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Abstract
We characterise the numerical semigroups with a monotone Apéry set (MANS-
semigroups for short).Moreover, we describe the families ofMANS-semigroupswhen
we fix the multiplicity and the ratio.
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1 Introduction

Let Z = {0,±1,±2, . . .} and N = {z ∈ Z | z ≥ 0} be the sets of integer numbers and
non-negative integers, respectively. A numerical semigroup is a subset S of N such
that it is closed under addition, 0 ∈ S, and N\S = {x ∈ N | x /∈ S} is finite.

If A is a non-empty subset of N, then we denote by 〈A〉 the submonoid of (N,+)

generated by A, that is,

〈A〉 = {
λ1a1 + · · · + λnan | n ∈ N\{0}, a1, . . . , an ∈ A, λ1, . . . , λn ∈ N

}
.

From Lemma 2.1 of Rosales and García-Sánchez (2009), we have that 〈A〉 is a numer-
ical semigroup if and only if gcd(A) = 1.
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If S is a numerical semigroup and S = 〈A〉, then we say that A is a system of
generators of S. Moreover, if S �= 〈B〉 for any subset B � A, then A is a minimal
system of generators for S. From Theorem 2.7 of Rosales and García-Sánchez (2009),
each numerical semigroup admits a unique minimal system of generators and that
such a system is finite. We denote by msg(S) the minimal system of generators of S.
The cardinality of msg(S), denoted by e(S), is the embedding dimension of S.

If S is a numerical semigroup, from the finiteness of N\S, we can define two
invariants of S. Namely, the Frobenius number of S is the greatest integer that does
not belong to S, denoted by F(S), and the genus of S is the cardinality ofN\S, denoted
by g(S).

The (extended) Frobenius problem (see Ramírez Alfonsín 2005) for a numerical
semigroup S consists of finding formulas to compute F(S) and g(S) in terms ofmsg(S).
Its solution is well known for numerical semigroups with embedding dimension two
(see Sylvester 1883). However, the problem is open for e(S) ≥ 3. In fact, in Curtis
(1990), it is proved that, in general, there is not possible to find polynomial formulas
when e(S) ≥ 3. The difficulty of the Frobenius problem can be further argued. Indeed,
it is known (see Ramírez-Alfonsín 1996) that finding F(S) is NP-hard in general,
implying that it is unlikely to find an explicit formula for F(S) (only depending on
the generators of S and not necessarily a polynomial) unless P=NP, which is widely
believed to be false.

Let S be a numerical semigroup and n ∈ S\{0}. The Apéry set of n in S (named so
after Apéry 1946) is the set Ap(S, n) = {s ∈ S | s −n /∈ S}. In Lemma 2.4 of Rosales
and García-Sánchez (2009), it is shown that Ap(S, n) = {w(0) = 0, w(1), . . . , w(n−
1)}, where w(i) is the least element of S congruent with i modulo n.

Recall that if S is a numerical semigroup, the least element of S\{0} (equivalently,
the minimum of msg(S)) is called the multiplicity of S, denoted by m(S). Now,
following the notation introduced in Rosales et al. (2005), S is a numerical semigroup
with a monotone Apéry set (MANS-semigroup for short) if S is a numerical semigroup
fulfilling w(1) < w(2) < · · · < w(m(S) − 1), where w(i) is the least element of S
congruent with i modulo m(S).

In Rosales et al. (2005), the authors study some families of numerical semigroups
with monotone Apéry sets and fixed multiplicity. This work aims to characterise the
family of MANS-semigroups.

Firstly, in Sect. 2, we discuss a necessary condition that, in particular, is sufficient
in the case of embedding dimension two.

Then, in Sect. 3, we analyse MANS-semigroups with embedding dimension three.
Thus, in Sect. 3.1, we characterise the triplet (n1, n2, n3) such that 〈{n1, n2, n3}〉 is a
MANS-semigroup. Furthermore, we solve the (extended) Frobenius problem for those
semigroups inSects. 3.2 and, inSects. 3.3 and3.4,we studypseudo-Frobenius numbers
and MANS-semigroups, with embedding dimension three, that are irreducible (recall
that a numerical semigroup is irreducible if it cannot be expressed as the intersection
of two numerical semigroups containing it properly).

Finally, in Sect. 4, we characterise MANS-semigroups with arbitrary embedding
dimension. Moreover, in Sect. 4.2, we describe the tree associated with the family of
numerical semigroups with fixed multiplicity and ratio; in Sect. 4.3, we show how to
construct irreducible MANS-semigroups in general; and, in Sect. 4.4, we study when
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numerical semigroups associated with arithmetic and almost arithmetic sequences are
MANS-semigroups.

2 Case of Embedding Dimension Two

If S is a numerical semigroup and msg(S) = {n1 < n2 < · · · < ne}, then m(S) = n1,
r(S) = n2, and M(S) = ne are the multiplicity, the ratio and the maximum minimal
generator of S, respectively. In particular, if S is a numerical semigroupwith e(S) = 2,
then msg(S) = {m(S) < r(S)} and r(S) = M(S).

We present two necessary conditions for MANS-semigroups. The first condition is
a consequence of a well-known fact: {n2, . . . , ne} ⊆ Ap(S, n1).

As usual, for any a, b ∈ N, a mod b is the remainder of the division of a by b.

Lemma 2.1 Let S = 〈n1 < n2 < · · · < ne〉 be a numerical semigroup with n1 ≥ 2. If
S is a MANS-semigroup, then n2 mod n1 < n3 mod n1 < · · · < ne mod n1.

Lemma 2.2 Let S be a numerical semigroup withm(S) ≥ 2. If S is a MANS-semigroup,
then there exists a ∈ N\{0} such that r(S) = am(S) + 1.

Proof From the definitions, we have that r(S) = min(Ap(S,m(S))\{0}), and since S
is aMANS-semigroup, we deduce there exists a ∈ N\{0} such that r(S) = am(S)+1.

�	
In the case of embedding dimension two, the necessary condition of the above

lemma is also sufficient.

Proposition 2.3 Let S = 〈n1, n2〉 be a numerical semigroup with 2 ≤ n1 < n2. Then
S is a MANS-semigroup if and only if there exists a ∈ N\{0} such that n2 = an1 + 1.

Proof The necessity is just Lemma 2.2. For sufficiency, it is easy to check that
Ap(S, n1) = {0 < n2 < 2n2 < · · · < (n1 − 1)n2} and in2 ≡ i (mod n1) for
all i ∈ {1, . . . , n1 − 1}. �	

3 Case of Embedding Dimension Three

Observe that if S is a numerical semigroup with embedding dimension three, then
msg(S) = {m(S) < r(S) < M(S)}.

3.1 Minimal Generators

In the following result, we show a necessary condition for MANS-semigroups with
embedding dimension equal to three.

