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A B S T R A C T   

The integration of positron emission tomography (PET) and single-photon emission computed tomography 
(SPECT) imaging techniques with machine learning (ML) algorithms, including deep learning (DL) models, is a 
promising approach. This integration enhances the precision and efficiency of current diagnostic and treatment 
strategies while offering invaluable insights into disease mechanisms. In this comprehensive review, we delve 
into the transformative impact of ML and DL in this domain. Firstly, a brief analysis is provided of how these 
algorithms have evolved and which are the most widely applied in this domain. Their different potential ap-
plications in nuclear imaging are then discussed, such as optimization of image adquisition or reconstruction, 
biomarkers identification, multimodal fusion and the development of diagnostic, prognostic, and disease pro-
gression evaluation systems. This is because they are able to analyse complex patterns and relationships within 
imaging data, as well as extracting quantitative and objective measures. Furthermore, we discuss the challenges 
in implementation, such as data standardization and limited sample sizes, and explore the clinical opportunities 
and future horizons, including data augmentation and explainable AI. Together, these factors are propelling the 
continuous advancement of more robust, transparent, and reliable systems.   

1. Introduction 

In recent years, the integration of machine learning (ML), a branch of 
Artificial Intelligence (AI) that includes deep learning (DL), with medi-
cal imaging techniques has emerged as a promising approach to enhance 
the accuracy and effectiveness of diagnostic and prognostic strategies [1, 
2]. Among these imaging modalities, Single-Photon Emission Computed 
Tomography (SPECT) and Positron Emission Tomography (PET) play a 
crucial role in providing valuable insights into various diseases by 
capturing functional and molecular information [3,4]. 

The integration of ML and DL algorithms with SPECT and PET im-
aging offers several advantages [5–7]. Firstly, these algorithms can aid 
in automating the analysis of large volumes of imaging data, allowing 
for more efficient and objective interpretation [8,9]. Secondly, ML and 
DL algorithms can learn complex patterns and relationships within the 
imaging data, enabling the identification of disease-specific biomarkers 
and the development of predictive models for early detection and 
prognosis [10–12]. Furthermore, these algorithms hold the promise of 

enhancing image reconstruction, reducing noise, and mitigating arti-
facts, thereby elevating both the overall image quality and its inter-
pretability [13–15]. Specifically, the incorporation of ML algorithms 
into SPECT/PET imaging systems offers compelling opportunities. A 
major advantage is the potential to increase diagnostic accuracy, 
allowing for more efficient and accurate patient assessments while 
minimizing the required doses of radiopharmaceuticals (radiopharma-
ceutical optimization). Additionally, ML models can advance personal-
ized medicine by leveraging a multitude of patient-specific biomarkers, 
enabling customized treatment strategies and predictive treatment 
outcome assessments, ultimately enhancing the overall quality of life for 
patients. 

When these algorithms are applied in the medical field, they are 
usually referred to as Computer-Aided Diagnosis (CAD) systems. CAD 
systems have been developed to assist clinicians by providing comput-
erized tools with pattern recognition and prediction capabilities 
[16–19]. It should be noted that CAD systems are not exclusively 
confined to diagnosis; they are also employed at various stages of the 
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medical imaging process, which may encompass preprocessing, recon-
struction, or image segmentation, among others. ML techniques applied 
in these systems range from linear and low-dimensional schemes to 
more advanced deep neural network (NN) architectures that facilitate 
feature selection, extraction, and classification [20,21]. These tech-
niques enhance accuracy and recognition rates when analyzing complex 
patterns in high-dimensional contexts, even in the presence of subgroups 
within different conditions [22–24]. DL, particularly NN models, has 
gained popularity in the medical field, but their increased complexity 
does not always translate into noticeable improvements in performance. 
Instead, it often leads to higher computational costs and reduced model 
interpretability. This poses challenges, including clinicians’ reluctance 
to adopt methods lacking physical interpretation, diminishing their ca-
pacity for understanding, and concerns regarding the opacity and 
learning capacity of the algorithms [25,26]. To establish CAD systems as 
a standard for clinical support, it is crucial to address these issues along 
with other challenges that exist, such as the limited availability of 
labeled and annotated datasets, standardization of imaging protocols, 
and the need for validation and regulatory approval. 

To address these challenges, continuous improvement of existing 
algorithms is imperative. Efforts are being made to enhance the inter-
pretability of algorithmic decision-making systems. Additionally, tech-
niques like transfer learning and data augmentation are being applied to 
address the limitation of available samples, optimizing model perfor-
mance. Moreover, the exploration of multimodal data fusion is gaining 
traction, harnessing the power of multiple imaging techniques to 
augment the information available for each patient. The ultimate goal is 
to develop systems capable of providing real-time decision support, 
enabling on-the-spot clinical decision-making. 

This work aims to provide a comprehensive overview of the current 
state-of-the-art in the application of ML and DL techniques in SPECT and 
PET imaging. We will explore the challenges, opportunities, and future 
prospects of this field. Moreover, we will discuss the use of these algo-
rithms to improve the diagnostic accuracy, predictive modeling, and 
personalized treatment planning in the context of SPECT and PET im-
aging. The insights gained from this review can guide future research 
and development efforts in utilizing machine learning algorithms to 
further enhance the diagnostic capabilities and clinical utility of SPECT 
and PET imaging technologies. 

2. Machine learning in nuclear imaging 

The evolution of ML and DL techniques has been remarkable over the 
past few decades, leading to significant advancements [9,27,28]. In the 
realm of ML, there has been a shift from more traditional approaches, 
such as linear methods and decision trees, to more sophisticated and 
flexible techniques, such as nonlinear ML algorithms and ensembles 
methodologies [29,30]. One of the most widely used algorithms is 
support vector machines (SVM) and its kernel diversity [31]. SVMs are 
well-suited for medical imaging tasks as they can effectively handle 
nonlinear relationships and accommodate large feature spaces, exhib-
iting promising results in terms of accuracy and robustness [10,32,33]. 

Ensemble techniques, such as bagging [34], boosting [35] and random 
forests [36] show improved capabilities in handling complex datasets 
and extracting relevant features [12,37]. 

Despite the good performance of these algorithms, the emergence of 
DL marked a major milestone in the field of ML. In particular, one of the 
algorithms that have revolutionised this field the most are convolutional 
neural networks (CNNs) [38]. These networks stood out for their ar-
chitecture: convolutional layers that detect local patterns in images 
using filters, and pooling layers that reduce dimensionality, significantly 
reducing the number of parameters compared to traditional NNs. An 
example of CNN is illustrated in Fig. 1, where convolutional layers are 
applied to extract relevant features and dense layers to perform specific 
tasks, such as classification or regression. Due to the application of fil-
ters, CNNs intelligently adapt to various features within an image. For 
example, specific filters may emphasize regions with high metabolic 
activity, enabling the network to concentrate on understanding the 
distribution of this activity. Additionally, it is common to generate 
features that detect edges, allowing the network to focus on recognizing 
the image’s shape and contours. Therefore, these deep NNs have 
demonstrated exceptional abilities to learn high-level patterns and 
representations from data, leading to improvements in accuracy and 
generalization in image processing tasks [39–41]. 

From this architecture, more complex architectures have emerged. 
For example, siamese networks are a NN architecture with two identical 
branches processing two different input objects [42]. Their main func-
tion is to compare the similarity or difference between these two ele-
ments. These networks can therefore play a valuable role in the 
processing and analysis of molecular images by facilitating the com-
parison, alignment and improvement of the quantitative accuracy of 
these images [43–45]. 

A widely used CNN architecture for medical image segmentation 
tasks is the U-Net [46,47]. The U-Net architecture consists of a U-shaped 
design, with a downsampling path and an upsampling path connected by 
skip connections. The skip connections between the downsampling and 
upsampling paths allow the combination of low-level and high-level 
information during the reconstruction phase. This connection helps 
preserve fine spatial details and provides global context for accurate 
segmentation. U-Net is commonly used for semantic segmentation of 
medical images, where the goal is to identify and delineate specific 
structures or ROIs in the image, such as organs, tumors, and lesions [48, 
49]. In particular, this architecture is also useful for employing low-dose 
PET imaging, thus reducing the radiation to which the patient is sub-
jected [50], or directly to synthesize PET scans from Magnetic Reso-
nance Imaging (MRI) scans [51]. 

