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ABSTRACT 
Developing students’ adequate functional reasoning requires paying attention 
to the design and planning of teaching from the first educational levels. This 
implies considering and progressively articulating the diversity of meanings 
of the function, attending to the generality and formalization levels that 
emerged in its historical evolution. In this paper, we review historical and 
epistemological studies on function using theoretical tools of the Onto-
semiotic Approach to characterize different levels of functional reasoning. 
We interpret meaning in terms of systems operative and discursive practices 
related to solving types of problems. In line with previous research, we 
identify partial meanings of function (operative-tabular, operative-graphic, 
algebraic-geometric, analytic, arbitrary correspondence between numerical 
sets, and mapping between arbitrary sets) that should be part of the overall 
reference meaning in the planning and management of function teaching and 
learning processes. This study provides a complementary view of the multiple 
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investigations that describe the phylogenesis of the concept of function in 
mathematics with a historical and epistemological approach. 

Keywords: epistemology; history; function; mathematics education; onto-se-
miotic approach. 
 

RESUMEN 
Desarrollar un adecuado razonamiento funcional en los estudiantes requiere 
prestar atención al diseño y planificación de la enseñanza de las funciones 
desde los primeros niveles educativos. Esto supone considerar la diversidad 
de significados de la función y articularlos de manera progresiva, atendiendo 
a los niveles de generalidad y formalización emergentes en las etapas de su 
evolución histórica. En este trabajo revisamos estudios históricos y 
epistemológicos sobre la función utilizando herramientas teóricas del 
Enfoque Ontosemiótico para caracterizar distintos niveles de razonamiento 
funcional. En particular, aplicamos la interpretación del significado en 
términos de sistemas de prácticas operativas y discursivas relativas a la 
resolución de tipos de problemas. De acuerdo con investigaciones previas, 
identificamos significados parciales de la función (operatorio-tabular, 
operatorio-gráfico, algebraico-geométrico, analítico, correspondencia 
arbitraria entre conjuntos numéricos y conjuntista) que pueden ser 
considerados como parte del significado de referencia global en la 
planificación y gestión de los procesos de enseñanza y aprendizaje de las 
funciones. Este estudio aporta una visión complementaria de las múltiples 
investigaciones que describen la filogénesis del concepto de función en 
matemáticas con un enfoque histórico y epistemológico. 

Palabras clave: epistemología; historia; función; educación matemática; en-
foque ontosemiótico. 

 

RESUMO 

O desenvolvimento de um raciocínio funcional adequado nos alunos requer 
atenção à conceção e planificação do ensino das funções desde os primeiros 
níveis de ensino. Isto implica considerar a diversidade de significados de 
função e articulá-los de forma progressiva, atendendo aos níveis de 
generalidade e formalização emergentes nas etapas da sua evolução histórica. 
Neste artigo, fazemos uma revisão dos estudos históricos e epistemológicos 
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sobre função, utilizando ferramentas teóricas da Abordagem Ontossemiótica 
para caraterizar diferentes níveis de raciocínio funcional. Em particular, 
aplicamos a interpretação do significado em termos de sistemas de práticas 
operacionais e discursivas relacionadas com a resolução de tipos de 
problemas. Na linha de investigações anteriores, identificamos significados 
parciais de função (operatório-tabular, operatório-gráfico, algébrico-
geométrico, analítico, correspondência arbitrária entre conjuntos numéricos e 
conjuntista) que podem ser considerados como parte do significado global de 
referência na planificação e gestão dos processos de ensino e aprendizagem 
de funções. Este estudo fornece uma visão complementar das múltiplas 
investigações que descrevem a filogénese do conceito de função em 
matemática com uma abordagem histórica e epistemológica.  

Palavras-chave: epistemologia; história; função; educação matemática; abor-
dagem ontosemiótica; educação matemática. 

 

INTRODUCTION 

The concept of function is fundamental not only in analysis, but also in 
the other mathematical areas.  

Functions are all around in mathematics and its applications, albeit labelled in 
various ways: mapping, transformation, permutation, operation, process, func-
tional, operator, sequence, morphism, functor, automaton, machine, which are 
used according to needs and opportunities:  
Function is preferred if the set of values is numerical, mappings and transfor-
mations come from geometry but serve as well, with certain attributes added in 
algebraic structures such as morphisms, prefixed with certain prepositions or 
adjectives, functors, acting on morphisms; permutation is the term for a one-to-
one mapping on itself, in particular, if studied in a group theory context; opera-
tion or process is the term used with certain simple standard functions (addition, 
root extraction). [1] (p. 496) 
 
Several historical and epistemological research works [2-7] clarified the 

nature and emergence of functions. Other mathematics education studies tried 
to describe and explain students' difficulties in understanding the concept of 
function [8-12], analyze curricular orientations [13], and teacher training [14]. 
Educational research linking historical-epistemological aspects with psycho-
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logical and instructional issues is scarcer. This research emphasized the dif-
ferent definitions that have characterized the historical development of the 
concept of function or the students' difficulties understanding these defini-
tions. In other words, a conceptualist view of mathematics has predominated, 
forgetting the mathematical problems and practices that motivate the emer-
gence and evolution of functional reasoning. This approach has also relegated 
the characterization of levels of its development from a historical-cultural per-
spective.  

[1] unveils an overwhelming phenomenological variety of the meaning 
of functions in mathematics and draws attention to the need to inquire into the 
use, the "what for" of functions:  

Is function a name I can attach to all that fulfills certain requirements or rather 
a signal how to act in certain contexts? Does one call a thing a function in order 
to do something with it, and if so, what? [1] (p. 511) 
In this paper, we apply the assumptions and theoretical tools of the Onto-

semiotic Approach to Mathematical Knowledge and Instruction (OSA) [15-
17] to analyze the emergence of the concept of function and to characterize 
the various partial meanings attributed to it. The pragmatist view of meanings 
and broadening the mathematical concept understood as definition towards its 
view as onto-semiotic configuration help to understand the complexity of 
mathematical knowledge, to explain learning difficulties, and to support in-
structional decisions. Likewise, the algebraization levels of mathematical ac-
tivity elaborated within the OSA framework [18] can help identify levels of 
functional reasoning associated with the evolution stages of the concept.  

What is done with functions and what are they for are central questions 
in reconstructing the function meanings proposed from the OSA since prob-
lem situations are the raison d'être, the reason for mathematical activity [19]. 
However, the operative and discursive practices carried out to solve problems 
of identification of dependencies between variables (covariation, correspond-
ence), analysis, and prediction of behaviors involve various types of objects 
(linguistic, concepts, propositions, procedures, arguments) and processes 
(representation, translation, definition, enunciation, syntactic and analytical 
calculation) that must be considered.  

We include in the construct of functional reasoning this broad view of 
mathematical activity, its motivation, and the use of the objects and processes 
involved. Our historical-cultural (epistemological) approach leads us to use 
the expression functional reasoning instead of functional thinking, usually re-
ferring to the subject's cognitive abilities and processes. 
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To follow, we describe the research problem, theoretical framework, and 
method. Secondly, we describe the partial meanings of the concept of func-
tion: operative-tabular, operative-graphic, geometric-algebraic, analytic, ar-
bitrary correspondence between numerical sets, and mapping between arbi-
trary sets. We then include the articulation in a global vision or holistic mean-
ing and highlight the implications for mathematics education of the onto-se-
miotic model of functional reasoning. 

