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Avenida de Reina Mercedes s/n, 41012 Sevilla, Spain
4)Carlos I Institute of Theoretical and Computational Physics, Fuente Nueva s/n, 18071 Granada,
Spain
5)Department of Applied Physics, University of Granada, Fuente Nueva s/n, 18071 Granada,
Spain

(Dated: 22 February 2024)

We performed Monte Carlo and dynamic Monte Carlo simulations to model the diffusion of monodispersed
suspensions composed of impenetrable cuboidal particles, specifically hard board-like particles (HBPs), in
the presence of parallel hard walls. The impact of the walls was investigated by adjusting the size of the
simulation box while maintaining constant packing fractions, fixed at η = 0.150, for systems consisting of
HBPs with prolate, dual-shaped, and oblate geometries. We observed that increasing the distance between the
walls led to the recovery of an isotropic bulk phase, while local particle organisation near the walls remained
stable. Due to their shape, oblate HBPs exhibited a more efficient anchoring at the wall surfaces compared
to prolate shapes. The formation of nematic-like particle assemblies near the walls, confirmed by theoretical
calculations based on density functional theory, significantly influenced local particle dynamics. This effect
was particularly pronounced to the extent that a modest portion of cuboids near the walls tended to diffuse
exclusively in planes parallel to the confinement, even more efficiently than observed in the bulk regions.

I. INTRODUCTION

Nanofluids are essentially suspensions of particles at
the nanometer length scale in a liquid medium1,2. They
have been the subject of investigation due to their ability
to efficiently transfer heat compared to molecular fluids.
The unique thermal and viscous properties of nanoflu-
ids make them promising candidates for a wide range
of applications, including cooling systems for industrial
and electronic applications3,4, drug delivery5,6, and the
development of novel optical devices7,8. It has been ob-
served that the properties of nanofluids are not only de-
termined by the chemical nature of the components of the
suspension, size, and volume fraction of the suspended
nanoparticles, but also by the shape of the nanoparticles
themselves9.
Nanofluidics revolves around the study of the transport

properties of nanoconfined fluids, specifically nanoparti-
cle suspensions constrained in spaces with characteristic
lengths on the order of nanometers10. Confined nanoflu-
ids have garnered attention for their potential applica-
tions in energy conversion systems11, the manufactur-
ing of filtration devices for wastewater recovery12, and
biological analysis13. The behaviour of confined sus-
pensions at equilibrium has been extensively explored
through theoretical studies14–16, simulations17–19, and
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experiments20–22. It is known that nanoparticle geom-
etry and concentration play crucial roles in determining
the self-organisation of suspensions into liquid crystalline
phases of different nature23–25. When a suspension is
confined between parallel walls, steric interactions be-
tween walls and particles, especially for certain particle
shapes, can promote the capillary formation of nematic-
like domains. Surface-enhanced nematisation has been
observed in suspensions of cut-spheres26, rods27–29, and
cuboids15.

Cuboidal particles are particularly significant due to
their biaxiality. By adjusting their shape from prolate
to oblate geometries, a diverse spectrum of liquid crys-
talline phases has been observed30,31. Their biaxial shape
positions them as ideal candidates for a deeper under-
standing of the interplay between translational and ro-
tational diffusion in suspensions of anisotropic particles
across various scenarios —whether at equilibrium32,33, in
the presence of external fields34,35, or in confinement36.
Of particular note is that when cuboids exhibit a self-
dual shape (i.e., when their dimensions are related such

that W =
√
LT , with T , L, and W representing parti-

cle thickness, width, and length, respectively), they have
the capability to self-assemble into biaxial nematic phases
under specific conditions37. This property makes them
especially appealing for manufacturing novel devices with
unique optical features38.

In this study, we apply stochastic simulation tech-
niques and density functional theory (DFT) to explore
the influence of planar confinement on the structural
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organisation of suspensions of hard board-like particles
(HBPs) at moderate concentrations, specifically below
the isotropic-to-nematic phase transition, and examine
its impact on their diffusion. In particular, we per-
formed Monte Carlo (MC) and dynamic Monte Carlo
(DMC) simulations to investigate equilibrium and dy-
namic properties in the presence of parallel hard walls.
DMC methods leverage the random nature of MC sam-
pling algorithms to replicate the Brownian motion of
colloidal particles. Originally developed for simulating
pure systems39 and later extended to mixtures40, out-
of-equilibrium phenomena41, and systems with spatial
inhomogeneities42, this approach has proven effective in
studying the dynamic and rheological properties of sus-
pensions of anisotropic particles43–46. Our findings re-
veal that adjusting the distance between walls or varying
particle geometry from prolate to dual-shaped and oblate
dramatically influences the structural and dynamic prop-
erties of colloidal suspensions. These suspensions, which
would exhibit typical features of isotropic fluids in the
bulk, manifest capillary nematisation and surface anchor-
ing effects near the walls. Importantly, these effects not
only impact the structure but also significantly influence
the local diffusive behaviour of HBPs.

II. MODEL AND SIMULATIONS

We run MC simulations to explore the structural and
dynamical properties of monodispersed suspensions of
hard board-like particles (HBPs) under planar confine-
ment. Our decision to utilise a hard-core potential
stemmed from the absence of suitable soft potentials ca-
pable of accurately estimating the minimum distance be-
tween pairs of cubes or cuboids. All systems were simu-
lated in the canonical ensemble, maintaining a constant
number of particles, volume of the simulation box, and
temperature. The shape of a cuboidal particle is defined
by its thickness, which serves as the system unit length,
width, and length. For all HBPs in our simulations, we
set the thickness to T = 1 and the reduced length to
L∗ ≡ L/T = 12. The simulated suspensions included
prolate HBPs, with a reduced width W ∗ ≡ W/T = 1,

dual-shaped HBPs, with W ∗ =
√
L∗ ≃ 3.46, and oblate

HBPs, with W ∗ = 8. A representation of these HBPs is
shown in Figure 1. In all studied systems, the packing
fraction was set to η = 0.15, corresponding to regions in
the bulk phase diagrams where isotropic phases are typ-
ically found30. The simulation box with sizes Lx, Ly, Lz

was flanked by two parallel hard walls positioned in the
xy plane, as illustrated in Figure 1. The introduction of
soft walls, which would not anyway be straightforward
for the lack of suitable soft potentials for cuboids, would
directly impact the enthalpic contribution to the system’s
free energy, thereby altering the equilibrium structures,
particularly in close proximity to the walls. In our sys-
tem, where both wall-particle and particle-particle inter-
actions are represented by a hard potential, the struc-

tural and dynamical properties are only determined by
entropic factors or, equivalently, by excluded-volume ef-
fects. The inter-wall distance, a simulation parameter,
was set to h = αL + T , with α = {2, 3, 4}. By inde-
pendently adjusting the inter-wall distance and particle
anisotropy, we generated nine distinct systems for analy-
sis in this study. We set N = 1200, 1800, 2400 for systems
with Lz = 25T, 37T, 49T , respectively. All simulation
boxes have square cross section, e.g. Lx = Ly, which has
been set in order to obtain η constant for all the cases.
Full details on simulation settings can be found in Section
S1 of the Supplementary Information.