Proposition 3.1 If S is a MANS-semigroup and e(S) = 3, then there exists
{m, a, b, t} ⊆ N such that m ≥ 3, a ≥ 1, t ∈ {2, . . . , m − 1}, (t − 1)(am + 1) <

bm + t < t(am + 1), and (m(S), r(S),M(S)) = (m, am + 1, bm + t).
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Proof From Proposition 2.10 of Rosales and García-Sánchez (2009), we know that
e(S) ≤ m(S) and, therefore, m(S) ≥ 3.

By applying Lemma 2.2, there exists a ∈ N\{0} such that r(S) = am(S) + 1.
Moreover, we have that M(S) = bm(S) + t with b ∈ N\{0} and t ∈ {2, . . . , m − 1}.

If Ap(S,m(S)) = {w(0) = 0, w(1), . . . , w(m(S)−1)}, then clearlyw(t) = M(S)

and, since S is a MANS-semigroup, we have that w(0) = 0 < w(1) = am(S) + 1 <

w(2) = 2(am(S) + 1) < · · · < w(t − 1) = (t − 1)(am(S) + 1) < w(t) =
M(S) = bm(S) + t . Finally, since bm(S) + t /∈ 〈m(S), am(S) + 1〉, we deduce that
bm(S) + t < t(am(S) + 1). �	

Our next aim is to show that the condition given in Proposition 3.1 is also sufficient.
From here, m, a, b, and t are positive integers such that m ≥ 3, a ≥ 1, t ∈ {2, . . . , m −
1}, (t − 1)(am + 1) < bm + t < t(am + 1); moreover, we consider S = 〈m, am +
1, bm + t〉. Let us see that S is a numerical semigroup with embedding dimension
equal to three, and then let us describe the Apéry set Ap(S, m).

Lemma 3.2 S is a numerical semigroup with e(S) = 3.

Proof Since gcd{m, am +1} = 1, we have that S is a numerical semigroup.Moreover,
since (t −1)(am+1) < bm+t , then am+1 < bm+t . Finally, to prove that e(S) = 3,
it suffices to see that mb+ t /∈ 〈a, am +1〉, which is true because bm + t < t(am +1).

�	
Three previous results, in which we determine the possible elements, are necessary

to give the Apéry set Ap(S, m) explicitly.

Lemma 3.3 Let λ ∈ N\{0} such that (λ−1)t < m ≤ λt . Then λ(bm + t) /∈ Ap(S, m).

Proof It follows directly from the hypothesis that λt − m ∈ {0, . . . , t − 1}. Moreover,
we have thatλ(bm+t) ≡ (λt−m)(am+1) (mod m). Then, since (λt−m)(am+1) ≤
(t −1)(am +1) < bm + t ≤ λ(bm − t), we deduce that λ(bm + t) = (λt − m)(am +
1) + μm for some μ ∈ N\{0}. Therefore, λ(bm + t) /∈ Ap(S, m). �	

An immediate consequence of the above lemma is the following one.

Lemma 3.4 If λ ∈ N and λt ≥ m, then λ(bm + t) /∈ Ap(S, m).

Lemma 3.5 If μ ∈ N and μ ≥ t , then μ(am + 1) /∈ Ap(S, m).

Proof It is clear that μ(am + 1) ≡ (bm + t)+ (μ− t)(am + 1) (mod m). Moreover,
(bm + t) + (μ − t)(am + 1) ∈ S and (bm + t) + (μ − t)(am + 1) < μ(am + 1)
(becausebm+t < t(am+1)). Therefore, there existsλ ∈ N\{0} such thatμ(am+1) =
(bm + t) + (μ − t)(am + 1) + λm. In consequence, μ(am + 1) /∈ Ap(S, m). �	

We are ready to show Ap(S, m). As usual, �x = max{n ∈ N | n ≤ x} for every
x ∈ R.

Proposition 3.6 If Ap(S, m) = {w(0), w(1), . . . , w(m − 1)}, then

w(i) =
⌊

i

t

⌋
(bm + t) + (i mod t)(am + 1), i ∈ {0, 1, . . . , m − 1}.
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Proof By Lemmas 3.4 and 3.5, we deduce that w(i) = λ(bm + t) + μ(am + 1) for
some {λ,μ} ⊆ N such that λt < m and μ < t . Then, since λt + μ ≡ i (mod m) and
i = ⌊ i

t

⌋
t + (i mod t), we can conclude that λ = ⌊ i

t

⌋
and μ = i mod t . �	

Weend this sectionwith the characterisation ofMANS-semigroupswith embedding
dimension equal to three.

Theorem 3.7 The following conditions are equivalent.

1. S is a MANS-semigroup with e(S) = 3.
2. S = 〈m, am +1, bm + t〉, where {m, a, b, t} ⊆ N, m ≥ 3, a ≥ 1, t ∈ {2, . . . , m −

1}, and (t − 1)(am + 1) < bm + t < t(am + 1).

Proof (1. ⇒ 2.) This is Proposition 3.1.
(2. ⇒ 1.) From Lemma 3.2, we know that S is a numerical semigroup with

e(S) = 3. To finish the proof, it will be enough to see that if Ap(S, m) =
{w(0), w(1), . . . , w(m − 1)}, then w(i) < w(i + 1) for all i ∈ {0, . . . , m − 2}.
On the one side, if (i + 1) mod t > i mod t , then we deduce that w(i) < w(i + 1)
by applying Proposition 3.6. On the other side, if (i + 1) mod t ≤ i mod t , then
(i +1) mod t = 0 and, thereby,

⌊ i+1
t

⌋ = ⌊ i
t

⌋−1. By applying again Proposition 3.6,
we have that w(i) < w(i + 1). �	

3.2 Frobenius Problem

The following result is the first part of Proposition 2.12 in Rosales and García-Sánchez
(2009).

Proposition 3.8 If S is a numerical semigroup and n ∈ S\{0}, then F(S) =
max(Ap(S, n)) − n.

An immediate consequence of Propositions 3.6 and 3.8 is the following.

Proposition 3.9 If S = 〈m, am + 1, bm + t〉 is a MANS-semigroup with embedding
dimension three, then F(S) = r(am + 1) + q(bm + t) − m, where q = ⌊m−1

t

⌋
and

r = (m − 1) mod t .

Remark 3.10 By applying the second case of the first theorem in Byrnes (1974), we
recover Proposition 3.9.

Let us see an example of the above proposition.

Example 3.11 Let S = 〈5, 6, 13〉 = {0, 5, 6, 10, 11, 12, 13, 15,→} (where the sym-
bol → indicates that all integers greater than 15 belong to S). Then Ap(S, 5) =
{w(0) = 0, w(1) = 6, w(2) = 12, w(3) = 13, w(4) = 19} and, therefore, S is a
MANS-semigroup with e(S) = 3. Moreover, since m = 5, am +1 = 6, bm + t = 13,
and t = 3, then q = 1, r = 1, and consequently F(S) = 6 + 13 − 5 = 14.

The following result is the second statement of Proposition 2.12 in Rosales and
García-Sánchez (2009).
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Proposition 3.12 If S is a numerical semigroup, n ∈ S\{0}, and Ap(S, n) =
{w(0), w(1), . . . , w(n − 1)}, then g(S) = w(0)+w(1)+···+w(n−1)

n − n−1
2 .

