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 

Abstract— The Voxels-in-Cell (VIC) method was recently 
introduced for reducing the computational cost of the finite-
difference time-domain (FDTD) method with objects composed 
with dielectric voxels. It relies on using a FDTD cell larger than 
the voxels, with eight or more voxels in each VIC cell. With the 
objective of using it in bio-electromagnetics applications, this 
paper extends the VIC method to voxels filled with Debye media. 
Beside the theory and the algorithm of the extended VIC method, 
several numerical experiments are reported with a canonical 
object and with human body phantoms composed with voxels. 
The experiments show that the accuracy of the method is 
preserved while large reductions of the computational 
requirements can be achieved, especially the computational time 
can be reduced by about one order of magnitude. 

 
Index Terms- FDTD, Voxels, bio-electromagnetics, phantom, 
Debye media.  

I. INTRODUCTION 

he Voxels-in-cell (VIC) method was introduced in [1] 
with the objective of reducing the computational cost of 
FDTD simulations, when the object of interest is given as 

a set of voxels. The idea behind the method consists in using a 
FDTD cell larger than the voxels, with for instance eight 
voxels in each cell. The framework of the VIC method [1] is 
summarized in Fig. 1. As compared to using cells equal in size 
to the voxels size, the overall number of cells is widely 
reduced while the FDTD time step can be enlarged, resulting 
in a large reduction of the computational burden.  

Initially presented with pure dielectric objects [1], the VIC 
method is now extended to dispersive Debye media. This 
allows the method to be used in bio-electromagnetics, where 
the human phantoms are composed with voxels assumed as 
Debye media [2]. Such an achievement was not possible with 
methods [3, 4, 5, 6], since they are limited to a single interface 
splitting the FDTD cell into two parts, one filled with vacuum 
or dielectric, the other with a dispersive medium. Inversely,  
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Fig.1. The summary of the VIC method, as with dielectric media in [1]. With 
Debye media, in addition to E field computed in the slices and H field in the 
cells, the electric flux density D is computed in each voxel. (a) The Yee cell as 
usually defined, with E nodes on its edges, is filled with voxels. (b) The Yee 

cell shifted with x/2 and y/2 with respect to (a), with Ez node at its center, 
denoted as Ez(ig, jg, kg). (c) The Ez field in each slice, denoted as Ez(kv), is 
uniform, but discontinuous at the interfaces between slices, thus it is updated 
in each slice using the Maxwell-Ampere law that yields (12) in Debye media. 
From which Dz in each voxel of the slices is updated using equation (10). (d) 
Ez(ig, jg, kg) at the center of the cell in (b) or (c), to be used later for updating 
the neighbouring H components, is updated using equation (13) and Ez(kv) in 
the slices. Note that there is no need of computing Dz at the Ez (ig, jg, kg) node. 
The other electric field components, Ex and Ey, are treated using the same 
logic.   

 

the VIC method can handle the several non-parallel interfaces 
present in the FDTD cells when they are filled with voxels. 

The modifications of the theory for dealing with Debye 
media are described and experiments are reported with a 
canonical object and with the head of a human phantom, in 
both cases with VIC cells two times larger than the voxels 
(eight voxels in each VIC cell). The experiments show that the 
accuracy of the method is roughly similar to that with 
dielectric media [1]. A critical issue is addressed, namely the 
reduction of the computational requirements by using the VIC 
method in place of a fine grid with cells size equal to the 
voxels size. It is shown that reductions of the computational 
time of one order of magnitude can be achieved. Finally, 
simulations with two whole human phantoms illustrate what 
can be done with the VIC method using a personal computer. 
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II. DERIVATION OF FDTD UPDATE EQUATIONS  

B.1. A homogeneous FDTD cell: Let us assume that the 
electric flux density Dz is centred in the cell of sizes x, y, 
z. (same arrangement as in Fig. 1 (b), with Dz in place of Ez). 
The magnetic field nodes Hy- and Hy+ are situated x/2 from 
Dz, whereas the nodes Hx- and Hx+ are y/2 away from Dz. 
With the FDTD method, these components are used to update 
Dz by discretizing the integral form of the Maxwell-Ampere 
equation 
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where t is the time, x y is the surface perpendicular to Dz 

and Ch is the integral 
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where L is the contour path that surrounds surface x y and 
holds the four H nodes. Discretization of ��(�) at time n+1/2 
reads  
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Assuming that the flux Dz is homogeneous in the cell, 
discretizing the derivative on time in (1) yields 
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where ∆��
���/�

 is the difference between Dz values at times n 
and n+1  

∆��
���/�

=  ��
���  − ��

�. (5) 

