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A B S T R A C T

License Plate Recognition (LPR) sensors often fail to detect vehicles or to identify all plate numbers correctly.
This noise results in missing digits or an incomplete route of a vehicle, for example, missing one node (LPR
camera) in the route. Addressing these issues, RouteRecoverer creates the route followed by a vehicle while
efficiently recovering absent LPR plate digits, and filling gaps in routes. For example, when a vehicle is
detected by LPR A and C, with the only route between them being B, our tool seamlessly retrieves the missing
information, improving the data output.
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1. Introduction

Nowadays, cities are evolving towards smarter environments, adapt-
ing to the demands of their inhabitants, and seeking innovative solu-
tions to enhance the quality of life [1]. This advancement has been
propelled by the Internet of Things (IoT) paradigm and the widespread
deployment of sensors and cameras in urban settings [2]. These devices
leverage real-time data and automation to optimize various aspects
of urban life, ranging from resource management to mobility and
security [3,4]. Among the devices in the realm of smart cities are
License Plate Recognition (LPR) systems for vehicular traffic detection
and monitoring [5,6]. These systems utilize high-resolution cameras
and machine learning algorithms to capture and analyze the license
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plate numbers of vehicles traversing urban roads, providing valuable
data for traffic management, movement pattern analysis, or vehicle
monitoring [7–9].

However, despite technological advancements, LPR systems cur-
rently face limitations [10]. In many cases, they encounter error rates in
both license plate detection, stemming from inaccuracies in character
recognition algorithms [11]; and vehicle detection, completely missing
the detection of a vehicle. This may result in some vehicle positions
not being tracked, making retrieving the vehicle’s route difficult. These
deficiencies are aggravated in environments where device connectivity
is compromised due to poor coverage, such as in rural areas [12], or
temporary system downtime caused by an excessive number of people
connected to the same network simultaneously.
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Fig. 1. LPR data processing and visualization software.
Fig. 2. Example of some corrections on erroneous plate number detections of the plate number ABC123 in the left-hand side, and the plot of the route in the right-hand side.
Most efforts have focused on optimizing license plate detection
lgorithms to reduce recognition errors [13–15]. However, end users,
ost of the time, do not have access to the detection algorithms and
ave to deal with the outputs of the detection. In this context, we
ntroduce RouteRecoverer, an LPR data recovery software designed
o make the most of available information. Our software can retrieve

high percentage of missing plate digits. It also creates the routes
he vehicles follow in an area by adding each node, or LPR camera,
n the temporal order of detection of said vehicle. After that, our
ool imputes missing nodes in a route. This approach enhances the
ffectiveness and reliability of LPR systems, thus contributing to the
ngoing development of smart cities and mobility optimization.

. RouteRecoverer overview

RouteRecoverer has two tabs (Fig. 1). The first tab is Controls and
as all the application functionalities. The second tab, Graph, plots all

the routes as in the right-hand side of Fig. 2. In the tab Controls, the
user has to upload a Comma-Separate Values (CSV) file with the button
‘‘Select Data File’’. The CSV file should have a first column with the LPR
identification and a second column with the plate numbers, see Table 1.
After that, the user has to select the distance algorithm, which will
compare a plate number with missing digits to other plate numbers in
the CSV file. The tool in its current version has two distance algorithms.
The user can also select a previous normalization step, which cleans
special characters (see Section 3, for details). Optionally, the user can
also enter routes. For example, if a vehicle to go from LPR-A to LPR-C
necessarily has to pass through LPR-B, and similarly with route LPR-
X, LPR-Y, LPR-Z, the user can write the two routes as: LPR-A, LPR-B,

LPR-C; LPR-X, LPR-Y, LPR-Z. These routes will be used to input missing

2

Table 1
Example of an input file. The file is a CSV with three columns: the detected plate
number, the camera (identification) that has detected the plate number, and the
timestamp of the detection.

num_plate LPR_id timestamp

ZYW535 PAM_1 2023-03-19 14:08:00
ABC123 PAM_1 2023-03-19 15:57:00
ABC123 PAM_2 2023-03-19 16:00:25
ABC123 BUB 2023-03-19 16:05:09
ABC123 CAP 2023-03-19 16:08:12
ABC123 CAP 2023-03-19 18:08:29
ZYW535 PAM_1 2023-03-19 20:17:26
ZYW535 PAM_2 2023-03-19 20:21:43
ZYW535 BUB 2023-03-19 20:25:00

⋯ ⋯ ⋯

values. For example, if LPR-A and LPR-C have detected a vehicle but
LPR-B has not, the RouteRecoverer will input the missing value.

