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Departamento de F́ısica Atómica, Molecular y Nuclear

UNIVERSIDAD DE GRANADA

PROGRAMA DE DOCTORADO EN
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Resumen

Esta tesis doctoral trata sobre el uso técnicas de enfriamiento y manipulación
láser para la determinación de las frecuencias de movimiento en una trampa Pen-
ning. La detección óptica del estado de movimiento del sistema tiene las ventajas
de ser universal, necesitar de un solo ion de interés, y ser altamente robusta frente
a imperfecciones en los campos de atrapamiento. En este trabajo se presentan los
primeros resultados experimentales al respecto, aśı como diversas mejoras técnicas
llevadas a cabo: un nuevo sistema óptico de diseño propio, una bomba criogénica
a medida y dos fuentes de iones. El ion 40Ca+ ha sido caracterizado como detector
de radiofrecuencia en el ĺımite Doppler, desarrollando un protocolo de medida en
el que se pulsa el enfriamiento láser para leer la amplitud de oscilación del ion a
partir de una cámara EMCCD y un PMT. La determinación alterna de la frecuen-
cia de ciclotrón de dos iones individuales de isótopos de calcio (40Ca+ vs ACa+ con
A = 42, 44, 48) ha arrojado las primeras medidas de cocientes de masas usando el
método óptico. Por su parte, los experimentos con cristales de Coulomb de dos
iones de la misma especie (40Ca+ - 40Ca+) y de especies diferentes (42Ca+ - 40Ca+)
se han utilizado para estudiar la validez del teorema de invariancia generalizado.
Esta últimas medidas constituyen la primera implementación del método en una
plataforma universal. Se concluye necesario enfriar el cristal hasta el estado funda-
mental de movimiento para elevar la precisión de la técnica a un nivel competitivo.

Abstract

This thesis reports on the use of laser cooling and manipulation techniques for
the determination of the motional frequencies in a Penning trap. The optical de-
tection of the motional state of the system has the advantages of being universal,
demanding only one ion of interest, and being robust against imperfections of the
trapping fields. In this work, the first experimental results, as well as several tech-
nical improvements are presented: a novel optical system, a customized cryogenic
pump, and two ion sources. 40Ca+ has been characterized as a radiofrequency
detector at the Doppler limit, developing a laser-pulsed measurement protocol to
read out the ion’s oscillation amplitude from an EMCCD and a PMT. The alter-
nating determination of the cyclotron frequency of two individual calcium isotope
ions (40Ca+ vs ACa+ with A = 42, 44, 48) has yielded the first mass ratio mea-
surements of the optical method. Experiments on balanced (40Ca+ - 40Ca+) and
unbalanced (42Ca+ - 40Ca+) Coulomb crystals have been used to study the valid-
ity of the generalized invariance theorem. These measurements constitute the first
implementation of the method on a universal platform. To bring the accuracy of
the technique to a competitive level, it will be necessary to cool the crystal down
to its ground state of motion.
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and current (David and Jesús) members of the group, and to the bachelor and
master students I have met in the lab throughout these years. Gracias también
a Pablo, que siempre ha estado dispuesto a mecanizar cualquier pieza por muy
pequeña que fuese.

I would like to thank Michael Block for giving me the opportunity of doing my
stays at GSI. I must say I have always felt very welcomed, for which I especially
thank Francesca, Sebastian, Oliver, and Manu, among all the people I was lucky
to meet.

I would like to thank Christian Ospelkaus for providing us access to Zemax,
which was utilized for the simulations of the new optical system.

I also want to mention here Alejandro, Álvaro, Ana Maŕıa, Antònia, Aurora,
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Chapter 1

Introduction

Since it was devised by Hans G. Dehmelt to directly measure the electron’s mag-
netic moment [1], the Penning trap has become the tool of choice to perform high-
precision measurements of fundamental properties of the confined particles. The
high temporal and spatial stability of the trapping fields translates into unrivalled
achievable precision in the measurement of the cyclotron and the Larmor frequen-
cies, directly related to fundamental properties such as the mass and the magnetic
moment. Some of the most precise measurements of fundamental properties of
subatomic particles have been performed using Penning traps. A few examples
are the electron and proton masses [2–4], the antiproton-to-proton charge-to-mass
ratio [5], the fine-structure constant [6], and the magnetic moment of several parti-
cles and antiparticles [7–9]. Some of these values are used to test the predictions of
quantum electrodynamics (QED) and the charge, parity, and time reversal (CPT)
symmetry.