The electric flux Dz and field Ez share the same FDTD nodes 
and the relationship that connects them for the one-pole Debye 
model reads  
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where �� is the optical permittivity �� is the static 
permittivity, �� is the vacuum permittivity, � is the static 
conductivity, � is the relaxation time and � is the angular 
frequency. Component Ez at time n+1 from (6) can be 
obtained in function of Ez and ∆Dz at previous time steps by 
using the discretized auxiliary equation similar to [[7], 
eq.(16)]. Using (5), flux Dz can be eliminated from the 
auxiliary equation that becomes   
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where  

�� =  � + � + 0.5�,         �� = 2� +  � − 0.5� 
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and 
� = �����/�,      � = (���� + ��)∆�/S 

C= �(∆�)�/S,         S=� + ∆�. 
 

We note that we have replaced the update of flux Dz with 
the update of its increment Dz over the time step, inversely to 
what is done in [7]. This permits the needed storage to be 
reduced, only Dz at one time step instead of Dz at two time 
steps. In addition, the algorithm is slightly more rapid. In 
human body applications, in general flux Dz is not needed, in 
case it is needed at some nodes, it can be obtained from Dz. 
The same substitution of Dz with Dz is used in the following 
with non-homogeneous cells which also reduces the needed 
memory. 

B.2. A non-homogeneous FDTD cell: Let us now address 
the case in Fig. 1 where the cell is non-homogeneous and split 
into Mi Mj Mk voxels, each with its own medium and indexes 
(iv, jv, kv), where iv ϵ (1, Mi), jv ϵ (1, Mj), kv ϵ (1, Mk). In a given 
slice, the component Ez is tangential to the interfaces between 
the voxels of the slice, and thus it is continuous through those 
interfaces. Since the cell size in FDTD is small compared to 
the wavelength, we can assume that Ez is uniform in the slice, 
i.e. it is the same in all the voxels of the slice. Inversely, Dz is 
not continuous at the interfaces, so that each voxel of the slice 
has its own Dz. The Maxwell-Ampere (1) law holds 
everywhere in the physical medium, including the slices 
composed of voxels. This allows us to derive the FDTD 
update of Ez and Dz as with a homogeneous cell, with only 
slightly more complicated mathematics, but without any 
further assumption on the Physics. For slice kv, (1) yields the 
discrete integral at time t 
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that can be discretized as 
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where ∆��
���/�

(��, ��, ��) is the increment of Dz(iv, jv, kv) in 
each voxel, similar to (5). In each voxel the same auxiliary 
equation (7) as in a homogeneous cell holds, which provides 
us with Mi Mj equations that can be rewritten as 
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where coefficients ��,��,��,��
 and ���,��,��

 depend on the 

physical parameters in voxel (��, ��, ��). Equations (9) and (10) 
form a set of MiMj +1 equations in slice kv for the unknown 
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���(��) and the MiMj unknowns ∆��
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(��, ��, ��). The set 

can be easily solved as the set of three equations in [[7], 
eq.(17)]  by using the MiMj equations (10), so as to replace the 

Mi Mj unknowns ∆��
���/�

(��, ��, ��) in (9). This yields 
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The sole unknown in (11),  ��
���(��), can then be obtained as 
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Once  ��

���(��) has been computed, the MiMj  

unknowns ∆��
���/�

(��, ��, ��) can be obtained by using the 
auxiliary equation (10) that holds in each voxel.  

After updating Ez(kv) and its x and y counterparts in all the 
slices of all the FDTD cells, the H components should be 
updated to complete the FDTD iteration. This can be done as 
with dielectric voxels in [1]. The standard FDTD algorithm 
can be left unchanged, we just need to place the average value 

< ��
��� > over z at each original Ez���, ��, ��� node of the 

FDTD cells, that is 
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������, ��, ��� =
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(13) 

Finally, with cells filled with voxels, the FDTD advance of 
Ez and ∆Dz components can be summarized as follows 

1. Compute ��
���(��) in each slice using (12).  

2. Compute  ∆��
���(��, ��, ��) in each voxel using (10). 

3. Compute the average of ��
���(��) in the cell (13), to 

be used later for the advance of H components with 
the standard FDTD equation. 