Another widely used architecture is autoencoder (AE) [52]. Its basic 
structure consists of a NN trained to reconstruct its own input. It com-
prises two stages. The first stage, called the encoder, takes the original 
input and transforms it into a lower-dimensional latent representation. 
The other stage is called the decoder, which takes the latent represen-
tation generated by the encoder and reconstructs it in a way that closely 
resembles the original input. For the design of these models, convolu-
tional layers are often applied to extract the reduced-dimension features 

Fig. 1. Overview of a convolutional neural network.  
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(latent space). Therefore, it is a very useful architecture for dimen-
sionality reduction (reducing the computational cost of the CAD system 
process) [53], noise removal in images (and hence improving their 
quality) [54], segmentation of regions of interest (ROIs) [55] or even 
data generation using Variational Autoencoders (VAEs) [56]. This mo-
dality introduces a stochastic component that makes it easier to generate 
new data in the latent space. 

An architecture that has a similar goal to VAEs is the generative 
adversarial network (GAN) [57]. GANs have gained attention for their 
ability to generate realistic data samples by training a generator network 
to produce data that is indistinguishable from real samples, while a 
discriminator network aims to differentiate between real and generated 
data. Therefore, GANs have emerged as a valuable tool in neuroimaging, 
enabling tasks such as image synthesis or correction, and data 
augmentation [58–60]. Although GANs require large and diverse data-
sets and careful optimization, they hold great promise for advancing 
neuroimaging research and personalized medicine. 

Another perspective is to study the existing relationships between 
data instead of directly extracting features from them. In this case, a 
newly designed DL model to employ is a graph convolutional network 
(GCN) [61]. GCN was designed to work with structured data in the form 
of graphs, where nodes and the relationships between them are funda-
mental. It uses graph convolution operations to propagate information 
between nodes and each node updates its representation based on the 
representations of its neighboring nodes in the graph. Its application in 
medical imaging is growing steadily to study brain connectivity and 
establish brain disorders prediction. So far, its primary application has 
been in structural and functional MRI [62–64]. 

As can be observed, the development of DL models is ongoing in the 
state of the art. An emerging trend in DL models is the utilization of 
attention-based models [65], which is gaining increasing popularity. 
These models selectively processes the part of the data which contains 
the most relevant information in order to make predictions about the 
output. Among the various DL techniques in this domain, one family that 
particularly stands out is transformers [66]. Transformers have the 
capability to process sequential data in a highly efficient manner. To do 
this, they are composed of stackable encoders and decoders and employ 
an attention mechanism that allows them to consider all parts of a 
sequence simultaneously, facilitating the capture of long-range de-
pendencies. These properties led to transformers revolutionising natural 
language processing (NLP) with models such as BERT (Bidirectional 
Encoder Representations from Transformers) [67] and GPT (Generative 
Pre-trained Transformer) [68]. As transformers demonstrated their 

effectiveness in NLP, they were adapted to computer vision applications 
[69]. The Vision Transformer (ViT) architecture [70] enabled image 
processing by dividing images into patches and treating them as se-
quences of tokens. This allow to capture complex relationships and de-
pendencies in, for example, medical imaging, resulting in advancements 
in image segmentation, fusion, classification, synthesis or object detec-
tion [71–73]. Although still in early stages, the integration of trans-
formers in neuroimaging shows promising potential for advancing brain 
research and improving diagnostic capabilities. 

All these algorithms are implemented in CAD systems by following 
the fundamental steps shown in Fig. 2. The first step in the process in-
volves preprocessing the brain images (or different features) to ensure 
standardized and optimal system performance. Subsequently, the sys-
tem is trained to accomplish specific tasks, such as categorizing condi-
tions, identifying ROIs, segmenting images, or generating predictions. In 
this stage, it is considered supervised learning if the data is labeled, or 
unsupervised learning if there are no labels. In the former case, the 
model’s goal is to learn a function that maps input data to existing labels 
(e.g., classification), while in the latter, the objective is to group the data 
into categories or clusters based on similarities (e.g., segmentation). 
Finally, the performance of the system is evaluated in a final step to 
assess its performance in terms of accuracy, sensitivity or specificity, 
among others. 

3. Applications in SPECT and PET imaging 

As previously mentioned, ML (and DL) has found various applica-
tions in the field of SPECT and PET imaging, offering significant ad-
vancements in the analysis and utilization of these imaging techniques 
for diagnostic and clinical purposes. This section will discuss the 
different aspects in which ML has potential applicability in SPECT and 
PET, which are summarized in Fig. 3, and the advantages that these 
algorithms offer. 

3.1. Optimization of image acquisition and preprocessing 

ML has contributed to the improvement of image acquisition, artifact 
correction, attenuation/scatter correction, and reconstruction in PET 
and SPECT, leading to higher-quality images and more accurate inter-
pretation [74]. Additionally, several segmentation methods have also 
been proposed. Table 1 summarizes some of the most recent works in 
these areas. 

An elementary step in obtaining high-quality scans is their 

Fig. 2. Typical flowchart of the stages included in a CAD system.  
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acquisition process. This step is dependent on the scanner’s instrumen-
tation and their associated parameters (e.g., timing and energy resolu-
tion or localization of the interaction position) which affect factors such 
as sensitivity, spatial resolution, and signal-to-noise ratio of the scanner. 
For example, Sanaat and Zaidi [77] proposed the use of a positioning 
algorithm based on a multilayer perceptron (MLP) to predict the local-
ization of the interaction position inside a monolithic crystal in order 
enhance the spatial resolution. 

Traditional reconstruction methods may be limited in terms of image 
quality, noise reduction, and quantitative accuracy. ML algorithms, 

particularly those based on DL, have been recently proposed to cope 
with this task [6]. Both CNNs [80,81] and GANs [84,85] have been 
employed to reduce noise and enhance the quality of PET and SPECT 
images. These models learn patterns of noise and are capable of gener-
ating cleaner and sharper images, enabling more precise interpretation 
and improved anomaly detection. For example, Lu et al. [82] analyze the 
possibility of reducing radiation dose in PET imaging while maintaining 
image quality and accuracy. It was found that 3D U-Net effectively 
reduced image noise and controlled bias, even for small lung nodules, 
using low count down-sampled data to generate standard dose PET 

Fig. 3. Key applications of machine learning in PET/SPECT imaging.  

Table 1 
Summary of recent published works on the application of ML/DL in nuclear image acquisition and preprocessing.  

Work Year Modality Radiotracer Region Approach Model 

Image acquisition 
[75]  2018 PET   Prediction interaction position Gradient Tree Boosting 
[76]  2018 PET   Prediction interaction position CNN 
[77]  2020 PET   Prediction interaction position MLP 
[78]  2021 PET   Prediction interaction position Residual-CNN 
[79]  2023 SPECT 99mTc-tetrofosmin Chest Projections generation DuDoSS 
Image denoising and reconstruction 
[80]  2020 PET   Sinogram data denoising CNN 
[81]  2019 PET 68Ga-PRGD2,18F-FDG Whole-body Image denoising U-net 
[72]  2021 SPECT 123I-FP-CIT Brain Image generation ViT 
[59]  2018 PET 18F-FDG Brain Low-dose imaging generation GAN 
[82]  2019 PET 18F-FDG Chest Denoising in low-dose imaging U-net 
[13]  2022 PET 11C-PiB,18F-FE-PE2I Brain Denoising in low-dose imaging CNN 
[83]  2023 SPECT MPI 99mTc-sestamibi Chest Denoising in low-dose imaging GAN 
[84]  2020 PET 18F-FDG Chest Denoising in low-dose imaging GAN 
[56]  2021 PET 18F-DOPA Brain Fast dynamic imaging generation VAE-GAN 
[85]  2022 SPECT MPI 99mTc-sestamibi Chest Predict standard-dose from low-dose images GAN 
Attenuation/scatter or artifact correction 
[60]  2020 PET 18F-FDG whole-body Attenuation correction GAN 
[86]  2019 PET 18F-FDG Brain Attenuation correction AE 
[87]  2019 PET 18F-FDG Brain ASC CNN 
[88]  2023 SPECT 99mTc-3PRGD2 Chest Attenuation correction U-net 
[89]  2021 PET 82Rb Chest Motion correction LSTM 
[90]  2020 PET 18F-FDG Chest Motion correction Transformer 
Image segmentation 
[48]  2018 PET 18F-FET Brain Glioma’s lesion detection and segmentation U-net 
[91]  2019 PET 18F-FDG Whole-body Cervical tumor segmentation CNN 
[49]  2022 PET/CT 18F-FDG Chest Lung lesion segmentation U-net 
[92]  2020 SPECT 99mTc Whole-body Segmentation of thorax bone U-net/CNN 