To investigate equilibrium properties, we performed
Metropolis-based MC simulations, while dynamics was
modeled using DMC algorithms. The DMC simula-
tion technique emulates the motion of Brownian parti-
cles through a stochastic approach. Specifically, an ar-
bitrarily set MC timestep, denoted as δtMC , determines
the maximum elementary displacements and rotations of
the particle’s center of mass and orientation axis, respec-
tively, in accordance with the Einstein relation:

δξk =
√
2DkkδtMC , (1)

where δξk is the generic degree of freedom andDkk the di-
agonal term of the shape-dependent diffusion tensor. For
this work in particular, where the dynamical properties
are investigated at equilibrium, Eq. 2 is used to recover
the correct Brownian-motion timescale:

tBD =
A

3
CMCδtMC . (2)

The timescale in a DMC simulation depends on the num-
ber of MC cycles, CMC , simulated (where 1 cycle is
equal to N random roto-translations of one particle), and
the average acceptance rate A . The link between the
acceptance ratio and the unique timescale stems from
the assumption (among others) of constant particle sam-
pling volume, which limits the DMC methodology to the
canonical ensemble, as used in this work. The interested
reader is referred to Ref. 39 for a detailed description of
the DMC method. In this work, we set δtMC = 10−5τ
and 10−2τ , where τ ≡ βT 3µ is the system unit time, β
the inverse temperature and µ the solvent viscosity (not
explicitly modeled). Since the resulting difference in the
acceptance rates of particles close to the wall and in the
middle of the box is lower than 5%, to a good approxi-
mation it can be assumed that A is space-independent
and Eq. 2 can be safely applied to recover the Brownian
timescale (the DMC framework on space-dependent ac-
ceptance rates is discussed in Ref. 42). Additional details
on the diffusion constants of HBPs and other relevant
system data are provided in the Supplementary Infor-
mation. Figure 1 displays a snapshot of prolate, dual-
shaped, and oblate HBPs confined within parallel walls
with a distance of h = 49T .
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FIG. 1. Snapshots of HBPs confined in parallel walls with
relative distance h = 49T . Systems of prolate, dual-shaped
and oblate HBPs are shown in the top, centre and bottom
frames of the Figure, respectively. Snapshots of dual-shaped
and oblate HBPs are shown with an aspect ratio of 1:1.86 and
1:2.83 with respect to the prolate HBPs, respectively.

In order to properly characterise the structure of these
systems at equilibrium, we first computed the local pack-
ing fraction in slabs parallel to the walls:

η(z) =
N(z)Vp

V
, (3)

where N(z) is the number of particles found inside a slab
parallel to the walls, at distance z from the bottom wall,
Vp = T × W × L is the volume of one HBP, and V the
volume of the simulation box. We also investigated the
orientation of the particles by computing the uniaxial and
biaxial order parameters, averaged over particles found
in each slab. The uniaxial order parameter is defined as:

Us
k(z) =

1

N(z)

N(z)∑
i=1

P2 (n̂k(z) · êk,i) , (4)

where êk,i is a unit vector aligned along k = T , W or L,
and n̂k(z), also referred to as nematic director, indicates
the preferential orientation of one of the particle axes for
the particles in a slab. The nematic directors and their
correspondent uniaxial order parameters are obtained by
diagonalisation of the following tensor:

Qkk(z) =
1

2N(z)

N(z)∑
i=1

(3 (êk,i ⊗ êk,i)− I) . (5)

where êk,i ⊗ êk,i is the outer product between the two
vectors, i.e. (êk,i ⊗ êk,i)l,m = (êk,i)l(êk,i)m, for l and
m the row and column indices of the Qkk matrix. The
largest eigenvalue ofQkk is Us

k , with n̂k the corresponding
eigenvector, and I is the identity matrix. From these
tensors and the nematic directors of each particle axis,
we can estimate the degree of biaxiality of the system,
by means of the biaxial order parameter B2,k. Here is
reported the definition of B2,T (z):

B2,T (z) =
1

3

[
n̂W (z)QWW (z)n̂W (z) +

+n̂L(z)QLL(z)n̂L(z)− n̂L(z)QWW (z)n̂L(z) +

−n̂W (z)QLL(z)n̂W (z)
]
. (6)

All the other biaxial order parameters have been com-
puted in a similar fashion30. By fixing the director to ẑ,
which is the direction orthogonal to the walls, we esti-
mated also Uz

k :

Uz
k (z) =

1

N(z)

N(z)∑
i=1

P2 (ẑ · êk,i) . (7)

which provides information on how the particle axes are
oriented with respect to the walls. In the evaluation of
the orientational order parameters, it has been observed
that errors due to finite-size effects are proportional to
1/
√
N/nslabs, where nslabs is the number of slabs used

to calculate the above properties between the parallel
walls47. To limit such systematic errors, we set the num-
ber of slabs for the calculation of Us

k and Uz
k equal to

nslabs = 13, 19, 25, for systems with h/T = 25, 37 and
49, respectively. To collect more detailed information on
the particle orientation close to the wall, we estimated the
probability density distribution of particle orientations,
i.e. ρω(cos(θk)), calculating the dot product between one
particle axis and ẑ, i.e. ẑ · êk = cos(θk), using only HBPs
found in slabs lω within 3.5T from the surfaces of the top
and bottom walls.
The dynamical properties are also evaluated in slabs,

as a function of the distance from the walls. According to
the particle local density distribution from one wall to the
other, all systems simulated show local density fluctua-
tions in portions of the box from the walls up to distances
∼ 12.5T with respect to the walls; beyond this distance,
particles can either recover a bulk-like behaviour (shall
the inter-wall distance be sufficiently long) or directly en-
ter the region of influence of the opposite wall. For this
reason, we studied the dynamics of HBPs in slabs parallel
to the walls, by splitting the region close to the walls in
several layers, and, if applies, by selecting one single slab
for the entire bulk-region. The definitions and dimen-
sions of the slabs employed in the analysis are reported
in the Supplementary Information. Within each slab, we
calculated the total mean-squared displacement (MSD),
and the MSD in the directions parallel and perpendicular
to ẑ, as follows 42:
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⟨∆r2λ(t)⟩l =
1