It can be shown that the above VIC method reduces to the 
previously presented method [8] in the special case of the 
transverse-magnetic (TM) polarization in two dimensional 
problems. 

III. THE METHODS WITH WHICH VIC IS COMPARED 

In the next sections, the VIC calculations are compared with 
similar calculations as in [1]: 

1/ a reference calculation using a FDTD fine grid, where the 

cell size is identical to the voxels size x, y, z, with each cell 

filled with one voxel. The E nodes are located on the edges of 
the fine cells, that are also the edges of the voxels, and the 
updates of the E components comply with the Maxwell-
Ampere law. With dielectric media [1], this just consists in 
averaging the permittivity’s in the four voxels surrounding the 
considered E node. With Debye media, the E field remains the 
same in the volume of the cell where the E node is centered, 
because it is continuous at the interfaces, but the D fields are 
different in the four media of that volume composed with four 
quarters of voxels. The problem is the same as in a slice of the 
VIC cells. This means that we can get one equation like (9) 
and four equations like (10). From which E can be updated 

with an equation like (12) and then Dz with four equations 
like (10). This solution is rigorous. A simpler implementation 
of Debye voxels has been sometime used with FDTD, it 
consists in shifting by half a cell the voxels in two directions, 
so as the E field to be updated is at the center of one voxel. 
Then, (4) and (7) can be applied. However, the shifts depend 
on the component, due to the FDTD staggered grid, which 
means that the medium is not rigorously the same for the three 
E components. This method is only an approximation. We 
performed some comparisons of the two methods. A 
significant difference was observed at some nodes, in the 
proximity of high contrast at interfaces or corners. In this 
paper, all the reported fine grid results were computed with the 
rigorous method. 

2/ a calculation denoted as AVG, using a coarse cell that has 
the same sizes and location as the VIC cell. The medium 
parameters used to update E equal the average values in the 

volume with dimensions of x, y, z and whose center is 
located at the E node. This reads, for component Ez(ig, jg, kg) in 
Fig. 1 

ꭙ���, ��, ��� =
∑ ∑ ∑ ꭙ(��, ��, ��)

��
����

��

����

��
����

�� �� ��
     (14)  

where ꭙ is either��, ��, �, or �. The medium is thus assumed 
as homogeneous in the AVG cell, so that both E and D can be 
updated using (4) and (7). 

IV. EXPERIMENTS WITH A COMPLEX CANONICAL OBJECT  

In this section, we report experiments with the 60x60x60-
VIC-cell canonical object mimicking the topology of the 
human body. Here, the three dielectric media in [1] are 
replaced with three human body media, skin, fat and bone. 
The parameters of the media are shown in Fig. 2. The 
computational settings are the same as in [1], i.e. voxel size 1 
mm3, VIC cell size (2 mm)3, VIC time step 3.66 ps, the object 
surrounded with a vacuum and a PML, and the incident plane 
wave propagating in y direction and polarized in z direction, 
with waveform 

                  ��(�) = 100 exp[−((� − 3�) �⁄ )�]   V/m         (15) 

where � = 134.5 ps. 
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Fig. 2: The object mimicking the human body with three Debye media.  δ=5 
VIC cells. Points denoted as Co-3, Ed-2 and Ed-3, are locations of corner and 
edges, respectively, where E fields are plotted in Figs. 3-4. There are 8 
different situations of the object with respect to the VIC grid, as with the same 
object in [1], and more generally, as with any object when there are 8 voxels 
in the VIC cell, e.g. situation 1 with the Co-3 at (i0, j0, k0) in ([1], Fig. 16), 
situation 2 at (i0-1/2, j0, k0), situation 3 at (i0, j0+1/2, k0), situation 4 at (i0-1/2, 
j0+1/2, k0), situation 5 at (i0, j0, k0+1/2), situation 6 at (i0-1/2, j0, k0+1/2), 
situation 7 at (i0, j0+1/2, k0+1/2), situation 8 at (i0-1/2, j0+1/2, k0+1/2).  The 
electric fields were recorded at nodes A and C of Co-3, and at nodes R, R′, S, 
S′ and T of Ed-2 and Ed-3.           
 