MPI: myocardial perfusion imaging, LSTM: long short-term memory, DuDoSS: deep-learning-based dual-domain sinogram synthesis is a model based on residual dense 
networks. 
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images. 
Moreover, ML algorithms can be used to correct attenuation artifacts 

in PET and SPECT images [93,94]. These models can learn the rela-
tionship between the original images and attenuation maps, applying 
corrections to obtain more accurate and quantitatively precise images. 
For example, in [87] it is proposed joint attenuation and scatter 
correction (ASC) in image space for non-corrected PET without the need 
for conventional attenuation map generation and time-consuming 
scatter correction. Motion artifacts and other artifacts can also be cor-
rected in PET and SPECT through ML algorithms, improving image 
quality and reducing the impact of involuntary movements during 
image acquisition [95]. 

Automated segmentation of anatomical structures in PET and SPECT 
images is another crucial step in quantitative and qualitative analysis. 
ML algorithms have been utilized to segment specific ROIs in the images, 
such as tumors or specific brain areas [96], enabling more precise 
analysis and robust feature extraction. One algorithm that has gained 
importance in this field is the U-Net. Based on this algorithm, in [48], a 
CAD system for lesion detection and segmentation of gliomas in 
Amino-acids PET is proposed. The algorithm successfully detected all 
lesions in the dataset. Specifically, the voxel-level segmentation ach-
ieved a sensitivity of 88% and a specificity of 99 %. 

3.2. Multimodal integration 

ML techniques have facilitated and can take advantage of the bene-
fits of the integration of multimodal data in PET and SPECT, such as 
combining these imaging modalities with MRI [97,98] or computerized 
tomography (CT) [49,99]. This integration provides a more compre-
hensive and enhanced view of the conditions under analysis and over-
coming limitations of individual modalities. Moreover, it harnesses both 
functional information (e.g., SPECT/PET) and anatomical information 
(eg., MRI/CT), yielding several benefits, including improved image 
quality (higher resolution and precision), enhanced diagnostic capabil-
ities due to a wealth of patient information, early detection of abnor-
malities, streamlined treatment planning, and the ability to conduct 
more comprehensive and in-depth clinical research on various diseases 
and medical conditions. Nonetheless, the integration of multiple medi-
cal imaging modalities carries certain disadvantages. These drawbacks 
include technical complexity and the cost associated with acquiring and 
maintaining specialized equipment. Moreover, the image fusion process 
can be time-consuming, which is not ideal in emergency situations. 
Some patients may experience discomfort due to longer scan times, and 
in hybrid systems like PET/CT, there is a concern about increased ra-
diation exposure. Additionally, managing large datasets generated by 
integration may require substantial resources. Therefore, the decision to 
use multimodal imaging should be based on the specific clinical or 
research objectives and the available resources. Some recent works 
related to the fusion of the most common image modalities are reported 
in Table 2. 

Various approaches are employed to integrate these modalities, 
which can be categorized into four groups [115]. Multimodal Fusion 
involves visually combining multiple modalities to generate a single 
composite image that presents information from both. These images can 
be acquired using different instruments or the same one, and coregis-
tration is necessary to align them accurately. The Multi-Focus Fusion 
technique is utilized for merging images captured with varying focal 
lengths. In this approach, regions of interest (ROIs) are designated in 
anatomical images (such as MRI), and these ROIs are applied to PET 
images to quantify metabolic activity in specific regions. 
Multi-Temporal Fusion pertains to the fusion of images of the same 
modality captured at different moments, facilitating the detection of 
changes in the subject over time. Lastly, Multi-View Fusion involves the 
simultaneous acquisition of images of the same modality under differing 
conditions, providing a broader spectrum of information. For more 
in-depth insights into these techniques, please read [115]. 

An example multimodal data fusion in neuroimaging is illustrated in  
Fig. 4. Both SPECT and MRI scans are preprocessed (coregistered and 
overlaid) to obtain the multimodal fusion scan. In this field, the fusion 
offers significant advantages, such as correction of distortions, improved 
temporal and spatial resolution, and the integration of structural and 
functional information. Moreover, there has been an impact of multi-
modal data fusion on the transition of neuroimaging diagnosis from 
qualitative analysis to quantitative evaluation, addressing photon 
attenuation, scatter, and partial volume effects in PET and SPECT 
quantification. For example, the attenuation effect present in PET/MRI 
systems may be a challange. A DL model proposed to mitigate this is 
presented by I. Shiri et al. in [86], where a convolutional AE is applied to 
directly correct the attenuation effect in PET images. Regarding the 
partial volume effect (PVE), Quarantelli et al. [116] developed an In-
tegrated software called PVElab to conduct PVE correction for brain 
PET/SPECT scans and their coregistered segmented MRI. 

Several studies have shown that this fusion of imaging modalities 
results in increased diagnostic accuracy. For example, Polikar et al. 
[117] conducted an study related to Alzheimer’s Disease (AD) where a 
binary classification (AD vs. HC) was analyzed by means of MRI, PET 
and electroencephalogram (EEG) data fusion. In this case, an accuracy of 
85.55% is obtained applying an ensemble of DL classifiers (multilayer 
perceptrons, MLPs) based on sum majority voting. Other multimodal 
data fusion example is the work developed by Song et al. [106], where 
the gray matter tissue area of MRI scans and FDG-PET images are fused 

Table 2 
Summary of recent published works related to multimodal fusion.  

Work Year Radiotracer Region Goal Model 

PET/CT 
[100]  2021 18F-FDG Whole-body Full-dose 

synthesis from 
low-dose 
imaging 

GAN 

[101]  2023 18F-FDG Upper-body Prognosis Ensemble 
[102]  2021 18F-FDG Upper body Diagnostic 

classification 
SVM / LDA 

[103]  2022 18F-FDG Whole-body ROIs 
identification 

U-net / 
CNN 

[104]  2021 18F-FDG Upper body Prognosis Residual 
CNN 

PET/MRI 
[45]  2023 18F-FDG Brain ROIs 

identification 
Siamese NN 

[105]  2023 18F-FDG Whole-body ROIs 
identification 

Random 
forest 

[106]  2021 18F-FDG Brain Diagnostic 
classification 

CNN 

[107]  2023 18F-FDG Brain Diagnostic 
classification 

SVM / RF 

SPECT/CT 
[108]  2023 99mTc- 

Sestamibi 
Renal 
scintigraphy 

Diagnostic 
classification 

XGBoost 

[109]  2021 99mmTc- 
GSA 

Whole-body Prognosis SVM / RF 

[110]  2023 MPI 
(REFINE 
[111]) 

Chest Prognosis XGBoost 

[112]  2022 68Ga-PSMA- 
HEBD-CC 

Whole-body Prediction of 
dosimetry 

RF 
regression/ 
MLP 

SPECT/MRI 
[54]  2021 123I-FP-CIT Brain Image 

reconstruction 
AE 

[98]  2023 99mTc- 
Sestamibi 

Brain Data fusion 
modeling 

CNN 

[113]  2022 123I-FP-CIT Brain Disease 
progression 
analysis 

PCA / K- 
Means 

[114]  2021 123I-FP-CIT Brain Diagnostic 
classification 

Ensemble 

RF: random forest, LDA: linear discriminant analysis 
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by registration and mask coding, denominating the method as 
“GM-PET". Then, a 3D CNN and a 3D Multi-Scale CNN was applied in 
binary classification and multi-classification tasks to evaluate the 
effectiveness of the method, achieving accuracies up to 94.11% in the 
AD-vs-HC task or 71.52% in the AD-vs-MCI-vs-HC task. Arco et al. [45] 
proposed the use of a siamese neural network to fuse information from 
MRI and PET. This enabled to quantify similarities between both mo-
dalities, detecting the role of different brain regions in the development 
of AD according to structural and functional changes. 

