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Apéry Sets and the Ideal Class Monoid of a
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Abstract. The aim of this article is to study the ideal class monoid C �(S)
of a numerical semigroup S introduced by V. Barucci and F. Khouja. We
prove new bounds on the cardinality of C �(S). We observe that C �(S)
is isomorphic to the monoid of ideals of S whose smallest element is 0,
which helps to relate C �(S) to the Apéry sets and the Kunz coordinates
of S. We study some combinatorial and algebraic properties of C �(S),
including the reduction number of ideals, and the Hasse diagrams of
C �(S) with respect to inclusion and addition. From these diagrams, we
can recover some notable invariants of the semigroup. Finally, we prove
some results about irreducible elements, atoms, quarks, and primes of
(C �(S),+). Idempotent ideals coincide with over-semigroups and idem-
potent quarks correspond to unitary extensions of the semigroup. We
show that a numerical semigroup is irreducible if and only if C �(S) has
at most two quarks.
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1. Introduction

The ideal class group of a Dedekind domain is a classical mathematical ob-
ject that has been extensively studied, and has proven to be a useful tool
to retrieve information about the underlying domain. This concept can be
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generalized to the ideal class monoid of any integral domain, which is de-
fined as the set of fractional ideals modulo principal ideals, endowed with
multiplication of classes.

The ideal class monoid C �(S) of a numerical semigroup S is defined
analogously by considering the set of (fractional) ideals modulo principal
ideals of S, endowed with addition. This object is strictly related to the ideal
class monoid of the associated semigroup ring K�S� via the valuation map
v : C �(K�S�) → C �(S) [6]. The latter object is not very well understood.
However, by working on C �(S) it might be possible to interpret C �(K�S�)
from a combinatorial (and hence easier) point of view.

The aim of this article is to extend the study of C �(S) which was initi-
ated by Barucci and Khouja in [2], and to determine properties of the numer-
ical semigroup from those of its ideal class monoid. Barucci and Khouja were
mainly interested in the following three problems: (1) find bounds for the
cardinality of the ideal class monoid of a numerical semigroup; (2) describe
the generators of the ideal class monoid of a numerical semigroup; (3) find
properties about the reduction number of the elements of the class group.
The reduction number of an ideal I is the minimum positive integer r, such
that (r+1)I = rI. It can be shown that it is invariant under translations, and
thus studying the reduction number for each element in the ideal class monoid
provides a way to understand how it behaves for every ideal of the semigroup.

We prove new estimates of the cardinality of C �(S). The most relevant
results in this direction are Propositions 3.5 and 3.7, which ensure that if g
is the genus of S, t its type and m its multiplicity, then

2m−1 + g − m + 1 ≤ |C �(S)| ≤ 2g − 2g−t + 1.

Moreover, the upper bound is attained if and only if either S = {0,m,→} or
S = 〈m,m + 1, . . . , 2m − 2〉.

Apart from using antichains of gaps to find bounds for the cardinality
of the ideal class monoid of a numerical semigroup (that was the main tool
used in [2]), we introduce the concept of Kunz coordinates of an ideal of a
numerical semigroup. This enables us to find a one-to-one correspondence
between the set of elements in the ideal class monoid and the set of integer
solutions of a linear system of inequalities (Theorem 4.4). With this, we can
find new bounds for the cardinality of the ideal class monoid of a numerical
semigroup, and we can determine when these bounds are attained. In partic-
ular, if m is the multiplicity of a numerical semigroup S and (k1, . . . , km−1)
are the Kunz coordinates of S, then

|C �(S)| ≤
m−1∏

i=1

(ki + 1).

Equality holds if and only if S = 〈m〉 ∪ (c + N), with c a positive integer
greater than m, or, equivalently

(1) k1 ≥ · · · ≥ km−1, and
(2) k1 − km−1 ≤ 1.
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As a consequence of the relationship between the Apéry set of an ideal
and the Apéry set of its ambient semigroup, we fully characterize the canon-
ical ideal of a numerical semigroup from the shape of its Apéry set (Propo-
sition 4.10), and provide a description of a generating set for the canonical
ideal. Some progress is also made in the calculation of bounds for the re-
duction number of ideals whose minimal generators are smaller than the
multiplicity of the semigroup (Proposition 4.16).

We also use Kunz coordinates to study the Hasse diagram of the ideal
class monoid of a numerical semigroup with respect to inclusion. The mini-
mum element in this diagram is the semigroup itself, while the maximum is
N. We describe the set of minimal non-trivial elements, and the set of the
maximal elements different from N. The cardinality of the first set is the type
of the semigroup, and the cardinality of the latter is the multiplicity of the
semigroup minus one. The length of any maximal strictly ascending chain in
this Hasse diagram is precisely the genus of the semigroup plus one. Thus,
some of the classical invariants of the numerical semigroup are reflected in the
shape of the Hasse diagram of its ideal class monoid with respect to inclusion.
We also give a lower bound for the width of this Hasse diagram.

We prove that generators of the ideal class monoid as defined in [2]
correspond to irreducible elements (see [17]). We study how irreducible el-
ements, atoms, quarks, and prime elements are related in the ideal class
monoid of a numerical semigroup. There are numerical semigroup whose ideal
class monoid has no atoms. Theorem 5.21 states that a numerical semigroup
is irreducible if and only if its ideal class monoid has at most two quarks (the
existence of a single quark translates to the symmetry of the semigroup). The
set of unitary extensions of a numerical semigroup is the set of idempotent
quarks of the ideal class monoid of the semigroup.

The last section is devoted to several open problems that may serve
as a motivation to continue studying the ideal class monoid of a numerical
semigroup.

Throughout this paper, we present a series of examples meant to illus-
trate the results proven. For the development of most of these examples we
used the GAP [18] package numericalsgps [8] (in fact, some of our results
were stated after analyzing a series of computer experiments). The functions
used in this manuscript, together with a small tutorial, can be found at
https://github.com/numerical-semigroups/ideal-class-monoid.

2. Recap on Numerical Semigroups and Ideals

Let N denote the set of non-negative integers. A numerical semigroup S is
a submonoid of (N,+) with finite complement in N. The set N\S is known
as the set of gaps of S, denoted G(S), and its cardinality is the genus of
S, denoted g(S). Given a subset A of N, the submonoid generated by A is
〈A〉 = {a1 + · · · + at : t ∈ N, a1, . . . , at ∈ A}. If A ⊆ S is such that 〈A〉 = S,
then we say that A is a generating set of S. Every numerical semigroup ad-
mits a unique minimal generating set (whose elements we refer to as minimal

https://github.com/numerical-semigroups/ideal-class-monoid
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generators), which is S∗\(S∗ + S∗), where S∗ = S\{0}, and its cardinality
is known as the embedding dimension of S, denoted e(S) (see for instance
[13, Chapter 1]). The smallest positive integer in S is called the multiplicity
of S, denoted m(S). Clearly, two distinct minimal generators of S cannot be
congruent modulo m(S) and, consequently, e(S) ≤ m(S).

The largest integer not belonging to a numerical semigroup S (this inte-
ger exists as we are assuming G(S) to have finitely many elements) is known
as the Frobenius number of S and will be denoted by F(S). In particular,
F(S) + 1 + N ⊆ S. The integer F(S) + 1 is the conductor, c(S), of S.

A numerical semigroup S induces the following ordering on Z: a ≤S b
if b − a ∈ S. The set of maximal elements in G(S) with respect to ≤S is
denoted by PF(S), and its elements are the pseudo-Frobenius numbers of S.
Observe that by the maximality of these elements, if f ∈ PF(S), then for
every non-zero s ∈ S, we have that f + s ∈ S. The cardinality of PF(S) is
known as the type of S, and will be denoted by t(S).

A gap f of a numerical semigroup S is a special gap if S ∪ {f} is a
numerical semigroup. We denote the set of special gaps of S by SG(S). It is
well known (see for instance [13, Section 3.3]) that

SG(S) = {f ∈ PF(S) : 2f ∈ S}.

In particular, the cardinality of SG(S) is equal to the number of unitary
extensions of a numerical semigroup (that is, numerical semigroups T con-
taining S, such that |T\S| = 1).

Given a numerical semigroup S and a non-zero element n ∈ S, the
Apéry set of n in S is the set

Ap(S, n) = {s ∈ S : s − n 
∈ S}.

This set contains n elements, one for each congruence class modulo n.
In fact, if wi is the smallest element in S congruent to i modulo n (with
i ∈ {0, . . . , n − 1}), then Ap(S, n) = {w0, w1, . . . , wn−1}, and clearly, w0 = 0.
Recall that (see for instance [13, Proposition 2.20]) for a numerical semigroup
S with multiplicity m, we have

PF(S) = {f ∈ Z\S : f+(S\{0}) ⊆ S} = −m+Maximals≤S
(Ap(S,m)). (1)

A numerical semigroup S is symmetric if for every integer x 
∈ S,
F(S) − x ∈ S. This is equivalent to g(S) = (F(S) + 1)/2, or to the fact
that F(S) is odd and S is maximal (with respect to set inclusion) in the set
of numerical semigroups not containing F(S). If F(S) is even, then S is said
to be pseudo-symmetric if, for every integer x 
∈ S with x 
= F(S)/2, we have
that F(S) − x ∈ S. This is equivalent to g(S) = (F(S) + 2)/2, or to the fact
that S is maximal in the set of numerical semigroups not containing F(S). A
numerical semigroup S is irreducible if it cannot be expressed as the intersec-
tion of two numerical semigroups properly containing it, or equivalently, if it
is maximal in the set of numerical semigroups not containing F(S). Thus, a
numerical semigroup S is irreducible if and only if it is either symmetric (and
its Frobenius number is odd) or pseudo-symmetric (and its Frobenius num-
ber is even). These equivalences and other characterizations of irreducible
numerical semigroups can be found in [13, Chapter 3].
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Let S be a numerical semigroup. We say that a non-empty set of inte-
gers E is a (fractional) ideal of S if S + E ⊆ E and there exists s ∈ S, such
that s + E ⊆ S. Notice that if E is an ideal, then it has a minimum (usually
known as the multiplicity of E) and −min(E) + E is again an ideal.