Penning traps are also the prime choice to determine atomic masses with high
precision [10]. The mass of an atom or ion is a fundamental property directly
related to its binding energy and therefore contains information about the inter-
action among its constituents. The ion’s mass is extracted from a measurement of
the cyclotron frequency, which is in turn related to the motional frequencies. Two
well-established detection methods are usually employed: the ion is destructively
detected after it has been ejected from the trap [11], or non-destructively through
the current it induces on certain trap electrodes [12].

Techniques relying on destructive detection, such as time-of-flight ion-cyclotron-
resonance (ToF-ICR) and phase-imaging ion-cyclotron-resonance (PI-ICR), have
been extensively used in on-line facilities to measure the mass of short-lived nu-
clides. The main advantages are the speed and the operation at room temperature.
ToF-ICR takes advantage of the magnetic-field gradient the ions undergo when are
ejected from the trap to observe the motional excitation from the time of flight [13].
Precisions in the order of 10−7 - 10−9 have been achieved, enabling the study of
nuclear structure, nucleosynthesis processes in astrophysics, or test the Standard
Model [10]. The more recent PI-ICR tracks the phases of the ion’s radial motions
and allows to reach the 10−10 level [14].
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2 Chapter 1. Introduction

Non-destructive techniques based on bolometric detection are preferred for sta-
ble nuclides. In the 1980s, the groups of Robert Van Dyck Jr. at the University
of Washington (UW) [15] and David Pritchard at the Massachusetts Institute
of Technology (MIT) developed single-ion motional-frequency measurement tech-
niques which made possible to reach the 10−11 level. The MIT group developed
the so-called pulse-and-phase (PnP) technique [16], which extracts the motional
frequency from a phase measurement and was used to measure the atomic mass
of 13 ion species from the proton to 133Cs at the sub-ppb level [17, 18]. This
technique is still successfully employed after the trap was moved to Florida State
University (FSU) [19]. Its use with two ions confined simultaneously in the same
trap in the same magnetron orbit has allowed to explore the 10−12 level [20, 21].
This level of precision has also been reached with single ions in other facilities
like PENTATRAP at the Max Planck Institute for Nuclear Physics (MPIK) in
Heidelberg [22] or at the former Mainz g-factor experiment [23].

Ion cooling is an important preparatory stage in most ion-trapping experiments
to reduce the line broadening and frequency shifts in high-precision spectroscopy.
Laser cooling is the most effective method to reduce the ion’s kinetic energy in
the range below the electronvolt. It was proposed by Theodor W. Hänsch and
Arthur L. Schawlow for free atoms and a continuous Doppler spectrum (Doppler
cooling) [24], and simultaneously by David J. Wineland and Hans G. Dehhmelt
for trapped ions and a spectrum modulated by motional sidebands (sideband cool-
ing) [25] in 1975. The first experimental demonstration on trapped ions took place
in 1978, when Wineland’s group at the National Institute of Standards and Tech-
nology (NIST) [26] and Peter E. Toschek’s group in Heidelberg [27] reported at
the same time Doppler cooling of Mg+ in a Penning trap and Ba+ in a Paul trap,
respectively. Laser cooling to the ground state of motion was first demonstrated in
1989 by the NIST group on a Paul trap [28]. Sympathetic cooling of other species
through the Coulomb interaction [29] is used, e.g., to prepare a two-ion crystal for
quantum logic spectroscopy (QLS), a technique that enables spectroscopy of ions
that do not have suitable transitions for state preparation and detection [30].