The situations of the corners of the object are defined as in 
[1] where they are represented and numbered in the 2D case in 
Fig. 6 and numbered in the 3D case in Fig. 16. In 3D the 
corner represented in Fig. 16, in grey, is the situation 1, while 
for instance situation 3 in 3D corresponds to a corner situated 

at (i0-1/2, j0+1/2, k0), i.e. shifted to the right with y/2 with 
respect with the corner in situation 1. Figs 3 reports the Ey and 
Ez fields at the inner corner denoted as Co-3 (Fig. 2) which is a 
point the three media have in common, while Fig. 4 shows E 
fields at the inner edge Ed-2 between skin and fat and Ed-3 
between fat and bone. The exact locations A, C, R, S, R’, S’, T 
of the plotted E are the same as in ([1], Figs. 16 and 22).  The 
same situations of the object are plotted, so that we can 
compare Figs. 3 and 4 with Figs. 27 and 28 in [1]. 
 

 
(a) 

 

 
(b) 

 
Fig. 3: Results at the corner Co-3. Comparison of fine grid E with VIC E (a) 
at node A and (b) at node C. The errors at both cases are so small in all the 
situations that any situation can be considered as almost exact. 
 

Results in Fig. 3 are roughly similar to the ones in ([1], Fig. 
27). However, the magnitude of the fields, especially the peak 
values, are lower with the Debye media than with the pure 
dielectric media. And the oscillations of the fields are 
significantly reduced, which is due to the presence of loss 
terms with the Debye media, while the pure dielectric media 
are lossless. Similar reductions of the magnitudes are observed 
in the vicinity of the edges (Fig. 4), but with little reduction of 
the oscillations of the fields. 

 

 
(a) 

 

 
(b) 

 
Fig. 4: Results with situation 4, (a) at edge Ed-2, where node T results are 
multiplied with 0.25 and (b) at edge Ed-3, where node T results are multiplied 
with 0.5. 
 

Concerning the difference between the VIC results and the 
fine grid results, i.e. the VIC error, in Figs. 3 and 4 it is quite 
small as in the pure dielectric cases ([1], Figs. 27 and 28). 
Especially, the VIC component tangential to the edge, that is 
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not singular (node T in Fig. 4), is superimposed to the fine 
grid component, as with pure dielectric media.  

The observations on Figs. 3 and 4 are general. At any 
outputted node the agreement of VIC with fine grid 
calculation is similar to that observed with pure dielectric 
media, in both cases there is a significant difference only for 
the components that are singular at corners or edges. 
Concerning the magnitude of the field within the object, it 
depends on the situation of the observation. From the outer 
surface of the object to its interior, the field decreases faster 
than in the pure dielectric case, because of the propagation in 
the lossy Debye media. 

  

 
Fig. 5: The overall average error of the electric field Ez in situations 5 and 8 of 
the object (the largest errors of VIC). It includes all nodes in the object and 3 
VIC cells of its surrounding vacuum. 
 

Fig. 5 reports the average of the VIC and AVG errors on the 
60x60x60-cell object surrounded with a layer of vacuum 3 
cells in thickness, computed as in [1]. Comparing Fig. 5 with 
([1], Fig. 30), the errors are quite similar at early time, but at 
late time the errors in Fig. 5 are significantly smaller because 
of the losses in the human body media.   