We can now show a formula for the genus of a MANS-semigroup with embedding
dimension three.

Proposition 3.13 If S = 〈m, am + 1, bm + t〉 is a MANS-semigroup with embedding
dimension three, then

g(S) = qt(t − 1) + r(r + 1)

2m
(am + 1) + qt(q − 1) + 2q(r + 1)

2m
(bm + t) − m − 1

2
,

where q = ⌊m−1
t

⌋
and r = (m − 1) mod t .

Proof As a consequence of Proposition 3.6, we have that

Ap(S, m) = {0, (am + 1), . . . , (t − 1)(am + 1),

(bm + t), (am + 1) + (bm + t), . . . , (t − 1)(am + 1) + (bm + t), . . . ,

(q − 1)(bm + t), (am + 1) + (q − 1)(bm + t), . . . ,

(t − 1)(am + 1) + (q − 1)(bm + t),

r(bm + t), (am + 1) + q(bm + t), . . . , r(am + 1) + q(bm + t)}

Then, by applying Proposition 3.12, we get the result. �	
Remark 3.14 Since qt(t − 1) + r(r + 1) + (qt(q − 1) + 2q(r + 1))t = m(m − 1),
we can rewrite the formula of the previous proposition as

g(S) = qt(t − 1) + r(r + 1)

2
a + qt(q − 1) + 2q(r + 1)

2
b.

Let us see an example of the content of the above proposition.

Example 3.15 Let S = 〈5, 6, 13〉 the numerical semigroup of Example 3.11. Then
a = 1, b = 2, m = 5, t = 3, q = 1, and r = 1. By applying Proposition 3.13, we
have that g(S) = (3×2+1×2)×6+(3×0+2×1×2)×13

2×5 − 4
2 = 8.

3.3 Pseudo-Frobenius Numbers

Let S be a numerical semigroup. Following the terminology in Rosales and Branco
(2002), a pseudo-Frobenius number of S is an element x ∈ Z\S such that x + s ∈ S
for all s ∈ S\{0}. We denote by PF(S) = {x | x is a pseudo-Frobenius number of S}.
The cardinality of PF(S) is called the type of S, denoted by t(S). From Fröberg et al.
(1987), we have that if S is a numerical semigroup with e(S) = 3, then t(S) ∈ {1, 2}.

Let S be a numerical semigroup. We define over Z the following binary relation:
a ≤S b if b − a ∈ S. It is clear that ≤S is a non-strict partial order relation (that is, it
is reflexive, transitive, and anti-symmetric).
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The following result is Proposition 2.20 of Rosales and García-Sánchez (2009)
(see also Proposition 7 of Fröberg et al. 1987) and characterises the pseudo-Frobenius
numbers in terms of the maximal elements of Ap(S, n) with respect to the relation
≤S .

Proposition 3.16 Let S be a numerical semigroup and n ∈ S\{0}. Then

PF(S) = {w − n | w ∈ Maximals≤S (Ap(S, n))}.

Before continuing, let us see one example.

Example 3.17 Let S =〈5, 6, 13〉 as inExample3.11.ThenAp(S, 5)={0, 6, 12, 13, 19}
and, thereby, Maximals≤S (Ap(S, 5)) = {12, 19}. By applying Proposition 3.16, we
have that PF(S) = {7, 14}.

The next result follows from the proof of the Proposition 3.13.

Lemma 3.18 Let S = 〈m, am + 1, bm + t〉 be a MANS-semigroup with e(S) = 3,
q = ⌊m−1

t

⌋
, and r = (m − 1) mod t . Then {q(bm + t) + r(am + 1)} ⊆

Maximals≤S (Ap(S, m)) ⊆ {(q−1)(bm+t)+(t −1)(am+1), q(bm+t)+r(am+1)}
and, consequently, {q(bm + t) + r(am + 1) − m} ⊆ PF(S) ⊆ {(q − 1)(bm + t) +
(t − 1)(am + 1) − m, q(bm + t) + r(am + 1) − m}.

Let us characterise when aMANS-semigroup with embedding dimension three has
type equals one or two.

Proposition 3.19 Let S = 〈m, am +1, bm + t〉 be a MANS-semigroup with e(S) = 3.
Then t(S) = 1 if and only if t | m (that is, t divides m).

Proof Let us take q = ⌊m−1
t

⌋
and r = (m − 1) mod t .

(Necessity.) From Proposition 3.16 and Lemma 3.18, we deduce that if t(S) = 1,
then q(bm + t)+r(am +1)−((q −1)(bm + t)+(t −1)(am +1)) ∈ S and, therefore,
bm + t + (r − t + 1)(am + 1) ∈ S. By applying that bm + t ∈ msg(S), we have that
r − t + 1 ≥ 0 and, consequently, r = t − 1. Thus, m − 1 = qt + t − 1 and, thereby,
t | m.

(Sufficiency.) If t | m, then there exists k ∈ N such that m = kt and, therefore,
m − 1 = (k − 1)t + t − 1. Thus, r = t − 1 and q(bm + t) + r(am + 1) − ((q −
1)(bm + t) + (t − 1)(am + 1)) = bm + t ∈ S. Now, by applying Proposition 3.16
and Lemma 3.18, we conclude that t(S) = 1. �	

We deduce the following result from Propositions 3.16 and 3.19 and Lemma 3.18.
We denote by t � m that t does not divide m.

Proposition 3.20 Let S = 〈m, am +1, bm + t〉 be a MANS-semigroup with e(S) = 3,
q = ⌊m−1

t

⌋
, and r = (m − 1) mod t .

1. If t | m, then PF(S) = {q(bm + t) + r(am + 1) − m}.
2. If t � m, then PF(S) = {(q − 1)(bm + t) + (t − 1)(am + 1) − m, q(bm + t) +

r(am + 1) − m}.
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Let us see an example of the last two propositions.

Example 3.21 Let S = 〈6, 7, 15〉. Then Ap(S, 6) = {w(0) = 0, w(1) = 7, w(2) =
14, w(3) = 15, w(4) = 22, w(5) = 29}. Therefore, S is a MANS-semigroup with
e(S) = 3. Since m = 6 and t = 3, from Proposition 3.19 we can assert that t(S) = 1;
indeed, PF(S) = {23}.

3.4 Irreducibility

Recall that a numerical semigroup S is irreducible if it is not expressible as the intersec-
tion of two numerical semigroups properly containing S. This concept was introduced
in Rosales and Branco (2003), where it is shown that a numerical semigroup S is
irreducible if and only if it is maximal (with respect to the inclusion order) in the set
formed by all numerical semigroups with Frobenius number F(S). From Barucci et al.
(1997) and Fröberg et al. (1987), it follows that the family of irreducible numerical
semigroups is the union of two well-known families, the symmetric numerical semi-
groups and the pseudo-symmetric numerical semigroups (see Rosales and Branco
2003). Furthermore, a numerical semigroup is symmetric (pseudo-symmetric, respec-
tively) if it is irreducible and has an odd Frobenius number (even Frobenius number,
respectively).