As can be inferred, multimodal integration is an area of potential 
future growth which may uncover valuable insights and improving 
diagnostic accuracy. In fact, most recent studies are tending to apply this 
approach, for example by merging PET and CT data [49,99] or PET/-
SPECT with MRI [45,98]. 

3.3. Identification of biomarkers and analysis of complex patterns 

The search for new biomarkers to model neurodegenerative diseases 

is a challenging task that has implications for both the development of 
more effective diagnostic support systems and the quantitative mea-
surement of neuronal loss and other physiological changes [118]. Pre-
vious studies addressing the characterization of diseases like Parkinson’s 
Disease (PD) have primarily focused on genetic and biochemical 
markers [119–121]. However, ML techniques have emerged as powerful 
tools in identifying specific biomarkers that are less invasive and do not 
require specialized laboratory units [122]. This advancement provides 
valuable insights into the underlying mechanisms of diseases and con-
tributes to personalized treatment approaches. In the context of SPECT 
and PET imaging, when examining the radiological characteristics of the 
striatum region in healthy control subjects (HC) and PD patients, it be-
comes apparent that the shape of the region with higher uptake of the 
radioligand 123I-Ioflupane itself can potentially serve as an early disease 
progression marker, even before clear cognitive impairment becomes 
evident [119,123]. Following this line, Castillo-Barnes et al. [124] 
proposed to extract morphological features from isosurfaces of the scans 
at various intensity levels. Then, these features were classified by means 

Fig. 4. Multimodal fusion scan (B) from SPECT (A) and MRI (C) scans of the same individual.  

Table 3 
Summary of recent published works related to clinical Applications of nuclear imaging.  

Work Year Modality Radiotracer Region Approach Model 

Biomarkers identification/Pattern analysis 
[124]  2020 PET 123I-FP-CIT Brain Features from isosurfaces SVM 
[125]  2017 PET 18F-FET Brain Textural features Clustering 
[126]  2019 PET/CT 18F-FDG Chest Features from polar maps CNN 
[122]  2023 SPECT MPI 99mTc-MIBI Chest Features from polar maps AE 
[127]  2023 SPECT/MRI 123I-FP-CIT Brain 123I-FP-CIT uptake prediction on MRI CNN 
[128]  2021 PET 11C-MET Brain Low-dimensional feature extraction PCA 
[129]  2023 SPECT MPI Tl-201 Chest Low-dimensional feature extraction AE 
[53]  2021 PET 18F-FDG Brain Feature ranking AE 
[130]  2022 SPECT/MRI 123I-FP-CIT Brain ROIs significance SPM/SAM 
[131]  2020 PET 18F-FDG Brain ROIs significance SSP/SPM 
Diagnostic support systems 
[12]  2018 SPECT 123I-FP-CIT Brain Diagnostic classification SVM 
[132]  2019 PET 18F-FDG Brain Diagnostic classification InceptionV3 
[133]  2022 PET 18F-FDG Brain Diagnostic classification CNN 
[134]  2022 SPECT 123I-FP-CIT Brain Diagnostic classification CNN 
[135]  2022 SPECT 123I-FP-CIT Brain Diagnostic classification Clustering 
[136]  2019 PET/CT 18F-FDG whole-body Classification of uptake patterns for cancer CNN 
[108]  2023 SPECT/CT 99mTc-MIBI Chest Tumor characterization and diagnostic XGBoost 
[137]  2023 PET/CT 18F-FDG Upper body Cancer detection Random forest 
[138]  2022 PET/CT 18F-FDG Chest Nodules classification XGB/MLP 
Disease prognosis and monitoring 
[99]  2023 PET/CT 18F-FDG Upper body Predictor of cancer prognosis Random Survival Forest 
[139]  2020 PET 18F-FDG Whole-body Predictor of cancer prognosis Random Survival Forest 
[140]  2023 PET/CT 18F-FDG whole-body Predictor of cancer prognosis Logistic regression 
[141]  2020 PET/CT 18F-FDG Upper body Prognostic value of radiomics Random Forest 
[142]  2022 PET/CT 18F-FDG whole-body Prediction of tumor progression Naive Bayes 
[143]  2022 SPECT 123I-FP-CIT Brain Disease progression modeling SVM 

MPI: myocardial perfusion imaging, SSP: statistical surface projections 
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of SVM and Naïve Bayesian algorithms. The results indicated the reli-
ability of these biomarkers, particularly those related to sphericity, 
center of mass, number of vertices, 2D-projected perimeter, and 2D-pro-
jected eccentricity. Other works are summarized in Table 3. 

In line with biomarker identification, these algorithms also allow for 
the analysis of complex patterns and extraction of relevant features in 
PET and SPECT images, revealing hidden relationships and enhancing 
the understanding of neurological disorders. Feature extraction is a 
commonly applied approach in CAD systems as a preliminary step to 
classification. This extraction is performed through dimensionality 
reduction, which transforms a high-dimensional dataset into a lower- 
dimensional representation. In more traditional ML systems, this is 
achieved by applying techniques such as Principal Component Analysis 
(PCA) or Partial Least Squares (PLS) [128,144,145]. DL-based systems, 
such as AE, are also applied for this approach [53,129]. Furthermore, it 
is important to note that DL models that employ convolutional layers 
extract features within these layers, which are subsequently used in the 
algorithm’s decision-making process [126,134]. 

Another technique used for analyzing neuroimaging patterns is the 
generation of brain maps. Statistical brain mapping is a straightforward 
method to detect ROIs when comparing two groups, such as HC and PD 
subjects. It helps identify relevant patterns between these groups, 
making it particularly useful for exploratory analyses. The standard 
approach for statistical inference maps is the widely-used Statistical 
Parametric Mapping (SPM) software [146], which employs classical 
statistics (e.g., general linear model) to generate maps. However, this 
approach relies on various assumptions and has limitations [147,148]. 
As a result, researchers have been exploring alternative approaches. One 
proposed method is data-driven supervised learning techniques, such as 
those utilized in ML approaches [149]. Although ML techniques were 
not originally developed for brain mapping hypothesis testing 
[150–153], they can provide confidence intervals in classifying image 
patterns and produce maps of statistical significance [154]. To address 
this, a non-parametric approach called Statistical Agnostic Mapping 
(SAM) was proposed by Gorriz et al. [155]. SAM employs concentration 
inequalities and provides confidence intervals by assessing the upper 

bounds of the actual error in binary classification problems and by using 
simple significance tests of a population proportion within it. It was 
found that this novel framework based on Statistical Learning Theory 
(SLT) provides similar activation maps than the ones obtained by the 
voxel-wise SPM but in a region-wise level. A comparison of both 
methods is shown in Fig. 5 for PD vs HC contrast from PET images. 

The study conducted by Jimenez-Mesa et al. is an example of the 
applicability of these statistical maps [130]. Both, SPECT images and 
MRI scans are compared to assess the usefulness of these imaging mo-
dalities for Parkinson’s disease. Despite the existing state-of-the-art 
proposal to apply MRI for PD, this study concluded that MRI is not a 
very reliable source of information for the diagnosis of PD, regardless of 
the classification results reported in previous studies [97,156]. 