An ideal E of S is said to be integral if E ⊆ S. The set S\{0} is known
as the maximal ideal of S.

Given a set of integers {x1, . . . , xr}, the set {x1, . . . , xr}+S =
⋃r

i=1(xi+
S) is an ideal of S, known as the ideal generated by {x1, . . . , xr}. When r = 1,
we write x1 + S instead of {x1} + S, and we say that x1 + S is a principal
ideal.

Let E be an ideal of a numerical semigroup S. Let m be the multiplicity
of S and set x1 = min(E). Then, x1 + S ⊆ E. If x1 + S = E, then E is a
principal ideal. Otherwise, take x2 = min(E\(x1+S)). Clearly, {x1, x2}+S ⊆
E. Moreover, x1 and x2 are not congruent modulo m, since x2 
∈ x1 +S. This
process must stop after a finite number of steps, since the xis obtained are not
congruent modulo m. Thus, E = {x1, . . . , xr}+S for some {x1, . . . , xr} ⊆ Z,
r ≤ m. This generating set of E is minimal in the sense that none of its proper
subsets X verifies X + S = E. The cardinality of the minimal generating set
of E is known as the embedding dimension of E and it is denoted by ν(E).
Clearly, ν(E) ≤ m.

Given two ideals I and J of S, the sets I∩J , I∪J , and I+J = {i+j : i ∈
I, j ∈ J} are also ideals of S. For an ideal I of S, we define F(I) = max(Z\I).

3. The Ideal Class Monoid of a Numerical Semigroup

Let S be a numerical semigroup. The set of all ideals of S

I (S) = {E ⊆ Z : E is an ideal of S},

is a monoid with respect to set addition. For every ideal I of S, we have
I + S = I, which means that S is the identity element.

Remark 3.1. The monoid (I (S),+) is not cancellative (I + J = I + K for
I, J,K ∈ I (S) implies J = K). As a matter of fact, it is not even unit-
cancellative (i.e., I + J = J implies that I is a unit). To see this, let F be
the Frobenius number of S, and set I = {0, F} + S. Then, it is easy to see
that I + I = I.

Observe also that if we consider only integral ideals of S (ideals con-
tained in S), then the resulting monoid is unit-cancellative. Let I and J be
two ideals of S with I ⊆ S and J ⊆ S. Set i = min(I) and j = min(J). If
I + J = I, then j = 0. But then, 0 ∈ J , and J + S = J yields S ⊆ J , whence
S = J .

On I (S), we define the following equivalence relation: I ∼ J if there
exists z ∈ Z, such that I = z + J . Clearly, if I ∼ J and I ′ ∼ J ′, then
I + I ′ ∼ J + J ′, and consequently, ∼ is a congruence. This makes

C �(S) = I (S)/ ∼
a monoid, which is known as the ideal class monoid of S.
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Remark 3.2. The ideal class monoid of S should not be confused with the
class semigroup of S [11, Section 2.8]. As S lives in the free monoid N, we
can define the class semigroup, C (S, N), as the quotient of N modulo the
relation x ∼ y if (−x + S) ∩ N = (−y + S) ∩ N. Notice that if c is the
conductor of S and x ≥ c, then (−x + S) ∩ N = N. If x is a non-negative
integer less than c, then max(N\(−x + S)) = F − x, with F the Frobenius
number of S. Therefore, if x ∼ y, then the sets −x + S and −y + S have
the same complement in N, and so, F − x = F − y, yielding x = y. Thus,
C (S, N) = {{0}, {1}, . . . , {c − 1}, c + N}.

Set

I0(S) = {E ⊆ N : E + S ⊆ E,min(E) = 0}.

Notice that (I0(S),+) is also a monoid (with identity element S), and it is
isomorphic to C �(S) through the mapping E → [E], since every class [I] of
C �(S) contains −min(I) + I, which is in I0(S).

Observe also that for all I and J in I0(S)

I ∪ J ⊆ I + J.

Proposition 3.3. [2] Let S be a numerical semigroup. The only invertible el-
ement of C �(S) is [S]. In particular, C �(S) is a group if and only if S = N.

Proof. Let I be an ideal of I0(S), such that there exists J ∈ I0(S) with
I + J = S. We have I ⊆ I + J = S = 0 + S ⊆ I, which forces I = S. �

Clearly, for every I ∈ I0(S), there exists X ⊆ N\S, such that I =
({0} ∪ X) + S. In particular

|C �(S)| ≤ 2g(S), (2)

which was already shown in [2] (| · | denotes cardinality). It is also clear that
{0, g} + S ∈ I0(S) for every g ∈ N\S, and so

g + 1 ≤ |C �(S)| (3)

(the plus one is the contribution of the ideal S).
We now recall the notion of Hasse diagram of a poset. Let (P,≤) be

a poset, and let a, b be two elements of P . We say that b covers a if a < b
and there is no c ∈ P , such that a < c < b. The Hasse diagram of P is the
simple graph whose set of vertices is P and whose edges are the (unordered)
pairs {a, b}, such that b covers a. An antichain of P is a set of pairwise
incomparable elements of P . The width of P is the maximum cardinality of
an antichain of P .

Let S be a numerical semigroup and consider the Hasse diagram of the
poset (G(S),≤S). It has the following properties:

• Minimals≤S
(G(S)) = {1, . . . ,m(S) − 1}, and so |Minimals≤S

(G(S))| +
1 = m(S).

• Maximals≤S
(G(S)) = PF(S), and consequently |Maximals≤S

(G(S))| =
t(S).
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• The width of (G(S),≤S) is m(S) − 1, because Minimals≤S
(G(S)) =

{1, . . . ,m(S)− 1} is a maximal antichain (a set with at least m(S) gaps
will contain at least two elements congruent modulo m(S), and thus,
they will be comparable via ≤S). According to Dilworth’s Theorem [9],
there exists a partition of G(S) into m(S) − 1 chains. This partition is
easily achieved with the chains Ci = {i, i+m(S), . . . , i+(ki −1)m(S)},
where ki = min{k ∈ N : i + km ∈ S} and i ∈ {1, . . . ,m(S) − 1}.

The Hasse diagram of (G(S),≤S) is related to the study of the ideal
class monoid of S: if I ∈ I0(S), then its minimal generating set is of the
form {0} ∪ X, with X a set of gaps incomparable with respect to ≤S . Thus,
we obtain the following.

Proposition 3.4. Let S be a numerical semigroup. The cardinality of C �(S)
equals the number of antichains of gaps of S with respect to ≤S.

Having in mind that the pseudo-Frobenius numbers are incomparable
gaps with respect to the ordering induced by the numerical semigroup, we
can find a lower bound for the cardinality of the ideal class monoid.

Proposition 3.5. Let S be a numerical semigroup with genus g and type t.
Then

2t ≤ |C �(S)| ≤ 2g − 2g−t + 1.

Proof. Let f1, . . . , fr be pseudo-Frobenius numbers of S. Then, by (1),
{f1, . . . , fr} is an antichain of gaps of S with respect to ≤S , and thus,
{0, f1, . . . , fr} is a minimal generating set of the ideal {0, f1, . . . , fr} + S ∈
I0(S). This in particular means that 2t ≤ |C �(S)|.

For the other inequality, let P(N\S) be the set of subsets of gaps of S.
Consider the map: G : I0(S) → P(N\S), E → E\S. Given E ∈ I0(S), it is
clear that E = S∪(E\S) and E\S ⊆ N\S, and so, G is injective. Let us prove
that if E 
= S, then E\S contains at least one pseudo-Frobenius number of S.
Let x be in E\S. Since PF(S) = Maximals≤S

(Z\S), there exists f ∈ FP(S),
such that x ≤s f . Hence, there exists s ∈ S, such that x + s = f , and
consequently f ∈ E\S. This means that the image of I0(S)\{S} under G is
included in the set of subsets of gaps of S with at least one pseudo-Frobenius
number, and the cardinality of this set is 2g−t(2t − 1) = 2g − 2g−t. �
Remark 3.6. Let us see that, for m ≥ 3, the upper bound in Proposition 3.5
is attained if and only if either S = {0,m,→} (here → means that every
integer greater than m is in the semigroup) or S = 〈m,m + 1, . . . , 2m − 2〉.

For the sufficiency, notice that G(S) is either {1, . . . , m−1} or {1, . . . , m−
1, 2m − 1}. In the first case, every gap of S is a pseudo-Frobenius number,
and so the type and the genus of S are the same and equal to m − 1. From
Proposition 3.5, we obtain 2m−1 ≤ |I0(S)| ≤ 2m−1 − 20 + 1 = 2m−1, and
consequently |I0(S)| = 2m−1. For the second case, we have that G(S) =
{1, . . . ,m − 1, 2m − 1}, PF(S) = {2m − 1}, and g(S) = m. For every subset
X of {1, . . . ,m − 1}, the set X ∪ {0, 2m − 1} ∪ S is an ideal of S, and two
different subsets X and X ′ of {1, . . . , m − 1} yield different ideals under this
correspondence. This makes 2m−1 elements in I0(S) to which we must add
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S itself, and so we have at least 2m−1 + 1 ideals in I0(S), and our upper
bound in this case is 2g −2g−t +1 = 2m −2m−1+1 = 2m−1+1; consequently,
we get an equality once more.