 

PROBLEM, THEORETICAL FRAMEWORK AND METHOD 

PROBLEM  
The questions on functional reasoning we address in this paper are: 1) 

How has functional reasoning evolved in the different historical stages? 2) 
What meanings have been attributed to the concept of function? 3) How are 
such meanings distinguished according to the level of generality and formal-
ization? 4) What educational implications are derived from our global vision 
of function and functional reasoning? 

To answer these questions, we adopt a theoretical framework that pro-
vides tools to analyze mathematical activity and the various types of objects 
and processes involved in it. It must assume the plurality of meanings for 
mathematical constructs and provide criteria for identifying different gener-
ality and formalization levels of mathematical activity. As explained in the 
following section, the OSA offers the assumptions and tools necessary for this 
type of analysis. 

The present study complements other work based on the OSA framework 
that characterize institutional meanings [20-23], and algebraization levels of 
mathematical activity [24,18]. 

 
THEORETICAL FRAMEWORK  
To answer essential educational mathematics questions, such as what 

knowledge is or how learning occurs, the OSA introduces the constructs: 
mathematical practices, mathematical objects and processes, and contextual 
attributes of practices and objects [15]. These theoretical elements are articu-
lated in the onto-semiotic configuration of practices, objects, and processes 
(Figure 1) through which mathematical activity can be analyzed, distinguish-
ing different levels for such activity and different meanings for the mathemat-
ical objects involved. The articulation of mathematical knowledge’s epistemic 
and cognitive facets is achieved in OSA by attributing a double character, 
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personal (idiosyncratic of an individual) or institutional (shared within a com-
munity) to mathematical practices. 

 
Mathematics as an activity 

People’s activity when solving problems in an ecological context (phys-
ical, biological, and social) is the central element in constructing of mathe-
matical knowledge. The problems, which are the origin or motive of mathe-
matical activity, can be extra-mathematical, thus involving material things, 
objects, and facts, or intra-mathematical, involving non-material or ideal ob-
jects. 

 
Figure 1. Onto-semiotic configuration of practices, objects, and processes [15] 

 
Mathematics as a system of objects and processes  

Mathematics cannot be understood simply as an activity of people but 
also as a system of culturally shared objects emerging from this activity. In 
OSA, mathematical practices, that is, the actions performed by people to solve 
certain types of problem situations, are the origin and raison d'être of mathe-
matical abstractions, ideas, or objects [25]. The constitution of linguistic ob-
jects, problems, definitions, propositions, procedures, and arguments (Figure 
1) occurs through the primary mathematical processes of communication, 
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problematization, definition, enunciation, elaboration of procedures (algorith-
mization, routinization), and argumentation. 

 
Mathematics as a system of signs 

The different objects are not isolated entities but are placed in relation to 
each other. For example, between the symbol 2 and the concept of number 2, 
and between the concept of natural number and the system of operative and 
discursive practices from which this mathematical object emerges, a relation-
ship is established that OSA calls a semiotic function. The semiotic function 
is the correspondence between an antecedent object (expression/signifier) and 
a consequent object (content/meaning) established by a subject (person or in-
stitution) according to a criterion or rule of correspondence. We reflect the 
semiotic function in Figure 1 through the expression-content duality, which 
accounts for any use given to meaning: meaning is the content of a semiotic 
function [19]. 

 
Idealization, reification, and generalization according to OSA. Con-

textual dualities 
The OSA introduces three pairs of contextual attributes to analyze the 

idealization, reification, and generalization processes, from which practices 
and primary objects can be considered: ostensive-non ostensive (material, im-
material), unitary-systemic, and extensive-intensive (particular-general). 
These contextual dualities make it possible to describe the types of abstraction 
(empirical and formal) at play in mathematical activity and the objects that 
intervene and emerge in these processes. 

In OSA, ostensive is any object that is public and can be shown directly 
to another. Symbols, notations, gestures, graphic representations, and material 
artifacts have this character; they are real or concrete objects. Concepts, prop-
ositions, procedures, and arguments are constructs, creations of the human 
mind, non-ostensive objects; they depend on subjects, their actions, and arti-
facts for their existence. This duality allows us to account for the dual pro-
cesses of idealization and materialization in mathematical activity. 

In some circumstances, mathematical objects participate as unitary enti-
ties (assumed to be previously known), while others intervene as systems that 
must be unpacked for their analysis. Both onto-semiotic configurations (in 
their double socio-epistemic or cognitive version) and the primary objects that 
compose them can be considered from unitary or systemic perspectives, de-
pending on the language game [26] in which they participate. In the first case, 
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processes of reification (synthesis) occur, and in the second, a system breaks 
down into its components (analysis).  

A characteristic feature of mathematical activity is the attempt to gener-
alize the types of problems addressed, the solution procedures, definitions, 
propositions, and justifications. Solutions are organized and justified in pro-
gressively more general structures. However, in the instructional processes, 
one begins to study models of these general structures. The analysis of math-
ematical activity requires, therefore, to consider both processes, particulari-
zation, and generalization, and the objects involved in these processes, which 
are called in OSA extensive (particular) and intensive (general) objects. The 
generalization process consists of finding a pattern from similar cases, while 
particularization consists of generating or showing individual exemplars that 
follow a pattern. 

 
Processes of abstraction and abstract objects in OSA  

In a first approximation, the ostensive-non ostensive duality and the as-
sociated processes of materialization and idealization explain the concrete 
(ostensive) and abstract (ideal) objects usually considered in everyday lan-
guage. However, the analysis of mathematical activity, from both a profes-
sional and an educational point of view, requires a deeper understanding of 
the nature of the abstraction process, the emerging abstract objects, and the 
inverse interpretation process. For this reason, OSA complements the osten-
sive-non ostensive duality with the unitary-systemic and example-type duali-
ties: a mathematical abstract object is not only an ideal (non-ostensive) entity 
but also a generality, considered as a unitary whole or as a system, depending 
on the situation. 

In the epistemic analysis of the concept of function, it is necessary to 
identify, in addition to the definitions used, the various elements indicated in 
Figure 1, which are mobilized to respond to the problems in which the object 
function participates in a determinant way. However, it may be implicitly in 
the first stages of its emergence. Each of these configurations is a partial prag-
matic meaning of the function object that synthesizes the mathematical activ-
ity to solve specific problems in certain contexts or historical periods. The 
evolution of the concept implies a sequence of configurations through which 
definitions, procedures, properties, and arguments are generalized, passing 
from the use of ordinary, tabular, and graphic language to alphanumeric ex-
pression and from arithmetic to algebraic and analytical calculus. In this way, 
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we analyze the evolution of the mathematical activity that today we call func-
tional reasoning, which is undoubtedly a fundamental piece of mathematics 
architecture. 

 
ALGEBRAIZATION LEVELS OF MATHEMATICAL PRACTICES  
Within the OSA framework, we proposed a model to characterize the el-

ementary algebraic reasoning (EAR) involved in Primary and Secondary 
mathematics, with six levels of algebraization [18]. Such levels consider the 
types of representations used, the degree of generality of the intensive objects 
involved, and the analytical computation done with such objects, which indi-
cates the onto-semiotic complexity at stake.  

Natural numbers are intensive objects (general, abstract entities) that 
emerge from collections of perceptual objects and the actions performed with 
them [18]. Therefore, they are assigned degree 1 of intension or generality, 
with degree 0 corresponding to material or ostensive objects. A new layer or 
generality degree 2 occurs when considering collections or sets of intensive 
objects of degree 1, and so on. In this way, the universe of mathematical ob-
jects is structured in increasing degrees of intension. 