The following result is consequence of Corollaries 4.5, 4.11 and 4.16 in Rosales
and García-Sánchez (2009).

Proposition 3.22 Let S be a numerical semigroup.

1. S is symmetric if and only if t(S) = 1 (equivalently, PF(S) = {F(S)}).
2. S is symmetric if and only if F(S) = 2g(S) − 1.

3. S is pseudo-symmetric if and only if PF(S) =
{
F(S)
2 ,F(S)

}
.

4. S is pseudo-symmetric if and only if F(S) = 2g(S) − 2.

Let us observe that Proposition 3.19 characterises MANS-semigroups with embed-
ding dimension three that are symmetric. Note also that, from Example 3.17 and
Proposition 3.22, we know that S = 〈5, 6, 13〉 is a MANS-semigroup with embed-
ding dimension three that is pseudo-symmetric. We now propose to characterise this
class of semigroups.

Proposition 3.23 Let S = 〈m, am +1, bm + t〉 be a MANS-semigroup with e(S) = 3.
Then S is pseudo-symmetric if and only if t = m+1

2 and t = b+1
a .

Proof From Propositions 3.9, 3.13, and 3.22, S is pseudo-symmetric if and only if
r(am + 1) + q(bm + t) is equal to

qt(t − 1) + r(r + 1)

m
(am + 1) + qt(q − 1) + 2q(r + 1)

m
(bm + t) − 1,

where q = ⌊m−1
t

⌋
and r = (m − 1) mod t . Since
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(mr − qt(t − 1) − r(r + 1))(am + 1) + (qm − qt(q − 1) − 2q(r + 1))(bm + t)

= ((m − r − 1)r − qt(t − 1))(am + 1) + q(m − t(q − 1) − 2(r + 1))(bm + t)

= qt(r − t + 1)(am + 1) + q(t − 1 − r)(bm + t) = q(t − 1 − r)(ta − b)(−m),

we deduce that S is pseudo-symmetric if and only if q(t −1−r)(ta −b) = 1. Finally,
since q, t − 1 − r , ta − b ∈ N (recall that bm + t < t(am + 1)), we deduce that
q = t − 1 − r = ta − b = 1 and we get the result by observing that

• t = m+1
2 if and only if q = 1 and r = t − 2;

• t = b+1
a if and only if ta − b = 1.

�	
Remark 3.24 With similar reasoning as in the above proof, we can recover Proposi-
tion 3.19 using condition 2 of Proposition 3.22.

Let us see three examples relate to the above proposition. In particular, from the
first two, we conclude that conditions t = b+1

a and t = m+1
2 are independent.

Example 3.25 Let S = 〈5, 6, 19〉. Thenm = 5,a = 1,b = 3, and t = 4.Thus, t = b+1
a

and t �= m+1
2 . Note that S is a MANS-semigroup and, since PF(S) = {13, 14}, it is

not pseudo-symmetric.

Example 3.26 Let S = 〈5, 11, 23〉. Then m = 5, a = 2, b = 4, and t = 3. Therefore,
t �= b+1

a and t = m+1
2 . We have that S is a MANS-semigroup and, since PF(S) =

{17, 29}, it is not pseudo-symmetric.

Example 3.27 If m = 3, then symmetric MANS-semigroups are of the form S =
〈3, 3a + 1〉 and pseudo-symmetric MANS-semigroups are of the form S = 〈3, 3a +
1, 6a − 1〉, with a ∈ N\{0} in both cases. Note that, for each a ∈ N\{0}, 6a − 1 is the
Frobenius number of 〈3, 3a + 1〉.

4 Case of Arbitrary Embedding Dimension

In this section, we analyse the general case of MANS-semigroups, that is, we consider
numerical semigroups of arbitrary embedding dimension.

As stated in Sect. 2, if S is a numerical semigroupwithmsg(S) = {n1 < n2 < · · · <

ne}, then m(S) = n1, r(S) = n2, andM(S) = ne are the multiplicity, the ratio, and the
greatest minimal generator of S, respectively. Moreover, if S is a MANS-semigroup,
then r(S) = am(S) + 1 for some a ∈ N\{0}.

Let us first give a characterisation ofMANS-semigroups.We start by detecting how
we can add to a MANS-semigroup S a new minimal generator (greater than M(S)) to
obtain a new MANS-semigroup (with a higher embedding dimension).

Lemma 4.1 Let S be a MANS-semigroup with msg(S) = {n1 < n2 < · · · < ne}
(2 ≤ e ≤ n1 − 1) and Ap(S, n1) = {w(0), w(1), . . . , w(n1 − 1)}. If ne+1 ∈ N fulfil
that ne < ne+1, ne mod n1 < ne+1 mod n1, and w(ne+1 mod n1 − 1) < ne+1 <

w(ne+1 mod n1), then S′ = 〈n1, . . . , ne, ne+1〉 is a MANS-semigroup with e(S′) =
e(S) + 1.
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Proof From condition ne+1 < w(ne+1 mod n1), we deduce that ne+1 /∈ S and, since
ne < ne+1, then msg(S′) = {n1 < n2 < · · · < ne < ne+1}. Therefore, e(S′) =
e(S) + 1.

Let Ap(S′, n1) = {w′(0), w′(1), . . . , w′(n1−1)}. By observing the construction of
S′, it is clear that w′(i) ≤ w(i) for all i ∈ {0, 1, . . . , n1 − 1}. In order to prove that S′
is a MANS-semigroup, we analyse what happens between two consecutive elements
of Ap(S′, n1). We will consider two cases (in which we take i ≥ 1).

1. If w′(i) ∈ S, then w′(i) = w(i) and, therefore, w′(i − 1) ≤ w(i − 1) < w(i) =
w′(i).

2. If w′(i) /∈ S, then w′(i) = kne+1 + w( j) for some k ∈ N\{0} and some j ∈
{0, . . . , n1 − 1}. Once again, we distinguish two cases.

(a) If j �= 0, then w′(i − 1) ≤ kne+1 + w( j − 1) < kne+1 + w( j) = w′(i).
(b) If j = 0, then w′(i) = kne+1 and, consequently, w′(i − 1) ≤ (k − 1)ne+1 +

w(ne+1 mod n1 − 1) < kne+1 = w′(i).

�	
Let us now see that if we remove the greatest minimal generator of a MANS-

semigroup S, we get a newMANS-semigroup (with a smaller embedding dimension).

Lemma 4.2 Let S be a MANS-semigroup with msg(S) = {n1 < n2 < · · · < ne <

ne+1} (e ≥ 2). Then S′ = 〈n1, n2, . . . , ne〉 is a MANS-semigroup with e(S′) =
e(S) − 1.