Now, let us focus on the necessity. Assuming |C �(S)| = 2g − 2g−t + 1
implies, by the proof of Proposition 3.5, that the function G : I0(S) →
P(N\S), E → E\S, is a bijection with the further property that G (E) ∩
PF(S) is not empty for any E ∈ I0(S)\{S}. It follows that X ∪ S is an
ideal of S for each subset X of the gap set of S containing at least one
pseudo-Frobenius number. In particular, {i,F(S)} ∪ S is an ideal for every
i ∈ {1, . . . , m − 1}. Thus, ({i,F(S)} ∪ S) + S ⊆ {i,F(S)} ∪ S, which forces
{i,F(S)}+S ⊆ {i,F(S)}∪S. Hence, i+m ∈ {F(S)}∪S for all i ∈ {1, . . . , m−
1}. It is easily seen that 1 + m 
= F(S), or else we would have PF(S) =
{2, . . . ,m − 1,m + 1} and 1 + m 
∈ {1, 2} ∪ S (recall that m ≥ 3), implying
that {1, 2} ∪ S 
∈ I0(S) and contradicting that X ∪ S ∈ I0(S) for every
X ⊆ G(S) containing at least a pseudo-Frobenius number. It follows that
m + 1 ∈ S. If S = {0,m,→}, then we are done. Otherwise, we get from
above that m,m + 1, . . . , m + i − 1 ∈ S and m + i = F(S) for some i ∈
{2, . . . ,m − 1}. Then, S = {0,m,m + 1, . . . ,m + i − 1,m + i + 1,→} and
PF(S) = {i+1, . . . , m−1,m+ i}. Notice that {1, i+1}∪S is not an ideal of
S, because 1+m+ i−1 = m+ i 
∈ {1, i+1}∪S, contradicting again that for
any set of gaps X of S containing at least a pseudo-Frobenius number, the
set X ∪S is an ideal of S. Hence, for all i < m−1, we obtain m+i ∈ S. Thus,
it remains to see what happens with 2m − 1 (i = m − 1). If 2m − 1 ∈ S, then
S = {0,m,→}, which has been already considered, while if 2m − 1 = F(S),
we get S = 〈m,m + 1, . . . , 2m − 2〉.

Finally, notice that all numerical semigroups with m = 2 are of the form
S = 〈2, b〉, where b is an odd integer greater than or equal to three. In this
case, the Hasse diagram of G(S) (with respect to �S) is a chain of length
g, and thus, by Proposition 3.4, the cardinality of I0(S) is g + 1. As S is
symmetric, the type of S is one. Observe that 2g − 2g−1 +1 = g +1 holds for
g = 1 and g = 2, that is, for {0, 2,→} = 〈2, 3〉 and {0, 2, 4,→} = 〈2, 5〉.

We can improve a little bit the lower bound given in Proposition 3.5.

Proposition 3.7. Let S be a numerical semigroup with multiplicity m and
genus g. Then

2m−1 + g − m + 1 ≤ |C �(S)|.
Proof. The proof follows by considering antichains in the Hasse diagrams of
G(S) of the form {x} with x a gap larger than m, and the antichains formed
by gaps in {1, . . . , m − 1} (Proposition 3.4). �

This lower bound is better, since, by (1), the type of a numerical semi-
group is at most its multiplicity minus one.

Example 3.8. There are three numerical semigroups of genus 10 attaining
the lower bound provided by Proposition 3.7: 〈11, . . . , 21〉 = {0, 11,→},
〈10, 11, 12, 13, 14, 15, 16, 17, 18〉, and 〈2, 21〉.
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4. Apéry Sets

Let S be a numerical semigroup and let E be an ideal of S. For a non-zero
element n of S, we define the Apéry set of n in E as

Ap(E,n) = {w0(E), . . . , wn−1(E)},

where wi(E) is the minimum element in E congruent with i modulo n. It
follows easily that:

Ap(E,n) = {e ∈ E : e − n 
∈ S} and E = Ap(E,n) + S. (4)

Notice that the definition of Apéry set for an ideal is slightly different from
that given in [12]. The authors in [12] define the Apéry set of a non-empty set
of positive integers X as follows. Set a0 = min(X), and once a0, . . . , ai−1 are
defined, if Xi = min(X\ ⋃i−1

j=0(ai + a0N) is not empty, set ai = min(Xi). The
Apéry set of X is {a0, . . . , an−1}, where n is the first index for which Xn is
empty. Then, they apply this definition to two particular ideals included
in S\{0}: S\{0} and the ideal of 1-forms. It is easy to check that their
definition agrees with the one given above for ideals E included in N\{0} with
min(E) = m(S): in fact, there is a permutation σ such that ai = wσ(i) for all
i ∈ {0, . . . ,m(S)− 1}. In particular, it agrees for the two ideals considered in
[12].

Remark 4.1. Let I, J ∈ I0(S). Then, I ∩ J and I ∪ J are also in I0(S).
Moreover

Ap(I ∩ J, n) = {0,max{w1(I), w1(J)}, . . . ,max{wn−1(I), wn−1(J)}},
and

Ap(I ∪ J, n) = {0,min{w1(I), w1(J)}, . . . ,min{wn−1(I), wn−1(J)}}.
Also, I ⊆ J if and only if, component-wise, (w0(J), . . . , wn−1(J)) ≤ (w0(I),
. . . , wn−1(I)).

Example 4.2. Let S = 〈5, 7, 9〉, I = {0, 2} + S and J = {0, 3, 4} + S. Then
• Ap(I, 5) = {0, 11, 2, 18, 9},
• Ap(J, 5) = {0, 11, 7, 3, 4},
• Ap(I ∩ J, 5) = {0, 11, 7, 18, 9},
• Ap(I ∪ J, 5) = {0, 11, 2, 3, 4}.

Notice that S is itself an ideal of S, and that Ap(S, n) coincides with the
Apéry set of n in S\{0} in the usual sense. It is well known that every element
s in S can be expressed uniquely as s = kn+w with k ∈ N and w ∈ Ap(S, n).
The following result characterizes those sets that are Apéry sets of ideals in
I0(S) (see [14, Lemma 8] for a similar result for numerical semigroups).
Given integers a and b, we will use a mod n to denote the remainder of the
division of a by n, and we will write a ≡ b (mod n) to express that n divides
a − b.

Lemma 4.3. Let S be a numerical semigroup, let n ∈ S\{0}, and let A =
{w0 = 0, w1, . . . , wn−1} ⊆ N be such that wi ≡ i (mod n) for all i ∈
{0, . . . , n − 1}. Then, A = Ap(E,n) for some E ∈ I0(S) if and only if
for all i, j ∈ {0, . . . , n − 1}, we have wi + wj(S) ≥ w(i+j) mod n.



    7 Page 10 of 28 L. Casabella et al. MJOM

Proof. For the sake of simplicity, we set i + j = (i + j) mod n.
Suppose that E is an ideal of S with min(E) = 0. Then, wi(E)+wj(S) ∈

E, and consequently, wi(E)+wj(S) ≥ wi+j(E). Now, suppose that A is a set
fulfilling the inequalities of the statement. Let E = A+S. Then, wi(E) ≤ wi

for all i ∈ {0, . . . , n−1}. As wi(E) ∈ E, we have that wi(E) = wj +s for some
j ∈ {0, . . . , n − 1} and s ∈ S. On the other hand, we get from the comments
preceding the lemma that there exist t ∈ N and k ∈ {0, . . . , n − 1}, such that
s = tn+wk(S), which implies that i = j + k and, by the standing hypothesis,
wi(E) = wj + tn+wk(S) ≥ wj+k + tn. It follows that wi(E) ≥ tn+wi ≥ wi,
forcing wi = wi(E). �

Let S be a numerical semigroup with multiplicity m, and let E be an
ideal of S with min(E) = 0. Recall that the Kunz coordinates of S are the
(m − 1)-tuple (k1(S), . . . , km−1(S)), such that wi(S) = ki(S)m + i for all i ∈
{1, . . . ,m−1}. We can proceed similarly with E. For every i ∈ {0, . . . , m−1},
there exists ki(E) ∈ N, such that wi(E) = ki(E)m + i. The (m − 1)-tuple
(k1(E), . . . , km−1(E)) is known as the Kunz coordinates of E.

The inequalities in Lemma 4.3 imply that for all i, j ∈ {0, . . . , m − 1},
wi(E) + wj(S) ≥ wi+j(E), and so

• ki(E) ≤ ki(S),
• ki(E) + kj(S) ≥ ki+j(E) if i + j < m,
• ki(E) + kj(S) ≥ ki+j−m(E) − 1 if i + j > m.

In particular, the first inequality follows from w0(E)+wj(S) ≥ wj(E). Notice
that if (k1, . . . , km−1) is an (m − 1)-tuple of non-negative integers satisfying
the above inequalities, then the set X = {0, k1m+1, . . . , km−1m+m− 1} is,
by Lemma 4.3, the Apéry set of the ideal X + S of S. In light of the above
discussion, we can state the following result.

Theorem 4.4. Let S be a numerical semigroup with multiplicity m and Kunz
coordinates (k1, . . . , km−1). The set of ideals E of S with min(E) = 0 are
in one-to-one correspondence with the set K (S) of solutions of the following
system of inequalities over the set of non-negative integers:

xi ≤ ki, for all i ∈ {1, . . . , m − 1},
xi+j − xi ≤ kj , for every i, j ∈ {1, . . . , m − 1}, i + j < m
xi+j−m − xi ≤ kj + 1, for every i, j ∈ {1, . . . , m − 1}, i + j > m.

In particular, from the first set of inequalities, we get the following
bound.