V. SIMULATIONS WITH A HUMAN PHANTOM HEAD 

We performed simulations with the head of the Voxel-
Phantom provided by IT’IS Foundation (Zurich, Switzerland) 
[9]. The voxel size is 1 mm3. The simulation scenario is 
depicted in Fig. 6. In both the fine grid and the VIC grid, we 
imported a part of the Phantom composed with 192x252x224 
voxels, that can be viewed as composed with 224 slices 
perpendicular to direction z and one voxel in thickness (Fig. 
6). Each slice has 192x252 voxels in (x, y) directions. Note 
that the voxels of each slice are filled with either head media 
or vacuum. The fine grid was a FDTD domain of 
240x300x272 cells, surrounded with a 12-cell PML. The head 
(Fig. 6) was imported in the centre of the domain, which 
means that there were a 24-cell layer of vacuum between the 
slices in Fig. 6 and the PML. In the VIC grid, the cell was (2 
mm)3 in size. The imported head (Fig. 6) was composed with 
VIC cells, each one with eight voxels inside, which means 96 
VIC cells in x direction, 126 in y direction, and 112 in z 
direction. The VIC counterpart of the 192x252x224 voxels or 
fine grid cells was thus a VIC grid of size 96x126x112. It was 
surrounded with a layer of vacuum 12 cells in thickness, 
having the same physical thickness as the 24-cell layer of 
vacuum in the fine grid. For the convenience of encoding, the 
12-cell layer of vacuum was the addition of a 2-cell VIC layer 

and a 10-cell layer of usual FDTD cells, in the manner of ([1], 
Fig. 4). A 12-cell PML was placed outside the vacuum. In 
total, the overall FDTD domains were 264x324x296 for the 
fine grid calculation and 144x174x160 for the VIC and AVG 
calculations. The Debye parameters for all human tissues in 
the phantom are presented in [10]. The incident plane wave 
and the FDTD steps were the same as in Sec. IV. Inversely to 
the previous experiments, we did not vary the situation of the 
phantom in the VIC grid, we considered only the situation 
resulting from the import of the 192x252x224-voxel part of 
the phantom that just fits a 96x126x112-VIC grid. 

 

 
 

Fig. 6: The 3D human head model was imported from the human phantom [9] 
in the form of 224 slices of 192x252 voxels. Each tissue was associated with 
its own one-pole Debye parameters [10]. The observation points P1, P2, and 
P3, were located behind the left eyeball, in the cranial portion of skull, and in 
the white matter, respectively.  
 

Fig. 7 reports the three field components at their nodes 
closest to points P1, P2, and P3 in Fig. 6. We can see that the 
VIC results agree very well with the reference fine grid 
solutions, at P1, P2, and P3. Inversely, the AVG results depart 
from the reference solutions at P1 and P2, especially at P1 
where Ex and Ez are strongly erroneous.  

 

 
(a) 
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(b) 

 

 
(c) 

 
Fig. 7: Results with Fine Grid, VIC and AVG methods (a) at P1, (b) at P2, 
and (c) at P3, within the head of the phantom. 

 
The interpretation of the results is complex in such a 

strongly non-homogeneous structure, where errors 
propagating from neighbouring nodes may be added to the 
local error. However, beside the excellent agreement of VIC 
results with the references, the discordance of AVG results in 
Fig. 7 seems in accordance with the situations of locations P1, 
P2, and P3.  At P1, the eight voxels that surround the plotted 
Ez VIC node (see the situations of the components w.r. the 
voxels in [1], Fig. 15) are filled with different media, some 
with fat, some with muscle, whereas the voxels that surround 
Ex and Ey are all filled with fat. From this, Ez is discontinuous 
in the volume composed with the eight voxels [1], which 
results in the large error of AVG in Fig. 7a. At P2, this is Ey 
that is discontinuous, the surrounding voxels are filled either 
with skull or cerebrospinal fluid, whereas Ex and Ez VIC nodes 
are in homogeneous skull medium. The lower AVG errors in 
Fig. 7b are, at least in part, due to the lower contrast of the 
media at P2. At P1 the permittivity’s of fat and muscle are 
about 5.5 and 57, respectively, while at P2 the permittivity’s 
of skull and cerebrospinal Fluid are about 14 and 70. At P3, 
VIC, AVG, and fine grid results are almost superimposed. 
This is because P3 is in homogeneous region (white matter) 
from which no local error is produced by AVG which is 
equivalent to VIC.  

Fig. 8 reports the average of the VIC and AVG errors on the 
phantom head surrounded with 2 VIC cells of vacuum, 
computed as in [1], except that the nodes where |E| is lower 
than 1 V/m are excluded. The errors are smaller than with the 
canonical object in Fig. 5, because 1/the object is larger so that 
the part of the object where the incident field is small is larger, 
and 2/the propagation of the field in the lossy Debye media is 
longer. The ratio of AVG error to VIC error is slightly smaller 

than in Fig. 5 which may be, at least in part, due to the lower 
contrast between media in the head which may reduce the 
AVG error. As in the dielectric case [1], the VIC method is 
stable, we have not found any instability with more than 5 000 
VIC time steps in all the simulations. 