In this paper, we interpret and adapt the EAR levels model to analyze 
functional reasoning in different historical stages. In the EAR model, the first 
two levels are considered proto-algebraic since the language used to express 
unknowns or equations must be alphanumeric or operate with the intensive 
objects represented. In the third level, the mathematical activity with the un-
knowns is represented symbolically. In the case of functional reasoning (FR), 
we distinguish two first levels of proto-functional reasoning (Levels I and II), 
which include problems relating two or more variables to make forecasts or 
calculations. Still, the function object is implicit and represented with natural, 
numerical, or graphical language. In Level III, algebraic language begins to 
express relationships, although the function is restricted to the geometric 
(study of curves) or kinematic magnitudes. 

The fourth and fifth levels in the EAR model describe the more general 
and abstract mathematical activity when parameters are used to indicate fam-
ilies of functions (Level 4) or when operating with parameters (Level 5). In 
FR, we use these two levels to describe two periods of mathematical activity 
in which functions are treated explicitly and represented analytically (Level 
IV), or the function is defined as an arbitrary correspondence between numer-
ical sets (Level V). The sixth level in the EAR model studies abstract alge-
braic structures such as vector spaces, groups, etc. This level VI is appropriate 



 
 
Godino, Burgos & Wilhelmi 

Rev. de Inv. en Mat. y su Ens. (Osorno), 1(1), 09-37, jun. 2024 18 

for functional reasoning concerning the set definition of functions, applica-
tions, or correspondences between arbitrary sets. 

 
METHOD  
This research is a documentary study based on the selection of texts de-

scribing the emergence of the concept of function in different historical stages 
and epistemological analyses. The selected sources (Table 1) were compiled 
with a systematic search in databases (Web of Science, Scopus, Google 
Scholar) to identify the elements that characterize the partial meanings of 
function and the levels of functional reasoning. 

 
Table 1. Selected documentary sources 

Theme Sources 

History [27]; [28]; [29]; [30]; [31]; [32]; [33]; [34]; [35]; 
[36]; [37] 

Epistemology [1]; [3]; [4]; [5]; [6]; [7]; [10]; [38]; [39]; [40]; [41]; 
[42] 

Source: elaborated by the authors 
 
Our analysis of the historical trajectory of function is inscribed in the 

anthropological [43] and ecological [44-46] styles of epistemological reason-
ing. It is based on OSA ontology and semiotics and thus assumes the "practice 
turn" [47] in philosophy and the history of science. 

PARTIAL MEANINGS OF THE FUNCTION CONCEPT. GENERALITY 
LEVELS OF FUNCTIONAL REASONING 

We distinguish six stages in the historical evolution of functional reason-
ing by considering the types of problems addressed and the mathematical ac-
tivity performed. Likewise, we identify six levels of generality of functional 
reasoning when considering the algebraic activity in each stage4.  

 
STAGE I (ANTIQUITY). OPERATIVE-TABULAR MEANING  

 
4 We recognize that the six-stage, six-level model for functional reasoning elaborated 

here can be developed, either by distinguishing sublevels, or additional stages beyond the set 
definition of function. The aims of the epistemological or cognitive analysis addressed may 
justify this enlargement. 
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Solving problems of predicting unknown quantities by tabulating known 
data appears in the earliest historical records of mathematical activity in Bab-
ylonia and Egypt (2000 BC). Babylonian mathematicians widely used in their 
calculations sexagesimal tables of reciprocals, squares and square roots, cu-
bes, and cube roots. Babylonian astronomers employed different types of ta-
bles to calculate ephemeris of the sun, moon, and planets.  

Despite the large gaps in their exponential tables, Babylonian mathe-
maticians did not hesitate to interpolate by proportional parts to ap-
proximate intermediate values. Linear interpolation seems to have 
been a commonplace procedure in ancient Mesopotamia, and the po-
sitional notation lent itself conveniently to the rule of three. A clear 
instance of the practical use of interpolation within exponential tables 
is seen in a problem text that asks how long it will take money to 
double at 20 percent annually. [33] (pp. 27-28) 

The Greeks did not limit themselves to using tables to express relation-
ships between variable quantities. In ancient Greece, functions introduced in 
connection with mathematical and astronomical problems were subjected to 
studies like those carried out in the mathematical analysis of modern times. 
Depending on the objective pursued, tabulated functions were interpolated 
(linear interpolation) and, in the simplest cases, the limits of quotients of two 
infinitely small quantities were found as, for example, the limit of !"#	(&)

&
 when 

𝑥
	
→ 0. Problems about extreme values and tangents were solved by proce-

dures equivalent to the differential method; areas, volumes, lengths, and cen-
ters of gravity were calculated by equivalent methods to the calculation of 
integrals [7] (p. 41). 

There are features in the mathematical work carried out by the Babyloni-
ans, Egyptians, and Greeks indicating the implicit handling of general rules. 
They did not reduce themselves to a simple tabulation of empirical data but 
also made interpolations and extrapolations suggesting the recognition of in-
tensive objects with a certain degree of generality. In short, we do not find the 
function as we now use it, but there are characteristic elements of functional 
reasoning. 

As a synthesis, in this Stage I (Antiquity), problems of calculating quan-
tities of magnitudes from the relation of dependence with other magnitudes 
were deal with. These applications were mainly extra-mathematical (astron-
omy or land measurement) and intra-mathematical (tables for calculating 
squares, cubes, square roots). Procedures were elaborated, and properties 
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were identified with a first degree of generality, so we qualify this activity as 
proto-functional of level I. 

 
STAGE II (MIDDLE AGES). OPERATIVE-GRAPHIC MEANING 
In the 14th century, mathematicians of the Oxford (Heytesbury; 

Swineshead) and Paris (Oresme) schools made progress in solving geometrical and 
kinematic problems with diverse procedures, particularly graphical, involving de-
pendence relations between variables. For Oresme, qualities or forms are phenomena 
such as heat, light, color, density, distance, velocity, etc., which may possess varying 
degrees of intensity and which, in general, change continuously within given limits. 
These mathematicians considered intensities of forms such as, for example, the 
amount of matter, time, etc., concerning their extensions. During such considerations, 
several concepts were introduced, e.g., instantaneous or point velocity, acceleration, 
and variable quantity conceived as a degree or flow of quality. "In all this, a dominant 
role was played by a synthesis of kinematic and mathematical thought” [7] (p. 45). 

Oresme studied the phenomenon of uniformly accelerated motion and 
worked out a solution considered the first graphical representation of physical 
laws. This representation seems to indicate that Oresme "have grasped the 
essential principle that a function of one unknown can be represented as a 
curve, but he was unable to make any effective use of this observation except 
in the case of the linear function” [33] (p. 240). 

By way of summary, in Stage II (up to the 14th and 15th centuries), the 
study of concrete cases of dependencies between two magnitudes continues. 
Ordinary, numerical, and tabular language complements graphical language. 
Abstract concepts (intensive objects) are introduced, such as instantaneous 
velocity, acceleration, and variable quantity, conceived as a degree or flow of 
quality (empirical abstractions). We qualify this activity as proto-functional 
of level II. 

 
STAGE III (MODERN PERIOD). GEOMETRICAL-ALGEBRAIC MEANING 
In the 17th century, further progress in mathematics took place with a 

high impact on the development of functional reasoning, in particular, the 
creation of symbolic algebra together with the extension of the concept of 
number, which by the end of the 16th century encompassed not only the whole 
field of real numbers but also complex numbers [7] (p 50). These advances 
were necessary for introducing the concept of function as a relation between 
sets of numbers instead of "quantities" and for the analytical representation of 
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functions using formulas. In the first half of the 17th century, there were rel-
evant changes in mathematical activity, such as the invention of analytic ge-
ometry (Descartes, Fermat), which meant associating an algebraic equation 
with curves. In this way, the analytical aspects of curves were given priority 
over geometrical ones. Likewise, the study of motion (Kepler, Galileo) led to 
the enunciation of physical laws expressed as dependence between variable 
quantities.  