Corollary 4.5. Let S be a numerical semigroup with multiplicity m and Kunz
coordinates (k1, . . . , km−1). Then,

|C �(S)| ≤
m−1∏

i=1

(ki + 1).

Equality holds if and only if S = 〈m〉 ∪ (c + N), with c a positive integer
greater than m, that is
(1) k1 ≥ · · · ≥ km−1, and
(2) k1 − km−1 ≤ 1.
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Proof. The inequality follows directly from 0 ≤ ki(E) ≤ ki (Theorem 4.4).
Therefore, let us focus on when the equality holds.

Observe that if S = {0,m, 2m, . . . , km, c,→} and c = km + i for some
i ∈ {0, . . . , m − 1}, then ki = · · · = km−1 = k and k1 = · · · = ki−1 = k + 1.
The converse is also easy to prove.

Necessity. Notice that, by Theorem 4.4, |I0(S)| =
∏m−1

i=1 (ki + 1) forces
every tuple (k′

1, . . . , k
′
m−1) of non-negative integers with 0 ≤ k′

i ≤ ki for
all i to be the Kunz coordinates of an ideal of S. In particular, the (m −
1)-tuple (0, . . . , 0, ki+1, 0, . . . , 0) with ki+1 in the (i + 1)st coordinate and 0
elsewhere represents the Kunz coordinates of an ideal E ∈ I0(S) for each
i ∈ {1, . . . , m − 2}, which implies by the inequalities in Theorem 4.4 that
ki = 0 + ki = k1(E) + ki ≥ ki+1(E) = ki+1, that is, ki ≥ ki+1. This proves
that k1 ≥ · · · ≥ km−1.

Likewise, the (m − 1)-tuple (k1, 0, . . . , 0) is the Kunz coordinate of an
ideal E ∈ I0(S), whence we obtain km−1 = k2(E)+ km−1 ≥ k1(E)− 1 = k1,
that is, km−1 ≥ k1(E) − 1, and consequently, k1 − km−1 ≤ 1. This proves the
second part of the claim.

Sufficiency. Let (k′
1, . . . , k

′
m−1) be a tuple on non-negative integers with

k′
i ≤ ki for all i. Notice that k′

i + kj ≥ k′
i ≥ k′

i+j if i + j < m. If i + j > m,
then k′

i + kj ≥ k′
i+j−m − 1 if and only if kj ≥ k′

i+j−m − k′
i − 1, which clearly

holds, since |k′
i+j−m − k′

i| ≤ 1. �

Example 4.6. Let S = 〈5, 6, 8, 9〉. The Kunz coordinates of S are (1, 2, 1, 1),
and so, Corollary 4.5 ensures that the number of elements in I0(S) is at most
24. In fact, one can check that the cardinality of I0(S) is 20. For S = 〈3, 5, 7〉,
with Kunz coordinates (2, 1), the bound is sharp.

Remark 4.7. Notice that the genus of S is precisely k1(S)+ · · ·+ km(S)−1(S)
(see for instance [5, Lemma 3.2]). Thus, 2g =

∏m(S)−1
i=1 2ki(S) ≥ ∏m(S)−1

i=1 (ki(S)
+ 1). This proves that the bound given in Corollary 4.5 improves the bound
presented in (2).

Let S be a semigroup with multiplicity m, and let E ∈ I0(S). From
now on, and to ease the notation, for every integer i, we will write

wi(E) = wimodm(E),

and we will do the same with the elements in the Apéry set of m in S.

Proposition 4.8. Let S be a numerical semigroup with multiplicity m, and let
I, J be two ideals in I0(S). Then, for every i ∈ {0, . . . , m − 1}
wi(I+J)=min{wii(I)+wi2(J) : i1, i2∈{0, . . . , m − 1}, ii+i2≡ i (mod m)}.

Proof. Fix i ∈ {0, . . . , m − 1}. Notice that if i1 + i2 ≡ i (mod m), then
wi1(I)+wi2(J) ≡ i (mod m). Since wi1(I) ∈ I and wi2(J) ∈ J , it follows that
wi1(I)+wi2(J) ∈ I +J , and hence, wi1(I)+wi2(J) ≥ wi(I +J). On the other
hand, we have from (4) that wi(I +J) ∈ I +J = Ap(I,m)+S+Ap(J,m)+S.
Hence, there exist s1, s2 ∈ S and l1, l2 ∈ {0, . . . , m−1}, such that wi(I+J) =
wl1(I)+s1+wl2(J)+s2. Let j1, j2 ∈ {0, . . . , m−1} and t1, t2 ∈ N be such that
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s1 = t1m + wj1(S) and s2 = t2m + wj2(S). It thus follows from Lemma 4.3
that:

wi(I+J)=wl1(I)+wj1(S)+wl2(J)+wj2(S)+(t1 + t2)m≥wl1+j1(I)+wl2+j2(J).

Notice that i ≡ (l1 + j1 + l2 + j2) mod m, and so wi(I + J) ≥ min{wii(I) +
wi2(J) : i1, i2 ∈ {0, . . . , m − 1}, ii + i2 ≡ i (mod m)}. �

Example 4.9. Let S = 〈3, 5, 7〉. The following table is the addition table of
I0(S). We represent each ideal by its Apéry set relative to the multiplicity
of S. The identity element (and the minimum) is S = {0, 7, 5} + S, while
{0, 1, 2} + S = N is the absorbing element of the monoid I0(S)

+ {0, 7, 5} {0, 4, 5} {0, 7, 2} {0, 1, 5} {0, 4, 2} {0, 1, 2}
{0, 7, 5} {0, 7, 5} {0, 4, 5} {0, 7, 2} {0, 1, 5} {0, 4, 2} {0, 1, 2}
{0, 4, 5} {0, 4, 5} {0, 4, 5} {0, 4, 2} {0, 1, 5} {0, 4, 2} {0, 1, 2}
{0, 7, 2} {0, 7, 2} {0, 4, 2} {0, 4, 2} {0, 1, 2} {0, 4, 2} {0, 1, 2}
{0, 1, 5} {0, 1, 5} {0, 1, 5} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
{0, 4, 2} {0, 4, 2} {0, 4, 2} {0, 4, 2} {0, 1, 2} {0, 4, 2} {0, 1, 2}
{0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}.

4.1. The Canonical Ideal

Let S be a numerical semigroup. The (standard) canonical ideal of S is

K(S) = {x ∈ Z : F(S) − x 
∈ S}.

The following result recovers the description of the Apéry set of the canonical
ideal of a numerical semigroup given in [16, Proposition 1.3.9].

Proposition 4.10. Let S be a numerical semigroup with multiplicity m, and
let E be in I0(S). Then, E = K(S) if and only if wi(E) + wj(S) = wf (S) =
wf (E) for all i, j ∈ {0, . . . ,m − 1} with i + j ≡ f (mod m).

Proof. Set f = F(S) mod m and K = K(S). Notice that F(S) = F(K),
and thus, wf (S) = wf (K), and F(S) = wf (S) − m (see for instance [13,
Proposition 2.12]).

As wi(K) − m 
∈ K, we have that F(S) − (wi(K) − m) = wf (S) −
wi(K) ∈ S, which means that wf (S) − wi(K) ≥ wj(S), i + j ≡ f (mod m),
or equivalently, wi(K) + wj(S) ≤ wf (S), and by Lemma 4.3, we know that
wi(K) + wj(S) ≥ wf (S). Hence, wi(K) + wj(S) = wf (S).

Now, suppose that E is an ideal in I0(S) with wf (E) = wf (S) and
wi(E)+wj(S) = wf (E) for all i, j ∈ {0, . . . , m− 1} with i+ j ≡ f (mod m).
Let x ∈ K. Let i = x mod m, and j = (f − i) mod m. Then, F(S) − x 
∈ S,
which means that wf (S)−m−x < wj(S), and so, wj(S)+x+m > wf (S) =
wi(E) + wj(S). It follows that x + m > wi(E), and so x ≥ wi(E), yielding
x ∈ E. For the other inclusion, let us prove that wi(E) is in K for all i.
Let j be as above. We have to show that F(S) − wi(E) 
∈ S, or equivalently,
wf (S) − m − wi(E) < wj(S), which translates to wi(E) + wj(S) + m >
wf (E). However, this trivially holds, since by hypothesis, wi(E) + wj(S)
= wf (E). �
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With this, we retrieve the following result, that is most probably known,
but for which we could not find an appropriate reference in the literature.

Corollary 4.11. Let S be a numerical semigroup. Then, the canonical ideal of
S is generated by {F(S) − g : g ∈ PF(S)}.
Proof. Let K be the canonical ideal of S. Let m be the multiplicity of S and
f the Frobenius number of S. Let us prove that K = {f −g : g ∈ PF(S)}+S.

By Proposition 4.10, we know that wi(K) = wf (S) − wf−i(S) for all i;
whence wi(K) = (f + m) − wf−i(S). We also know that K = Ap(K,m) + S.
For every i, there exists mi ∈ Maximals≤S

(Ap(S,m)) and si ∈ S such that
wf−i(S)+si = mi. Hence, wi(K) = (f +m)−(−si +mi) = f +m+si −mi =
(f − (mi − m)) + si. By (1), mi − m ∈ PF(S), and so wi(K) ∈ {f − g :
g ∈ PF(S)} + S. This proves that K ⊆ {f − g : g ∈ PF(S)} + S. Now, let
g ∈ PF(S). Then, f −(f −g) = g 
∈ S, and thus, f −g ∈ K, and consequently,
{f − g : g ∈ PF(S)} + S ⊆ K. �

4.2. Reduction Number

If, in Proposition 4.8, we take J = I, we obtain

wi(I+I)=min{wii(I)+wi2(I) : i1, i2∈{0, . . . , m − 1}, ii+i2≡ i (mod m)}.