P (t)

〈
1

N(0)

∑
i∈Sl(0,t)

(ri,λ(t)− ri,λ(0))
2

〉
,

(8)
where λ = {z, xy, xyz} refers to the dimensionality of the
MSD, P (t) is the “survival probability”, i.e., the proba-
bility of the particles to remain in slab l from time zero
to time t, and Sl(0, t) is the corresponding set of the
surviving particles inside l from time zero to t. By ap-
plying the same system of slabs, we also computed the
Non-Gaussian Parameter (NGP):

αl
2,d(t) =

⟨∆r4λ(t)⟩l

c2,d (⟨∆r2λ(t)⟩l)
2 − 1, (9)

where c2,d = (1+2/d), with d reflecting the dimensional-
ity of the displacements analysed. In our case, α2,3 will
refer to the NGP correspondent to the 3-dimensional dis-
placement of the HBPs, with c2,3 = 5/3, while α2,2 is the
NGP of the HBPs moving in xy planes, parallel to the
walls, and c2,2 = 2. The definition of the constant c2,d
assumes an isotropic diffusion of the particles. In the
presence of a preferential diffusion in specific directions,
c2,3 for the 3-dimensional displacement can be corrected
as follows48:

c′2,3 =
3D2

∥,t + 8D2
⊥,t + 4D∥,tD⊥,t

D2
∥,t + 4D2

⊥,t + 4D∥,tD⊥,t
. (10)

As can be appreciated later in the Discussion of the
results, we applied Eq. 10 to properly estimate the 3-
dimensional NGP of the HBPs diffusion near the walls.

Finally, following the generalised Einstein relation,
that reads ⟨∆r2λ⟩ = 2dDλt

βλ , for non-linear diffusion of
particles over time, we can estimate the apparent expo-
nent in slabs (βl

λ) according to the following formula49:

βl
λ(t) =

d log ⟨∆r2λ(t)⟩l

d log t
, (11)

Due to the natural symmetry of our systems, arising from
having two parallel flat walls containing diffusing par-
ticles at equilibrium, to improve statistics, we merged
together the results obtained from opposite slabs. The
so-obtained dynamical properties refer to slabs lω close
to the wall, slabs lb where a bulk-like region is observed,
and intermediate slabs li between lω and lb. Since we ob-
serve that the dynamics of particles with the same shape,
in slabs lω, does not change when changing the distance
between the walls, we also calculated the same dynam-
ical properties, in slabs lω, averaging over systems with

different inter-wall distances:

⟨∆r2λ(t)⟩ω =
1

3

∑
h

⟨∆r2λ(t)⟩ωh (12)

αω
2,d(t) =

1

3

∑
h

αω,h
2,d (t) (13)

βω
λ (t) =

1

3

∑
h

βω,h
λ (t) (14)

(15)

III. THEORY

We have applied DFT to investigate the effect of con-
finement on the formation of nematic-like clusters and
calculate the nematic order parameters that are com-
pared with those obtained by simulation. To this end,
the free-energy functional F of a fluid of cuboids can be
written in DFT as follows

βF = βF [n] = βFideal[n] + βFexc[n] ≡

≡
∫
V
dr⃗

∫
dω̂ n(r⃗, ω̂)[ln(n(r⃗, ω̂)Λ3)− 1]+

+

∫
V
dr⃗ n(r⃗, ω̂)βϕ(r⃗, ω̂) + βFexc[n].

(16)

where Fideal and Fexc are, respectively, the ideal and ex-
cess contributions to F , β is the inverse temperature,
Λ = h/

√
2πm/β the thermal de Broglie’s length, V the

volume of the fluid of cuboids, ϕ1(r⃗, ω̂) the external po-
tential energy, n(r⃗, ω̂) the local density of particles at a
position r⃗ and orientation ω̂, and Fexc the excess free-
energy contribution associated to the interactions be-
tween cuboids, which is not known in general. Minimisa-
tion of Eq. (16) with respect to the density field n(r⃗, ω̂)
constrained by the condition∫

V
dr⃗

∫
dω̂ n(r⃗, ω̂) = N, (17)

where N is the total number of cuboids, leads to the
equation

n(r⃗, ω̂) =
1

Λ3
eβµ−βϕ(r⃗,ω̂)+C1(r⃗,ω̂;[n]), (18)

with µ being the Lagrange multiplier associated to
Eq. (17), which can be identified as the chemical po-
tential, and C1 the one-body direct correlation function,
defined as

C1(r⃗, ω̂; [n]) = β
δFexc[n]

δn(r⃗, ω̂)
. (19)

where δFexc[n]/δn(r⃗, ω̂) is the functional derivative of
Fexc at n. Note that C1 is also dependent on the lo-
cal density profile, so Eq. (18) is actually a functional
equation for n(r⃗, ω̂). Usually, the density profile is split
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in the overall, orientation-integrated density ρ(r⃗) and the
orientational distribution function f(r⃗, ω̂) as

n(r⃗, ω̂) = ρ(r⃗)f(r⃗, ω̂). (20)

These new functions satisfy the relationships

ρ(r⃗) =

∫
dω̂ n(r⃗, ω̂) ,

∫
dω̂ f(r⃗, ω̂) = 1. (21)

In the bulk isotropic fluid, ϕ = 0 and n does not depend
on the cuboid orientation due to the rotational symmetry
of the phase. Thus, ρ = 8π2n and f = 1/(8π2) in the
bulk isotropic phase. Furthermore, the density is inde-
pendent of r⃗, so C1 is a constant due to Eq. (18) which
will be denoted as C∞