Although Doppler cooling was simultaneously demonstrated in a Penning and
a Paul trap, the latter has been predominantly the preferred platform to perform
experiments in which laser manipulation and fluorescence readout are employed.
The main reason is the comparatively high experimental complexity of a Pen-
ning trap. Experiments are usually carried out inside a cryogenic superconducting
magnet, which greatly complicates the optical access, and laser cooling also re-
quires more elaborated schemes due to Zemann splitting and the instability of the
so-called magnetron motion. The pioneering work was carried out by the Ion Stor-
age Group at NIST, which currently can build and control 2D 9Be+ ion Coulomb
crystals that have been used to implement quantum simulations [31] or quantum
sensing protocols [32] on hundreds of ions. The group at Imperial College was
the first to demonstrate cooling to the ground state of a single 40Ca+ ion in the
axial [33] and radial [34] motions. The Penning-trap experiment at the University
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of Granada also uses calcium ions but in a stronger magnetic field (7 T) than the
one at the Imperial College (2 T). The main goal is to develop a novel technique to
determine the cyclotron frequency of a target ion by laser addressing a sensor ion
and carrying out optical detection [35]. Although the original proposal conceived
the location of the target and sensor ions in different traps sharing a common
electrode [36], a first implementation will take place in the same trap on a two-ion
unbalanced crystal [37]. Compared to other techniques, it is universal and only
needs one ion without restriction in the mass-to-charge ratio. In addition, the use
of laser cooling in the preparatory stage, ideally to the ground state of all the
eigenmotions, reduces the required motional amplitude for detection and therefore
the associated systematic shifts [38]. It is worth mentioning that other groups
like the BASE-Hannover collaboration [39], the BASE-Mainz collaboration [40],
or IONPEN at ETH-Zürich [41] also investigate the use of laser cooling in Penning
traps for precision experiments and quantum simulation and computation.

One possible field of application of the optical-detection technique might be on
direct mass measurements of the heaviest elements. At present, SHIPTRAP at GSI
is the only Penning-trap mass spectrometer coupled to a facility capable of produc-
ing transactinides, commonly known as super-heavy elements (SHEs) [42]. The
determination of the binding energy of SHEs provides useful information about
their internal nuclear structure, contributing sometimes with new hints about
shell effects that are necessary to explain their existence [43]. ToF-ICR [44, 45]
and PI-ICR [46] have been employed to directly measure the mass of nobelium,
lawrencium, and rutherfordium ions. However, the minute production rates, of
one ion per day already for rutherfordium, can make even PI-ICR impractica-
ble when increasing the atomic number. Non-destructive techniques based on
induced-current detection using superconducting coils have not reached mass-to-
charge ratios higher than 65 u/C to date [18], while other approaches based on
quartz crystals are under study [47–49].

One of the first ideas behind the optical method was the determination of the
Q-value of certain nuclear β processes that are of interest in the field of neutrino
physics [50]. The study of the electron energy in β− decay and the X-ray spectrum
in electron capture are the only direct methods to determine the neutrino mass.
The comparison of the spectrum endpoint and the Q-value, which can be directly
delivered to high precision by measuring the masses of the mother and daughter
nuclides with a Penning trap, gives the absolute electron neutrino mass. For ex-
ample, in the most precise upper bound of 0.8 eV/c2 delivered by the KATRIN
experiment [51] for the electron antineutrino in tritium β− decay, the Q-value ob-
tained can be contrasted with the mass difference measured by the FSU group with
22 meV/c2 uncertainty using PnP [19]. In other experiments, such as ECHo [52]
or HOLMES [53], the atomic de-excitation spectrum of the electron capture in
163Ho is studied. A Q-value of this reaction has been measured at SHIPTRAP
with 30 eV/c2 uncertainty using PI-ICR [54]. Apart from the above-mentioned
standard β processes, it is also possible to observe the weak second-order double
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beta decay for some nuclides, such as 48Ca+ [55]. The search for the neutrino-
less double-beta decay attempts to unravel the Dirac or Majorana nature of the
neutrino [56].

The development of the optical-detection technique (and therefore the facility)
has a strong potential for optical-spectroscopy experiments usually carried out in
Paul traps. Apart from the motional-frequency stability and the strong magnetic
field, essential features in mass and g-factor measurements, Penning traps have
also other advantages over Paul traps. The absence of micromotion within the
whole trapping volume avoids detrimental effects such as unwanted Doppler shifts
and ion heating [33]. The usually higher trap dimensions also imply lower heating
rates when ions are cooled to the ground state of motion. Ion clocks are a partic-
ular application of precision spectroscopy in ion traps in which an internal atomic
transition of a previously ground-state cooled ion is repeatedly interrogated [57].
The highest precision, below 10−18, has been reached with an 27Al+ ion that is sym-
pathetically cooled and read out through a 25Mg+ (control) ion using QLS [58].
A new generation of ion clocks based on laser addressing of a nuclear isomer that
lays within the optical spectrum is currently under development using 88Sr+ as
control ion and a Paul trap as storage device [59]. The main advantage with re-
spect to atomic transitions is the insensitivity to the noise coming from external
electromagnetic fields, which currently dominates the uncertainty budget. The
best candidate at present is 229Th, which has a low-lying nuclear isomer, 229mTh,
with an energy of 8.338(24) eV (150 nm wavelength) [60]. This value is still far
from precision spectroscopy on the corresponding magnetic dipole transition, and
the laser technology for the very first experiments is currently under development.
The facility at the University of Granada is at the stage where two-ion crystals con-
taining 232Th+ (and 40Ca+) can be formed for motional-frequency studies aiming
at cooling all modes to their ground state, studies that can be directly projected
to 229Th+.