The user can also optionally personalize the maximum time between
trips in minutes. This last parameter indicates the maximum allowed
time (in minutes) between consecutive camera detections to consider
them part of the same trip. If the time difference between two con-
secutive detections by two cameras of the same vehicle exceeds this
threshold, the latter detection is treated as the start of a new trip.
Essentially, it is used to differentiate between separate visits or trips
made by the same vehicle. For example, if our threshold is 1 day (in
minutes: 1440), if a vehicle is detected by different cameras in the
area in one day and the next detection of that vehicle is in 20 days,
we will start a second trip (meaning a second graph for this vehicle).
After that, the user can process the data by pressing the corresponding
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Table 2
Example of an output file. It is a CSV with five columns: the plate number, the route, the times between two nodes (or cameras), the start time of the route,
and the finish time of the route.
num_plate route times entry_date exit_date

ZYW535 [’PAM_1’, ’PAM_1’, ’PAM_2’, ’BUB’] [369.44, 4.29, 3.28] 2023-03-19 14:08:00 2023-03-19 20:25:00
ABC123 [’PAM_1’, ’PAM_2’, ’BUB’, ’CAP’, ’CAP’] [3.43, 4.73, 3.05, 120.28] 2023-03-19 15:57:00 2023-03-19 18:08:29
BPN277 [’CAP’, ’PAM_2’, ’BUB’, ’BUB’, ’PAM_1’] [3.7, 4.43, 915.33, 4.57] 2023-03-19 16:21:00 2023-03-20 7:49:01
EHK389 [’PAM_1’, ’PAM_2’, ’PAM_2’, ’PAM_2’] [3.2, 820.36, 354.38] 2023-03-20 8:48:00 2023-03-21 4:25:56
NCQ886 [’PAM_1’, ’PAM_2’, ’BUB’, ’PAM_2’, ’CAP’, ’BUB’] [4.26, 4.47, 4.45, 4.98, 4.91] 2023-03-20 12:20:00 2023-03-20 12:43:04
ZTP678 [’PAM_1’, ’CAP’, ’PAM_1’, ’PAM_1’, ’PAM_1’] [3.95, 3.79, 216.67, 166.15] 2023-03-20 14:06:00 2023-03-20 20:36:33
RZX028 [’CAP’, ’CAP’, ’PAM_2’, ’PAM_1’, ’PAM_2’] [316.66, 4.26, 4.47, 3.81] 2023-03-20 14:45:00 2023-03-20 20:14:12
Fig. 3. UML class diagram of the software design.
-

button. RouteRecoverer then will recover all the plate numbers with
missing values that it can. For example, in the left-hand side of Fig. 2
RouteRecoverer has recovered the plate number ABC123 from different
erroneous plate numbers, such as AB#123, being # a missing value.
Then, RouteRecoverer creates the routes followed by each vehicle,
as in Table 2, which is the output file. In Tables 1 and 2 we have
highlighted the detection of the vehicle ABC123 by different LPRs and
the calculated route. The user can save the output file with the button
‘‘Save Processed Data’’. All the routes of all vehicles can be seen in the
tab Graph. The route followed by vehicle ABC123 in the example looks
like the right-hand side of Fig. 1.

3. Software description

The system is based on a modular architecture that implements
the Strategy design pattern, allowing the dynamic selection of the
correction (or distance) algorithms at runtime. The software’s structure
consists of various classes that interact with one another, as illustrated
in the UML diagram shown in Fig. 3. The PlateCorrector abstract class
defines a contract for plate correction algorithms. This design simplifies
the incorporation of future license plate correction methods. In our
tool, we have developed two different concrete implementations of this
abstract class: LevenshteinCorrector and DamerauLevenshteinCorrector,
providing various strategies for addressing the variability in correcting
errors in license plates. These strategies include several combinations of
the presence/absence of the normalization and the use of the different
correction algorithms alone or in combination. We have implemented
two correction algorithms, one based on the Levenshtein distance and
the other on the Damerau–Levenshtein distance. These distances are

defined as follows: n

3

1. Levenshtein Distance: The Levenshtein distance is a metric
measuring the edit distance between two strings. It is defined
as the minimum number of single-character edit operations re-
quired to transform one string into another. The allowed edit
operations are insertions, deletions, and substitutions of a single
character. Formally, for two strings 𝑎 and 𝑏, with lengths |𝑎| and
|𝑏| respectively, the Levenshtein distance, denoted as 𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖, 𝑗),
is defined recursively as follows:

𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖, 𝑗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0,

min

⎧

⎪

⎨

⎪

⎩

𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖 − 1, 𝑗) + 1,
𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖, 𝑗 − 1) + 1,
𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + I(𝑎𝑖 ≠ 𝑏𝑗 )

otherwise.