1 . Thus, the overall density takes a
constant value ρ∞ = 8π2 exp(βµ+ C∞

1 )/Λ3.
Now, we assume the fluid is confined inside a slit pore

of width H. The external potential energy is expressed
as ϕ(r⃗, ω̂) = ϕ1(z, ω̂) + ϕ1(H − z, ω̂′), where z is the
normal coordinate to the confining walls, and ω̂′ is the
mirror image of ω̂ with respect to the z = 0 plane. If
the cuboid and the wall overlap, then ϕ1 → +∞, vanish-
ing otherwise. This potential is orientation-dependent,
as the cuboid-wall contact distance depends on the rel-
ative orientation of the cuboid with respect to the wall
normal. In this scenario, translational symmetry along
the transversal directions dictates that n = n(z, ω̂), i.e.,
C1 = C1(z, ω̂; [n]). The orientational order parameters
can be expressed in terms of the orientational distribu-
tion function as:

Uz
k (z) = ⟨P2(ẑ · êk)⟩ =

∫
dω̂ f(z, ω̂)P2(ẑ · êk), (22)

where P2(x) is the second-order Legendre polynomial, ẑ
is the unit vector normal to the walls, and êk are the
unit vectors associated to the cuboid main axes. Note
that these order parameters vanish if f(z, ω̂) correspond
to a bulk isotropic phase.

As our simulations are performed under thermody-
namic conditions (i.e. chemical potential) of the system
which correspond to a bulk isotropic phase, we may as-
sume that the density profile is, in some sense, a per-
turbation around the bulk expression given above. This
would affect mainly the one-body direct correlation func-
tion, which it is a functional of the local density field it-
self. Thus, as a first approximation, we could use Eq. (18)
to obtain the orientation distribution by assuming that
the one-body direct correlation function corresponds to
an isotropic local density field, i.e. it does not depend
on the cuboid orientation. Consequently, Eq. (18), to-
gether with Eq. (21), leads to the following approximate
expressions for ρ

ρ(z) =
eβµ+C∞

1

Λ3

∫
dω̂ e−βϕ(z,ω̂) =

=
ρ∞
8π2

∫
dω̂ e−βϕ(z,ω̂)

(23)

and for the orientational distribution function

f(z, ω̂) =
e−βϕ(z,ω̂)∫
dω̂ e−βϕ(z,ω̂)

. (24)

Several key observations merit attention at this point.
Firstly, within this approximation, the overall density
is proportional to the bulk value, which is intimately
linked to the interactions among cuboids through C∞

1

and its evaluation would necessitate a specific theoreti-
cal framework for the excess free-energy functional (such
as Onsager, Parsons-Lee, etc.). Furthermore, the overall
density exhibits a monotonic increase from a negligible
value at the point of contact with the walls to the bulk
density at distances beyond half of the cuboid’s longest
sidelength. On the other hand, the orientational distri-
bution function is uniquely shaped by the wall-cuboid
interaction. Notably, the expression in Eq. (24) shares
similarities with the barometric formula applicable to
ideal systems under external fields, notwithstanding our
consideration of the interactions between cuboids. Sec-
ondly, given that ϕ represents a hard potential, the ori-
entation distribution function in Eq. (24) uniformly dis-
tributes over orientations where the cuboid avoids over-
lapping with the walls. Consequently, at distances from
the walls exceeding half the cuboid’s longest side length,
the isotropic orientational distribution function is rein-
stated. As a result, all orientational order parameters,
including Uz

k , vanish. This concurs with the findings from
computer simulations reported in this paper.

IV. RESULTS

In this section, we examine the structural and dynam-
ical properties of the systems under investigation. Prior
to the analysis of the diffusion of HBPs, it is essential to
thoroughly characterize the influence of planar confine-
ment on the model suspensions at equilibrium.
In Figure 2, we present profiles of local packing fractions
in slabs parallel to the walls, as a function of the inter-
wall distance. Due to the system’s geometry, these pro-
files display symmetry with respect to the Π = (x, y, h/2)
plane, dividing the box into two equal regions. Conse-
quently, η(z) from the top wall to Π is the mirror im-
age of η(z) from the bottom wall to Π, regardless of
particle anisotropy. Variations in h do not appear to
significantly impact particle organisation, except for the
emergence of a bulk-like region, particularly noticeable
at h∗ ≡ h/T = 49. For z > 12T (or z > h − 12T ), all
systems tend to revert to the bulk-like isotropic phase,
with a gradual decay of η(z) to approximately 0.15. The
extent of this bulk region depends on the available vol-
ume between the walls. Specifically, while systems with
h∗ = 25 lack sufficient space to display a bulk region,
those with h∗ = 37 and 49 exhibit a distinct plateau in
the η(z) profile, where the influence of walls can be dis-
regarded. Preliminary observations indicate that HBPs
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FIG. 2. Profiles of local packing fraction in slabs parallel to
the walls. Top, middle and bottom frames show, respectively,
the profiles obtained in systems of prolate, dual-shaped and
oblate HBPs. Blue lines and circles, green lines and squares
and orange lines and asterisks refer to inter-wall distances of
25T , 37T and 49T , respectively. The horizontal dotted lines
at η = 0.15 highlights the total packing fraction of the systems
studied.

aggregate in the vicinity of the walls, exhibiting differ-
ent patterns depending on their shape, and undergo re-
arrangements as the distance from the walls increases.
In other words, HBPs need to span their own length L
to recover the orientational distribution seen in the bulk
isotropic phase.

Some insights into particle orientation can be gleaned
through a detailed analysis of the local packing fraction
profile in the proximity of the wall. In Figure 3, we com-
pare the local packing in the region close to the walls
for the three anisotropies studied. Notably, there is no
significant difference in packing fraction profiles as the
separation between the walls increases, except for the
first peak in the distribution of prolate cuboids. This
peak slightly increases from 0.15 to 0.17 at z/T ≃ 1 as
the walls approach each other. Prolate HBPs exhibit a
higher concentration at distances less than 3T from the
walls compared to the bulk, a phenomenon not observed
for dual-shaped and oblate HBPs. This behaviour can be
explained by considering how our model particles organ-
ise in the vicinity of flat hard walls. Packing of rod-like
cuboids is enhanced when particles align along their main
axis, a preference enforced by planar confinement and
the necessity for long HBPs to be in very close proximity
to the walls. The peak at z/T ≃ 1 in Figure 3 implies
that rod-like HBPs have their main axis parallel to the
wall. Although a similar behaviour would be expected
for dual-shaped and oblate HBPs, they are less likely to
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FIG. 3. Local packing fraction distributions of prolate (black
lines and circles), dual-shaped (blue lines and squares) and
oblate (red lines and asterisks) HBPs in the region close to
the walls. Top, middle and bottom panels refer to inter-wall
distances of h∗ = 25, 37 and 49, respectively. The dotted lines
at η = 0.15 highlight the total packing fraction of the system.