This manuscript consists of seven chapters. Chapter 2 presents the fundamen-
tals of ion trapping and laser cooling in a Penning trap and an overview of the
main motional-frequency measurement techniques. Chapter 3 is devoted to the ex-
perimental setup, paying special attention to the parts that have been developed
and improved: the ion sources, the customized cryogenic pump, the novel optical
system, and the control and data-acquisition system. The installation of the cryo-
genic pump drastically improved the vacuum level, while the new optical system
enabled the detection and visualization of single ions and crystalline structures. A
comprehensive description of the design, characterization, and performance of the
latter is given. Chapter 4 details the performance of the ion sources for the ion in-
jection in the magnetic field and describes the characterization of the laser cooling
of ions to the Doppler limit. Special attention is put into the cooling of the radial
modes in single ions and two-ion crystals using axialization. Chapter 5 presents
the characterization of the 40Ca+ sensor ion under external electric fields and the
mass ratios of several stable isotopes, employing the optical method for the first
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time. For the cyclotron-frequency ratios presented, one ion is used at a time in
the trap, and the measurements are taken alternating a reference ion and the ion
of interest. Chapter 6 presents the first implementation of the optical method on
a balanced (40Ca+ - 40Ca+) and an unbalanced two-ion crystal (42Ca+ - 40Ca+).
The modelling of the system, the analysis of the data, and a thorough discussion
about the current limitations of the technique due to the Coulomb anharmonicity
are presented. The ways to overcome these limitations are also discussed.





Chapter 2

Optical detection of the motional
frequencies in a Penning trap

2.1 Penning trap fundamentals

The confinement of charged particles can be achieved either by an oscillating radio
frequency (RF) electric field or by the superposition of static magnetic and electric
fields [61,62]. The first type is commonly known as RF or Paul trap, after Wolfgang
Paul [63]. The second was developed by Hans G. Dehmelt inspired in the Penning
ion gauge and is named after the latter [1].

In the ideal Penning trap, a spatially homogeneous magnetic field along the so-
defined axial direction, B⃗ = Bẑ, provides confinement on the perpendicular radial
plane. The comparatively weak electric potential V , that enables trapping in
the axial direction, has a quadrupolar shape and is usually built with rotational
symmetry around the axial z axis,

V =
V0

4d20

(
2z2 − x2 − y2

)
. (2.1)

Figure 2.1 shows the hyperbolic Penning trap, an electrode arrangement that nat-
urally creates harmonic electrostatic potential wells in the axial (confining) and
radial (deconfining) directions. For this electrode geometry, V0 is the potential
difference between the endcaps and ring electrodes, and d0 is the so-called char-
acteristic distance of the trap. The Penning trap utilized in this thesis has a ring
geometry that allows for laser addressing and fluorescence collection in the ra-
dial plane. It is presented in Sec. 3.1, and further details about the design and
optimization can be found in previous theses of this group [64,65] or in Ref. [66].