Since I ⊆ I + I = 2I and I0(S) has finitely many elements, we deduce that
there is some r, such that (r + 1)I = rI. This r is known as the reduction
number of I, denoted by r(I).

Notice that for all i, wi((r + 1)I) ≤ wi(rI), and r is the reduction
number of I precisely when all these inequalities become equalities.

Some basic properties of the reduction number of an ideal can be found
in [2], and we summarize them in the next result.

Proposition 4.12. Let S be a numerical semigroup with multiplicity m.
(1) For every ideal E of S and every positive integer j ≤ r(E), we have that

ν(jE) > j.
(2) For all E ∈ I0(S), r(E) ≤ m − 1.
(3) For every r ∈ {1, . . . , m − 1}, there exists E ∈ I0(S) with r(E) = r.

Example 4.13. Let S be a numerical semigroup with multiplicity m, and let
g ∈ N\S. Consider the ideal E = {0, g} + S. Observe that wi(E) = wi(S)
for all i 
≡ g (mod m), and that wg(E) = g < wg(S). Clearly, E + E =
{0, g, 2g}+S, and so, E+E = E if and only if 2g ∈ S. Thus, r({0, g}+S) = 1
if and only if 2g ∈ S.

In general, we obtain the following (compare with [2, Proposition 2.3.9]).

Proposition 4.14. Let S be a numerical semigroup, and let g be a gap of S.
Then

r({0, g} + S) = min{k ∈ N : (k + 1)g ∈ S}.

Proof. Let E = {0, g} + S. It is easy to see that kE = {0, g, . . . , kg} + S for
k a positive integer.
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Let r = r(E) and let t = min{k ∈ N : (k + 1)g ∈ S}. As (t + 1)g ∈ S,
we have that (t + 1)E = {0, . . . , tg} + S = tE, and so r ≤ t. We also
know that (r + 1)E = rE and that (k + 1)E 
= kE for all k < r. The
equality (r + 1)E = rE forces (r + 1)g to be in rE, and so, there exists
j ∈ {0, . . . , r}, such that (r + 1)g ∈ jg + S. If j = 0, then (r + 1)g ∈ S and
the minimality of t yields t ≤ r. If j > 0, we get (r + 1 − j)g ∈ S, and this
forces (r + 1 − j)E = (r − j)E, which is impossible. �

Example 4.15. Let n be an odd integer greater than one. Let S = 〈2, n〉.
Every ideal E in I0(S)\{S} is of the form {0, k} + S, with k an odd integer
smaller than n (a gap of S). Notice that 2k ∈ S, and so, according to Propo-
sition 4.14, r(E) = 1. Note that this also follows from Proposition 4.12 (2),
since in this setting m = 2.

Notice that, by Proposition 4.12 (3), if m > 2, then there is an ideal
E, such that r(E) > 1. Thus, if every non-trivial ideal has reduction number
one, the multiplicity must be at most two.

Next, we give an upper bound for the reduction number of ideals gen-
erated by sets of the form {0} ∪ X with X a set of gaps smaller than the
multiplicity of the semigroup.

Proposition 4.16. Let S be a numerical semigroup with multiplicity m. If E =
{0, a1, . . . , ah} + S ∈ I0(S), with ai ≤ m for every i, then r(E) ≤ m − h.

Proof. We can assume h < m − 1; otherwise, E = N, and there is nothing
to prove. Moreover, for h = 1, the thesis follows immediately by Proposi-
tion 4.12, so we can assume h > 1.

Set a0 = 0 and x = m − h + 1. We want to show that xE = (x − 1)E.
Therefore, take an element t in xE. We have t = ai1 + · · · + aix + s, with
aij ∈ {a1, . . . , ah} and s ∈ S. Set u = ai1 + · · · + aix . If u ≡ ai (mod m) for
some i ∈ {0, . . . , h}, then, since ai < m, we deduce u = ai + ym, with y ∈ N,
which means t = u + s = ai + ym + s ∈ E ⊆ (x − 1)E.

For every k ∈ {2, . . . , x}, set uk = ai1 + · · · + aik . As above, if uk ≡ ai

(mod m) for some i, then uk = ai + ym, with y ∈ N, since ai < m for every
i. Thus, t = u + s = ai + ym + aik+1 + · · · + aix + s ∈ (x − k + 1)E. As
2 ≤ x − k + 1 ≤ x − 1, we get t ∈ (x − 1)E.

Hence, we may suppose that u and every uk are not congruent to any
ai modulo m. By setting ux = u, since |{u2, . . . , ux−1, ux}| = x − 1 = m − h
and |{a0, . . . , ah}| = h + 1, there exist two partial sums uz, uw, with 2 ≤
w < z ≤ x, such that uz ≡ uw (mod m). It follows that t = u + s =
ai1 + · · · + aiw + ym + aiz+1 + · · · + aix + s ∈ (w + x − z)E (with the obvious
convention that if z = x, then aiz+1 + · · ·+aix = 0). As 2 ≤ w+x−z ≤ x−1,
we obtain once more that t ∈ (x − 1)E as desired. �

4.3. Hasse Diagram of the Class Monoid

Using Apéry sets, we can obtain some information about the Hasse diagram
(with respect to inclusion, see Fig. 1) of the ideal class monoid of a numerical
semigroup.
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Figure 1. Hasse diagram of I0(〈3, 5, 7〉) arranged by inclu-
sion

Proposition 4.17. Let S be a numerical semigroup with multiplicity m. Then

(1) max⊆(I0(S)) = {0, . . . , m − 1} + S = N,
(2) min⊆(I0(S)) = S,
(3) Maximals⊆(I0(S)\{N}) =

{{0, 1, . . . , i−1, i+m, i+1, . . . ,m−1}+S :
i ∈ {1, . . . , m − 1}},

(4) Minimals⊆(I0(S)\{S}) = {{0, f} + S : f ∈ PF(S)},
(5) the largest positive integer t for which there exists a strictly ascending

chain I0 � I1 � · · · � It of ideals of I0(S) is g(S).

Proof. Recall that for I, J ∈ I0(S), I ⊆ I if and only if (0, w1(J), . . . , wm−1

(J)) ≤ (0, w1(I), . . . , wm−1(I)). Notice that whenever wi(J) ≤ wi(I), we also
have that wi(I) − wi(J) is a multiple of m.

The first two assertions follow directly from the definitions. As for the
third, notice that for N = {0, 1, . . . ,m − 1} + S, we have that wi(N) = i for
all i. Thus, the potential candidates to be maximal below N are precisely
those whose Apéry sets relative to m differ in one element. Let us prove
that for every i, the set {0, 1, . . . , i − 1, i + m, i + 1, . . . , m − 1} is an Apéry
list of an ideal in I0(S). Using Lemma 4.3, this reduces to showing that
for every k ∈ {0, . . . , m − 1}, j + wk(S) ≥ (j + k) mod m for j 
= i and
that i + m + wk(S) ≥ (i + k) mod m. The first inequality holds, because
j +wk(S) ≥ j +k and (j +k) mod m is either j +k or j +k −m. The second
inequality also holds, because i + m + wk(S) > i + k.

Now, let us focus on the fourth assertion of the statement. For the
same reason as in the previous paragraph, the candidates to be minimal
above S are those with Apéry lists of the form {0, w1(S), . . . , wi−1(S), wi(S)−
m,wi+1(S), . . . , wm−1(S)}. With the use of Lemma 4.3, let us check which
of these sets are Apéry sets of ideals in I0(S). For all j 
= i and for all k,
we have that wj(S) + wk(S) ≥ wj+k(S), if (j + k) mod m is not equal to i,
since S is a numerical semigroup. If (j + k) mod m is i, then we also have
wj(S) + wk(S) ≥ wi(S) ≥ wi(S) − m. Also, wi(S) − m + 0 ≥ wi(S) − m,
so it remains to check whether wi(S) − m + wk(S) ≥ wi+k(S) for all k 
= 0.
Notice that (wi(S) − m + wk(S)) mod m = i + k, and consequently, wi(S) −
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m + wk(S) ≥ wi+k(S) if and only if wi(S) − m + wk(S) ∈ S. Observe that
wi(S) − m + wk(S) ∈ S for all k 
= 0 if and only if wi(S) − m + s ∈ S for all
s ∈ S\{0}. Thus, {0, w1(S), . . . , wi−1(S), wi(S) − m,wi+1(S), . . . , wm−1(S)}
is an Apéry list of an ideal in I0(S) if and only if wi(S)−m ∈ PF(S). Finally,
observe that

{0, w1(S), . . . , wi−1(S), wi(S) − m,wi+1(S), . . . , wm−1(S)}
+S = {0, wi(S) − m} + S.

Let I0 � I1 � · · · � It be an ascending chain of ideals of I0(S). Let Gi =
Ii+1\Ii. Then, Gi is a set of gaps, and G0 � G0 ∪ G1 � · · · � G0 ∪ · · · ∪ Gt−1

is an increasing sequence of sets of gaps. In particular, t ≤ g(S). Now, write
N\S = {g1 > · · · > gg(S)}. Then, the sequence of ideals Ii = {0, g1, . . . , gi}+S
is an increasing sequence of ideals (with respect to inclusion). �
Remark 4.18. Notice that as consequence of Proposition 4.17 (4), we recover
the fact that every ideal in I0(S)\{S} contains a pseudo-Frobenius number
(see the proof of Proposition 3.5). It also follows that

t(S) = |Minimals⊆(I0(S)\{S})|.
Remark 4.19. We now want to find a lower bound for the width of the Hasse
diagram of I0(S) with respect to inclusion. This can be achieved by looking
at the “second level” of the Hasse diagram (minimal non-zero ideals) yielding
m(S) − 1, or using the pigeonhole principle: by removing the maximum (N)
and minimum (S) from the Hasse diagram, having g(S)−1 remaining “levels”,
we have that the width will be at least �(|I0(S)|−2)/(g(S)−1)�. This bound
is sharp and is attained for example in the case S = 〈3, 5〉, for which the width
is 2.