pack closely due to their larger WL faces, which occupy
a surface area 3.26 and 8 times larger than that of pro-
late HBPs, respectively. The η(z) profile of dual-shaped
HBPs exhibits a slight peak at z ∼ 2T , possibly indicat-
ing a partial piling of particles near the walls. However,
this difference is not as pronounced as observed in sys-
tems of prolate HBPs. An increase in the η(z) profile
is observed for all particle shapes between z/T = 6 and
7. The particles around this local maximum are suffi-
ciently distant from the wall to lose their wall-induced
alignment, gaining more rotational freedom and gradu-
ally adopting a random orientation, as expected in an
isotropic phase. It is noteworthy that the theoretical ap-
proximation given by Eq. (23) fails to capture the fea-
tures observed in the packing fraction profiles. This is
not unexpected, as the presence of maxima in the pack-
ing fraction profile suggests depletion effects arising from
correlations between particles at various distances from
the wall. In contrast, our theoretical approximation re-
lies solely on wall-cuboid interactions to determine its
dependence on z.

In light of these considerations, we turn our attention
to the distribution of local uniaxial order parameters cal-
culated in planar slabs. Figure 4 illustrates Uz

k (z), repre-
senting the uniaxial order parameter concerning the ẑ di-
rection or, equivalently, perpendicular to the planar con-
finement (see Eq. 7). Simultaneously, Figure 5 displays
the self-uniaxial order parameter Us

k(z) (see Eq. 4). Both
parameters are computed with respect to particle thick-
ness, width, and length. Specifically, Uz

k provides insights
into how the HBPs align with ẑ and the walls, while Us

k
reveals their alignment with each other. As discussed
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FIG. 4. Distribution of ẑ-oriented uniaxial order parameter
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distributions of the order parameters in fluids of prolate, dual-
shaped and oblate HBPs, for systems with h/T = 25. Results
obtained from simulations are reported as orange squares for
T , blue asterisks for W and green circles for L. Theoretical
estimations of Uz

k are shown as full orange lines for T , blue
dashed line for W and green dotted lines for L.

in the analysis of local packing fraction profiles, wall dis-
tances exhibit minimal, if any, influence on the structural
properties of the suspensions along z up to z ∼ 12T (or
h−12T ). Our model suspensions exhibit similar features
in this range, organising themselves into the expected
isotropic phase. This observation is reflected in the pro-
files of the self-uniaxial order parameters: the top left to
top right frames (a), (d), and (c) of Figure 5 (for prolate
HBPs) all show identical Us

k profiles at the extremities,
reaching a consistent plateau where anticipated. Simi-
larly, properties of dual-shaped (frames (b), (e), and (h)
of Figure 5) and oblate HBPs (frames (c), (f), and (i)
of Figure 5) behave likewise. For clarity, in Figure 4,
we present a magnification of the total profile of Uz

k in
the range 0 ≤ z ≤ 12T , obtained from systems with
h/T = 25. We first analyse how HBPs orient themselves
concerning the wall and then discuss their mutual organ-
isation.

We observe that, irrespective of the system, Uz
L con-

verges to a value close to −1/2 near the walls and ap-
proaches approximately 0 in the bulk-like region. This
reaffirms that the main particle axis is preferentially
aligned perpendicularly to ẑ in the proximity of the walls,
transitioning to a random orientation as the distance
from the walls increases. Different trends are noted in
the orientation of the minor particle axes, aligned along
T and W , as the particle shape varies. For prolate HBPs
sufficiently close to the walls, both T and W exhibit a
subtle inclination to orient along ẑ, with Uz

T ≃ Uz
W ≃ 0.2

which is not significantly large. A markedly different
behaviour is observed in fluids of oblate cuboids (right
frame of Figure 4). Near the walls, their minor axis,
aligned with T , is significantly oriented in the direction of
ẑ as the pronounced alignment, with Uz

T ∼ 0.8, indicates.
This behaviour is likely attributable to the large surface
area of theWL faces of particles, which are better packed
when lying on the wall. We also note that the orientation
of the two largest axes (oriented along W and L) with
respect to ẑ follows very similar profiles. Finally, fluids of
dual-shaped HBPs, akin to oblate HBPs, exhibit a strong

alignment near the walls between their minor axis and ẑ,
but this alignment decays to 0 at approximately z = 5T .
Additionally, in contrast to the tendencies reported for
oblate HBPs, Uz

W and Uz
L are markedly different close

to the wall. While the former remains constantly zero
at distances z > 2T from the wall, revealing a random
orientation of the medium axis, the latter indicates that
a degree of ordering, with L roughly perpendicular to ẑ,
is sustained over longer distances. We believe that the
ambivalent nature of dual-shaped particles, being pre-
cisely between oblate and prolate geometries, determines
a behaviour that incorporates elements of both shapes,
as also noted in previous works30,32,35,46,50.

The profiles of Uz
k obtained from MC simulations

(points in Figure 4) are also in excellent agreement with
DFT calculations (dashed lines in the same Figure). The
model describes particle organisation as a perturbation
of the expected isotropic behaviour in bulk. Thus, unlike
the packing fraction profiles, the distribution of particle
orientation recovered from DFT analysis does not de-
pend on specific interactions between cuboids but is ex-
clusively determined by wall-particle interactions. This
assumption is sufficient to replicate the results recovered
from simulations and demonstrates that capillary nema-
tization of isotropic phases near walls naturally arises in
dilute suspension, where isotropic phases are expected.
Interestingly, deviations between theory and simulations,
despite being small, emerge when transitioning from pro-
late to oblate shapes, where inter-particle interactions
become more relevant for the orientation of the entire
suspension.