2.1.1 Dynamics of a single trapped ion

The force exerted by the electromagnetic fields on a particle with charge q and ve-

locity v⃗ is given by the Lorentz’s law, F⃗ = q
(
E⃗ + v⃗ × B⃗

)
. The motional equations

7
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V0 z0
r0

B⃗

Figure 2.1. The hyperbolic Penning trap. The electric field is created by applying a
potential difference V0 between two endcaps (in red) and a ring electrode (in blue).
The endcaps have the shape of a two-sheet hyperboloid, while the ring electrode is
a one-sheet hyperboloid that shares the same asymptotic cone. The distances z0
and r0 are related to the trap’s characteristic distance d0 as d20 = (2z20 + r20) /4.

of a single trapped ion of mass m in a Penning trap are

ẍ− ωcẏ −
1

2
ω2
zx = 0, (2.2a)

ÿ + ωcẋ− 1

2
ω2
zy = 0, (2.2b)

z̈ + ω2
zz = 0, (2.2c)

where ωc = 2πνc is the cyclotron frequency of the ion in the bare magnetic field,

ωc =
q

m
B, (2.3)

proportional to the charge-to-mass ratio q/m, and

ωz =

√
qV0

md20
. (2.4)

The axial motion is a simple harmonic oscillator with frequency ωz = 2πνz.
The two radial equations can be simplified by introducing the variable u = x+ iy,
giving rise to

ü+ iωcu̇− 1

2
ω2
zu = 0 (2.5)

and its complex conjugate. By setting u = u0e
iωt, it is found that the general

solution of Eq. (2.5) is the superposition of two circular motions oscillating at
frequencies

ω± =
ωc

2

1±
√

1− 2

(
ωz

ωc

)2
 . (2.6)
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z

ν+

x

y

νz

ν−

Total motion

Figure 2.2. Motion of a single ion in a Penning Trap. The total motion and its
decomposition in the three eigenmotions are represented. The radial xy and radial-
axial xz projections are also plotted. ω+/ω− = 15, ωz/ω− = 150, ρ+/ρz = 0.75,
and ρ−/ρz = 10.

The modified-cyclotron motion (ω+ = 2πν+) originates from the cyclotron motion
in the bare magnetic field (ωc), slightly modified by the electric field. The mag-

netron motion (ω− = 2πν−) results from the E⃗ × B⃗ drift. The motional equations
for the three spatial coordinates are

x = ρ+ cos (ω+t+ θ+) + ρ− cos (ω−t+ θ−) , (2.7a)

y = −ρ+ sin (ω+t+ θ+)− ρ− sin (ω−t+ θ−) , (2.7b)

z = ρz cos (ωzt+ θz) , (2.7c)

where ρu and θu represent the amplitude and phase, respectively [61,62]. Figure 2.2
shows the ion’s motion in the Penning trap. The ion’s energy can be derived using
the Hamiltonian formalism and is given by [61]

Etotal =
1

2
mω2

zρ
2
z +mω1

(
ω+ρ

2
+ − ω−ρ

2
−
)
, (2.8)

where ω1 = ω+ − ω−. Note that a higher magnetron motional amplitude implies
a lower energy, which might be interpreted as an unstable behaviour.

The cyclotron frequency can be directly derived from the radial frequencies as

ωc = ω+ + ω−. (2.9)

A more powerful relationship that connects the three eigenfrequencies with the
cyclotron frequency, valid even for first-order misalignment between the magnetic
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and electric fields and first-order field ellipticity, is the invariance theorem [67],
which reads

ω2
c = ω2

+ + ω2
− + ω2

z . (2.10)

The real Penning trap is subject to field deviations from the ideal homoge-
neous B⃗ and harmonic E⃗ that cause the three eigenfrequencies to shift and there-
fore have an impact on the achievable accuracy. Some reasons are imperfections
in the mechanization of the electrodes or their finite dimensions. Note that even
the considered ideal Penning trap (Fig. 2.1) truncates the hyperboloids. Assum-
ing cylindrical symmetry around the z axis, deviations from the ideal quadrupolar
electric potential can be treated by a series expansion in terms of the Legendre
Polynomials Pη,

V (r, z) =
1

2
CηV0

(
r

d0

)η

Pη

(z
r

)
, (2.11)

where r =
√

x2 + y2 + z2 and Cη is a dimensionless coefficient [68]. If C2 = 1 and
Cη = 0 for η ̸= 2, the electric potential of the ideal Penning trap, Eq. (2.1), is re-

covered. Given the absence of free currents near the centre of the trap, ∇× B⃗ = 0
and the magnetic field can be derived as the gradient of a scalar potential Ψ,
B⃗ = −∇Ψ [69]. Ψ can also be expanded in terms of Legendre Polynomials,