 
Fig. 8. The overall average error of the electric field components. It includes 
all the nodes within the head of the phantom and 2 VIC cells of its 
surrounding vacuum, but the nodes where |E| < 1.0 V/m were excluded. 

VI. THE OPTIMIZED ALGORITHMS FOR REDUCTION OF THE 

CPU TIME   

With dielectric media and VIC cells two times larger than 
the voxels, the CPU time is in theory reduced with a factor of 
16, as compared to a simulation using a cell equal in size to 
the voxels [1]. With Debye media, things are different, 
because of the more complex relationship between E and D 
vectors, which results in more complex updates. More 
specifically, E must be updated in each slice with (12), while 
D must be updated in each voxel with (10), which means 10 
update equations per cell. From this, there is no such simple 
theoretical reduction of CPU time as with dielectric media. 
Estimates of the ratio of CPU times by counting the numbers 
of operations suggest that the reduction of CPU times is lower 
than with dielectric media. This has been confirmed by 
experiments. 

TABLE I 

NUMBER OF HOMOGENEOUS AND NON-HOMOGENEOUS VIC-E CELLS IN THE 

PHANTOM HEAD 
 

Nodes 
Homogeneous cells 

(iflag=1) 
Non-Homogeneous cells 

(brute force) 
VIC-Ex 359066 226172 

VIC-Ey 359292 226044 

VIC-Ez 361089 222543 

 
In the above as well as in [1], it is implicitly assumed that all 

the VIC cells surrounding components Ex, Ey, Ez, are non-
homogeneous, i.e. as if all the eight voxels were different. 
Actually, this is not true in most applications, especially in 
bioelectromagnetics, where the phantoms are composed with 
homogenous organs, separated with interfaces. So that parts of 
the VIC cells are homogeneous, with eight identical voxels, 
and the remaining VIC cells are non-homogeneous, usually 
with less than eight different voxels. As an example, in the 
phantom head in Fig. 6, approximately 60% of VIC cells in 
the head are homogeneous as indicated in Table I, where, for 
instance, VIC-Ex denotes the VIC cell having Ex at its centre. 
This suggests that the CPU time could be reduced by using 
simplified updates in some VIC cells instead of the general 
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updates (12) and (10), especially in the homogeneous ones 
where the update reduces to (4) and (7), which means 2 update 
equations instead of 10. We refer to the general case were all 
the eight voxels are different as the "brute force" update.  

 
Fig. 9. Algorithm 1: simplified updates in the homogeneous VIC cells and 
brute force update in the inhomogeneous ones, using just one “if” tests.  

 
The reduction of CPU time can be achieved gradually by 

initially focusing on the update process for the simplest VIC 
cells. To begin with, assuming the brute force update is 
already implemented, the first step is to incorporate the 
treatment of homogeneous VIC cells. Assuming that each VIC 
cell, e.g. Ez VIC cell, has been provided with a flag before 
loop on time which equals 1 (iflag=1) if the VIC cell is 
homogeneous, then the block diagram of the update of the 
VIC cells would be as in Fig. 9. With just this simple addition 
of treatment of homogeneous cells, the CPU time for updating 
the Debye object will be widely reduced, since about 60% of 
the cells in the head will have iflag=1 and thus will be updated 
with (4) and (7). Concerning the VIC cells outside the Debye 
object and filled with vacuum, if any, as the ones in the slices 
of the imported head (Fig. 6), they can be updated as usual 
FDTD cells in vacuum, so that one can consider that a branch 
with for instance iflag=0 could be added to the diagram in Fig. 
9 to update these cells. 

 

 
Fig. 10: Algorithm 2: with treatment of VIC cells with at least one 
homogeneous slice. 
 