Similar features emerge from the analysis of the self-
uniaxial order parameter, Us

k(z), whose profiles are pre-
sented in Figure 5. It’s important to note that Us

k(z)
measures the orientation of the particle axes concerning
their mean orientation, referred to as the nematic di-
rector. The definition of this vector is meaningful only
if ordering is substantial. In systems of prolate HBPs,
Us
T (z) ≃ Us

W (z) over the entire inter-wall distance in the
ẑ direction (frames (a), (d), and (g)). The larger value
of Us

L(z) ≃ 0.4 close to the walls indicates that uniax-
ial nematic domains form but vanish at increasing dis-
tances. The alignment of the main axis coupled with the
weaker alignment of the minor axes suggests that while
nematic-like clusters can indeed form in regions close to
the walls, they have a negligible degree of biaxiality and
are, therefore, uniaxial. This conclusion is supported by
the analysis of the biaxial order parameter B2,L(z) re-
ported in the left frame of Figure 6. Dual-shaped parti-
cles exhibit significantly larger values for Us

T (z) (frames
(b), (e), and (h)) close to the walls, demonstrating the
existence of very well-oriented uniaxial nematics with a
nematic director basically perpendicular to the walls and
hence oriented along ẑ. The other two order parame-
ters, Us

W (z) and Us
L(z), are significantly lower, indicat-

ing a dominant uniaxial character with no evidence of
biaxiality (see B2,T (z) in the middle frame of Figure 6).
Suspensions of oblate HBPs also predominantly organise
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in uniaxial nematic-like structures in the vicinity of the
walls, as B2,T remains below 0.2 from the wall up to the
middle of the box (see the right frame of Figure 6).

To gain a deeper insight into the structuring of cuboids
in the region close to the walls, we calculated the prob-
ability density distribution ρω(cos(θk)) of particle orien-
tations, where θk is the angle between ẑ and êk, with
k = T , W or L (see Model and Simulations Section for
details). For this analysis, we considered wall-like (lω)
slabs parallel to the walls and within a distance from
them of z = 3.5T . The results, which are practically in-
dependent of the inter-wall distance h, are reported in
Figure 7 for prolate (top frame), dual-shaped (middle
frame), and oblate (bottom frame) HBPs, and in very
good (qualitative) agreement with DFT calculations. In
systems of prolate HBPs, ρωL is peaked at cos θL ≃ 0,
confirming the occurrence of nematic domains with êL
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FIG. 7. Probability density distribution of particle orien-
tations with respect to ẑ for particles located at distance
z ≤ 3.5T from the wall. Top, middle and bottom frames
refer to systems of prolate, dual-shaped and oblate HBPs, re-
spectively. Orange, green and blue lines and symbols refer,
respectively, to ρωT , ρ

ω
W and ρωL. Solid lines and symbols re-

fer, respectively, to DFT and simulations results. Simulations
data of ρωT of oblate HBPs (orange squares in bottom frame)
reaches ∼ 23 at cos(θk) = ±1(out of scale).

preferentially perpendicular to ẑ, but it also exhibits a
slow decay to zero, explaining the relatively low value of
the nematic order parameter Us

L(z) (top frames of Fig-
ure 5). Essentially, nematic clusters form close to the
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walls, but the orientation of their constituting particles
is broadly distributed. The other two distributions, ρωT
and ρωW , behave very similarly, with peaks at cos θT ≃ ±1
and cos θW ≃ ±1, respectively, and a flat plateau else-
where, confirming the picture of rod-like HBPs lying on
the wall surface. The probability density distributions
of dual-shaped and oblate HBPs share some similarities
with those of prolate HBPs but also exhibit some relevant
differences. While ρωL is peaked at cos θL ≃ 0, the other
two distributions, ρωT and ρωW , differ significantly from
those observed in fluids of prolate HBPs. Specifically, ρwT
exhibits a peak at cos θT ≃ ±1, especially pronounced for
oblate particles, and then a flat profile throughout the re-
maining angular spectrum, implying a strong alignment
between êT and ẑ. In contrast, ρωW is qualitatively very
similar to ρωL, with a relatively less pronounced peak at
cos θT ≃ 0. Interestingly, ρωW in fluids of dual-shaped par-
ticles is not completely flat far from the peaked region, as
a minor peak is also detected at cos θT ≃ ±1, suggesting
that a small number of particles might not necessarily
lie on the wall surface. For all particle shapes, the DFT
model replicates very well the angular distributions of
T and W , displaying remarkable agreement with simu-
lation results. However, notable discrepancies emerge in
the case of ρωL, where the DFT model consistently un-
derestimates the magnitude of the maxima. Specifically,
at cos θk = ±1 for k = T,W and cos θk ∼ 0 for k = L,
the DFT model tends to fall short. These disparities
are anticipated, given that the model does not account
for free energy contributions arising from inter-particle
interactions.
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FIG. 8. Survival probabilities of prolate (left frame), dual-
shaped (middle frame) and oblate (right frame) HBPs in wall-
like (lω), bulk-like (lb) and intermediate (li = l{1,2,3}) slabs
parallel to the walls. The thickness of lω and li slabs is, re-
spectively, 3.5T and 3T , whereas the thickness of lb slabs is
12T and 24T for inter-wall distances of h = 37T and h = 49T ,
respectively. No bulk region is found in systems with h = 25T .
Circles, squares and asterisks refer, respectively, to inter-wall
distances of h = 25T , 37T and 49T .

Not only does the presence of parallel confinement in-
fluence the local structure of our model suspensions, but
it also affects their dynamical properties. To assess the
extent of this effect, we divide the inter-wall spacing into
parallel wall-like (lω), bulk-like (lb), and intermediate
(li = l{1,2,3}) slabs. We calculate the survival probabil-