3.4. Diagnostic support 

Applying ML algorithms in CAD systems offers a significant advan-
tage in enhancing diagnostic accuracy. ML algorithms excel at identi-
fying disease-specific features and constructing predictive models, 
resulting in earlier and more precise detection of various conditions, 
including neurological disorders and cardiac diseases, among others [7, 
157,158]. Ultimately, these advancements significantly benefit patient 
care and contribute to improved treatment outcomes. Some recent ex-
amples of these algorithms used to support diagnosis are shown in 
Table 3. 

Studies based on the more standard ML techniques usually apply 
ensemble methodologies, i.e. multiple models are combined to improve 
the overall prediction or classification performance. It also tends to 
happen that not only features extracted from the image are used, but 
also other clinical or demographic data. An example of both situations is 
the work of Castillo et al.citecastillo2018robust. An ensemble method-
ology, based on SVM, was employed in this study. In addition to SPECT 
data, cerebrospinal fluid (CSF), RNA, and serum tests were used as 
features, achieving an accuracy of up to 96% when comparing PD pa-
tients and HC. 

On the other hand, in DL-based studies, algorithms usually extract 

Fig. 5. Performance comparison between SPM (red, left) and SAM (blue,right) when contrasting PD vs. HC samples of a SPECT dataset. While the former uses a 
voxel-wise approach, the latter uses an atlas-based region-wise approach. 
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the relevant information directly from the image. For example, in the 
study conducted by Ding et al. [132], the InceptionV3 architecture 
[159] was applied to predict early diagnosis of AD using 18F-FDG PET 
imaging. The model achieved impressive results, with an area under the 
receiver operating characteristic (ROC) curve of 0.98. Furthermore, the 
algorithm achieved a specificity of 82% and a sensitivity of 100%, 
indicating its ability to accurately identify individuals with AD. Simi-
larly, Etminani et al. [133] utilized a 3D CNN model for predicting the 
diagnosis of dementia with Lewy bodies, AD, and mild cognitive 
impairment (MCI) using 18F-FDG PET imaging. This was a multiclass 
classification problem, and the model achieved excellent performance. 
The area under the ROC curve was reported as 96.2% for dementia with 
Lewy bodies, 96.4% for AD, 71.4% for mild cognitive impairment due to 
AD (MCI-AD), and 94.7% for HC. 

3.5. Prognosis and disease monitoring 

ML algorithms have proven effective not only in establishing di-
agnoses but also in predicting the prognosis of diseases and tracking 
disease progression over time. These capabilities are invaluable for 
clinical decision-making, as clinicians can predict the likelihood of dis-
ease progression, estimate the rate of decline in motor and cognitive 
functions, and identify patients who may benefit from specific treatment 
strategies or interventions. Some works focused on this purpose are 
shown in Table 3. 

In order to assess the prognosis of a given condition, quantitative 
features are usually analyzed and their value is assessed by considering 
different factors (clinical assessments, genetic markers, and de-
mographic information, etc.). For example, Zhong et al. [99] proposed 
several radiomics features from 18F-FDG PET/CT scans and clinically 
derived features for successfully predicting prognosis of multiple 
myeloma patients. For the same purpose, Morvan et al. [139] applied a 
ML model based on Random Survival Forest (RFS) and variable impor-
tance (VIMP) using radiomics, conventional (e.g., standardized uptake 
value or SUV) and clinical biomarkers, reducing the error of the pre-
dicted progression. 

Furthermore, ML algorithms can track disease progression longitu-
dinally by analyzing serial SPECT or PET scans taken at different time 
points. By comparing imaging features and biomarkers over time, these 
algorithms can provide valuable insights into the evolution of the 

disease, detect subtle changes in neurobiology, and assess the effec-
tiveness of therapeutic interventions. For this, several neuroimaging 
initiatives are collecting longitudinal data from patients, such as the 
Parkinson’s Progression Markers Initiative (PPMI) (www.ppmi-info. 
org), which primary objective is to identify new biomarkers that can 
measure the progression of PD and develop new treatments; the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) [160] and the Domi-
nantly Inherited Alzheimer Network (DIAN) [161], both related to the 
study of AD for early diagnosis and better understanding of the disease. 
These databases are continuously updated, with the inclusion of new 
participants in the studies and the addition of more recent samples from 
existing participants, which makes them widely used repositories [24, 
143,162,163]. 

4. Challenges, opportunities and future prospects 

As we have seen, ML holds great promise for advancing SPECT and 
PET imaging, but it also presents certain challenges. Understanding 
these challenges is crucial for harnessing the full potential of ML in this 
domain. The opportunities are many, and the future is promising. The 
main issues addressed in this section are illustrated in Fig. 6. 

4.1. Challenges 

Among the problems faced by ML in PET/SPECT imaging domains, 
four could be highlighted: data standardization, limited data availabil-
ity, evaluation and interpretability. These challenges need to be 
addressed to increase confidence in CAD systems as diagnostic and 
prognostic support methods. 

4.1.1. Data standardization 
Data standardization is related to the adquisition protocols of PET/ 

SPECT scans. Variations in imaging protocols, data acquisition, and 
preprocessing techniques pose significant challenges in the development 
and deployment of ML models across different clinical sites. These dif-
ferences can lead to inconsistencies in the data, affecting the perfor-
mance and generalizability of ML algorithms. For instance, variations in 
image resolution, signal intensity, or image reconstruction methods can 
introduce biases and confounding factors that impact the accuracy of the 
models. To address these challenges, standardization efforts are crucial. 

Fig. 6. Challenges, opportunities and future prospects about the application of ML in PET/SPECT imaging.  
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Standardization involves the establishment of uniform guidelines, pro-
tocols, and procedures that ensure data consistency and compatibility 
across different imaging centers. This includes standardizing imaging 
acquisition parameters, data preprocessing steps, and quality control 
measures. Fortunately, as we have already discussed, there are more and 
more techniques that try to deal with image acquisition and processing 
protocols [80,81,84,85,95]. 

Standardization efforts also extend to data sharing and collaboration 
among research institutions. By creating centralized databases and re-
positories that follow standardized data formats and annotations, re-
searchers can pool larger and more diverse datasets. This data sharing 
not only promotes collaboration but also improves the generalizability 
and reliability of ML models. Moreover, standardization may also in-
crease the use of transfer learning techniques (which will be discussed in 
Section 4.3), as ML models can be trained more effectively on one site 
and effectively transferred to other sites with minimal performance 
degradation. Therefore, standardization efforts play a crucial role in 
overcoming the heterogeneity of data across different clinical sites in 
neuroimaging and other medical domains. By ensuring consistency and 
compatibility, standardization paves the way for more robust and reli-
able ML models that can be deployed across diverse healthcare settings. 

4.1.2. Limited sample sizes 
Closely related to this challenge is the limited data availability in the 

radiology field (and in the field of neuroimaging itself [11,164]). This 
issue is related to the differences between samples from different clinical 
centers and the difficulty of obtaining clinical data, which leads to a 
problem known as the “Small Sample Size Problem” [165,166]. Neu-
roimaging studies often rely on data from a relatively small number of 
subjects, typically ranging from fewer than a hundred to rarely 
exceeding a thousand. Such limited sample sizes introduce statistical 
uncertainty, leading to imprecise measurements, variable effect sizes, 
and an increased risk of false positives and false negatives in disease 
detection [167,168]. Therefore, these statistical limitations collectively 
weaken the statistical power of the studies. Although larger sample sizes 
would be ideal, practical implementation presents challenges, including 
difficulties in participant recruitment and conducting multi-center 
studies with diverse clinical conditions and acquisition protocols 
[169]. Initiatives like the Human Connectome Project (HCP) [170] and 
UK Biobank [171] aim to collect data from thousands of participants, 
offering potential solutions. However, for highly complex DL models 
such as transformers, the current number of samples in these re-
positories would still be insufficient. Another approach gaining popu-
larity is the use of data augmentation techniques [172–174], which will 
be discussed in section 4.3. For example, Lu et al. [82] employed syn-
thetic data for the initial training of the U-net model. Subsequently, real 
samples are utilized to fine-tune the pre-trained model. 