Despite these advances, the calculus developed by Newton and Leibniz 
was not a calculus of functions. The main objects of study in 17th-century 
calculus were (geometric) curves. 17th-century analysis originated as a col-
lection of methods for solving problems over curves (such as finding tangents, 
areas, lengths under curves, and velocities of points moving along curves). 
Since the problems that gave rise to calculus were geometric and kinematic, 
it would take time and thought to reformulate calculus in algebraic form [3]. 

The emergence of analytic geometry was a necessary preliminary step for 
the emergence of the construct function as a mathematical object. A procedure 
was available to create an infinity of curves, as Fermat did in the early 17th 
century with the infinite family of parabolas and hyperbolas (y = kxn; k > 0, n 
> 0). However, equations between variables do not assume the use of func-
tions unless there is explicit identification of the independent and dependent 
variables [5] (p. 127). Considering the types of problems addressed and the 
use of algebraic resources we qualify this mathematical activity as level III 
functional reasoning. Although the construct function has not been formu-
lated, there are substantial differences concerning the proto-functional levels 
of the two previous stages. 

Summarizing, in Stage III (Modern Period, XVI and XVII centuries), al-
gebraic expressions began to prevail to express the relationships between ge-
ometric and kinematic quantities. Although the main focus of the works of 
Descartes, Newton, and Leibniz, among others, is the study of curves, the 
construct function begins its explicit emergence, which is why we assign a 
level III of functional reasoning to this stage.  

 
STAGE IV (18TH CENTURY). ANALYTICAL MEANING 
During the eighteenth century´s first decades, calculus was gradually de-

tached from its geometrical origin. The algebraic apparatus developed by 
Newton and Leibniz was augmented and exploited by their successors to solve 
problems not directly related to the geometry of curves. The formulas relating 
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variables and their differentials began to take on their own life, independent 
of the geometrical objects they represented.  

Leibniz and Johann Bernoulli searched for a concept to express this new 
reality and, finally, came up with the idea of function, a concept that had not 
been necessary in the previous stages. Although Leibniz first used the term 
function, it was J. Bernoulli who formulated an explicit statement of the con-
cept in 1718: 

One calls here Function of a variable a quantity composed in any man-
ner whatever of this variable and of constants. [37] (p. 72). 

It took several decades for calculus to merge in algebraic terms with the 
concept of function as a centerpiece, thanks mainly to Euler and his influential 
textbooks of the mid-18th century. Euler turned the 17th-century calculus of 
variables and equations into a calculus of functions. Euler proposed this def-
inition in 1748: 

A function of a variable quantity is an analytical expression composed 
in any manner from that variable quantity and numbers or constant 
quantities. [37] (p. 72) 

For Euler, an "analytical expression" was an algebraic formula generated 
from algebraic and transcendental functions (i.e., polynomials, trigonometric, 
inverse trigonometric, exponential, and logarithmic functions) using the four 
algebraic operations plus the composition of functions and the taking of n-th 
roots. 

Once the function object was created and linked to a specific form of 
representation, namely analytical expressions, new problems arose related to 
specific forms of these expressions and the study of the properties of the var-
ious emerging functions. Power series became a fundamental tool of calculus 
in the 18th century to the point that Euler stated that every function can be 
developed into a power series. Another way of producing functions and stud-
ying their properties took place through their expression in the form of inte-
grals, for example, the logarithmic function ∫ (

)
𝑑𝑡&

( . Likewise, from any con-

tinuous function 𝑓(𝑥), one can define another function 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡&
( .  

Considering the function as an object allows us to introduce it as an un-
known in equations or an argument in new functions. In a certain way, one 
operates with functions. In particular, differential equations involving an un-
known function and one or more of its derivatives determine mathematical 
models of various physical phenomena. The development of methods to solve 
this type of equation constitutes an extensive and rich branch of mathematical 
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analysis. The solution of equations in partial derivatives, such as the cases of 
the wave function and heat, motivated the extension of the concept of func-
tion, initially given by Euler as an analytical expression, i.e., a unique alge-
braic formula. As a result of the debate, the concept of function enlarged to 
include expressions given by various formulas and freely drawn curves. Euler 
himself modified his initial definition of function linked to analytical expres-
sions in the following terms: 

If, however, some quantities depend on others in such a way that if 
the latter are changed the former undergo changes themselves then the 
former quantities are called functions of the latter quantities. This is a 
very comprehensive notion and comprises in itself all the modes 
through which one quantity can be determined by others. If, therefore, 
x denotes a variable quantity then all the quantities which depend on 
x in any manner whatever or are determined by it are called its func-
tions. [37] (p. 72-73) 

With Euler, the object function, which had previously intervened in math-
ematical activity in an operative or implicit way assumed as a new entity with 
different types and properties. Functions can be algebraic or transcendent, 
univalued or multivalued, implicit, or explicit, continuous, or discontinuous. 
The developments in power series constitute an essential mode of expression 
and treatment in the study of the formal properties of the new construct. Euler 
enunciated a controversial proposition that would be the starting point of later 
reflections: "We can develop any function as a power series". 

Thus, in the first decades of the 18th century (Stage IV), the algebraic 
apparatus developed by Newton and Leibniz was augmented and exploited by 
their successors to solve problems not directly related to the geometry of 
curves. The concept of function, linked to its analytical expressions with Eu-
ler, was consolidated as the core construct of the pure or formal mathematical 
activity that characterizes mathematical analysis. Problems of classification 
of the types of functions and their properties (continuity, derivability, etc.) 
arose.  

The type of mathematical activity performed in this historical stage, in 
which the explicitly defined construct operated to produce new functions, in-
tervenes centrally, leads us to assign level IV to the functional reasoning of 
this stage. 

 
STAGE V (19TH CENTURY). ARBITRARY CORRESPONDENCE BETWEEN 
NUMERICAL SETS MEANING 
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Fourier's work on another physical problem, heat conduction, led to em-
phasize the role of analytical expressions in the conceptualization of the func-
tion by formulating the following theorem: 

Any function f(x) defined over (-l, l) is representable over this interval 
by a series of sines and cosines, 

𝑓(𝑥) =
𝑎*
2
+/ [𝑎#

+

#,(
cos 4

𝑛𝜋𝑥
𝑙
8 + 𝑏# sen 4

𝑛𝜋𝑥
𝑙
8] (1) 

 
where the coefficients 𝑎# and 𝑏# are given by  

𝑎# =
(
- ∫ 𝑓(𝑡) cos 4#.)

-
8𝑑𝑡-

/- ; 𝑏# =
(
- ∫ 𝑓(𝑡) sen 4#.)

-
8 𝑑𝑡-

/-  (2) 

 
In the statement of his theorem, Fourier considered that the function f(x) 

represents a succession of values or ordinates, each of which is arbitrary:  
In general, the function 𝑓(𝑥) represents a succession of values or or-
dinates each of which is arbitrary. An infinity of values being given 
to the abscissa x, there are an equal number of ordinates 𝑓(𝑥). All have 
actual numerical values, either positive, or negative, or null. We do 
not suppose these ordinates to be subject to a common law; they suc-
ceed each other in any manner whatever, and each of them is given as 
it were a single quantity. [37] (p. 73) 

This generality of the theorem is incorrect, as several later mathemati-
cians showed. For a correct formulation and proof of Fourier's theorem, it was 
necessary to introduce clear notions of continuity, convergence, and definite 
integral, as well as a clear understanding of the concept of function [5]. This 
goal was achieved by Dirichlet, relying on works by Gauss, Abel, and Cau-
chy: 

Theorem 1: If a function f has only a finite number of discontinuities 
and a finite number of maxima and minima at (-l; l), then f can be 
represented by its Fourier series at (-l, l). The Fourier series con-
verges pointwise to f where f is continuous and to [f(x+) + f(x-)]/2 at 
every point x where f is discontinuous. 