Proof The equality e(S′) = e(S) − 1 is trivial by the construction of S′.
From Lemma 2.2, we know that if e = 2, then S′ = 〈n1, n2〉 = 〈n1, an1 + 1〉 for

some a ∈ N\{0}. By Proposition 2.3, S′ is a MANS-semigroup.
Let us now suppose that e ≥ 3, Ap(S, n1) = {w(0), w(1), . . . , w(n1 − 1)}, and

Ap(S′, n1) = {w′(0), w′(1), . . . , w′(n1−1)}. To prove that S′ is aMANS-semigroup,
we analyse what happens for two consecutive elements of Ap(S′, n1).

Firstly, observe that w′(i) = w(i) for all i ∈ {0, 1, . . . , ne+1 mod n1 − 1}. (This
fact will be used again in Sect. 4.1.)

If i ≥ 2, then there exists k ∈ {1, 2, . . . , e} such that w′(i) = nk + w′( j), where
j = (nk − i) mod n1. Thus, nk mod n1 − 1 + j ≡ (i − 1) (mod n1) and, therefore,
w′(i − 1) ≤ w′(nk mod n1 − 1) + w′( j). Now, since S is MANS-semigroup, then
w′(nk mod n1 − 1) < w′(nk mod n1) = nk . In conclusion, w′(i − 1) ≤ w′( j) +
w′(nk mod n1 − 1) < w′( j) + nk = w′(i). �	

The next result follows immediately from the above lemma.

Corollary 4.3 Let S be a MANS-semigroup with msg(S) = {n1 < n2 < · · · < ne <

ne+1} (e ≥ 2). Then S′ = 〈n1, n2, . . . , ni 〉 is a MANS-semigroup with e(S′) = i for
all i ∈ {2, . . . , e}.

We can already state the characterisation of MANS-semigroups.

Theorem 4.4 Let S be a numerical semigroup with msg(S) = {n1 < n2 < · · · <

ne < ne+1} (e ≥ 2) and let S′ = 〈n1 < n2 < · · · < ne〉 with Ap(S′, n1) =
{w′(0), w′(1), . . . , w′(n1 − 1)}. Then S is a MANS-semigroup if and only if
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1. S′ is a MANS-semigroup,
2. ne mod n1 < ne+1 mod n1,
3. and w′(ne+1 mod n1 − 1) < ne+1 < w′(ne+1 mod n1).

Proof (Necessity.) By Lemma 4.2, we know that S′ is a MANS-semigroup.
Since S is a MANS-semigroup and ne, ne+1 ∈ Ap(S, n1), we can state that ne mod

n1 < ne+1 mod n1.
If Ap(S, n1) = {w(0), w(1), . . . , w(n1 − 1)}, since S and S′ are MANS-

semigroups, we have that w′(i) = w(i) for all i ∈ {0, 1, . . . , ne+1 mod n1 − 1}
and, consequently, w′(ne+1 mod n1 − 1) < ne+1.

Finally, since en+1 ∈ msg(S), we have that en+1 /∈ S′, from which it follows that
ne+1 < w′(ne+1 mod n1).

(Sufficiency.) Follows by Lemma 4.1. �	

4.1 Apéry Sets

Let S and S′ be MANS-semigroups with msg(S) = {n1 < n2 < · · · < ne} and
msg(S′) = {n1 < n2 < · · · < ne < ne+1}. We now aim to construct Ap(S′, n1) from
Ap(S, n1).

Remark 4.5 Under the conditions of Lemma 4.1, let te+1 = ne+1 mod n1. Note that

if we take k =
⌊

n1−1
te+1

⌋
+ 1, then k ≥ 2 and kne+1 mod n1 ≤ ne+1 mod n1. Since

S′ = 〈n1 < n2 < · · · < ne < ne+1〉 is a MANS-semigroup, we deduce that kne+1
cannot appear as a summand in the elements of Ap(S′, n1).

We take K =
⌊

n1−1
te+1

⌋
, Ah = {w(0), w(1), . . . , w(n1 − 1 − hte+1)}, for h ∈

{0, 1, . . . , K }, and Ap(S, n1) = {w(0), w(1), . . . , w(n1 − 1)}. From the proof of
Lemma 4.1 and Remark 4.5, we have that Ap(S′, n1) is a subset of B = A0 ∪ (ne+1 +
A1) ∪ · · · ∪ (K ne+1 + AK ) (where, as usual, if x ∈ R and A ⊆ R, then x + A =
{x + a | a ∈ A}). Thus if Ap(S′, n1) = {w′(0), w′(1), . . . , w′(n1 − 1)}, then it is
satisfied that

• w′(i) = w(i) if 0 ≤ i ≤ te+1 − 1,
• w′(i) = min{w(i), ne+1 + w(i − te+1)} if te+1 ≤ i ≤ 2te+1 − 1,
• w′(i) = min{w(i), ne+1 + w(i − te+1), 2ne+1 + w(i − 2te+1)} if 2te+1 ≤ i ≤
3te+1 − 1,

• …
• w′(i) = min{w(i), ne+1+w(i − te+1), 2ne+1+w(i −2te+1), . . . , (K −1)ne+1+

w(i − (K − 1)te+1)} if (K − 1)te+1 ≤ i ≤ K te+1 − 1,
• w′(i) = min{w(i), ne+1+w(i − te+1), 2ne+1+w(i −2te+1), . . . , (K −1)ne+1+

w(i − (K − 1)te+1), K ne+1 + w(i − K te+1)} if K te+1 ≤ i ≤ n1 − 1.

Let us see an example of this construction.

Example 4.6 Let S3 = 〈13, 27, 55〉. Then

Ap(S3, 13) = {0, 27, 54, 55, 82, 109, 110, 137, 164, 165, 192, 219, 220}.
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Therefore, S3 is a MANS-semigroup.
If we take n4 = 96 = 7 × 13 + 5, then 82 < 96 < 109 and, by Lemma 4.1,

S4 = 〈13, 27, 55, 96〉 is a MANS-semigroup. Moreover, K = ⌊ 13−1
5

⌋ = 2.
To construct Ap(S4, 13), we consider the following table.

w(i) 96 + w(i) 2 · 96 + w(i)

0 – –
27 – –
54 – –
55 – –
82 – –
109 96 + 0 = 96 –
110 96 + 27 = 123 –
137 96 + 54 = 150 –
164 96 + 55 = 151 –
165 96 + 82 = 178 –
192 96 + 109 = 205 192 + 0 = 192
219 96 + 110 = 206 192 + 27 = 219
220 96 + 137 = 233 192 + 54 = 246

Taking the minimum in each line, we conclude that

Ap(S4, 13) = {0, 27, 54, 55, 82, 96, 110, 137, 151, 165, 192, 206, 220}.

4.2 The Tree of MANS-Semigroups with Multiplicity and Ratio Fixed

Note that if we fix the multiplicity value (m > 1), then there are infinite MANS-
semigroups S with m(S) = m. In fact, by Proposition 2.3, we have that S = 〈m, am +
1〉 is a MANS-semigroup for any a ∈ N\{0}. Incidentally, N is the unique MANS-
semigroup with multiplicity m = 1.