Ψ (r, z) = − 1

η + 1
Bηr

η+1Pη+1

(
z√

r2 + z2

)
, (2.12)

where Bη are coefficients with dimension of magnetic field strength times length
raised to η [68]. The η + 1 factors ensure the coefficient Bη is associated with a
magnetic field of order η in the spatial coordinates. The magnitude of the mo-
tional amplitude-dependent frequency shifts, and thus the associated (systematic)
uncertainty, can be estimated using perturbation theory. Mirror symmetry about
the xy plane at the trap centre is assumed so that only even terms of the electric
potential and magnetic field contribute. The frequency shifts originating from the
quadrupolar component of the electric field are [68]

∆ω± = ∓C4

C2

3

2d20

ω+ω−

ω+ − ω−

[
2ρ2z − ρ2± − 2ρ2∓

]
, (2.13a)

∆ωz =
C4

C2

3

4d20
ωz

[
ρ2z − 2ρ2+ − 2ρ2−

]
. (2.13b)

For the magnetic field [68],

∆ω+ =
B2

4B0

ω+
ω+ + ω−

ω+ − ω−

[
ρ2z − ρ2+ −

(
1 +

ω−

ω+

)
ρ2−

]
, (2.14a)

∆ω− = − B2

4B0

ω−
ω+ + ω−

ω+ − ω−

[
ρ2z −

(
1 +

ω+

ω−

)
ρ2+ − ρ2−

]
, (2.14b)

∆ωz =
B2

4B0

ωz
ω+ + ω−

ω+ω−

[
ω+ρ

2
+ + ω−ρ

2
−
]
. (2.14c)
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Precision Penning traps integrate compensation electrodes to mitigate these higher-
order contributions and achieve an electric field as harmonic as possible.

The motional amplitudes and phases are routinely manipulated by applying
external electric fields. A dipolar field resonant with a particular eigenfrequency
is employed to address each of the motions separately. It can be used, e.g., to
increase the amplitude of a previously cooled ion. A quadrupolar electric field
oscillating at the sum (if both are stable) or difference (if the magnetron motion is
involved) of frequencies is able to transfer energy between two eigenmotions [70].

2.1.2 Dynamics of a two-ion crystal

The dynamics of two ions simultaneously trapped in a Penning trap includes the
Coulomb interaction. The ions are labelled as sensor (s) and target (t), and they
are supposed to have the same charge. The motional equations can be written
as [37,65]

ẍs,t − ωcs,ctẏs,t −
1

2
ω2
zs,ztxs,t −

1

ms,t

q2

4πε0

xs,t − xt,s

|r⃗s − r⃗t|3
= 0, (2.15a)

ÿs,t + ωcs,ctẋs,t −
1

2
ω2
zs,ztys,t −

1

ms,t

q2

4πε0

ys,t − yt,s

|r⃗s − r⃗t|3
= 0, (2.15b)

z̈s,t + ω2
zs,ztzs,t −

1

ms,t

q2

4πε0

zs,t − zt,s

|r⃗s − r⃗t|3
= 0, (2.15c)

where ε0 is the vacuum permittivity. If the kinetic energy is sufficiently low and
ωzs/ωcs < 1/

√
3µ [65], with µ = mt/ms, the two ions form an ordered structure

referred to as Coulomb crystal: they occupy stable positions, aligned along the
axis, and their relative distance is given by

dion-ion = 3

√
q2

2πε0msω2
zs

. (2.16)

For infinitesimal ions’ amplitudes, the Coulomb force in Eq. (2.15) can be
approximated to its first-order term in the Taylor series so that the motional
equations become [37,65]

ẍs,t − ωcs,ctẏs,t − ω2
zs,ztxs,t +

1

2
ω2
zs,ztxt,s = 0, (2.17a)

ÿs,t + ωcs,ctẋs,t − ω2
zs,ztys,t +

1

2
ω2
zs,ztyt,s = 0, (2.17b)

z̈s,t + 2ω2
zs,ztzs,t − ω2

zs,ztzt,s = 0. (2.17c)

The axial motion is decoupled from the radial motion, and the frequencies of the
two eigenmodes, namely the common and stretch modes, are [37, 65]

ωcom,str
z = ωzs

√
1 +

1

µ
±
√

1 +
1

µ2
− 1

µ
, (2.18)
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where the +/− sign corresponds to common/stretch. The equations for the radial
modes can be easily solved for the case of the balanced crystal (mt = ms), obtaining
the frequencies [37, 65]

ωcom,str
± =

ωcs

2

1±
√

1− 2

(
ωcom,str
z

ωcs

)2
 , (2.19)

where the +/− sign stands for the modified-cyclotron/magnetron mode. For the
general case, the frequencies of the radial eigenmodes can be also found analyti-
cally, but this entails solving a quartic equation.