 
Dirichlet is credited with the separation of the concept of function from 

analytical expressions and its consideration as an arbitrary correspondence 
between real numbers: 

Let us suppose that a and b are two definite values and x is a variable 
quantity which is to assume, gradually, all values located between a 
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and b. Now, if to each x there corresponds a unique, finite y in such a 
way that, as x continuously passes through the interval from a to b, y 
= f(x) varies likewise gradually, then y is called a continuous function 
of x for this interval. It is, moreover, not at all necessary, that y de-
pends on x in this whole interval according to the same law; indeed, it 
is not necessary to think of only relations that can be expressed by 
mathematical operations. Geometrically represented, i.e. x and y im-
agined as abscissa and ordinate, a continuous function appears as a 
connected curve, for which only one point corresponds to each ab-
scissa between a and b. [37] (p. 74) 

This attribution is also possibly due to the use and the example of function 
he proposed, the so-called Dirichlet function: D(x), which takes the value c if 
x is rational and the value d if x is irrational. The Dirichlet function, intro-
duced in connection with the representativeness of a function by the Fourier 
series, reflects a new way of understanding the function object as an arbitrary 
correspondence between numerical sets. It is not a function given by an ana-
lytical expression, nor can it be represented by a curve. It is a new type of 
function, the first of many "pathological functions". The domain and range in 
Dirichlet's definition of function are sets of real numbers. 

As a synthesis, we note that in the middle of the 18th century, the inter-
pretation of functions as analytical expressions proved inadequate. During the 
same period a new general definition of function was introduced, which later 
became universally accepted in mathematical analysis: The function as an ar-
bitrary correspondence between elements of numerical sets (Dirichlet). A new 
generalization of the concept of function took place, which we interpret as 
level V of functional reasoning. 

 
STAGE VI. CORRESPONDENCE BETWEEN ARBITRARY SETS MEANING 
Although Dirichlet's broad conception of a function as an arbitrary corre-

spondence (between elements of numerical sets) prevailed for much of the 
19th century, signs of dissatisfaction began to appear towards the end of that 
century [4]. In the early 20th century, the intuitionist and formalist schools of 
mathematical philosophy debated questions of the existence of mathematical 
objects. Applied to functions, for example, let f(x) be defined by f(x)=1 if x is 
a positive integer and there are x successive zeros in the decimal expansion of 
π; otherwise, f(x)=0. Does f(x) exist? Is it well-defined? While formalists 
would answer in the affirmative, intuitionists would take the opposite view. 
For them, f(x) is not a bona fide function since we cannot determine its values 
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for all x-values in the domain. For example, what is f(99)? We do not know 
whether f(99)=1 or f(x)=0 because we do not know, and may never know, 
whether there are 99 consecutive zeros in the decimal expansion of π. There-
fore, for intuitionists, this function is meaningless [4] (p. 205). 

The notion of function as a correspondence between arbitrary sets gradu-
ally took hold in twentieth-century mathematics. Algebra impacted this de-
velopment by placing the function in the general framework of application 
from one set to another. As early as 1887, Dedekind gave a very modern def-
inition of the term "mapping" (application): 

By a mapping of a system S a law is understood, in accordance with 
which to each determinate element s of S there is associated a deter-
minate object, which is called the image of s and is denoted by φ(s); 
we say, too, that φ(s) corresponds to the element s, that φ(s) is caused 
or generated by the mapping φ out of s, that s is transformed by the 
mapping φ into φ(s). [37] (p. 75) 

The meaning of the function as an arbitrary correspondence can refer both 
to the character of the functional relation and to the values of the variables 
that span the domain and codomain, which can be numbers, tuples of numbers, 
points, curves, functions, permutations, elements of arbitrary sets.  

The functions of analysis, the geometric transformations, the permuta-
tions of finite sets and the mappings of arbitrary ones flow together, in 
order to generate the general function concept. This concept is used to 
comprise a great variety of things: algebraic operations, functionals, op-
erators, even sequences, coordinates, logical predicates. [1] (p. 528) 

This extension of the concept of function domain and range to other ar-
bitrary sets took place gradually in the nineteenth century, although, implic-
itly, it was previously present in various applications and contexts: maps of 
the earth are functions of the sphere in the Euclidean plane; the derivative, as 
an operator, is a function with domain the set of differentiable functions and 
range the set of all functions; truth tables are functions with domain a set of 
statements and range the set {T, F}. Functions appear as transformations in 
geometry, as homomorphisms in algebra, and as operators in analysis, with 
domains given by Euclidean spaces, groups or rings, and sequences or func-
tion spaces, respectively. 

The standard definition of function today is firmly based on set theory: 
Let E and F be two sets, which may or may not be distinct. A relation 
between a variable element x of E and a variable element y of F is 
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called a functional relation in y if, for all xÎE, there exists a unique 
yÎF which is in the given relation with x. We give the name of func-
tion to the operation which in this way associates with every element 
xÎE the element yÎF which is in the given relation with x; y is said 
to be the value of the function at the element x, and the function is 
said to be determined by the given relation. Two equivalent functional 
relations determine the same function. [37] (p. 77) 

At this stage, the set-based definition of function was introduced, and the 
function became the backbone concept of the architecture of mathematics. 
This level VI of functional reasoning is therefore characterized using abstract 
algebraic structures and functional and topological spaces. 

 
OTHER MEANINGS OF THE FUNCTION CONCEPT 
A pragmatic understanding of a concept meaning, as systems of operative 

and discursive practices involved in the solution of types of problems, it helps 
identify new meanings linked to subtypes of problems. Moreover, bearing in 
mind that functions are pervasive in mathematics, named in various ways [1] 
(p. 496), we need to characterize the specific meanings of the constructs re-
ferred to by terms such as application, transformation, operation, functional, 
operator, morphism, functor, etc. The various educational contexts are 
sources for identifying varieties of meanings of functions. As Freudenthal 
states, 

In mathematical instruction functions have moved downwards from 
Calculus, via graphs and supported by equations to the primary 
school, even to its lower grades, where they are concretised by imag-
inary machines and expressed and symbolised in table and arrow lan-
guage. [1] (p. 528) 

[3] (p. 16), following [48], considers as a development of the concept of 
function the use made in functional analysis of Hilbert spaces L2, the set of 
square integrable-Lebesgue functions. Two functions in L2 are identical if 
they coincide everywhere except possibly on a zero Lebesgue measure set. 
Thus, in function theory, one can always work with representatives of an 
equivalence class rather than individual functions. 

It is interesting to observe that this modern development really in-
volves a further evolution of the concept of function. For an element 
in L2 is not a function, either in Euler's sense of an analytic expression, 
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or in Dirichlet's sense of a rule or mapping associating one set of num-
bers with another. It is function-like in the sense that it can be sub-
jected to certain operations normally applied to functions (adding, 
multiplying, integrating). But since it is regarded as unchanged if its 
values are altered on an arbitrary set of measure zero, it is certainly 
not just a rule assigning values at each point in its domain. [48] (p. 
293) 

According to [3], a new meaning of function arose in the context of cat-
egory theory. This theory emerged in the late 1940s to express formally cer-
tain aspects of homology theory; in it, the concept of function assumes a fun-
damental role. The concept is described as an "association" of one "object" A 
with another "object" B. Objects A and B do not need to have elements (i.e., 
they do not need to be usual sets). A category consists of arrows (or "maps"), 
understood as undefined (primitive) concepts that satisfy certain relations or 
axioms [49]. 