Here, 𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖, 𝑗) represents the distance between the first 𝑖 char-
acters of 𝑎 and the first 𝑗 characters of 𝑏. The operations within
the min function correspond to the costs associated with deletion,
insertion, and substitution, respectively. The indicator function
I(𝑎𝑖 ≠ 𝑏𝑗 ) is 0 when 𝑎𝑖 = 𝑏𝑗 , indicating no cost for substitution in
this case, and 1 otherwise, indicating a substitution cost.

2. Damerau–Levenshtein Distance: The Damerau–Levenshtein dis
tance extends the concept of the Levenshtein distance by includ-
ing transpositions among its set of allowable edit operations,
offering a more precise approach to measuring similarity. In par-
ticular, it considers the cost of transpositions of adjacent charac-
ters in addition to the operations considered in the Levenshtein
distance. It is defined as:

𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖, 𝑗) =

{

previous definition for the base and recursive cases,
𝑑𝑖𝑠𝑡𝑎,𝑏(𝑖 − 2, 𝑗 − 2) + 1 if 𝑖, 𝑗 > 1 and 𝑎𝑖 = 𝑏𝑗−1 and 𝑎𝑖−1 = 𝑏𝑗 .

We implemented an optional method in the class PlateCorrector to

ormalize plates before running the distance algorithm. The normalize
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method removes non-alphanumeric characters erroneously introduced
by the License Plate Recognition (LPR). This method enhances the
correction methods robustness. After plate correction, the RouteCalcu-
lator, not only calculates the routes, but also optimizes them, ensuring
coherence and data accuracy by including missing steps in the route
of a vehicle. For example, suppose one vehicle is detected by sensors
A and C (route A-C), but the only route that links A to C is passing
through sensor B. In that case, our RouteCalculator will infer that said
vehicle has followed the route A-B-C. Algorithm 1 shows the complete
functionality of our tool.
Algorithm 1: Algorithm for Correcting Plates Number and
Calculating Routes

Data: 𝑓𝑖𝑙𝑒𝑝𝑎𝑡ℎ, 𝑀𝐴𝑋𝑇 , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚: Corrector,
𝑟𝑜𝑢𝑡𝑒𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑜𝑟: RouteCalculator

Result: Processed 𝑑𝑎𝑡𝑎
1 Load and Prepare Data:
2 Load and sort 𝑑𝑎𝑡𝑎 from 𝑓𝑖𝑙𝑒𝑝𝑎𝑡ℎ
3 Correct Plates Number:
4 foreach 𝑝𝑙𝑎𝑡𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 to correct in 𝑑𝑎𝑡𝑎 do
5 if normalize then
6 𝑝𝑙𝑎𝑡𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ← Normalize(𝑝𝑙𝑎𝑡𝑒_𝑛𝑢𝑚𝑏𝑒𝑟)
7 Find 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 using 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
8 Assign closest match based on 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

9 Remove invalid Plates Number entries
10 Calculate Routes:
11 foreach 𝑝𝑙𝑎𝑡𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 in unique 𝑝𝑙𝑎𝑡𝑒_𝑛𝑢𝑚𝑏𝑒𝑟𝑠 of the 𝑑𝑎𝑡𝑎 do
12 Initialize the 𝑟𝑜𝑢𝑡𝑒 with the first occurrence of the plate

number
13 foreach 𝑛𝑜𝑑𝑒 grouped by 𝑝𝑙𝑎𝑡𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 do
14 𝛥𝑡 ← 𝑇 𝑖𝑚𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑛𝑜𝑑𝑒, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒)
15 if 𝛥𝑡 > 𝑀𝐴𝑋𝑇 then
16 𝑟𝑜𝑢𝑡𝑒 ← 𝑟𝑜𝑢𝑡𝑒 ∪ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑁𝑜𝑑𝑒
17 Reinitialize 𝑟𝑜𝑢𝑡𝑒 with 𝑛𝑜𝑑𝑒

18 𝑟𝑜𝑢𝑡𝑒 ← 𝑟𝑜𝑢𝑡𝑒 ∪ 𝑛𝑜𝑑𝑒

19 Routes ← Routes ∪ 𝑟𝑜𝑢𝑡𝑒

20 Adjust Routes:
21 foreach 𝑟𝑜𝑢𝑡𝑒 in all 𝑅𝑜𝑢𝑡𝑒𝑠 of the 𝑑𝑎𝑡𝑎 do
22 Initialize 𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝑅𝑜𝑢𝑡𝑒 and 𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝑇 𝑖𝑚𝑒𝑠
23 foreach 𝑛𝑜𝑑𝑒, 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 in consecutivePairs(𝑟𝑜𝑢𝑡𝑒) do
24 Apply 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 between 𝑛𝑜𝑑𝑒 and 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒
25 Distribute 𝑡𝑖𝑚𝑒𝑠 across inserted nodes
26 𝑟𝑜𝑢𝑡𝑒 ← Update 𝑟𝑜𝑢𝑡𝑒 with [𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝑅𝑜𝑢𝑡𝑒, 𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝑇 𝑖𝑚𝑒𝑠]
27 return Processed 𝑑𝑎𝑡𝑎