Example 4.20. Using the description of maximal elements in I0(S)\{N},
we can compute their reduction number. More precisely, let S be a nu-
merical semigroup with multiplicity m, and let E be a maximal element
of I0(S)\{N}, that is, E = {0, 1, . . . , i − 1, i + m, i + 1, . . . ,m − 1} + S. No-
tice that E ⊆ E + E ⊆ N, and that E 
= E + E if and only if i 
∈ E + E.
Consequently

r({0, 1, . . . , i − 1, i + m, i + 1, . . . ,m − 1} + S) =

{
1 if i = 1,

2 otherwise.

5. Irreducible Elements, Atoms, Quarks, and Primes

Let H be a monoid (in our setting commutative, and thus, we use additive
notation). For a, b ∈ H define a � b if there exists c ∈ H, such that b = a+ c.
This binary relation is a preorder (reflexive and transitive), known as the
divisibility preorder on H [17, Example 3.5]. We write a ≺ b whenever a � b
and b 
� a. We say that a ∈ H is a unit if there exists b ∈ H, such that
a + b = 0 (the identity element of H). Following [17] (for our specific �,
�-units are units), a non-unit a is said to be

• irreducible if a 
= x + y for all non-units x and y of H, such that x ≺ a
and y ≺ a;
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• an atom if a 
= x + y for all non-units x and y of H;
• a quark if there is no non-unit b with b ≺ a;
• a prime if a � x + y for some x, y ∈ H implies that a � x or a � y.

Notice that I0(S) is reduced (Proposition 3.3), that is, the only unit is
its identity element, which in this case is S. Observe that I0(S) is commu-
tative, but it is not cancellative. Also, if I � J in I0(S), then J = I + K for
some ideal K ∈ I0(S), whence I ⊆ J . Thus, I � J 
� I implies that I � J ,
since I = J would imply J � I. This shows that I ≺ J implies that I � J
and I 
= J . Now, suppose that I � J and I 
= J . If J � I, then I ⊆ J and
J ⊆ I, forcing I = J , a contradiction. Hence, in our setting

I ≺ J if and only if I � J and I 
= J.

If I � J and J � I, then I ⊆ J and J ⊆ I, yielding I = J , and consequently,
� is antisymmetric. This proves that � is an order relation on I0(S). Thus,
the pair (I0(S),�) is a poset, which is called the divisibility poset of I0(S).

Remark 5.1. Notice that if we have a chain of ideals I0 ≺ I1 ≺ · · · ≺ It in
I0(S), then I0 � I1 � · · · � It, and consequently, t ≤ g(S) by Proposi-
tion 4.17 (5). Notice also that if g1 > · · · > gg(S) are the gaps of S, then
({0, gi+1}+S)+({0, g1, . . . , gi}+S) = {0, g1, . . . , gi+1}+S. This means that
{0, g1, . . . , gi} + S ≺ {0, g1, . . . , gi+1} + S for all suitable i, which is precisely
the chain used in the proof of Proposition 4.17 (5), meaning that the largest
length of a strictly increasing chain of ideals in I0(S) with respect to � has
also length g(S) + 1.

With the help of this remark, we can prove the following result.

Corollary 5.2. Let S1 and S2 be numerical semigroups. If (I0(S1),+) is iso-
morphic to (I0(S2),+), then g(S1) = g(S2).

Proof. Let ϕ : I0(S1) → I0(S2) be a monoid isomorphism. For every I, J ∈
I0(S1), I � J if and only if ϕ(I) � ϕ(J). Thus, ϕ maps strictly ascending
chains in I0(S1) to strictly ascending chains in I0(S2). By Remark 5.1, there
is a strictly increasing chain in I0(S1) of length g(S1) + 1, I0 ≺ · · · ≺ Ig(S1).
Then, ϕ(I0) ≺ · · · ≺ ϕ(Ig(S)) is a maximal strictly ascending chain in I0(S2).
In particular, this implies that both S1 and S2 have the same genus. �

Example 5.3. Let us show what are the irreducible elements, atoms, quarks,
and primes of I0(S), for S = 〈5, 6, 8, 9〉. The set of irreducible elements of
I0(S) is
{{0, 1}+S, {0, 2}+S, {0, 3}+S, {0, 4}+S, {0, 7}+S, {0, 1, 3}+S, {0, 3, 4}+S

}
.

The only atom is {0, 3, 4} + S, and the set of quarks is
{{0, 3, 4} + S, {0, 3} + S, {0, 4} + S, {0, 7} + S

}
.

Observe that, in general, there are more quarks than minimal non-zero
ideals (with respect to inclusion). There are no prime elements in I0(S). For
instance, let I = {0, 7} + S and J = {0, 3, 4} + S. Then, I + J + J = J + J ,
and so, I � J + J , but I 
� J , since I is not included in J .
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Figure 2. Hasse diagram of I0(〈4, 6, 9〉) arranged by � (ir-
reducibles in boxes; idempotents filled in gray) and by inclu-
sion

Lemma 5.4. Let I be in I0(S)\{S}. Then, I is irreducible if and only if
I 
= J + K for any J,K ∈ I0(S)\{I}.
Proof. Suppose that I is irreducible and that I = J + K for some I and J
in I0(S) with J 
= I 
= K. It follows that J ∪ K ⊆ I, and hence, J ≺ I
and K ≺ I. If J = S, then I = S + K = K, contradicting that I 
= K
(the same argument shows that K 
= S). Thus, I = J + K with J ≺ I,
K ≺ K, and J and K are non-units of I0(S), which is in contradiction with
the irreducibility of I.

The sufficiency is straightforward. �
Thus, irreducible elements correspond to what Barucci and Khouja call

generators of C �(S) [2]. The following results ensures that we have at least
as many irreducible elements in I0(S) as gaps in S, see [2, Proposition 3.1].

Proposition 5.5. Let S be a numerical semigroup. For any gap g of S, the
ideal {0, g} + S is irreducible in I0(S).

Proof. Suppose by contradiction that this is not the case, and let I, J ∈
I0(S)\{S, {0, g} + S} be such that {0, g} + S = I + J . Observe that I + J =
{0, g} + S forces both I and J to be included in {0, g} + S. It follows that g
is neither in I nor in J , and so, g = i + j for some non-zero elements i ∈ I
and j ∈ J . But then, i, j ∈ {0, g}+S. Notice that neither i nor j can be in S,
since otherwise this would imply that either {0, g}+S ⊆ I of {0, g}+S ⊆ J ,
contradicting that I � {0, g}+S and J � {0, g}+S. From i ∈ {0, g}+S, we
then deduce that i = g + s, with s ∈ S\{0}, but then i + j = g + s + j > g,
a contradiction. �

Notice that, in general, there are irreducible elements that are not of
the form {0, g} + S with g a gap of S; see Example 5.3 or Fig. 2.

The following result is a particular instance of [17, Theorem 3.10].

Proposition 5.6. Let S be a numerical semigroup. Then, every ideal of I0(S)
is a sum of irreducible ideals.
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Proof. The proof follows from the fact that there are not infinite strictly
descending chains of ideals with respect to �. �

If I ∈ I0(S) and I = I1 + · · · + Ik for some irreducible elements
I1, . . . , Ik ∈ I0(S), then we say that this expression is a factorization (of
length k) of I into irreducible elements. We say that this factorization is
minimal if I cannot be expressed as

∑
j∈A Ij with A � {1, . . . , k}.

Example 5.7. Let S = 〈4, 6, 9〉, and let I = {0, 1, 3} + S. Then, I = ({0, 1} +
S) + ({0, 3} + S) is a decomposition of I as a sum of irreducible elements in
I0(S). For J ∈ {{0, 3} + S, {0, 5} + S, {0, 7} + S, {0, 11} + S}, we have that
I + J = J . This, in particular, means that I admits factorizations of length
n into irreducible elements for all n ≥ 2.

The ideals in I0(S) do not necessarily have a unique minimal factor-
ization. For instance, {0, 2, 5, 7} + S = ({0, 2, 5} + S) + ({0, 2, 5} + S) =
({0, 2} + S) + ({0, 5} + S).

Not all minimal factorizations of an ideal in I0(S) need to have the
same length. For S = 〈5, 6, 8, 9〉, the ideal I = {0, 2, 3, 4} + S has minimal
factorizations of length two and three. As I + ({0, 7} + S) = I, one can find
factorizations of I as sums of n irreducible elements for any integer n greater
than one.

There are examples of non-irreducible ideals with a finite number of
factorizations. Take S = 〈5, 16, 17, 18, 19〉 and I = {0, 1, 2} + S. Then, the
only factorization of I as sum of irreducible elements is I = 2({0, 1} + S).
This is due to the fact that the only ideal J , such that J + I = I is J = S.

Corollary 5.8. Let S be a numerical semigroup. Then, I0(S) is cyclic (there
exists I ∈ I0(S), such that I0(S) = {kI : k ∈ N}) if and only if S = 〈2, 3〉.
Proof. Notice that cyclic implies that there is just one irreducible, and this
forces S to have just one gap. The other implication is easy to check. �

Example 5.9. Let b be an odd integer, and set S = 〈2, b〉. Let us see how
I0(S) looks like. Notice that G(S) = {1, 3, . . . , b−2}, and that any two gaps
are comparable modulo 2. Thus, I0(S) = {{0, g}+S : g ∈ G(S)}∪{S}, and
by Proposition 5.5, every non-zero ideal is irreducible. Inclusion is a total
ordering in (I0(S),⊆). Also, notice that if g1 and g2 are gaps of S with
g1 ≤ g2, then ({0, g1} + S) + ({0, g2} + S) = {0, g1} + S. This, in particular
implies that every non-zero ideal is also a prime ideal. There are no atoms in
I0(S). The only quark is {0, b − 2} + S.