 

FUNCTION HOLISTIC MEANING 

The diagram in Figure 2 summarizes the evolution of the concept of func-
tion and the levels of functional reasoning. We remark that with the appear-
ance of explicit definitions of function (J. Bernoulli, Euler), the ontological 
nature of the concept and the type of activity it engaged in changed substan-
tially. Just as in ontogenetic development, as proposed by theories of cogni-
tive development (Piaget, Dubinski, Sfard), there was a transition from the 
operational, procedural stage to the objectual stage, where the concept be-
comes part of cognitive schemes that enable the individual to comprehend, 
make decisions, and act in similar situations.  

In phylogenetic terms, the function became part of the body of mathemat-
ical objects, such as numbers, geometric figures, and equations. Various types 
of functions were invented to model various phenomena, and their specific 
properties were studied (continuity, differentiability, etc.), which allowed the 
definition of new functions and played a role in a new ecological niche char-
acterized by formalization, generalization, and rigor. 
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Figure 2. Evolution of the function concept. Levels of functional reasoning 
Source: elaborated by the authors 

 
This historical evolution of the function concept reflects the tendency or 

attitude of mathematicians to generalize concepts and procedures to solve in-
creasingly complex and general problems. This happened because of the 
“practical necessity for unifying by means of underlying general principles 
those aspects of numerous theories that promise to be more than transitory 
interest” [29] (p. 470). Thus, the formulation of the function in terms of cor-
respondence between the elements of sets according to arbitrary criteria, not 
necessarily using analytical expressions, responds to the need to account for 
work with functions that could not be drawn or expressed algebraically, such 
as the Dirichlet function. Another qualitative leap is the use of structural al-
gebraic language in the study of functions, which fundamentally deals with 
conserving the structures resulting from applying morphisms (structure-pre-
serving functions).  

As [1] showed, there is a varied phenomenology involving the object 
function, which, together with diverse forms of expression, procedures, prop-
ositions, and arguments, characterizes functional reasoning. Is it possible to 
identify some common feature that justifies using the same term function to 
name such a variety of meanings? The ideas of dependence, covariation, and 
prediction are the nexus that connects the first three meanings or uses of func-
tions (Figure 2). We can express such dependence tabularly, graphically, or 
analytically, but in any case, variable elements of numerical sets are related 
to other numbers. The ideas of variability and dependence do not appear in 
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the set-based meaning, which is more general and abstract than the previous 
ones; however, the connection or correspondence between objects based on 
some rule or criterion persists.  

In Figure 3, we show an example of the progressive generalization of the 
function, indicating that different species of the intensive object function are 
involved in the progressive sequence of representations and the mathematical 
activity involved in its use.  

 
Level Representation Intensive 

I 
Variable 1 0 1 2 3 4 5 
Variable 2 0 2 4 6 8 10 

 

Of 1st especie 

II 

 

Of 2nd specie 

III 𝑦 = 2𝑥, 𝑥 ∈ (−∞,∞) Of 2nd specie 
IV 𝑦 = 𝑎𝑥, 𝑎 ∈ 𝐑, 𝑥 ∈ 𝐷 ⊆ (−∞,∞) Of 3rd specie 

V 
𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝐶, 𝑓(𝑥) ∈ 𝐶′, 
with 𝐶	y	𝐶′ numerical sets 

Of 4th specie 

VI 
(𝑦~𝑓(𝑥), 𝐴, 𝐵), 𝑥 ∈ 𝐴, 𝑓(𝑥) ∈ 𝐵, 

with 𝐴 y 𝐵 arbitrary sets 
Of 5th specie 

Figure 3. Levels of functional reasoning and species of intensives 
Source: elaborated by the authors 
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At level I, the tabular representation indicates the use of finite collections 
of particular natural numbers, so the tabular representation of the function is 
an intensive of the 1st species. At level II, the continuous graph indicates the 
presence of intervals of real numbers in which the functional relation can be 
interpolated and extrapolated to any numbers, which is why we interpret it as 
a 2nd species intensive of the function concept. 

At level III, the symbolic representation expresses the same level of gen-
erality and is therefore also classified as 2nd species intensive. At level IV, 
the presence of the parameter refers to a family of functions, implying the 
increase in the degree of generality and, therefore, in the function specie. At 
level V the increase in the species of the intensive derives from the change in 
the generality of the domain and range of the function, which become any 
numerical sets, and the expression is not necessarily analytic. The 5th specie 
of the intensive of level VI comes from considering a new generality in the 
type of relation and the nature of the correspondence domain and range. 
 

IMPLICATIONS FOR MATHEMATICS EDUCATION 

The analysis of the holistic meaning of function is epistemological and 
has revealed the diversity of senses or partial meanings it has taken on in 
different contexts and historical moments. In terms of the ecology of mean-
ings [50, 16], we have tried to identify the ecological niche and the role that 
the function, in its different varieties or species, has been playing in mathe-
matics, understood as a human activity and as a system of historical and cul-
tural objects. We aimed to identify the reason or motive for the evolution of 
these species and the common characteristics that lead to speaking of the ge-
nus function. 

In the OSA framework, this type of study must be previous to posing 
specific mathematics education problems. We cannot decontextualize the 
global analysis of mathematical instruction processes because they are con-
substantial to the institution and time [51]. It is necessary to describe a global 
meaning [52] that allows addressing issues: 

• Relative to the transformations and adaptations that mathematical 
knowledge needs at the various educational levels. 

• On students' learning, in particular, their difficulties and levels of 
knowledge and understanding. 
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• On designing instructional processes with the maximum didactic suit-
ability for the different educational contexts. 

In OSA we understand learning as the progressive appropriation of the 
implemented institutional meanings by the students. The implemented mean-
ings should be based on previous planning, which implies the informed selec-
tion of specific aspects of the proposed content. This process requires the prior 
reconstruction of a local reference meaning, that is to say, adapted to the con-
text. The realization of this process of ecological adaptation requires the edu-
cational agents (curriculum, teachers, authors of didactic materials) to start 
from a global or holistic meaning of the teaching content so that a representa-
tive and well-founded selection of the planned and implemented knowledge 
can take place, as well as adequate evaluation of learning. 

The holistic meaning model will help to relativize understanding and be 
aware of the complexity of practices, objects, and processes to consider in the 
progressive development of functional reasoning. History informs us when, 
why, and in what form the concept of function arose in mathematics and the 
reasons for its progressive generalization and formalization. In particular, the 
set-based definition and application in abstract algebra, topology, and other 
fields only addresses questions of pure mathematics that have nothing to do 
with the mathematics of change and covariation. 

In conclusion, we note that the definition of function as an expression 
or formula representing a relation between variables is for calculus or 
a pre-calculus course; is a rule of correspondence between reals for 
analysis; and a set theoretic definition with domain and range is re-
quired in the study of topology. [38] (p. 492) 

Teaching the function concept should consider the different meanings, 
identifying criteria for selecting those suitable for the different educational 
levels and their progressive articulation. The stages or phases in the students' 
construction of the function concept proposed by various cognitive theories, 
such as the APOS model (action, process, object, and scheme) [53] or the 
operational and structural conception [6], should be applied to each of the 
species of the function that make up each meaning. 