ity, P (t), representing the likelihood that a given particle
is found in one of these slabs over a specific time win-
dow. Specifically, lω and li slabs are, respectively, 3.5T
and 3T thick, while the thickness of lb slabs depends on
the inter-wall distance, being 12T for h = 37T and 24T
for h = 49T . The survival probabilities are reported in
Figure 8 for prolate (left frame), dual-shaped (middle
frame), and oblate (right frame) HBPs as a function of
t∗ ≡ t/τ . As a general tendency, P (t) is very large up to
approximately t = 10τ and then decays rapidly to zero.
However, this behaviour depends on the slab geometry
and vicinity to the walls. The decay of P (t) in li slabs
is significantly faster than in lb slabs, simply because the
latter are thicker and can retain particles for a longer
time. The decay of the survival probability in li slabs
is also relatively fast when compared to that in lω slabs.
In this case, particles can leave li slabs from both their
sides, while those in lω slabs have a unique way out as
they are trapped at the wall face. We also notice that
the dependence of P (t) on the inter-wall distance h is
not significant for any of the three particle anisotropies.
The only exception is observed in bulk-like slabs: the
survival probability of particles in systems with h = 37T
(red squares in Figure 8) decays much faster than that
of particles in systems with h = 49T (red asterisks in
Figure 8). This is due to the fact that the bulk-like re-
gion of the latter is twice as large as that of the former
(see Supplementary Information for a thorough descrip-
tion of the selected slabs). While our approach to split-
ting the inter-wall spacing into slabs of different thick-
ness might seem inappropriate for direct comparison of
resulting survival probabilities, it is crucial for calculat-
ing dynamical properties, as explained in the following.
All particles eventually leave their initial slab and dif-
fuse through the entire fluid from wall to wall. However,
they are more likely to spend a longer time in the vicin-
ity of the wall than in the intermediate regions between
them. This feature naturally arises as a consequence of
the suspension nematization, driven by volume-excluded
interactions of the HBPs with the walls. As we will see
later, particle alignment further enhances diffusion in xy
planes, contributing to the survival probability in slabs
near the walls. To investigate the dynamics, we focused
on the most interesting regions of the system — those
close to the walls and those far from them. We empha-
size that all dynamically calculated properties are partic-
ularly sensitive to statistical fluctuations as they depend
on the survival probability P (t) of particles dwelling in
a given slab. Because P (t)t→∞ = 0 (see Figure 8), we
disregarded results at t/τ > 2 · 103 as their statistical
reliability is not sufficiently robust.

In general, the bulk dynamics of hard colloidal par-
ticles in a solvent exhibit diffusive behaviour at short
times, where their motion is primarily determined by ran-
dom collisions with the surrounding solvent molecules.
At slightly longer times, particles begin to collide with
each other. If the fluid is particularly dense, they slow
down significantly, delaying the decay of auto-correlation
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functions, and eventually return to the diffusive regime at
long times. By contrast, in very dilute fluids, no crossover
from short to long time scales is observed. This dynamic
picture can be altered when the fluid is confined between
walls, as the hindrance of undisturbed particle diffusion
by the walls can redefine the boundaries of the afore-
mentioned time regimes. To thoroughly assess the im-
pact of planar confinement on the diffusion of our HBPs,
we computed the directional mean squared displacements
(MSDs) along and perpendicular to ẑ, as well as the to-
tal MSD in the three spatial directions. The results are
shown in Figure 9. Given the weak dependence of the
MSD on the inter-wall distance, each curve represents an
average of the MSD obtained at h/T = 25, 37, and 49.
The MSDs of prolate, dual-shaped, and oblate HBPs ex-
hibit very similar behaviours, with no substantial depen-
dence on particle anisotropy. Total and perpendicular
MSDs calculated in lb and lω exhibit the typical trend
of dilute colloidal suspensions, showing a single time-
dependent regime where ∆r2 ∝ t, spanning the five time
decades of our simulations. However, the parallel MSD
calculated in lω follows a different behaviour, bending at
t ≃ 10τ and plateauing at ∆r2z(t = 103) ≃ 1. This value
is a very small fraction of its perpendicular counterpart,
which is approximately 100 times larger. In practice,
HBPs in lω can displace along ẑ by either diffusing to-
wards the wall or towards the adjacent li slabs. This
displacement, as indicated by the value of the long-time
plateau, is, on average, of the order of the particle thick-
ness and hence negligible compared to the displacement
in planes perpendicular to ẑ. We therefore conclude that
the particle dynamics in the regions close to the wall are
mostly due to the ability of particles to diffuse laterally,
in planes perpendicular to the inter-wall distance. Only

when these particles enter the intermediate and bulk-like
regions can isotropic diffusion be recovered.
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To better assess the dynamics of HBPs in lω slabs
in comparison to that in lb slabs, we evaluate the ra-
tios, ξ(t), between the corresponding MSDs over time.
Since the contribution of parallel MSDs in the regions
close to the walls is negligible, these ratios are only cal-
culated for perpendicular and total MSDs. In partic-
ular, we averaged out the dependence on h of the lω-
MSDs and used the lb-MSD obtained at h∗ = 49. Math-
ematically, ξxy(t) ≡ ⟨∆r2xy⟩w/⟨∆r2xy⟩b49T and ξxyz(t) ≡
⟨∆r2xyz⟩w/⟨∆r2xyz⟩b49T . The results are shown in Figure
10 for prolate (left frame), dual-shaped (middle frame),
and oblate (right frame) particles. Firstly, we notice that
both ratios are consistently larger than 1 throughout the
explored time scales, indicating that particle dynamics
close to the walls is faster than that in the bulk. This
is particularly evident in fluids of oblate HBPs, where
ξxy ≃ 1.8 and ξxyz ≃ 1.3 at t∗ = 2 · 103. To under-
stand this behaviour, one should consider the arrange-
ment of cuboids in lω compared to that in the bulk.
Close to the walls, cuboids are on average significantly
more ordered than in the bulk, forming nematic-like clus-
ters. This orientational order is lost in the bulk phase,
which is isotropic, as the uniaxial order parameters un-
ambiguously indicate. As found in previous works, the
wall-induced isotropic-to-nematic transition triggers the
formation of quasi-unidimensional channels in fluids of
prolate HBPs and quasi-two-dimensional channels in flu-
ids of oblate or dual-shaped HBPs, acting as preferen-
tial paths for their diffusion51,52. Additionally, we notice
that ξxy > ξxyz at any time, indicating that, while the
dynamics in lω slabs is almost exclusively due to motion
in planes parallel to the walls, the dynamics in the bulk is
much less space-dependent, confirming the isotropic sig-
nature of the bulk phase. The results of Figure 10 are
not only influenced by phase ordering but also by parti-
cle geometry, as both ξxy and ξxyz increase with reduced
particle width, especially so at W ∗ = 8. This increase is
attributed to the significant alignment that oblate HBPs
achieve in lω slabs compared to that in the bulk, as in-
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dicated by the uniaxial order parameters in Figures 4
and 5. This difference, less pronounced in fluids of pro-
late and dual-shaped particles, emphasizes the primary
role of ordering in determining the dynamics of fluids of
anisotropic particles.