In relation to this problem, the literature also refers to the “Curse of 
Dimensionality” [175]. It arises from the imbalance between the num-
ber of samples (sample size) and the number of features used in 
computational systems. Neuroimaging data, such as brain imaging 
scans, encompass a vast number of voxels, often reaching millions, with 
additional features derived from anatomical and physiological mea-
surements [176,177]. To mitigate the “Curse of Dimensionality", feature 
selection and feature extraction techniques have been widely employed 
in traditional ML-based CAD systems [22,178–180]. However, such 
approaches are less meaningful in DL, as DL architectures inherently 
perform feature extraction and subsequent classification [181,182]. 
Precisely, the capacity of NN architectures to generalise is currently 
under discussion [183,184], as their complexity increases, they may 
even learn from corrupted data (permutation of data labels) [185]. 
Thanapol et al. [186] applied data augmentation during the training of a 
CNN to test its effect on the overfitting and generalization ability of the 
model. In this context, frameworks to assess the reliability of classifi-
cation performance in neuroimaging is a current issue [187,188]. C. 
Jimenez-Mesa et al. [162] proposed a non-parametric framework to 

assess such statistical significance of the ML models. In this study, not 
only is the generalizability of the models assessed, but there is also a 
suggestion that the validation method employed in neuroimaging may 
not be well suited to the small sample size, as discussed by Isaksson et al. 
[189]. Therefore, an alternative method based on resubstitution with 
upper-bound correction is proposed. 

This issue is also encountered in voxel-based morphometry studies, 
where classical techniques tend to produce numerous false positives or 
rely heavily on sample size [147]. Thus, recent ML-based methods opt 
for mapping based on ROIs and dimensionality reduction techniques 
[155,190]. 

4.1.3. Evaluation 
A limited sample size is one of the major challenges when designing 

CAD systems. Intimately tied to this challenge is the method employed 
to assess the implemented algorithms. The effectiveness of our approach 
significantly hinges on how we partition the data, whether through 
training and test sets, cross-validation, substitution, or other means. To 
illustrate, when dealing with a initially small sample set and employing 
k-Fold cross-validation, we encounter substantially reduced subgroups 
characterized by considerable result variability within each [168]. 
Therefore, the sample size, the generalization ability, and the perfor-
mance evaluation approach of the implemented ML techniques are 
closely related to the reliability of the CAD system. 

While robust systems are typically obtained with large datasets and 
low generalization error, concerns arise with models based on DL that 
may still exhibit low generalization error even with corrupted data or 
manipulated labels [185,191]. Detecting and measuring these issues 
becomes essential, leading to the need for methods to assess the 
generalization capacity of NNs [183,184,186,192]. The reliability of 
classification results in neuroimaging has already been studied, with a 
focus on evaluating if the estimated accuracy surpasses chance perfor-
mance [187,188]. Permutation methods are commonly employed for 
this purpose [193]. Additionally, the literature proposes statistical 
power and type I error analysis methods [194,195], including compar-
isons between cross-validation (CV) and resubstitution methods [162]. 
CV may not be effective for small sample sizes, leading to controversial 
predictive power of the classifier [168,189,196]. Hence, the application 
of a resubstitution approach with an upper bound correction [196,197] 
provides a worst-case accuracy estimate comparable to that of the CV 
test subset. The advantage lies in utilizing the complete dataset without 
dividing it into folds, thus enhancing the reliability of accuracy 
estimation. 

Another significant challenge emerges when DL models, initially 
trained on one dataset, demonstrate less-than-optimal performance 
when applied to a different dataset. This phenomenon, known as dataset 
shift or domain adaptation, underscores the complexity of assessing a DL 
model’s robustness and generalization capabilities [198]. The inherent 
variability between datasets, stemming from differences in acquisition 
protocols, demographics, and other factors, makes it difficult to estab-
lish a one-size-fits-all evaluation framework. Consequently, researchers 
are faced with the task of developing evaluation strategies that not only 
account for the model’s performance within its training dataset but also 
its adaptability to novel data sources [199–201]. This aspect of model 
evaluation remains an ongoing challenge in the field of deep learning for 
medical applications. 

4.1.4. Interpretability 
In addition to the crucial aspect of reliability, another significant 

challenge in the application of ML models, especially complex ones like 
DL, is the issue of interpretability. ML algorithms, particularly deep NNs, 
are known for their black-box nature, where they make predictions 
without providing explicit explanations for their decisions. This lack of 
interpretability poses challenges in understanding the underlying 
reasoning and factors driving the model’s predictions. The interpret-
ability of ML models is of paramount importance in various domains, 
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including neuroimaging and healthcare. Clinicians and medical pro-
fessionals need to have confidence in the model’s predictions and un-
derstand the rationale behind them before they can fully trust and adopt 
these technologies for clinical decision-making. Additionally, regulatory 
authorities often require transparent and interpretable models to ensure 
patient safety and ethical considerations. 

Addressing the interpretability challenge is an active area of research 
in ML and DL that has a lot of future research ahead of it. Various 
techniques, such as model visualization [202], feature importance 
analysis [203], and attention mechanisms [204], aim to shed light on 
the internal workings of complex models and provide explanations for 
their predictions. These techniques could be encompassed in the concept 
of eXplainable Artificial Intelligence (XAI) [205]. XAI techniques aim to 
enhance the transparency and understandability of complex models, 
enabling researchers and clinicians to gain insights into the underlying 
mechanisms of disorders and treatment responses [206,207]. These 
techniques allow for the identification of key features, e.g. regions in 
brain images, that contribute most to the model’s predictions. This helps 
in understanding the relationships between specific ROIs and diseases, 
as well as the impact of certain features on diagnostic or prognostic 
decisions. XAI methods can generate visual explanations, such as sa-
liency maps [204,208] or Grad-CAMs [202], highlighting the regions 
that are most relevant for the model’s decision-making process. There-
fore, these techniques, which make ML models more transparent and 
interpretable, enhance the trustworthiness and adoption of ML models 
in clinical applications, since clinicians are more likely to embrace and 
integrate ML-based technologies into their practice if they can 
comprehend how the model arrived at a specific diagnosis or treatment 
recommendation [206]. For example, M. Nazari et al. [209] applied an 
explainable method to clinically analyzed the CNN-based classification 
of DAT-SPECT in patients with clinically uncertain parkinsonian syn-
dromes. Moreover, these techniques are not only useful for classification 
assessment or pattern detection in imaging, but can even be applied to 
cognitive testing [210], which could lead to a reduction in the number of 
tests to be undertaken by the patient. 

4.2. Opportunities 

Throughout this work, we have already seen that the advantages 
offered by the application of ML and DL models in radiology are many 
and intriguing. In this section, the most relevant clinical opportunities 
are highlighted. 

An evident trend in the literature is the consistent improvement in 
diagnostic accuracy due to ML algorithms [132,157,211], with reported 
accuracies exceeding 95% in studies related to conditions like PD and 
AD [12,133]. Consequently, ML algorithms hold substantial promise for 
elevating the precision of SPECT and PET imaging by uncovering subtle 
patterns and features that often challenge human interpretation, ulti-
mately leading to more precise and dependable diagnoses. Furthermore, 
strategies to overcome the challenge of small sample sizes, as discussed 
in Section 4.1, encompass a range of approaches such as dimensionality 
reduction techniques [22,178] and refinements in validation method-
ologies [162,196], all aimed at bolstering model generalization. 

Another important breakthrough is emerging in personalized medi-
cine. ML models play a pivotal role in this paradigm, which represents a 
cutting-edge approach that holds great promise for revolutionizing 
healthcare, by harnessing the power of diverse patient data to develop 
personalized treatment plans that cater to individual needs and char-
acteristics. In this sense, the identification of patient-specific biomarkers 
though ML models is of great interest [120,122]. These models have the 
ability to efficiently process and analyze vast amounts of data from 
different sources, including imaging scans, genetic profiles, and clinical 
records. Therefore, by integrating such a diversity of data, ML models 
can uncover intricate patterns and correlations that might be otherwise 
overlooked, leading to a comprehensive understanding of a patient’s 
unique health profile. These biomarkers can be indicative of disease 

progression, treatment response, or potential adverse effects as reported 
in the works discussed in Section 3.3. 