However, if we fix the multiplicity (m > 1) and the ratio (r > 2), then the set
MA(m, r) = {S | S is a MANS-semigroup, m(S) = m, and r(S) = r} is finite.
Indeed, by Corollary 4.3, it is clear that every element of MA(m, r) must contain
the numerical semigroup 〈m, r〉. Now, since N\〈m, r〉 is finite, we conclude that
MA(m, r) has finitely many elements.

Sincewe nowwant to find all the elements ofMA(m, r), wewill endowMA(m, r)

with a tree structure.
Recall that a directed graph G is a pair (V , E) where V is a non-empty set and

E is a subset of {(u, v) ∈ V × V | u �= v}. The elements of V and E are called
vertices and edges, respectively. A path, of length n, connecting the vertices u, v ∈ G
is a sequence of distinct edges of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) such that
v0 = u and vn = v.

A directed graph G is a tree if there exists a vertex vr (known as the root of G)
such that, for any other vertex v ∈ G, there exists a unique path connecting v and vr .
Moreover, if (u, v) is an edge of the tree, then u is a child of v.
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To define the tree G(MA(m, r)), we takeMA(m, r) as the set of vertices and say
that (T , S) ∈ MA(m, r) × MA(m, r) is an edge of G(MA(m, r)) if and only if
msg(S) = msg(T )\{M(T )}.

Given S ∈ MA(m, r), we define the following sequence: S0 = S and

Sn+1 =
{ 〈msg(Sn)\{M(Sn)}〉 if Sn �= 〈m, r〉,

〈m, r〉 otherwise.

From Lemma 4.2, we deduce the following result.

Proposition 4.7 If S ∈ MA(m, r) and {Sn | n ∈ N} is the sequence defined above,
then Sn ∈ MA(m, r) for all n ∈ N. Moreover, Sk = 〈m, r〉 for all k ≥ e(S) − 2.

As a consequence of Proposition 4.7 and the first two comments of this subsection,
we obtain the following result.

Proposition 4.8 G(MA(m, r)) is a finite tree with root 〈m, r〉.
Observe that, starting from its root, we can recurrently build a tree by connecting

each vertex to its children through the corresponding edges. Thus, if we know the
children of any vertex in G(MA(m, r)), then we can build the tree and find all the
elements of MA(m, r).

Let S = 〈n1 < n2 < · · · < ne〉 be a MANS-semigroup with e ≥ 2. Moreover,
let Ap(S, n1) = {w(0), w(1), . . . , w(n1 − 1)}. We will say that n ∈ N is a suitably
monotone element for S if it fulfils the following three conditions:

1. ne < n.
2. ne mod n1 < n mod n1.
3. w(n mod n1 − 1) < n < w(n mod n1).

From Lemma 4.1 and Proposition 4.8, we deduce the result that allows us to recur-
rently build G(MA(m, r)).

Theorem 4.9 Let S = 〈n1 < n2 < · · · < ne〉 ∈ MA(m, r) be any vertex
of G(MA(m, r)). Then the children of S are the numerical semigroups Tn =
〈n1, n2, . . . , ne, n〉, where n is a suitably monotone element for S.

Let us illustrate the above theorem with two examples. In both of them, the number
above the arrows corresponds to the modulo, with respect to the multiplicity, of the
new minimal generator.

Example 4.10 Let m = 5 and r = 6. Then the tree G(MA(5, 6)) is given by Fig. 1.

Example 4.11 Let m = 5 and r = 11. Then the tree G(MA(5, 6)) is given by Fig. 2.

From the two above examples, we observe that if S is a MANS-semigroup such
that M(S) mod n1 < n1 − 1, then M(S) + 1 is a suitably monotone element for S. As
we show in the following result, this fact is not casual.
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5, 6

2

3

4

5, 6, 7

5, 6, 13

5, 6, 19

3

4

5, 6, 7, 8

5, 6, 13, 14

4 5, 6, 7, 8, 9

Fig. 1 G(MA(5, 6))
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2
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3
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4
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5, 11, 23

5, 11, 28

5, 11, 34

5, 11, 39

3

3

3

3

4

4

4

4

4

5, 11, 12, 13

5, 11, 12, 18

5, 11, 17, 18

5, 11, 17, 23

5, 11, 17, 29

5, 11, 23, 24

5, 11, 23, 29

5, 11, 28, 29

5, 11, 28, 34

4

4

4

4

4

4

4

5, 11, 12, 13, 14

5, 11, 12, 13, 19

5, 11, 12, 18, 19

5, 11, 17, 18, 19

5, 11, 17, 18, 24

5, 11, 17, 23, 24

5, 11, 17, 23, 29

Fig. 2 G(MA(5, 11))

Proposition 4.12 Let S = 〈n1 < n2 < · · · < ne〉 with n1 ≥ 3 and e ≥ 2. If S is a
MANS-semigroup such that ne mod n1 < n1 − 1, then ne + 1 is a suitably monotone
element for S.

Proof Firstly, we observe that ne < ne + 1 and, since ne mod n1 < n1 − 1, then
ne mod n1 < ne mod n1 + 1 = (ne + 1) mod n1.

Secondly, since ne ∈ msg(S), if Ap(S, n1) = {w(0), w(1), . . . , w(n1 − 1)}, then
ne = w(ne mod n1) and, in consequence,w((ne+1) mod n1−1) = w(ne mod n1) =
ne < ne + 1.

At this moment, to prove that ne + 1 is a suitably monotone element for S, it
remains to be seen that ne + 1 < w((ne + 1) mod n1). For this purpose, since S
is a MANS-semigroup, we note that w(ne mod n1) < w((ne + 1) mod n1), that is,
ne < w((ne + 1) mod n1). Therefore, ne + 1 ≤ w((ne + 1) mod n1).

Suppose now that ne + 1 = w((ne + 1) mod n1). Then, we have that ne + 1 ∈ S.
Moreover, since ne + 1 /∈ msg(S), we can assert that there exist i, j ∈ {1, . . . , e}
such that i < j and ne + 1 = w(i) + w( j). Thus ne = w(i) + w( j − 1) or ne =
w(i −1)+w( j) (recall again that ne = w(ne mod n1)). However, since ne ∈ msg(S),
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it is not possible that ne = w(i)+w( j −1). Furthermore, ne = w(i −1)+w( j) only if
i−1 = 0 and j = e. In such a case, ne+1 = w(i)+w( j) = w(1)+w(e) = w(1)+ne,
which is a contradiction because w(1) = n2 > n1 ≥ 3. Thus, we conclude that
ne + 1 < w((ne + 1) mod n1). �	

An immediate consequence of Proposition 4.12 is the following result.

Corollary 4.13 If m ∈ N\{0, 1, 2} and a ∈ N\{0}, then the numerical semigroups
S1 = 〈m, am + 1〉, S2 = 〈m, am + 1, am + 2〉, …, Sm−1 = 〈m, am + 1, . . . , am +
(m − 1)〉 belong to the tree G(MA(m, am + 1)). Moreover, Si+1 is a child of Si for
i ∈ {1, 2, . . . , m − 2}.