4. Tool validation

RouteRecoverer was used in a study to cluster vehicle behaviors
in a rural area [7], using a LPR dataset [16]; recovering erroneous
plate numbers, calculating routes, and assigning missing values in
the routes. Out of 18,955 erroneously registered license plates, our
tool corrected around 88%. In particular, Table 3 shows the results
utilizing a combination of the implemented distance algorithms. The
first configuration used only Levenshtein, the second used a previ-
ous normalization, the third used only Damerau–Levenshtein, and the
fourth used a previous normalization. As expected, we can appreciate
from the results that the fourth configuration is the one recovering
the most plate numbers. We can observe that the normalization step
before Levenshtein recovers more plate numbers than the extension
of Levenshtein (Damerau–Levenshtein) alone. The results indicate high
effectiveness in error correction and accuracy in license plate retrieval,
suggesting the feasibility of the software for mobility studies, urban
planning, tourism, and socio-demographic analysis using LPRs.
 t

4

Table 3
Total corrected license plates for each of the algorithms implemented in our software.

Number of corrections

Levenshtein 16 616
Normalized Levenshtein 16 626
Damerau–Levenshtein 16 621
Normalized Damerau–Levenshtein 16631

5. Impact

The correction and recovery of lost license plates are valuable to
many groups in society; to technical groups, and to interdisciplinary
teams. Our system has an impact on multiple dimensions, as detailed
below:

• Data Scientists and Researchers: Our software helps analyze
traffic data more accurately. By correcting errors and recovering
missing detections, data scientists can be confident in the integrity
of the data, leading to more robust conclusions in those studies
related to vehicular mobility behavior and patterns.

• Toll collection processes: LPRs enable seamless and automatic
deduction of toll fees from drivers’ accounts using their license
plate numbers. A prime illustration is the Dartford Crossing’s Dart
Charge system1 utilized in United Kingdom. Here, LPR technol-
ogy is seamlessly integrated to automatically deduct toll fees as
vehicles cross, without the need for toll booths. This not only
eliminates the need for manual payment but also contributes to
reducing congestion, showcasing how enhanced data recovery in
LPR systems can streamline toll-collection processes and enhance
overall transportation efficiency.

• Parking management practices: With improved capabilities,
authorities can swiftly identify vehicles parked in prohibited areas
or those exceeding designated time limits. For instance, in the
city of London, Transport for London utilizes LPR systems to
enforce parking regulations and alleviate congestion by swiftly
identifying and penalizing vehicles parked in restricted zones.
This illustrates how advancements in data recovery within LPR
systems can significantly enhance parking management efficiency
and effectiveness.

• Traffic management: By ensuring the retrieval of lost data,
it enables the generation of accurate and reliable information
regarding vehicle movements. This information can be used for
optimizing traffic flow, mitigating congestion, and ultimately en-
hancing transportation efficiency. For instance, in Norway, the
Norwegian Public Roads Administration utilizes LPR systems2

integrated with advanced data recovery software to monitor and
analyze traffic patterns in real-time. This allows for proactive
measures to be taken, such as adjusting traffic signal timings
or implementing traffic diversions, to alleviate congestion and
improve the overall flow of vehicles.

• Law enforcement: These improvements enable swift and accu-
rate identification of stolen vehicles and those involved in crim-
inal activities. For example, the Los Angeles Police Department’s
utilization of LPR technology3 showcases how such advancements
allow for the rapid tracking of suspects and vehicles implicated in
criminal incidents based on license plate data.

1 https://www.rac.co.uk/drive/advice/legal/the-dartford-crossing-charge/
2 https://intrada.q-free.com/2020/05/26/norway-tolling/
3 https://www.lapd.com/blog/protecting-officers-and-public-lpr-

echnology
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6. Limitations and future work

Although the presented software achieves great results in recov-
ering missing values in LPR systems, it has limitations when dealing
with route corrections. We have optimized the route recovery func-
tion for smart villages with only a few LPRs and potential routes
between two cameras. A scalability test should be necessary for smart
cities with numerous LPRs, different intersections, and several potential
paths between two cameras. Additionally, in the future, we will add
new distance metrics as implementation classes of the abstract class
PlateCorrector.
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