Lemma 5.10. Let S be a numerical semigroup, and let I be a minimal non-
zero ideal in I0(S). Then, I is a quark.

Proof. If I is not a quark, then there must be another non-zero J ∈ I0(S),
such that J ≺ I, which would imply that J � I, a contradiction. �

Example 5.11. Let S = 〈6, 8, 17, 19, 21〉. Then, the set of quarks of I0(S) is
{{0, 2, 4, 5} + S, {0, 10} + S, {0, 11} + S, {0, 13} + S, {0, 15} + S

}
.
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Thus, there are quarks that are not non-zero minimal ideals, and some of them
might be generated by elements that are not pseudo-Frobenius numbers.

In this example, for Q = {0, 2, 4, 5} + S, the set {E ∈ I0(S) : E ⊆ Q}
has 25 elements. Therefore, Q is far from being minimal.

For S = 〈9, 10, . . . , 17〉, we have t(S) = 8 (and thus 8 minimal non-zero
ideals with respect to inclusion), while I0(S) has 42 quarks.

From the definition, it follows easily that every quark is an irreducible
element. Also, from the results we have seen so far, every minimal non-trivial
element with respect to inclusion is both a quark and an irreducible element
in the ideal class monoid of the semigroup. However, as we have seen in
Example 5.3, not every irreducible element is a quark.

Proposition 5.12. Let S be a numerical semigroup, and let I be an irreducible
element of I0(S) that is not minimal with respect to inclusion. Then, I is a
quark if and only if for every f ∈ PF(S) ∩ I, f + I 
⊆ I.

Proof. Suppose that I is a quark and that there is f ∈ PF(S)∩I with f +I ⊆
I. Then, I +({0, f}+S) = I, which in particular means that {0, f}+S � I.
As I is a quark, we deduce that {0, f} + S = I. By Proposition 4.17, this
contradicts the non-minimality of I.

For the converse, suppose that I is not a quark. Then, there exists
J ∈ I0(S), such that J ≺ I, and so, there exists K ∈ I0(S), such that
J + K = I. As I is irreducible and J 
= I, we have that K = I, that is,
J + I = I. By Proposition 4.17, there exists a minimal element with respect
to inclusion of the form {0, f}+S, f ∈ PF(S), such that {0, f}+S ⊆ J . But
then, f + I ⊆ J + I = I, contradicting the hypothesis. �

Next, we show that special gaps of the numerical semigroup S are in
one-to-one correspondence with idempotent quarks of I0(S).

Proposition 5.13. Let S be a numerical semigroup. Then, Q is an idempotent
quark of I0(S) if and only if Q = {0, f} + S with f ∈ SG(S).

Proof. Let Q be an idempotent quark. By Remark 4.18, we know that there
exists f ∈ PF(S), such that f ∈ Q. Notice that ({0, f} + S) + Q = Q, since
for every s ∈ S, f + s ∈ Q and Q is idempotent. Thus, {0, f} + S = Q, since,
otherwise, {0, f} + S ≺ Q, contradicting that Q is a quark. The fact that
Q + Q = Q forces f + f = 2f ∈ {0, f} + S, which yields 2f ∈ S, whence
f ∈ SG(S).

For the converse, let f ∈ SG(S) and set Q = {0, f} + S. As f ∈ PF(S),
by Proposition 4.17, Q is a minimal non-zero element of I0(S) with respect
to inclusion. Thus, in light of Lemma 5.10, Q is a quark. The fact that
Q + Q = Q follows easily from the fact that f ∈ PF(S) and 2f ∈ S. �

Observe that another interpretation of the above result is that unitary
extensions of a numerical semigroup S are precisely the idempotent quarks
of I0(S).

We say that a numerical semigroup T is an over-semigroup of S if S ⊆ T
[15].



MJOM Apéry Sets and the Ideal Class Monoid of a Numerical Semigroup Page 21 of 28     7 

Proposition 5.14. Let S and T be numerical semigroups. Then, T is an over-
semigroup of S if and only if T is an idempotent in I0(S).

Proof. If T is an over-semigroup of S, then T + S = T and T + T = T ,
whence T is an idempotent in I0(S). Now, let I be an idempotent element
in I0(S). Then, I + I = I, which means that I is a semigroup, and S ⊆ I,
which means that (1) the finite complement of I in N is finite, and (2) it is
an over-semigroup of S. �

Observe that idempotent ideals are precisely those with reduction num-
ber one.

Example 5.15. Of the 17 elements in I0(S), with S = 〈4, 6, 9〉, 12 of them
are over-semigroups (see Fig. 2).

Remark 5.16. Notice that if T is an over-semigroup of S and I ∈ I0(T ),
then I + S ⊆ I + T ⊆ I, and thus, I ∈ I0(S). Thus, I0(T ) ⊆ I0(S).

Not every ideal of I0(S) is an ideal of an over-semigroup of S. This is
mainly due to the fact that there might be more pseudo-Frobenius numbers
(which correspond to minimal ideals) than special gaps. For instance, for
the semigroup S = 〈3, 10, 17〉, we have PF(S) = {7, 14} and SG(S) = {14}.
In this case, the ideal {0, 7} + S is a minimal non-zero ideal of S (Proposi-
tion 4.17) that is not an ideal of any over-semigroup of S (if it were so, it
would be an ideal of the unique unitary extension of S, S∪{14}, and S∪{14}
is not included in {0, 7} + S).

Lemma 5.17. Let S be a numerical semigroup with Frobenius number f . Let
Q be a quark of I0(S). If f ∈ Q, then {0, f} + S = Q.

Proof. We prove that ({0, f}+S)+Q = Q. The inclusion E ⊆ ({0, f}+S)+Q
clearly holds. Now, take x ∈ ({0, f}+S)+Q = {0, f}+(S +Q) = {0, f}+Q.
Then, either x ∈ Q or x = f + s + q for some s ∈ S and q ∈ Q. If s + Q > 0,
then f + s+ q ∈ S ⊆ Q. If s+ q = 0, then x = f which is in E by hypothesis.
As Q is a quark and {0, f} + S � Q, we deduce that {0, f} + S = Q. �

Next, we describe the set of quarks of the ideal class monoid of a sym-
metric numerical semigroup.

Proposition 5.18. Let S be a numerical semigroup, S 
= N. Then, S is sym-
metric if and only if I0(S) has only one quark.

Proof. Let f be the Frobenius number of S. By Proposition 4.17 (4) and
Lemma 5.10, we know that {0, f} + S is a quark.

Suppose that S is symmetric. Let Q be a quark. Using Remark 4.18,
we have that f ∈ Q, since PF(S) = {f}. But then, Lemma 5.17 ensures that
Q = {0, f} + S.

Now, suppose that I0(S) has only one quark, which by the first para-
graph of this proof must be {0, f} + S. By Lemma 5.10, this means that
I0(S) has at most one minimal element, and Remark 4.18 ensures that the
type of S is at most one, and thus, S is symmetric [1, Corollary 8]. �
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Notice that if S is symmetric, then {0,F(S)} + S is a prime of I0(S)
since it is its only quark.

Remark 5.19. Let S be a numerical semigroup with Frobenius number f .
Then, I ∈ I0(S ∪ {f}) if and only if f ∈ I and I ∈ I0(S). The necessity
is easy, since I + (S ∪ {f}) ⊆ I implies that I + S ⊆ I and f ∈ I. For the
sufficiency, I + (S ∪ {f}) ⊆ (I + S) ∪ (I + f) ⊆ I ∪ (S ∪ {f}) ⊆ I.

In particular, if S is symmetric, by Remark 4.18, we have

I0(S) = {S} ∪ I0(S ∪ {f}).

One can observe this in the example depicted in Fig. 2.
If S is symmetric with multiplicity m, then f > m unless S = 〈2, 3〉.

If m > 2 and f < m, then S = 〈m,m + 1, . . . , m + m − 2〉, f = m − 1.
Then, (m − 1) − (m − 2) = f − (m − 2) = 1 must be in S by the symmetry
of S, forcing m = 1, a contradiction. The Frobenius number of 〈2, n〉, with
n odd greater than three, is n − 2, and so, f > m holds also in this case.
Therefore, if S 
= 〈2, 3〉, the only unitary extension of S, S ∪ {f}, has also
multiplicity m. If (k1, . . . , km−1) and (k′

1, . . . , k
′
m−1) are the Kunz coordinates

of S and S∪{f}, respectively, then ki = k′
i for i 
= f mod m, and kf = k′

f +1.
Thus, the upper bound given in Corollary 4.5 can be sharpened for symmetric
numerical semigroups (other than 〈2, 3〉)

|I0(S)| ≤ 1 + kf

m−1∏

i=1,
i�=f mod m

(ki + 1).

We now proceed with the pseudo-symmetric case.

Proposition 5.20. Let S be a numerical semigroup. Then, S is pseudo-
symmetric if and only if {0,F(S)} + S and {0,F(S)/2} + S are the only
quarks of I0(S).

Proof. Suppose that S is pseudo-symmetric. Let f be the Frobenius number
of S. By Proposition 4.17 (4) and Lemma 5.10, we know that {0, f} + S and
{0, f/2} + S are quarks.