Let G be a tree with root vr . The depth of a vertex x of G is the number of edges
in the unique path connecting x and vr . The n-level of G is the set of all vertices with
depth n. Moreover, the height of G is the maximum depth of any vertex of G. Lastly,
a leaf is a vertex that has no children (see Rosen 2000, 9.1.2).

It is not difficult to see that the next proposition follows from the results and com-
ments in this subsection.

Proposition 4.14 Let G be the tree G(MA(m, r)).

1. The height of G is equal to m − 2.
2. If S ∈ G, then S belongs to the n-level of G if and only if e(S) = n + 2.
3. If S ∈ G, then S is a leaf if and only if M(S) ≡ m − 1 (mod m).

To finish this subsection, we will see that it is possible to compute the number of
children of a MANS-semigroup S ∈ MA(m, r) if we know its Frobenius number
F(S). Indeed, if Ap(S, m) = {w(0), w(1), . . . , w(m − 1), then n ∈ N could be a
suitably monotone element for S whenever n mod m > M(S) mod m. Therefore,
we will only find suitably monotone elements in intervals (w(i), w(i + 1)) such that
M(S) ≤ i ≤ m − 2 and w(i + 1) − w(i) > m. Moreover, there will be w(i+1)−w(i)−1

m
suitably monotone elements in the interval (w(i), w(i + 1)) (precisely, the numbers
congruent to w(i + 1) modulo m). From here, the number of children will be given
by the expression

∑m−2
i=M(S)

w(i+1)−w(i)−1
m . From a simple computation, it follows the

next result.

Proposition 4.15 A numerical semigroup S ∈ MA(m, r) has
⌊
F(S)−M(S)

m

⌋
+ 1 chil-

dren in the tree G(MA(m, r)).

Let us see an illustrative example of the above proposition.

Example 4.16 Let S be the numerical semigroup given by 〈7, 15, 16〉. ThenAp(S, 7) =
{w(0) = 0, w(1) = 15, w(2) = 16, w(3) = 31, w(4) = 32, w(5) = 47, w(6) = 48}
(that is, S is a MANS-semigroup) and F(S) = 41. Thus, S has

⌊ 41−16
7

⌋ + 1 = 4
children inMA(7, 15). Indeed, S has

• two children in (w(2), w(3)) = (16, 31) (for n = 17 and n = 24),
• and two children in (w(4), w(5)) = (32, 47) (for n = 33 and n = 40).
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4.3 Irreducibility

By Propositions 3.19, 3.22 and 3.23, we characterise MANS-semigroups that are
symmetric or pseudo-symmetric in the case of embedding dimension three. In the
general case, we are far from being able to give similar results. Nevertheless, from
Propositions 3.5, 4.10, and 4.15 in Rosales and García-Sánchez (2009), we can say a
few words on this question. Let us recall those results.

Proposition 4.17 Let C = {w(0) = 0, w(1), . . . , w(n −1)} ⊆ N be such that w(i) ≡
i (mod n) for all i ∈ {0, . . . , n−1} and n ∈ N\{0}. If S = 〈{n}∪C〉, thenAp(S, n) =
C if and only if w(i) + w( j) ≥ w((i + j) mod m) for all i, j ∈ {1, . . . , n − 1}.

Proposition 4.18 Let S be a numerical semigroup and let n ∈ S\{0}. If Ap(S, n) =
{a0 < a1 < · · · < an−1}, then S is symmetric if and only if ai + an−1−i = an−1 for
all i ∈ {0, . . . , n − 1}.

Proposition 4.19 Let S be a numerical semigroup with even Frobenius number F(S)

and let n ∈ S\{0}. Then S is pseudo-symmetric if and only if

Ap(S, n) = {a0 < a1 · · · < an−2 = F(S) + n} ∪
{
F(S)

2
+ n

}

and ai + an−1−i = an−1 for all i ∈ {0, . . . , n − 2}.

Our purpose is to construct symmetric (and pseudo-symmetric)MANS-semigroups
by fixing the multiplicity, m, and the Frobenius number, F . Observe that, since we
want aMANS-semigroup, we need that F ≡ m−1 (mod m). Indeed, if S is aMANS-
semigroup with multiplicity m and Frobenius number F , then w(m − 1) = F + m ∈
Ap(S, m).

We suppose m ≥ 4 to have an embedding dimension greater than three.

Proposition 4.20 Let m, F be positive integers such that m ≥ 4 and F ≡ m − 1
(mod m). Let

C1 =
{
w(1) < · · · < w

(⌊
m − 1

2

⌋)}
⊆

{
m + 1, m + 2, . . . ,

⌊
F + m

2

⌋}

be such that w(i) ≡ i (mod m) for all i ∈ {
1, 2, . . . ,

⌊m−1
2

⌋}
. Moreover, let C =

{w(0) = 0} ∪ C1 ∪ C2 ∪ {w(m − 1) = F + m}, where

C2 =
{
w(m − 1 − i) = w(m − 1) − w(i)

∣∣∣ i ∈
{
1, 2, . . . ,

⌊
m − 2

2

⌋}}
.

Then S = 〈{m} ∪ C〉 is a symmetric MANS-semigroup if and only if w(i) + w( j) ≥
w(i + j) for all i, j ∈ {

1, 2, . . . ,
⌊m−1

2

⌋}
.
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Proof By construction, C = {w(0) = 0 < w(1) < · · · < w(m − 1) = F + m} and,
therefore, the necessity follows from Proposition 4.17.

For sufficiency, let us see that w(i) + w( j) ≥ w((i + j) mod m) for all i, j ∈
{1, 2, . . . , m − 1}. For this, we distinguish two cases.
• If m ≤ i + j ≤ 2m − 2, then (i + j) mod m < min{i, j} and the conclusion
follows from the monotonicity of C .

• If 2 ≤ i + j ≤ m − 1, then min{i, j} ≤ ⌊m−1
2

⌋
. Taking i ≤ j , we have two

subcases.

– If j ≤ ⌊m−1
2

⌋
, we get the result from the hypothesis.

– If j ≥ ⌊m+1
2

⌋
, then we havew( j) = w(m −1)−w(m −1− j) andw(i + j) =

w(m−1)−w(m−1−i− j)withm−1− j, m−1−i− j ∈ {
1, 2, . . . ,

⌊m−1
2

⌋}
.

Moreover, w(i) + w( j) ≥ w(i + j) if and only if w(i) + w(m − 1− i − j) ≥
w(m − 1 − j) and, since i + (m − 1 − i − j) = m − 1 − j , the result again
follows from the hypothesis.

Finally, the numerical semigroup S = 〈{m}∪C〉 is symmetric from the construction
of C . �	

Reasoning as in Proposition 4.20, we have the following result.