Analogously to the case of a single ion, the six eigenfrequencies of the two-ion
crystal, ωcom,str

u with u ∈ {+,−, z}, can be related to the cyclotron frequencies
of the two individual ions. The relationship, strictly valid only for infinitesimal
amplitudes, is called generalized invariance theorem [41], and states

ω2
cs + ω2

ct =
∑
u

(ωcom
u )2 +

(
ωstr
u

)2
. (2.20)

2.2 Laser cooling fundamentals

Laser cooling achieves a net loss of the particle’s momentum by the absorption
and re-emission of photons near-resonant with an internal transition of the ion.
Two situations can be considered depending on the relative magnitude of the ion’s
motional frequency ωu and the natural linewidth of the transition Γ [71]. If ωu ≪ Γ,
the period of the ion’s eigenmotion is much larger than the optical decay time, and
the system is said to be in the weak-binding regime. During the oscillation period,
the ion progressively explores the spectral line profile of the optical transition due
to the Doppler effect. If ωu ≫ Γ, the system is in the strong-binding regime. The
spectrum seen by the ion is composed of the optical-transition frequency ωge and
a series of equispaced sidebands at nωu, with n an integer number [72].

The weak-binding regime occurs when addressing an electric dipole transition.
For example, Γ = 2π × 22 MHz for the dipole transition 3p64s 2S1/2 ⇔ 3p64p 2P1/2

in 40Ca+, while ωc = 2π × 2.7 MHz in a 7-T Penning trap. Doppler cooling is
accomplished by red-detuning the laser frequency so that momentum-loss collisions
are fostered. This technique is very efficient below the electronvolt, with cooling
times in the order of the millisecond. The ultimate temperature achieved is limited
by the recoil energy from spontaneous emission. Cooling to the ground state of
motion has been demonstrated in the strong-binding regime, e.g., employing the
electric quadrupole transition 3p64s 2S1/2 ⇔ 3p63d 2D5/2 in 40Ca+ [28].

2.2.1 Doppler cooling in a Penning trap

The two radial motions in a Penning trap cannot be simultaneously cooled by red-
detuned light. A net loss of momentum in a certain direction in the radial plane
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implies a decrease of oscillation amplitude in the modified-cyclotron motion but an
increase in the magnetron one, due to the unstable nature of the latter [73]. The
two main techniques that have been developed to cool both motions simultaneously
are summarized below.

Spatial intensity gradient

The laser beam of frequency ωl and photon wavenumber kl = 2πλ is spatially
offset in the radial plane so that there is an intensity gradient across the ion’s
orbit. Since many photons are scattered during one oscillation period in the weak-
binding regime, the absorption can be modelled by a continuous force

Fsc = h̄klRsc, (2.21)

where h̄ is the reduced Planck’s constant and Rsc is the scattering rate. The latter
is given by

Rsc = Γ
s/2

1 + s+ [2∆eff/Γ]
2 . (2.22)

∆eff = ωl − ωge − k⃗l · v⃗ is the effective detuning accounting for the Doppler shift.
s is the (space-dependent) saturation parameter, defined as

s =
I

Isat
. (2.23)

Assuming a Gaussian beam travelling along the x axis and centred in y = y0, the
intensity I is given by,

I (y) = I0e
− (y−y0)

2

2w2
y , (2.24)

where wy is the so-called beam waist. The saturation intensity Isat is given by

Isat =
2πh̄cΓ

3λ3
, (2.25)

where c is the speed of light.
The average momentum imparted by the emitted photons is zero since the

spontaneous emission pattern is usually symmetric. However, the average energy,
proportional to the squared momentum, increases linearly with the number of
collisions. This random-walk problem has been studied using the so-called Fokker-
Planck equation [74], which describes the evolution of a particle under the influence
of damping and random forces, although it is beyond the scope of this work. The
minimum temperature, usually referred to as the Doppler limit, is in the order
of h̄Γ/2kB, with kB the Boltzmann’s constant [71]. For 40Ca+, it corresponds to
approximately 1 mK.