Additionally, it has been discussed that ML models can predict 
treatment response, allowing physicians to make informed decisions 
about the most suitable therapeutic approaches for each patient [99, 
139]. These predictions are based on comprehensive analyses of past 
patient data and clinical outcomes, enabling healthcare providers to 
identify the most effective treatments for specific disease subtypes or 
patient population. 

Finally, another opportunity to highlight is the radiopharmaceutical 
optimization. Radiopharmaceutical optimization through ML tech-
niques represents a significant advancement in the field of SPECT and 
PET imaging, offering the potential to enhance the overall effectiveness 
and safety of these diagnostic procedures, e.g. changing the dose plan-
ning or administration schedules. Radiopharmaceuticals are essential 
components of nuclear medicine imaging, and their proper utilization is 
crucial for accurate disease diagnosis and patient management. More-
over, it has been seen in Section 3.1 that ML techniques can help address 
adquisition and reconstruction challenges, such as motion artifacts [95], 
attenuation artifacts [87] or denoising [82,85], which could allow a 
reduction in the dose of radiopharmaceutical required due to better 
image quality. 

4.3. Future prospects 

In this section, the emerging trends related to the application of ML 
and DL algorithms in SPECT/PET modalities are further discussed. 
Specifically, the domains that we consider to have the potential for the 
greatest growth and relevance for clinical research are transfer learning 
and data augmentation, generative AI and real-time decision support 
systems. 

Transfer learning and data augmentation are already mentioned 
research areas that will be of great relevance in addressing the reliability 
of CAD systems for SPECT and PET imaging. By leveraging pre-trained 
models on large datasets from related domains, ML algorithms can be 
enhanced even with limited SPECT and PET data, leading to improved 
diagnostic accuracy and robustness. Moreover, data augmentation 
methods offer a valuable solution to address the challenge of limited 
data. By artificially increasing the size and diversity of the dataset, data 
augmentation enables more comprehensive ML training. 

The use of synthetic samples generated through data augmentation 
can indeed enhance the robustness of ML models by introducing addi-
tional variability and diversity into the training data. However, it is 
crucial to acknowledge that such artificially generated variability may 
not always accurately represent the true clinical population. As a result, 
the reliability and clinical relevance of the ML model’s predictions might 
be compromised. The presence of synthetic patterns in the augmented 
dataset may lead the ML model to prioritize these patterns during the 
learning process, potentially overshadowing or missing important pat-
terns present in real samples. Consequently, the model’s performance on 
real data may be hindered, limiting its clinical utility within the context 
of a CAD system. Further progress is therefore expected in this field to 
improve the reliability of the systems that use data augmentation. 

Algorithms within Generative AI, like GANs and transformers, are 
likely to be the ones to continue the progress in the creation of synthetic 
images that complement data obtained from patients. For example, they 
can already generate standard scans from low-dose scanners [85,100] or 
provide information similar to what would be acquired through multi-
modal integration [60,81]. This reduces both the time patients are 
exposed to imaging and the overall cost [72]. Transformers, specifically, 
are expected to have a significant role, although addressing the issue of 
limited data, possibly through techniques like domain adaptation, is 
necessary. In summary, we anticipate increasingly comprehensive, 
transparent, and interpretable CAD systems that integrate information 
from various sources. 

These advances would not be possible without the improvement of 
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hardware and computing technology, which have played a crucial role 
in the development and adoption of ML and DL techniques [212,213]. 
The exponential growth in computational power has enabled efficient 
training and execution of more complex and deeper models. The use of 
graphics processing units (GPUs) and distributed systems has further 
accelerated the performance of ML algorithms, allowing for massive 
parallel processing. These evolution of both ML and DL algorithms and 
the hardware and software related to their implementation will make it 
possible to apply CAD systems that allow real-time decision support to 
be established in situ. This would enable clinicians to assist in rapid 
diagnosis and treatment planning, improving efficiency. 

5. Conclusions 

In conclusion, this work has highlighted the significant impact of ML 
and DL techniques in the field of SPECT and PET imaging. The inte-
gration of ML and DL algorithms has led to improvements in diagnostic 
accuracy by enabling earlier and more precise detection of diseases. 
These algorithms have demonstrated the ability to learn complex pat-
terns and extract relevant features from SPECT and PET images, leading 
to enhanced understanding of the condition under analysis (e.g. 
neurological disorders) and the identification of condition-specific 
biomarkers. 

The use of ML and DL in SPECT and PET imaging has also facilitated 
the prediction of disease prognosis and tracking of disease progression 
over time. This information can be invaluable for clinicians in making 
informed decisions and providing personalized patient care. Further-
more, ML and DL algorithms have contributed to the optimization of 
image acquisition, reconstruction, and denoising processes, leading to 
higher-quality images and more accurate interpretations. This has 
improved the overall reliability and clinical utility of SPECT and PET 
imaging. 

The integration of multimodal data, such as combining PET/SPECT 
images with MRI, has been made possible through ML and DL tech-
niques, providing a more comprehensive and enhanced understanding 
of diseases. 

Despite the remarkable advancements, several challenges need to be 
addressed. These include the limited availability of labeled and anno-
tated datasets, the need for interpretability and explainability of DL 
models, standardization of imaging protocols, and the generalization of 
models with limited sample sizes. 

Looking ahead, there are several promising avenues for future 
research. Further development of transfer learning techniques, XAI ap-
proaches, generative AI and multimodal integration can enhance the 
accuracy and clinical applicability of ML and DL in SPECT and PET 
imaging. Additionally, continued efforts in data sharing, standardiza-
tion, and collaboration between researchers and clinicians will be 
crucial for advancing the field. 

Overall, the applications of ML and DL in SPECT and PET imaging 
have demonstrated their potential to revolutionize the field, improving 
diagnostic accuracy, personalized medicine, and patient outcomes. 
Continued research and technological advancements in this domain 
hold great promise for advancing the capabilities of SPECT and PET 
imaging and transforming clinical practice in the future. 
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C. Jiménez-Mesa, J. Ramirez, et al., Advances in multimodal data fusion in 
neuroimaging: overview, challenges, and novel orientation, Inf. Fusion 64 (2020) 
149–187. 

[116] M. Quarantelli, K. Berkouk, A. Prinster, B. Landeau, C. Svarer, L. Balkay, 
B. Alfano, A. Brunetti, J.-C. Baron, M. Salvatore, Integrated software for the 
analysis of brain pet/spect studies with partial-volume-effect correction, J. Nucl. 
Med. 45 (2) (2004) 192–201. 

[117] R. Polikar, C. Tilley, B. Hillis, C.M. Clark, Multimodal eeg, mri and pet data fusion 
for alzheimer’s disease diagnosis. 2010 Annual International Conference of the 
IEEE Engineering in Medicine and Biology, IEEE, 2010, pp. 6058–6061. 

[118] A. Vitale, R. Villa, L. Ugga, V. Romeo, A. Stanzione, R. Cuocolo, et al., Artificial 
intelligence applied to neuroimaging data in parkinsonian syndromes: actuality 
and expectations, Math. Biosci. Eng. 18 (2021) 1753–1773. 

[119] J.-H. Kang, B. Mollenhauer, C.S. Coffey, J.B. Toledo, D. Weintraub, D.R. Galasko, 
D.J. Irwin, V. Van Deerlin, A.S. Chen-Plotkin, C. Caspell-Garcia, et al., Csf 
biomarkers associated with disease heterogeneity in early parkinson’s disease: the 
Parkinson’s progression markers initiative study, Acta Neuropathol. 131 (2016) 
935–949. 