In light of these considerations, we now examine the
degree of deviation from Gaussianity and diffusive dy-
namics of cuboids by calculating the non-Gaussian pa-
rameter, α2, and the apparent exponent, β, defined, re-
spectively, in Eqs. 9 and 11. The NGPs and apparent
exponents calculated in lb slabs, shown in Figures 11 and
12, are in agreement with those previously obtained in
systems of isotropic phases of prolate and oblate cuboids,
with the same particles sizes and packing fraction used
in this work, but simulated with 3D periodic boundary
conditions33. Deviations from Gaussianity have also been
investigated in liquids53–55, glassy-forming systems56–58,
liquid crystals59,60, and polymer melts61. Similar to the
NGPs reported for these systems, the NGPs of Figure
11 exhibit a time-dependent behaviour across the three
particle anisotropies, with a short-time tail typical of es-
sentially Gaussian dynamics up to t/τ ≃ 1, a moderate
increase up to a peak located at t/τ ≃ 102, and finally,
a decay whose full relaxation is beyond our simulation
time.
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It is interesting to notice that the largest deviations are
detected in the bulk-like region, where αb

2,3 can be up to
twice as large as αω

2,3, highlighting the impact of ordering
on dynamics and on the extent of its Gaussian signature.
Due to the limited mobility along ẑ in the regions close
to the wall, we find that the 2D NGP is very similar
to the 3D NGP, and, at sufficiently long times, when
D∥,t ≃ 0, the two are practically indistinguishable, with
αω
2,2 = αω

2,3 (see Eq. 9). The effect of particle anisotropy
determines the magnitude of Gaussian deviations, with
both αb

2,3 and αω
2,3 significantly decreasing with increas-

ing W ∗ from 1 (prolate HBPs) to 8 (oblate HBPs). As
a general tendency, all deviations are relatively small,
especially when compared to those usually observed, for
instance, in colloidal glasses, crystals, and liquid crystals,

where α2 has been found to be more than one order of
magnitude larger62–64.
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While the NGP estimates the extent of Gaussian de-
viations in particle diffusion, the apparent exponent β,
defined in Eq. 14 and shown in Figure 12, provides infor-
mation on how diffusion eventually deviates from Fick-
ianity. Fickian behaviour is characterised by an MSD
that increases linearly with time, i.e., ⟨∆r2⟩ ∝ t. Diffu-
sion of thermally agitated particles whose displacements
are Gaussian-distributed and whose MSD increases lin-
early with time is commonly referred to as Brownian
motion65. For all particle anisotropies, the apparent ex-
ponents calculated in the bulk, βb, and close to the walls,
βω, decrease at short to intermediate times, reaching a
minimum between t = 10τ and 102τ , and then increase
again at long times. Over at least four time decades, the
MSD is not linear with time, and it follows a power law of
the type ⟨∆r2⟩ ∝ tγ , with γ < 1, indicating subdiffusive
behaviour that is temporary in the bulk but definitive
near the walls (see also Figure 9). Due to the presence of
the walls, all βω

z (red asterisks) decay to zero from short
times and do not recover initial values for the entire sim-
ulated timescale. On the contrary, diffusion in xy planes
shows a weaker character near the walls than in the bulk
region, indicating that induced particle structural organ-
isation promotes diffusion along specific directions. Con-
sequently, the 3D diffusion from the wall (βw

xyz, black
circles) to the bulk (βw

xyz, green triangles) changes, and
that difference in behaviour varies with changes in par-
ticle width. Over these time decades, where β < 1, we
also observe that α2 > 0 and therefore that the dynamics
is not Fickian and not Gaussian. Eventually, the system
recovers its Brownian-like signature at t/τ > 103, which
is beyond our simulation time. No evidence of FNG is
therefore detected.
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V. CONCLUSIONS

In summary, we have investigated the interplay be-
tween planar confinement and particle anisotropy in the
self-assembly and dynamics of colloidal board-like par-
ticles. The presence of confinement induces local struc-
tural inhomogeneities and the occurrence of nematic-like
domains in the regions adjacent to the walls and at vol-
ume fractions at which, in the bulk, only isotropic phases
would form. While we have explored different inter-wall
distances, their effect on structural and dynamical prop-
erties is not significant apart from reducing the exten-
sion of the bulk-like region in between. The influence
of walls on local nematization is further supported by a
straightforward DFT approach. Although the DFT ap-
proach slightly underestimates ordering at intermediate
distances between walls and the bulk, it otherwise ex-
hibits excellent quantitative agreement with the simula-
tion results. Notably, this alignment is achieved despite
the DFT model not fully capturing the features of the
packing fraction profile. While being induced by confine-
ment, structural and dynamical properties of the nematic
domains are strongly influenced by shape anisotropy,
with oblate particles more prone to align than their pro-
late counterparts. The dynamics in the region close to the
walls stems from such a local organisation, with cuboids,
due to their layering, diffusing preferentially in planes
parallel to the walls and exhibiting a sub-diffusive be-
haviour in the direction perpendicular to them. As also
noticed in previous studies51,52, ordering favours the for-
mation of preferential pathways that enhance diffusion as
compared to that in the bulk, where an isotropic phase
is found. The analysis of the non-Gaussian parameter
α2 and the apparent exponent β reveals the occurrence
of sub-diffusive dynamics that intercalates between the
short-time and the long-time diffusive behaviour. The
latter is not however achieved in the regions close to the
walls as it takes longer than the decay to zero of the par-
ticle survival probability. As a final note, we stress that
our results have been obtained for hard-core model par-
ticles at equilibrium. Thanks to dynamic Monte Carlo
methods we can easily simulate discontinuous interaction
potentials, but, at the same time, we remind the reader
of its underlying assumptions and its consequent limita-
tions. We are currently working to incorporate the effect
of fluid-mediated interactions between particles and be-
tween particles and walls. Although, to the best of our
knowledge, soft cuboidal particles (and many others with
a biaxial geometry) lack a suitable force field and are of-
ten modelled as arrays of spherical beads, it would be
interesting to add soft inter-particle and particle-wall in-
teractions, in order to have a more realistic description
of these systems. Last, the study reported in this work
could be extended to polydispersed suspensions, whose
properties can be compared with previous work on simi-
lar systems25,37,66.

VI. SUPPLEMENTARY MATERIAL

The supplementary material includes details on the
simulation parameters and the definition of the slabs used
for the calculation of the dynamical properties of the sus-
pensions in confinement.
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65A. Einstein, “Über die von der molekularkinetischen theorie der
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