reduced; they have to be replicated in different com-
puting platforms because these expenditures may be affected by all the
layers of the operating system and runtime framework used. In this paper
we will experiment with different data structures and code refactoring
techniques in the low-level language zig, trying to design rules of thumb
that will help developers create green evolutionary algorithms. We will
include two different hardware platforms, looking for the one that spends
the least energy.

Keywords: Green computing, metaheuristics, energy-aware computing,
evolutionary algorithms, zig

A straightforward methodology for measuring energy consumption of EA
implementations with the objective of reducing it would consider a baseline
implementation and then change the code at different levels, measuring the re-
sulting energy expenses. In [2], the main factor under study was the different
interpreters used in a high-level language, JavaScript. In this paper, we will fo-
cus on different techniques applied to the low-level language zig, a language that
emphasizes safety and maintainability [1], and that has as a motto "no implicit
memory allocation," unlike other languages like C or C++, that will allocate
memory without the user noticing. This strict memory management has sev-
eral implications in terms of programming, but also gives the programmer more
control over how and when memory is allocated and deallocated.



2 Juan J. Merelo-Guervós, Antonio M. Mora, and Mario García-Valdez

In this paper, we will work on a generic evolutionary algorithm workload, and
see what the impact of different choices will have on its energy consumption.
With this, we will try to find some best practices that will help practitioners
implement evolutionary algorithms in zig, hopefully extensible to other low-level
languages (which could include C and C++, but also Rust or Go).

The experiment setup will match the one used in [2], using the same tools
for energy profiling (pinpoint) as well as Perl scripts to run the experiments and
process the results. This way we can easily compare the results, but also use an
established and proved methodology.

The experiments for this paper will be carried out in two different platforms:
– A Linux machine 5.15.0-94-generic #104 20.04.1-Ubuntu SMP using AMD

Ryzen 9 3950X 16-Core Processor.
– An M1 MacBook Air with 16GB of RAM and macOS Ventura 13.2.1.

We use zig version 0.11.0, released by August 3, 2023, which is the last stable
one at the time of writing this paper. The pinpoint tool has no versions, but we
have used one compiled from source and commit hash 1578db0. Outputs of pin-
point are processed by Perl scripts that generate CSV files that are then processed
and plotted using R embedded in the source code of this paper. This paper’s code,
data, and source are available at https://github.com/JJ/energy-ga-icsoft2023
under a free license.

There are several units whose consumption can be measured using pinpoint
via the RAPL interface; since the use of GPU is negligible in these examples,
only memory and CPUs will be measured. Together, they are called the package
(alongside caches and memory controllers); this is usually represented by the
acronym PKG. In the case of the Mac, this measurement is divided into three
parts: the "E" (efficiency) and "P" (performance) CPUs, and the memory. Again,
these user-initiated processes run on the "P" CPUs, so that will be the one we
will be measuring.

By default, all programs will be generated using the .ReleaseFast compile
option, that optimizes performance, but also energy consumption. We will use
the page_allocator that allocates memory in the heap. This is an efficient
allocator, but also the default choice.

We will be examining options in different areas
– Several data structures used in the implementation of EAs will be checked

for: the default string, arrays of Boolean values and bit sets.
– The default crossover operator used an allocator to create temporary copies

of chromosomes. Several implementations will be tested.
– Unlike other languages, zig provides different memory allocators, which the

developer can choose. By default, a page allocator is used, but there is the
possibility of using a fixed buffer size allocator.

– We will check the behavior of these on two different platforms, Linux (with
AMD CPU) and MacOS (with M1).

We will first generate 40000 chromosomes of size 512, 1024 and 2048, and
measure the energy consumption and running time of this operation; every com-
bination is run 15 times.

https://github.com/JJ/energy-ga-icsoft2023


Title Suppressed Due to Excessive Length 3

0

10

20

30

0.2 0.4 0.6
Running time

P
K

G
 (

Jo
ul

es
)

colour

Baseline

BitSet

Boolean

Mac Baseline

Mac Boolean

size

512

1024

2048

Running time/PKG energy consumption generating chromosomes

Fig. 1. Average running time and PKG energy consumption generating 40K chromo-
somes for the different parametrizations used (represented with different colors); dot
shape represents the chromosome size.

Figure 1 represents energy consumption, as well as time taken, for the dif-
ferent configurations. The first thing to notice, in the upper right corner, is that
using a bitset in zig will not represent any energy saving, with a big difference
in time as well as energy consumption; this is why it has not even been tested
for the Mac. Second feature that stands out is that consumption as well as time
is very different for the Mac, which is an entry-level laptop computer, and the
AMD desktop computer. This is probably expected, but the fact is that the
MacBook Air, which is a generation behind current commercial offerings, takes
25% of the time and 10% of the energy to do the same amount of work. While
increase in energy consumption with chromosome size is quite steep in the AMD
architecture used by the desktop computer, that is not the case for the Mac,
with a very small increase from the smallest to the largest size. Another obser-
vation is that, except for using bitsets as data structures, there does not seem
to be a significant difference between using either strings or Boolean arrays in
neither architecture, at least for this baseline operation. However, generating
chromosomes is done essentially once, so it is not the most significant operation
in EAs.