 

CLOSING REMARKS 

The analysis of function we have undertaken leads us to conclude that it 
is inadequate to speak of the "function object" in the singular; at least we 
should recognize that such an object has a complex internal structure. Each 
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possible definitions involves an onto-semiotic configuration, interconnected 
to form a conglomerate of practices, objects, and processes configurations. 
The different object-functions indeed share some features or family resem-
blances that lead to speaking of the concept of function. But when we are 
interested in teaching and learning processes, we cannot start the house from 
the roof, that is, from the most general and abstract object-function. Achiev-
ing this higher level of functional reasoning will not be possible if the preced-
ing ones have not been previously worked on.  

We have seen that the mathematical construct function is the fruit of so-
cial or communal activity. Consequently, the individual or mental learning 
activity, i.e., the ontogenesis of the object function, takes place in the ecolog-
ical niche of phylogenesis. Hence, before addressing ontogenetic issues, i.e., 
mental processes of understanding and learning, a theoretical framework for 
understanding phylogenesis must be created, as we have advanced in this pa-
per. 

Recognizing the diverse meanings of functions is part of the epistemic 
facet of the teacher's didactic-mathematical knowledge required for the suit-
able teaching of this content [54]. As [52] state:  

The performance as teachers can be seriously impaired if it is not com-
plemented by a deepening of specific epistemological training on the 
plurality of meanings of mathematical objects and the configurations 
of objects and processes in which such meanings crystallize. [52] (p. 
581) 

Moreover, in pre-university education, the function progresses from sim-
ple tabular representations, often associated with problems of direct propor-
tionality with natural numbers, to graphical and symbolic representations in 
algebraic or transcendent relations between numerical sets in progressive de-
grees of generalization (natural numbers, positive fractional, positive decimal, 
whole, rational, real, complex). This evolution is not a mere accumulation of 
linear knowledge but a true epistemological challenge that has defied the great 
mathematicians throughout history. 

 

REFERENCES 

1. Freudenthal H. Didactical Phenomenology of Mathematical Structures. Dor-
drecht: D. Reidel, 1983. 



 
 
Godino, Burgos & Wilhelmi 

Rev. de Inv. en Mat. y su Ens. (Osorno), 1(1), 09-37, jun. 2024 34 

2. Biehler R. Reconstruction of Meaning as a Didactical Task: The Concept of 
Function as an Example. In Kilpatrick J, Hoyles C, Skovsmose O, editors. 
Meaning in Mathematics Education (pp. 61-81). Kluwer, 2005. 

3. Kleiner I. Evolution of the Function Concept: A Brief Survey. The College 
Mathematics Journal. 1989; 20(4), 282–300. 
https://doi.org/10.1080/07468342.1989.11973245 

4. Kleiner I. Functions: Historical and Pedagogical Aspects. Science & Education. 
1993; 2, 183–209. http://dx.doi.org/10.1007/BF00592206   

5. Kleiner I. Excursions in the History of Mathematics. Cham: Springer, 2012. 
6. Sfard A. The Case of Function. In Harel G, Dubinsky E, editors. The concept of 

function. Aspects oi Epistemology and Pedagogy (p. 85–106). Mathematical 
Association of America, 1992. 

7. Youschevitch AP. The Concept of Function up to the Middle of the 19th Cen-
tury. Archive for History of Exact Sciences. 1976; 16, 36–85.  

8. Dubinsky E, Harel G. The concept of function. Aspects of Epistemology and 
Pedagogy. USA: Mathematical Association of America (MMA), 1992. 

9. Ruiz-Higueras L. Concepciones de los Alumnos de Secundaria sobre la Noción 
de Función. Análisis Epistemológico y Didáctico. Ph.D. Universidad de Gra-
nada, 1994. 

10. Sierpinska A. On understanding the notion of function. In Harel G, Dubinsky E, 
editors. The Concept of Function. Aspects of Epistemology and Pedagogy (p. 
25–58). Mathematical Association of America, 1992. 

11. Trujillo M, Atarés L, Canet MJ, Pérez-Pascual MA. Learning Difficulties with 
the Concept of Function in Maths: A Literature Review. Education Sciences. 
2023; 13(5), 495. https://doi.org/10.3390/educsci13050495 

12. Vinner S, Dreyfus T. Images and Definitions for the Concept of Function. Jour-
nal for Research in Mathematics Education. 1989; 20(4), 356–366. 
http://dx.doi.org/10.5951/jresematheduc.20.4.0356 

13. Pino-Fan LR, Parra-Urrea YE, Castro WF. Significados de la Función Pretendi-
dos por el Currículo de Matemáticas Chileno. Magis. 2019; 11(23), 201–220. 
https://doi.org/10.11144/Javeriana.m11-23.sfpc 

14. Parra-Urrea Y E. Conocimiento Didáctico-Matemático de Futuros Profesores 
Chilenos de Enseñanza Media sobre la Noción de Función: Una Experiencia en 
Contextos de Microenseñanza. PH. D. Universidad de Los Lagos, Chile, 2021. 

15. Godino JD. Onto-Semiotic Approach to the Philosophy of Educational Mathe-
matics. Revista Paradigma Edição Temática: EOS. Questões e Métodos. 2023; 
44(4), 7–33. https://doi.org/10.37618/PARADIGMA.1011-2251.2023.p07-
33.id1377 

https://doi.org/10.1080/07468342.1989.11973245
http://dx.doi.org/10.1007/BF00592206
https://doi.org/10.3390/educsci13050495
http://dx.doi.org/10.5951/jresematheduc.20.4.0356
https://doi.org/10.11144/Javeriana.m11-23.sfpc
https://doi.org/10.37618/PARADIGMA.1011-2251.2023.p07-33.id1377
https://doi.org/10.37618/PARADIGMA.1011-2251.2023.p07-33.id1377


 
 

Onto-semiotic analysis of the emergence and evolution of functional reasoning 

Rev. de Inv. en Mat. y su Ens. (Osorno), 1(1), 09-37, jun. 2024  35 

16. Godino JD, Batanero C. Significado Institucional y Personal de los Objetos Ma-
temáticos. Recherches en Didactique des Mathématiques. 1994; 14(3), 325–
355.  

17. Godino JD, Batanero C, Font V. The Onto-Semiotic Approach to Research in 
Mathematics Education. ZDM. 2007; 39 (1-2), 127–135. 
http://dx.doi.org/10.1007/s11858-006-0004-1 

18. Godino J D, Neto T, Wilhelmi MR, Aké L, Etchegaray S, Lasa A. Niveles de 
Algebrización de las Prácticas Matemáticas Escolares. Articulación de las Pers-
pectivas Ontosemiótica y Antropológica. Avances de Investigación en educa-
ción Matemática. 2015; 8, 117–142. https://aiem.es/article/view/3970 

19. Godino J D, Burgos M, Gea M. Analysing Theories of Meaning in Mathematics 
Education from the Onto-Semiotic Approach. International Journal of Mathe-
matical Education in Science and Technology. 2021. 
https://doi.org/10.1080/0020739X.2021.1896042 

20. Batanero C. Significados de la Probabilidad en la Educación Secundaria. Re-
lime. 2005; 8(3), 247–264. 

21. Wilhelmi M R, Godino JD, Lacasta E. Configuraciones Epistémicas Asociadas 
a la Noción de Igualdad de Números Reales. Recherches en Didactique des 
Mathématiques. 2007; 27 (1), 77–120. https://revue-rdm.com/2007/configura-
ciones-epistemicas/ 

22. Godino JD, Font V, Wilhelmi MR, Lurduy O. Why Is the Learning of Elemen-
tary Arithmetic Concepts Difficult? Semiotic Tools for Understanding the Na-
ture of Mathematical Objects. Educational Studies in Mathematics. 2021; 77(2), 
247–265. http://dx.doi.org/10.1007/s10649-010-9278-x 