Suppose that Q is a quark other than {0, f} + S and {0, f/2} + S. By
Remark 4.18 and the fact that PF(S) = {f/2, f}, we have that f or f/2 is in
Q. By Lemma 5.17, f cannot be in Q. Thus, f/2 ∈ Q and {0, f/2} + S � Q.
Let g ∈ Q\({0, f/2} + S); which in particular means that g 
= f/2. As S is
pseudo-symmetric, f − g ∈ S, but then f ∈ g + S ⊆ Q, which is impossible.

Now, suppose that the set of quarks of I0(S) is {{0, f/2}+S, {0, f}+S}.
By Lemma 5.10, this means that I0(S) has at most two minimal elements.
Observe that {0, f/2} + S and {0, f} + S are incomparable with respect to
inclusion, and so, Minimals⊆(I0(S)\{S}) = {{0, f/2}+S, {0, f}+S}, which
by Proposition 4.17 means that PF(S) = {f/2, f}. By [1, Corollary 9], S is
pseudo-symmetric. �

With the help of these two propositions, we can characterize irreducible
numerical semigroups in terms of the number of quarks of its ideal class
monoid.
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Theorem 5.21. Let S be a numerical semigroup. Then, S is irreducible if and
only if I0(S) has at most two quarks.

Proof. If S = N, then I0(S) is trivial and has no quarks, and it is indeed
the only numerical semigroup for which I0(S) has no quarks, since for any
other numerical semigroup, every non-zero minimal ideal in I0(S) is a quark
(Lemma 5.10). Thus, let us suppose that S 
= N.

Necessity. If S is irreducible, then it is either symmetric or pseudo-
symmetric, and thus by Propositions 5.18 and 5.20, I0(S) has at most two
quarks.

Sufficiency. Now assume that I0(S) has at most two quarks. According
to Remark 4.18 and Lemma 5.10, we have that the type of S is at most two.
If the type is one, then S is symmetric [1, Corollary 8]. Therefore, it remains
to see what happens when the type is two.

Let PF(S) = {f1, f2}, with f1 = F(S). We already know that {0, f1}+S
and that {0, f2} + S are non-zero minimal ideals and, thus, quarks (Propo-
sition 4.17 and Lemma 5.10). Let Q = {0, f1 − f2} + S. We prove that
Q is a quark. As f1 − f2 
∈ S (by definition of pseudo-Frobenius number),
Proposition 5.5 asserts that Q is irreducible. Suppose that there is some ideal
I ∈ I0(S)\{S}, such that I ≺ Q. Then, there exists J ∈ I0(S)\{0}, such
that I + J = Q. However, we know that Q is irreducible, and thus, J = Q.
Observe that f1 
∈ Q, because if this is the case, then f1 = f1 − f2 + s for
some s ∈ S, forcing f2 = s ∈ S, a contradiction. Also, notice that by Re-
mark 4.18, either f1 ∈ I or f2 ∈ I. As I � Q, the first case is not possible,
and so, f2 ∈ I. But then, f1 = f2 + (f1 − f2) ∈ I + Q = Q, a contradiction.
Thus, Q is a quark, and so, either Q = {0, f1} + S or Q = {0, f2} + S. Once
more, the first case cannot hold, since, in particular, this would yield f1 ∈ Q,
which is impossible. Therefore, {0, f1 − f2} + S = {0, f2} + S, which leads to
f1 − f2 = f2, or equivalently, f2 = f1/2. By [1, Corollary 9], we deduce that
is pseudo-symmetric. �

Let S be a numerical semigroup, and let I, J ∈ I0(S). Recall that J is
said to cover I if I ≺ J and there is no K ∈ I0(S), such that I ≺ K ≺ J .
We denote by I� the set of ideals in I0(S) covering I. In this way, the set of
quarks is precisely S�. Analogously, define I� to be the set of ideals covered
by I. A natural question (dual to determining S�) would be to characterize
those ideals belonging to N

�. We describe this set in the next result.

Proposition 5.22. Let S be a numerical semigroup with multiplicity m. Then

N
� = Maximals⊆(I0(S)\{N}).

In particular, |N�| = m − 1.

Proof. Let M be in Maximals⊆(I0(S)\{N}). Then, N ⊆ M + N ⊆ N, and
thus M + N = M , yielding M ≺ N. The maximality of M forces M ∈ N

�.
Now, let I ∈ N

�. Let j = min(N\I). Notice that j ≤ m − 1, since
{0, . . . ,m − 1} ⊆ I forces I = N, and we are assuming I 
= N. Set M =
N\{j}. Then, I ⊆ M , and from Proposition 4.17, we deduce that M ∈
Maximals⊆(I0(S)\{N}). Let us prove that M = I. Suppose to the contrary
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that I 
= M , and let k = min(M\I). Then, j < k and I ≺ I + ({0, k} + S).
If j ∈ I + ({0, k} + S), then either j = x + s or j = x + k + s, with x ∈ I
and s ∈ S. The equality j = x + s forces j ∈ I, which is impossible, while
j = x + k + s yields j ≥ k, a contradiction. Thus, I + ({0, k} + S) ⊆ M .
Consequently, I ≺ I + ({0, k} + S) ≺ N, contradicting that I ∈ N

�.
That the cardinality of N

� is m − 1 follows, once more, from Proposi-
tion 4.17. �
Remark 5.23. Let us see what the connections are between the concepts of
irreducible, atom, quark, and prime in I0(S).

• If I ∈ I0(S) is a quark and it is not an idempotent (I 
= I + I; the
reduction number of I is greater than one), then I is an atom. Notice
that I = J + K with J,K ∈ I0(S)\{0} forces J � I and K � I. As I
is a quark, J = I = K, contradicting that I 
= I + I.

• Let I ∈ I0(S) be an atom, and suppose that there exists J ∈ I0(S)\{S},
such that J ≺ I. By definition, there exists K ∈ I0(S)\{S}, such that
J + K = I, contradicting the fact that I is an atom. Thus, every atom
is a quark.

• If I ∈ I0(S) is a quark, then I is an irreducible, since I = J + K with
S 
= J 
= I 
= K 
= S forces J ≺ I, a contradiction. Not every irreducible
is a quark (see Example 5.3).

• Notice also that every atom is irreducible.
• In I0(S), being a prime implies being irreducible. Assume that I is

prime and that I = J + K with S 
= J ≺ I, S 
= K ≺ I. Then, J � I
and K � I. As I is prime and I � J + K, either I � J or I � K,
but this implies that either I ⊆ J or I ⊆ K; thus, either I ⊆ J � I
or I ⊆ K � I, which in both cases is impossible. This proves that I is
irreducible.

To summarize, being an atom implies being a quark, which in turn implies
being irreducible, and every prime element is irreducible. Any other implica-
tion between these concepts does not hold in light of Examples 5.3 and 5.9.
These two examples also show that there are numerical semigroups for which
the ideal class monoid has, respectively, no primes or no atoms.

6. Open Questions

We know that if two numerical semigroups have isomorphic ideal class monoids,
then they have the same genus (Corollary 5.2). Proposition 5.22 forces their
multiplicities to be the same, and Proposition 5.13 tells us that they have the
same number of unitary extensions. This leads to the following conjecture.

Question 6.1. Let S1, S2 be two numerical semigroups, such that C �(S1) is
isomorphic to C �(S2). Does S1 = S2 hold?

Notice that if C �(S1) and C �(S2) are isomorphic, then their divisibility
posets are isomorphic. Thus, we could also conjecture something stronger.

Question 6.2. Let S1, S2 be two numerical semigroups, such that (C �(S1),�)
and (C �(S2),�) are isomorphic as posets. Does S1 = S2 hold?
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We can also reformulate this question taking inclusion instead of �. If
the above question has a positive answer, it would also be interesting to de-
termine if there exists an algorithm to recover a semigroup from the Hasse
diagram of its ideal class monoid.

In Remark 4.19, we proved that a lower bound for the width of the Hasse
diagram of I0(S) is (|I0(S)|−2)/(g(S)−1). We also showed that the bound
is sharp. However, for numerical semigroups with big ideal class monoids, this
bound is not very good: for S = 〈5, 11, 17, 18〉, the width of the corresponding
Hasse diagram is 25 and (|I0(S)| − 2)/(g(S) − 1) = 165/11 = 15.

Question 6.3. Are there better bounds for the width of the Hasse diagram with
respect to inclusion? What about a possible upper bound?

In general, an element in a monoid might admit different expressions as
a sum of irreducible elements. These expressions are known as factorizations.
There are many invariants that measure how far these factorization are from
being unique (as happens in unique factorization monoids) or have the same
length (half-factorial monoids); see [11] for a detailed description of this the-
ory in the commutative and cancellative setting or [7,17] for a more general
scope.

Question 6.4. Given an ideal I of I0(S), can we say something about the
number of its factorizations in terms of irreducible elements in I0(S)? Or
even about the lengths of these factorizations? Is this set of lengths an inter-
val?

Section 5 was mainly motivated by previous works, started in [10], on the
power monoid Pfin,0(N), the set of subsets of N containing 0 and with finitely
many elements (and Pfin,0(S) with S a numerical semigroup), endowed with
addition A + B = {a + b : a ∈ A, b ∈ B}. Moreover, [4] shows the abundance
of atoms in Pfin,0(S); however, this is far from being the case for I0(S), since
we have examples with no atoms at all. In Pfin,0(S), irreducible elements,
atoms and quarks are the same [17, Proposition 4.11(iii) and Theorem 4.12]
(notice that these three concepts, irreducible element, atom, and quark, differ
in our setting), and so, it would make more sense to propose the following
question instead.

Question 6.5. Let S be a numerical semigroup. What is the ratio between the
cardinality of irreducible elements in I0(S) and the cardinality of I0(S)?

We know that we have at least as many irreducibles as the genus of S, which
in turn is the height of the Hasse diagram of I0(S) (minus one).
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