
Teaching how to engineer greener software
JJ Merelo-Guervós

jmerelo@ugr.es
Department of Computer Engineering, Automatics and Robotics and CITIC, University of Granada

Granada, Spain

ABSTRACT
Green computing is a general term that describes a host of tech-
niques that try to minimize the carbon footprint of software appli-
cations. As such, it is not a single body of knowledge, but a series of
best practices that help reduce energy consumption relying on the
features of any of the different layers that are exercised by software
applications. This represents a challenge at the time of designing
a comprehensive syllabus that would help students develop the
series of skills needed to identify energy bottlenecks and eliminate
them. In this poster we will describe the different concepts involved,
and how they will be delivered to guarantee the achievement of
learning objectives.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment.

KEYWORDS
Software engineering, green computing, project-based learning
ACM Reference Format:
JJ Merelo-Guervós. 2024. Teaching how to engineer greener software. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Green computing [2] deals, in general, with reducing the environ-
mental impact of the creation and use of computing resources. From
the software perspective, it proposes maximizing the amount of
work done for every unit of energy spent. But in order to achieve
that, how energy is spent across all the different computing layers
need to be assessed, and understood.

This is why getting the student to achieve a certain amount of
understanding of the different process involved, methodologies
needed to carry out that assessment, and eventually design your
code from the ground up or refactoring it to make it greener is a
challenge.

And it is a challenge that has been recently acknowledged by
the joint IEEE/ACM task force in [1]. Environmental concerns is
one of the skills mentioned in the draft competencies in software
engineering as part of the needed “behavioral attributes” as well as
in the Master’s degree in Information Systems (IS), as part of the IS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Strategy and Governance competence; the computer engineering
set of draft competencies includes it as part of the Systems Resource
Management subject matter. This again shows the inter-disciplinary
content that needs to be considered even if the focus is on software
engineering.

The final objective would be to get the student to understand
how choices of hardware and software platform from the ground
up will affect the environmental impact of the workload that is
going to be created or refactored and which best practices need to
be involved to reduce that impact. The syllabus proposed would,
then, would be as follows:

• Understanding thehardware: Computing units (CPU, GPU,
memory) and their energy profiles. Energy-wise heteroge-
neous architectures. Energy consumption sensors and stan-
dard APIs to get measurements from them (e.g. RAPL). In-
terfaces to the computing power configuration and admin-
istration system (e.g. ACPI). This will help the student to
understand how the workload exercises different parts of
the hardware, and why it does so.

• Understanding how the workload spends energy: soft-
ware profiling, methodologies and tools for energy profiling
(PowerMeter, pinpoint, hardware meters). This will help the
student identify bottlenecks from the point of view of per-
formance as well as energy consumption; also find out how
this consumption scales with workload size.

• Refactor for reduction of energy footprint: once the bot-
tlenecks have been identified and specific benchmarks de-
veloped to measure the energy footprint, the student needs
to work across the board to reduce the footprint: choosing
the computing platform where possible, configuring the ap-
plication to work on specific computing units, choosing the
programming language toolchain that reduces energy con-
sumption (such as the compiler or interpreter) or configuring
it, change in data structures used to store and process data or
leveraging of multi-threading or symmetric multiprocessing
capabilities.

Since most of these items require hands-on experience, we have
decided to use active learning methodologies, organizing the stu-
dents in groups and making them develop a project from scratch
where they will first measure energy consumption and then mini-
mize it. The grade can be tied to the reduction achieved. This way,
putting the best practices in green computing to use, the students
will be able to learn the skills and commit them to muscle memory
so that they can be deployed in the future when needed.

REFERENCES
[1] CC2020 Task Force. 2020. Computing Curricula 2020: Paradigms for Global Com-

puting Education. Association for Computing Machinery, New York, NY, USA.
[2] Patrick Kurp. 2008. Green computing. Commun. ACM 51, 10 (2008), 11–13.

https://orcid.org/0000-0002-1385-9741
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

	Abstract
	References