The next step in the optimization process involves 
addressing VIC cells that have at least one homogeneous slice. 
This comprises three cases, 1/the two slices are homogeneous 
but with different media, 2/slice 1 is homogeneous while slice 
2 is non-homogeneous, and 3/the inverse case. Table II 
provides with the number of non-homogeneous cells in the 
three cases, for the same head phantom as in Table I. We can 

introduce additional flags, before the time loop, corresponding 
to the three cases. Specifically, we assign "11" if both slices 
are homogeneous but with different media, "12" if the first 
slice is homogeneous and the second slice is non-
homogeneous, "21" if the first slice is non-homogeneous and 
the second slice is homogeneous. This optimization is 
visualized using a block diagram as Fig. 10, similar to Fig. 9. 

TABLE II 

NUMBER OF VIC-E CELLS HAVING AT LEAST ONE HOMOGENEOUS  SLICE  IN 

THE PHANTOM HEAD 

Nodes 
Both slices 

Homog. 
(iflag=11) 

Homog. 
Slice 1 

(iflag=12) 

Homog. 
slice 2  

(iflag=21) 

Other 
(brute force) 

VIC-Ex 18202 63396 63049 81552 
VIC-Ey 8614 56183 56366 104881 
VIC-Ez 11119 52276 52125 107023 

 
From Table II, about 60 % of the non-homogeneous cells in 

Table I belong to one of the three cases where at least one 
slice is homogeneous, which means about 25 % of all the VIC 
cells where equation (12) and 4 equations (10) can be replaced 
with equations (4) and (7) at least in one slice. The remaining 
cells to be updated with brute force only represent about 17% 
of the total number of VIC cells (about 100 000 out of 
580 000).  

TABLE III 

CPU TIME (s) WITH VIC AND FINE GRID FOR THE PHANTOM HEAD 
 

 
VIC 

rigorous         
fine grid 

approximate 
fine grid 

Brute force 11.9 102.6 62.5 
Algorithm 1 8.6 81.3 N. A. 
Algorithm 2 8.3 N. A. N. A. 

 
Table III reports the CPU times for 100 VIC iterations (11th 

Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz), with the 
head phantom and brute force, algorithm 1, and algorithm 2 
calculations, along with the CPU times for 200 iterations of 
the two fine grid calculations (section III). All the CPU times 
are the ones devoted to the Debye cells, excluding the 
surrounding cells of vacuum in Fig. 6. With the rigorous fine 
grid method, equation (12) and four equations (10) are used to 
update E and the four D’s in the non-homogeneous cells, 
while (4) and (7) are used in homogeneous cells. This is the 
same strategy as with VIC i.e. an algorithm like Algorithm 1 
of VIC can be applied. With the approximate fine grid 
method, all the cells are homogeneous, and updates (4) and (7) 
are used everywhere. 

TABLE IV 

REDUCTION FACTOR OF CPU TIME ACHIEVED WITH VIC FOR THE 

PHANTOM HEAD 

 v. s.  rigorous fine 
grid 

v. s.  approximate 
fine grid 

Brute force 8.62 5.75 
Algorithm 1 9.45 7.27 
Algorithm 2 9.80 7.53 

 
One can see in Table III that even with the brute force VIC 

updates, the CPU time of VIC is widely smaller than with the 
rigorous fine grid updates (11.9 s instead of 102.6) or with the 
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approximate fine grid (62.5 s). Algorithm 1 further reduces the 
CPU time significantly (8.6 s), but Algorithm 2 achieves little 
additional reduction (8.3 s). Table IV presents the reduction 
factors of CPU times deduced from Table III (ratios of VIC 
times over fine grid times). With respect with the rigorous fine 
grid method, most of the reduction of CPU times is achieved 
with the brute force updates, further reductions with 
algorithms 1 and 2 are relatively small. This is because we 
applied to the fine grid the equivalent of algorithm 1 which 
reduces the CPU time (81.3 s v.s. 102.6). Inversely, with the 
approximate fine grid method, no reduction of CPU time is 
possible, so that when using algorithms 1 or 2 with VIC, the 
difference with the brute force VIC is larger.  

Finally, with the head phantom, the reduction of CPU time 
is smaller than with dielectric media [1], but it remains large, 
close to an order of magnitude, especially with the refinements 
of algorithms 1 or 2. This was also observed with the 
canonical Debye object in section IV with which the reduction 
factors were higher than with the head phantom because the 
proportion of homogeneous VIC cells was larger.  