Thus, we will now run an experiment that, after generating the 40K chro-
mosomes, will perform crossover + mutation + ONEMAX operations on chro-
mosomes of size 512, 1024 and 2048 using the strings and Boolean arrays in the
two architectures used above.

What Figure 2 shows is a remarkable difference in energy consumption in the
Mac platform, which goes against the big difference shown in the generation of
chromosomes. This probably reveals a problem in the implementation of some
feature used by the evolutionary algorithm. Digging into the code, we found that
the main issue was the need to use allocation within the crossover operator. A
refactoring, which eliminated this need to use allocators, was in order, yielding



4 Juan J. Merelo-Guervós, Antonio M. Mora, and Mario García-Valdez

5

10

15

20

512 1024 2048
sizeE

ne
rg

y 
co

ns
um

pt
io

n 
di

ffe
re

nc
e 

(s
ec

on
ds

)

Platform

evostar−mac−ops

evostar−mac−ops−bool

evostar−zig−ops

evostar−zig−ops−bool

Energy consumption difference between different platforms/data structures for zig

Fig. 2. Boxplot of PKG energy consumption processing 40K chromosomes via
crossover, mutation and ONEMAX for different combinations of optimization tech-
niques and platforms in Zig

the results shown in Figure 3. The energy consumption is now more in line with
the generation of the chromosomes, and the difference between the different
compilation policies is more in line with the previous results.

0

2

4

6

512 1024 2048
size

E
ne

rg
y 

co
ns

um
pt

io
n 

di
ffe

re
nc

e 
(P

K
G

)

Platform

Base

Bool

Mac Base

Mac Bool

Energy consumption after no−alloc refactoring

Fig. 3. Boxplot of PKG energy consumption processing 40K chromosomes via
crossover, mutation and ONEMAX after crossover has been refactored

Figure 3 shows the energy consumption after refactoring. Both platforms
show a considerable improvement, but it is more dramatic in the case of the
Mac platform. We can anyway observe that, although there is a certain difference
between both data structures, string and Boolean array, that difference does not
hold across platforms and sizes. Strings seem to best the other option in more
ocassions, but when the size is the biggest, it might be at a certain disadvantage.



Title Suppressed Due to Excessive Length 5

It is probably the case that the amount of memory used by any of them is the
same, and the random-access structure is also similar in performance and energy
consumption (and unlike bitsets, which probably used more memory, since they
internally used structs). On the other hand, eliminating allocation from the
crossover operator results in energy savings across the board, although they are
much more dramatic in the Mac platform, consuming energy for 40k evaluations
that is a fraction of a Joule, and almost two orders of magnitude less of what
the desktop computer consumes.

This leads us to the conclusion, carried over from other papers, that rather
than taking assumptions on the behavior of implementations based on first prin-
ciples or knowledge of the computing platform, we need to always create energy
profiles of the implementations, and measure for different data structures and
across refactoring of the evolutionary algorithm code.

It seems clear, anyway, that platforms that emphasize energy savings like
the M1 chip used by the MacBookAir will use much less energy, dramatically
so in some cases, than desktop solutions based on AMD. This does not extend
to the operating system implementation itself: operations that depend on it,
such as memory allocation, will have a different impact on the energy profile,
which might be one of the reasons they should be minimized whenever possible.
Fortunately, zig is a language and toolchain with very strict control over memory
allocation, allowing us to be very conscious over where it could be eliminated,
as we have done in this case.

As a final conclusion, implementing an EA in zig and running in on a Mac
may result in an improvement of several orders of magnitude in consumption of
energy over using high-level platforms (like Python or Javascript) and desktop
machines. If we strive for greener computing, we should really consider them
for our experiments. Although zig cannot be considered mainstream right now,
its performance and capability should make it a very interesting option for the
future.

Acknowledgements and data availability

This work is supported by the Ministerio español de Economía y Competitivi-
dad (Spanish Ministry of Competitivity and Economy) under project PID2020-
115570GB-C22 (DemocratAI::UGR). We are also very grateful to the zig commu-
nity. Source and data available from https://github.com/JJ/energy-ga-icsoft-2023
under a GPL license.

References

1. Friesen, A.: Designing programming languages for writing maintainable soft-
ware (2023), https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1625&
context=honorstheses

2. Merelo-Guervós, J.J., García-Valdez, M., Castillo, P.A.: An analysis of energy con-
sumption of JavaScript interpreters with evolutionary algorithm workloads. In:

https://github.com/JJ/energy-ga-icsoft-2023
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1625&context=honorstheses
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1625&context=honorstheses


6 Juan J. Merelo-Guervós, Antonio M. Mora, and Mario García-Valdez

Fill, H., Mayo, F.J.D., van Sinderen, M., Maciaszek, L.A. (eds.) Proceedings of
the 18th International Conference on Software Technologies, ICSOFT 2023, Rome,
Italy, July 10-12, 2023. pp. 175–184. SCITEPRESS (2023). https://doi.org/10.5220/
0012128100003538, https://doi.org/10.5220/0012128100003538

https://doi.org/10.5220/0012128100003538
https://doi.org/10.5220/0012128100003538
https://doi.org/10.5220/0012128100003538
https://doi.org/10.5220/0012128100003538
https://doi.org/10.5220/0012128100003538

	Best practices for energy-thrifty evolutionary algorithms in the low-level language zig