[120] K. Gwinn, K.K. David, C. Swanson-Fischer, R. Albin, C.S. Hillaire-Clarke, B.- 
A. Sieber, C. Lungu, F.D. Bowman, R.N. Alcalay, D. Babcock, et al., Parkinson’s 
disease biomarkers: perspective from the ninds parkinson’s disease biomarkers 
program, Biomark. Med. 11 (6) (2017) 451–473. 

[121] S. Saiki, T. Hatano, M. Fujimaki, K.-I. Ishikawa, A. Mori, Y. Oji, A. Okuzumi, 
T. Fukuhara, T. Koinuma, Y. Imamichi, et al., Decreased long-chain acylcarnitines 
from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s 
disease, Sci. Rep. 7 (1) (2017), 7328. 

[122] Z. He, X. Zhang, C. Zhao, X. Ling, S. Malhotra, Z. Qian, Y. Wang, X. Hou, J. Zou, 
W. Zhou, A method using deep learning to discover new predictors from left- 
ventricular mechanical dyssynchrony for crt response, J. Nucl. Cardiol. 30 (1) 
(2023) 201–213. 

[123] A. Garg, S. Appel-Cresswell, K. Popuri, M.J. McKeown, M.F. Beg, Morphological 
alterations in the caudate, putamen, pallidum, and thalamus in parkinson’s 
disease, Front. Neurosci. 9 (2015), 101. 

[124] D. Castillo-Barnes, F.J. Martinez-Murcia, A. Ortiz, D. Salas-Gonzalez, J. RamÍrez, 
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Bodéré, D. Mateus, Leveraging rsf and pet images for prognosis of multiple 
myeloma at diagnosis, Int. J. Comput. Assist. Radiol. Surg. 15 (2020) 129–139. 

[140] M. Nakajo, K. Kawaji, H. Nagano, M. Jinguji, A. Mukai, H. Kawabata, A. Tani, 
D. Hirahara, M. Yamashita, T. Yoshiura, The usefulness of machine 
learning–based evaluation of clinical and pretreatment [18f]-fdg-pet/ct radiomic 
features for predicting prognosis in hypopharyngeal cancer, Mol. Imaging Biol. 25 
(2) (2023) 303–313. 

[141] Y. Toyama, M. Hotta, F. Motoi, K. Takanami, R. Minamimoto, K. Takase, 
Prognostic value of fdg-pet radiomics with machine learning in pancreatic cancer, 
Sci. Rep. 10 (1) (2020), 17024. 

[142] M. Nakajo, M. Jinguji, A. Tani, E. Yano, C.K. Hoo, D. Hirahara, S. Togami, 
H. Kobayashi, T. Yoshiura, Machine learning based evaluation of clinical and 
pretreatment 18 f-fdg-pet/ct radiomic features to predict prognosis of cervical 
cancer patients, Abdom. Radiol. (2022) 1–10. 

[143] J.A. Simón-Rodríguez, F.J. Martinez-Murcia, J. Ramírez, D. Castillo-Barnes, J. 
M. Gorriz, Modelling the progression of the symptoms of parkinsons disease using 
a nonlinear decomposition of 123i fp-cit spect images. International Work- 
Conference on the Interplay Between Natural and Artificial Computation, 
Springer, 2022, pp. 104–113. 

[144] B. Borroni, D. Anchisi, B. Paghera, B. Vicini, N. Kerrouche, V. Garibotto, A. Terzi, 
L. Vignolo, M. DiLuca, R. Giubbini, et al., Combined 99mtc-ecd spect and 
neuropsychological studies in mci for the assessment of conversion to ad, 
Neurobiol. Aging 27 (1) (2006) 24–31. 

[145] F. Segovia, J.M. Górriz, J. Ramírez, I. Álvarez, J.M. Jiménez-Hoyuela, S.J. Ortega, 
Improved Parkinsonism diagnosis using a partial least squares based approach, 
Med. Phys. 39 (2012) 4395–4403. 

[146] W.D. Penny, K.J. Friston, J.T. Ashburner, S.J. Kiebel, T.E. Nichols, Statistical 
Parametric Mapping: the Analysis of Functional Brain Images, Elsevier, 2011. 

[147] A. Eklund, T.E. Nichols, and H. Knutsson, Cluster failure: why fmri inferences for 
spatial extent have inflated false-positive rates, Proceedings of the National 
Academy of Sciences, 113, 7900–7905, 2016. 

[148] J.D. Rosenblatt, M. Vink, Y. Benjamini, Revisiting multi-subject random effects in 
fmri: advocating prevalence estimation, NeuroImage 84 (2014) 113–121. 

[149] I. Kim, A. Ramdas, A. Singh, L. Wasserman, Classification accuracy as a proxy for 
two-sample testing, Ann. Stat. 49 (1) (2021) 411–434. 

[150] K. Friston, Ten ironic rules for non-statistical reviewers, Neuroimage 61 (4) 
(2012) 1300–1310. 

[151] P.T. Reiss, Cross-validation and hypothesis testing in neuroimaging: an irenic 
comment on the exchange between friston and lindquist et al, NeuroImage 116 
(2015) 248–254. 

[152] M.A. Lindquist, B. Caffo, C. Crainiceanu, Ironing out the statistical wrinkles in 
“ten ironic rules, NeuroImage 81 (2013) 499–502. 

[153] K. Friston, Sample size and the fallacies of classical inference, NeuroImage 81 
(2013) 503–504. 

[154] J. Gorriz, et al., A connection between pattern classification by, machine learning 
and statistical inference with the general linear model, IEEE J. Biomed. Health 
Inform. (2021) 1. 

[155] J. Gorriz, C. Jimenez-Mesa, R. Romero-Garcia, F. Segovia, J. Ramirez, D. Castillo- 
Barnes, F. Martinez-Murcia, A. Ortiz, D. Salas-Gonzalez, I. Illan, C. Puntonet, 
D. Lopez-Garcia, M. Gomez-Rio, J. Suckling, Statistical agnostic mapping: a 
framework in neuroimaging based on concentration inequalities, Inf. Fusion 66 
(2021) 198–212. 

[156] O. Cigdem, I. Beheshti, H. Demirel, Effects of different covariates and contrasts on 
classification of parkinson’s disease using structural MRI, Comput. Biol. Med. 99 
(2018) 173–181. 

[157] H. Liu, J. Wu, E.J. Miller, C. Liu, Y. Liu, Y.-H. Liu, Diagnostic accuracy of stress- 
only myocardial perfusion spect improved by deep learning, Eur. J. Nucl. Med. 
Mol. Imaging 48 (2021) 2793–2800. 

[158] J. Zhang, Mining imaging and clinical data with machine learning approaches for 
the diagnosis and early detection of parkinson’s disease, NPJ Parkinson’s Dis. 8 
(1) (2022), 13. 

[159] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. 
Vanhoucke, and A. Rabinovich, Going deeper with convolutions, In: Proceedings 
of the IEEE conference on computer vision and pattern recognition, 1–9, 2015. 

[160] L. Friedman, G.H. Glover, Report on a multicenter fmri quality assurance 
protocol, J. Magn. Reson. Imaging.: Off. J. Int. Soc. Magn. Reson. Med. 23 (6) 
(2006) 827–839. 

[161] J.C. Morris, P.S. Aisen, R.J. Bateman, T.L. Benzinger, N.J. Cairns, A.M. Fagan, 
B. Ghetti, A.M. Goate, D.M. Holtzman, W.E. Klunk, E. McDade, D.S. Marcus, R. 
N. Martins, C.L. Masters, R. Mayeux, A. Oliver, K. Quaid, J.M. Ringman, M. 
N. Rossor, S. Salloway, P.R. Schofield, N.J. Selsor, R.A. Sperling, M.W. Weiner, 
C. Xiong, K.L. Moulder, V.D. Buckles, Developing an international network for 
Alzheimer’s research: the dominantly inherited alzheimer network, Clin. Investig. 
2 (2012) 975–984. 

[162] C. Jimenez-Mesa, J. Ramirez, J. Suckling, J. Vöglein, J. Levin, J.M. Gorriz, A non- 
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