Concerning the memory requirements, the VIC method 
needs storage of the 3 H components, the 3 E components in 
the two slices and at two time steps (12), and the 3 D 
components in each voxel. For a number of VIC cells Nvic, this 
results in 39 Nvic real numbers. Similarly, for a number of fine 
grid cells Nfine = 8 Nvic, the rigorous fine grid method needs 
storage of 3 H, 6 E, 12 D, in total 21 Nfine = 168 Nvic. For the 
approximate fine grid method, 12 Nfine = 96 Nvic. From this, the 
VIC method memory needs are reduced with factors about 4.3 
and 2.4 with respect with the fine grid methods. In actual 
computations, additional arrays may be used to store 
coefficients of the update equations before the loop on time. 
Especially c1, c2, c3 in (12) for the 3 E components, in 2 slices, 
which needs 18 Nvic memories, to be added to the 39 Nvic for 
storing the field components. Even with in addition storage of 
some other data, as the flags used with algorithms 1 and 2, the 
memory needs of the VIC method are always lower than those 
of a fine grid calculation, at least a factor of two with the 
rigorous one. As an example, with the head phantom, whose 
reduction of CPU times are given in Table IV, the memory 
needs were 1.1 GB with VIC, 3.1 GB with the rigorous fine 
grid, and 1.8 GB with the approximate fine grid. 

VII. VIC-SIMULATIONS WITH WHOLE HUMAN BODY 

PHANTOMS 

    This section illustrates what can be done using the VIC 
method on a personal computer (PC). We present the 
simulation results with two full-body phantoms. Firstly, with 
the full body of the head phantom that we used in section V, 
referred to as the “male phantom”. Secondly, with the "female 
phantom" in [9]. The male phantom consists of 610x310x1840 
voxels, while the female phantom is composed of 
530x300x1650 voxels, in both cases with a voxel size of 1 
mm3. The incident wave is the same as in Sec. V. Fig. 11 
presents the simulation results at two locations, within the skin 
of the outer abdominal region, and the heart muscle. Note that 
the plotted E fields significantly depend on the considered 
phantom, an influential parameter is probably the size. 

 

 
Fig. 11: The observation of Ez within skin and heart muscle of human 
phantoms. 
 

The sizes of the FDTD domains of the VIC computations 
are presented in Table V. They include a 12-cell layer of 
vacuum surrounding the phantoms and a 12-cell PML. As can 
be seen, both the memory needs and the CPU times are 
compatible with use of a PC, even without parallel computing. 
Using the same PC, the corresponding fine grid calculation 
would need a memory larger than 64 GB, which is usually not 
possible (most PCs are limited to 64 GB).  

TABLE V 

MEMORY AND CPU TIME MEASUREMENTS FOR THE HUMAN BODIES 
 

 Male Phantom Female Phantom 

Voxels 610x310x1840 530x300x1650 

Total FDTD cells 353x203x968 313x198x873 

CPU Time (min.) 46.2 35.4 

Memory (GB) 30.3 23.0 

VIII. CONCLUSION  

The Voxels-in-cell (VIC) method presented in [1] in the 
case of pure dielectric objects, has been extended to dispersive 
Debye media, in view of applications to bioelectromagnetics. 
Several experiments have shown that the accuracy and the 
limitations of the method are roughly similar to the ones 
observed with dielectric objects. The VIC method is by far 
more accurate than the averaging method, a significant error 
occurs only in the close vicinity of the singularities of the E 
field, which is inherent to the larger size of the VIC cell. The 
limitations are obviously the same as in [1], mainly the upper 
frequency cut-off which is lowered with the ratio of the VIC 
cell to the voxels size. 

The reduction of the computational requirements is lesser 
than with dielectric objects, due to the complex constitutive 
relation of the Debye media, but it remains high, especially for 
the CPU time which is reduced by about one order of 
magnitude with VIC cells two times the voxels size. The VIC 
method is stable with Debye media, its stability condition 
remains the CFL condition of the FDTD method, as with 
dielectric media in [1]. Finally, the VIC method could also be 
applied to such other dispersive media as the Drude or Lorentz 
media using their own auxiliary equations in place of the 
Debye media one. 
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