Proposition 4.21 Let m, F be positive integers such that m ≥ 4 and F ≡ m − 1
(mod m). In addition, let F be an even integer (or, equivalently, let m an odd integer).
Let

C1 =
{
w(1) < · · · < w

(
m − 1

2

)
= F

2
+ m

}
⊆

{
m + 1, m + 2, . . . ,

F

2
+ m

}

be such that w(i) ≡ i (mod m) for all i ∈ {
1, 2, . . . , m−1

2

}
. Moreover, let C =

{w(0) = 0} ∪ C1 ∪ C2 ∪ {w(m − 1) = F + m}, where

C2 =
{
w(m − 1 − i) = w(m − 1) − w(i)

∣∣∣ i ∈
{
1, . . . ,

m − 3

2

}}
.

Then S = 〈{m} ∪ C〉 is a pseudo-symmetric MANS-semigroup if and only if w(i) +
w( j) ≥ w(i + j) for all i, j ∈ {

1, 2, . . . , m−1
2

}
.

4.4 Arithmetic and Almost Arithmetic Semigroups

It would be interesting to study the relationships between MANS-semigroups and
other families of numerical semigroups. In this subsection, we apply the results of the
above subsections to analyse families associated with arithmetic and almost arithmetic
sequences.

Following Lewin (1975), an almost arithmetic numerical semigroup is a numerical
semigroup such that all but one of the generators correspond to an arithmetic sequence.
That is, such a numerical semigroup is of the form

AA(a, d, k, p) = 〈a, a + d, . . . , a + kd, p〉,
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where a, d, k, p are positive integers such that gcd(a, d, p) = 1, a ≥ 2, p ≥ 2, and
p /∈ {a − d, a + (k + 1)d}.

FollowingRitter (1997) (or Selmer 1977), a generalised arithmetic numerical semi-
group is a numerical semigroup of the form

G A(m, h, d, k) = 〈m, hm + d, . . . , hm + kd〉,

where m, h, d, k are positive integers such that gcd(m, d) = 1, and m ≥ 2. Further-
more, to have minimal generators, we assume that k ≤ m − 1.

Let us observe that

• A(m, d, k) = G A(m, 1, d, k) = 〈m, m + d, . . . , m + kd〉 is an arithmetic numer-
ical semigroup;

• G A(m, h, d, k) is an almost arithmetic semigroup when h ≥ 2 (in fact,
G A(m, h, d, k) = AA(hm + d, d, k − 1, m)).

We are interested in determining the generalised arithmetic semigroups that are
MANS-semigroups. For this, it is necessary that d ≡ 1 (mod m) and, thus, we can
suppose thatd = cm+1with c ∈ N. Consequently, a generalised arithmetic semigroup
is a MANS-semigroup if it is of the form

G M(m, h, c, k) = 〈m, (h + c)m + 1, . . . , (h + kc)m + k〉,

where m, h, k are positive integers such that 2 ≤ m and k ≤ m − 1, and c is a
non-negative integer.

The following result is Corollary 3.6 of Rosales and García-Sánchez (2009) and is
useful for our purpose.

Lemma 4.22 Let S be a numerical semigroup with multiplicity m and assume that
Ap(S, m) = {w(0) = 0, w(1), . . . , w(m − 1)} with w(i) ≡ i (mod m) for all i ∈
{1, . . . , m−1}. Then S has maximal embedding dimension if and only if w(i)+w( j) >

w((i + j) mod m) for all i, j ∈ {1, . . . , m − 1}.
Let us suppose thatw(i) = (h+ia)m+i for all i ∈ {1, . . . , m−1}. Then, by a direct

calculation,we have thatw(i)+w( j) > w((i+ j) mod m) for all i, j ∈ {1, . . . , m−1}
and, by Lemma 4.22, we get that G M(m, h, c, m − 1) is a numerical semigroup with
maximal embedding dimension. Moreover, by construction, G M(m, h, c, m − 1) is
a MANS-semigroup. Therefore, from Corollary 4.3, we deduce the following two
results.

Proposition 4.23 For any k ≤ m − 1, G A(m, h, d, k) is a MANS-semigroup if and
only if d ≡ 1 (mod m).

Corollary 4.24 For any k ≤ m − 1, A(m, d, k) is a MANS-semigroup if and only if
d ≡ 1 (mod m).

ByapplyingTheorem4.4 andCorollary 4.24,we can buildmore examples of almost
numerical semigroup that are MANS-semigroups.
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Corollary 4.25 Let A(m, d, k) be a MANS-semigroup. If p is a suitably monotone
element for A(m, d, k) and p �= m + (k + 1)d, then AA(m, d, k, p) is a MANS-
semigroup.

To finish this subsection, we must study the almost numerical semigroups
AA(m, d, k, p) with p ≡ 1 (mod m). From now on, we assume that p = bm + 1,
for some b ∈ N\{0}, and that m + d = am + (i + 1), for some a ∈ N\{0} and
i ∈ {1, 2, . . . , m − 2}.

The purpose is to analyse when the almost numerical semigroup AA(m, (a−1)m+
(i + 1), k, bm + 1) is a MANS-semigroup.

Let S∗ = 〈m, p〉 = 〈m, bm + 1〉. Then S∗ is a MANS-semigroup with

Ap(S∗, m) = {0, bm + 1, 2bm + 2, . . . , (m − 1)bm + (m − 1)}.

Since we want m + d = am + (i + 1) to be a suitable monotone element for S∗, we
need that ibm + i + 1 ≤ am + (i + 1) < (i + 1)bm + (i + 1) and, consequently, that
ib ≤ a < (i + 1)b. Now, to show what happens, we distinguish two cases: a = ib
and ib + 1 ≤ a ≤ (i + 1)b − 1.

• For a = ib, let S1,ib = 〈m, bm + 1, ibm + (i + 1)〉. By Theorem 4.4, we have
that S1,ib is a MANS-semigroup. Moreover, from Sect. 4.1,

Ap(S1,ib, m) = {0, bm + 1, . . . , ibm + i,

ibm + (i + 1), (i + 1)bm + (i + 2), . . . , 2ibm + (2i + 1),

2ibm + 2(i + 1), . . .}.

(Observe that, to get 2ibm + 2(i + 1) ∈ Ap(S1,ib, m), we are implicitly assuming
that i ≤ m−3

2 .)
Since 2ibm+(2i +1), 2ibm+2(i +1) ∈ Ap(S1,ib, m), we have that (2ib−1)m+
2(i + 1) is not a suitable monotone element for S1,ib and, therefore, we conclude
that S2,ib = AA(m, (ib − 1)m + (i + 1), 2, bm + 1) is not a MANS-semigroup.

• For ib + 1 ≤ a ≤ (i + 1)b − 1, let Sk,a = AA(m, (a − 1)m + (i + 1), k, bm + 1)
with k(i + 1) ≤ m − 1. Since ibm < (a − 1)m + 1, we have that

Ap(Sk,a, m) = {0, bm + 1, . . . , ibm + i,

am + (i + 1), (am + b) + (i + 2), . . . , (a + ib)m + (2i + 1),

(2a − 1)m + 2(i + 1), (2a + b − 1)m + (2i + 3), . . . ,

(2a + ib − 1)m + (3i + 2), . . .}.

Therefore, Sk,a is a MANS-semigroup.
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