23. Burgos M, Godino JD. Modelo Ontosemiótico de Referencia de la Proporcio-
nalidad. Implicaciones para la Planificación Curricular en Primaria y Secunda-
ria. AIEM. 2020; 18, 1–20. http://dx.doi.org/10.35763/aiem.v0i18.255 

24. Godino JD, Aké L, Gonzato M, Wilhelmi MR. Niveles de Algebrización de la 
Actividad Matemática Escolar. Implicaciones para la Formación de Maestros. 
Enseñanza de las Ciencias. 2014; 32(1), 199–219. https://raco.cat/index.php/En-
senanza/article/view/287515 

25. Font V, Godino JD, Gallardo J. The Emergence of Objects from Mathematical 
Practices. Educational Studies in Mathematics. 2013; 82, 97–124. 
http://dx.doi.org/10.1007/s10649-012-9411-0 

26. Wittgenstein L. Philosophical investigations. London: Basil Blackwell Ltd, 
1953. 

27. Barrow-Green J, Gray J, Wilson R. The history of Mathematics: a Source-Based 
Approach. Volume 1. American Mathematical Society, 2019. 

28. Barrow-Green J, Gray J, Wilson R. The history of mathematics: a source-based 
approach. Volume 2. American Mathematical Society, 2022. 

http://dx.doi.org/10.1007/s11858-006-0004-1
https://aiem.es/article/view/3970
https://doi.org/10.1080/0020739X.2021.1896042
https://revue-rdm.com/2007/configuraciones-epistemicas/
https://revue-rdm.com/2007/configuraciones-epistemicas/
http://dx.doi.org/10.1007/s10649-010-9278-x
http://dx.doi.org/10.35763/aiem.v0i18.255
https://raco.cat/index.php/Ensenanza/article/view/287515
https://raco.cat/index.php/Ensenanza/article/view/287515
http://dx.doi.org/10.1007/s10649-012-9411-0


 
 
Godino, Burgos & Wilhelmi 

Rev. de Inv. en Mat. y su Ens. (Osorno), 1(1), 09-37, jun. 2024 36 

29. Bell ET. The Development of Mathematics. McGraw-Hill, 1945. 
30. Bos HJM. Newton, Leibniz and the Leibnizian Tradition. In Grattan-Guinness 

I, editor, From the Calculus to Set Theory 1630-1910. An Introductory History. 
(pp. 49-92). Princeton and Oxford: Princeton University Press. 1980. 

31. Bottazzini U. The Higher Calculus: A History of Real and Complex Analysis 
from Euler to Weierstrass. Springer-Verlag. 1986. 

32. Boyer CB. The History of the Calculus andiIts Conceptual Development. Dover.  
1949. 

33. Boyer CB, Merzbach UC. A History of Mathematics (3rd ed). John Wiley & 
Sons.1968/2011. 

34. Edwards CH. The Historical Development of the Calculus. Cham: Springer-
Verlag. 1979. 

35. Grattan-Guinness I. From the Calculus to Set Theory 1630-1910. An Introduc-
tory History. Princeton University Press. 1980. 

36. Kline M. Mathematical Thought from Ancient to Modern Times. Oxford Uni-
versity Press. 1972. 

37. Rüthing D. Some Definitions of the Concept of Function from Joh. Bernoulli to 
N. Bourbaki. Mathematical Intelligencer. 1984; 6(2), 72–77. 
https://link.springer.com/content/pdf/10.1007/BF03026743.pdf?pdf=core 

38. Malik MA. Historical and Pedagogical Aspects of the Definition of Function. 
International Journal of Mathematics Education in Science and Technology. 
1981; 11, 489-492. http://dx.doi.org/10.1080/0020739800110404 

39. Markovits Z, Eylon BS, Bruckheimer M. Functions Today and Yesterday. For 
the learning of mathematics. 1986; 6(2), 18–413. 

40. Piaget J, Grize B, Szeminska A, Bang V. Epistemologie et Psychologie de la 
Fonction. PUF. 1968. 

41. Ponte JP. The history of the Concept of Function and Some Educational Impli-
cations. The Mathematics Educator. 1992; 3–8. 

42. Thompson PW, Carlson MP. Variation, covariation, and functions: Founda-
tional ways of thinking mathematically. In Cai J, editor, Compendium for Re-
search in Mathematics Education (pp. 421–456). Reston, VA: National Council 
of Teachers of Mathematics. 2017. 

43. Hacking I. ‘Style’ for historians and philosophers. Studies in History and Phi-
losophy of Science. 1992; 23(1), 1–20. http://dx.doi.org/10.1016/0039-
3681(92)90024-Z 

44. Toulmin S. Human Understanding. Oxford University Press. 1977. 
45. Morin E. El método. Las Ideas. Su Hábitat, su Vida, sus Costumbres, su Orga-

nización. Cátedra. 1992. 
46. White LA. The Locus of Mathematical reality: An Anthropological Footnote. 

Philosophy of Science. 1983; 14(4), 289–303. 

https://link.springer.com/content/pdf/10.1007/BF03026743.pdf?pdf=core
http://dx.doi.org/10.1080/0020739800110404
http://dx.doi.org/10.1016/0039-3681(92)90024-Z
http://dx.doi.org/10.1016/0039-3681(92)90024-Z


 
 

Onto-semiotic analysis of the emergence and evolution of functional reasoning 

Rev. de Inv. en Mat. y su Ens. (Osorno), 1(1), 09-37, jun. 2024  37 

47. Rheinberger H-J. On Historicizing Epistemology. An Essay. Stanford Univer-
sity Press. 2010. 

48. Davis PJ, Hersch R, Marchisotto EA. The mathematical experience. Birkhäuser. 
2012. 

49. Awodey S. Category Theory. Carnegie Mellon University. 2010. 
50. Godino JD. Ecology of Mathematical Knowledge: An Alternative Vision of the 

Popularization of Mathematics. In Joseph A, Mignot F, Murat F, Prum B, 
Rentschler R, editors, First European Congress of Mathematics (vol. 3, pp. 150–
156). Birkhauser. 1994. 

51. Wilhelmi MR. Proporcionalidad en Educación Primaria y Secundaria. En J. M. 
Contreras y otros (Eds.), Actas del II Congreso International Virtual sobre el 
Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. 2017. 
Available from: https://enfoqueontosemiotico.ugr.es/civeos.html 

52. Wilhelmi MR, Godino JD, Lasa A. Significados Conflictivos de Ecuación y 
Función en Estudiantes de Profesorado de Secundaria. In González MT, Codes 
M, Arnau D & Ortega T (Eds.), Investigación en Educación Matemática XVIII 
(pp. 573–582). SEIEM, 2014. 

53. Dubinsky E, Breidenbach D, Hawks J, Nichols F. Development of the Process 
Conception of Function. Educational Studies in Mathematics. 1992; 23, 247–
285. https://link.springer.com/contnt/pdf/10.1007/BF02309532.pdf 

54. Godino J D, Giacomone B, Batanero C, Font V. Enfoque Ontosemiótico de los 
Conocimientos y Competencias del Profesor de Matemáticas. Bolema. 2017; 
31(57), 90–113. http://dx.doi.org/10.1590/1980-4415v31n57a05 

https://enfoqueontosemiotico.ugr.es/civeos.html
https://link.springer.com/contnt/pdf/10.1007/BF02309532.pdf
http://dx.doi.org/10.1590/1980-4415v31n57a05