For small velocities and amplitudes, close to the final temperature, the scat-
tering force (Eq. (2.21)) can be linearized in these two variables. The equation for
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the axial motion is that of a damped harmonic oscillator. In the radial plane, the
equations are

ẍ− ωcẏ − γvẋ− 1

2
ω2
zx+ γyy = 0, (2.26a)

ÿ + ωcẋ− 1

2
ω2
zy = 0, (2.26b)

where γv = (∂Fsc/∂vx) /m and γy = (∂Fsc/∂y) /m. Considering that γv ≪ ωc and
γy ≪ ω2

z , Eq. (2.26) can be analytically solved to first order [75], resulting in a
variation of the modified-cyclotron and magnetron amplitudes given by

ρ± (t) = e
∓ γvω±−γy

4ω1
t
ρ± (0) . (2.27)

The modified-cyclotron motion is cooled by a negative laser detuning (positive γv),
while the magnetron motion is cooled by the position gradient if the laser beam
is arranged in the configuration shown in Fig. 2.3 (positive γy). In order to cool
the two motions simultaneously, ω− < γy/γv < ω+, or substituting the values of γy
and γv,

ω− <
(Γ/2)2 + (ωge − ωl)

2

2kly0 (ωge − ωl)
< ω+, (2.28)

where it is assumed the laser beam is placed to obtain a maximum gradient at the
trap centre, i.e., y0 = wy [73]. For

40Ca+ in 7 T, ω− = 2π × 20 kHz, ωge − ωl = Γ/2,
I0 = Isat, and wy = 100 µm, γv = 17 kHz and γy/ω1 = 1.5 kHz. This implies cool-
ing rates (argument of the exponential function in Eq. (2.27)) of 3.9 kHz and
0.34 kHz for the modified-cyclotron and magnetron motions, respectively.

Axialization

A quadrupolar electric field (see Fig. 2.3) at ωc applied simultaneously with Doppler
cooling allows for the cooling of the magnetron motion through the laser-cooled
modified-cyclotron motion. The radial motional equations of the ion are

ẍ− ωcẏ − γvẋ− 1

2
ω2
zx+ κx cos (ωquadt+ θquad) = 0, (2.29a)

ÿ + ωcẋ− 1

2
ω2
zy − κy cos (ωquadt+ θquad) = 0, (2.29b)

where κ = (q/m)αuVquad/d
2
u. Vquad is the quadrupolar excitation voltage, du the

distance between electrodes with the same polarity, and αu = Equaddu/Vquad is
the surface correction factor, with Eu the electric field at the trap centre in the
direction u created by Vquad. The dynamics of this system has been studied in
Refs. [13] and [76] for a (linear) friction force originating from collisions buffer-
gas atoms and laser cooling, respectively. For the case of strong (κ ≫ ωcγv) and
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k⃗

0

y0

I (y)

y y

x

Figure 2.3. Scheme of Doppler cooling of the radial motion in a Penning trap. The
spatial offset y0 must prompt the photon absorption when the ion’s magnetron
motion (larger orbit in this figure) has the same direction as the laser wave vector.
The Gaussian intensity profile is plotted on the left side. The polarity of a radially-
segmented electrode that creates the quadrupolar field used in axialization is also
illustrated.

resonant driving (ωquad = ωc), the amplitudes of the radial motion evolve with time
as

ρ± (t) = e−γvt

[
ρ± (0) cos (ωBt)∓

i

2

ρ± (0) γvωc + ρ∓ (0)κe±i∆θ

ω1ωB

sin (ωBt)

]
, (2.30)

where ωB =
√

κ2 − γ2
vω

2
c/2ω1 is the beat frequency between the modified-cyclotron

and the magnetron motions and ∆θ = θquad − (θ+ − θ−). The amplitude of both
motions is reduced at the same rate γv. The final stage of cooling is dominated
by spontaneous emission, not taken into account in Eq. (2.29). The effect of the
quadrupolar field is to homogenize the population in the two motions so that
⟨n+⟩ ≈ ⟨n−⟩ [77].

2.2.2 Calcium as optical detector

Calcium has six stable isotopes, namely, A = 40, 42, 43, 44, 46, 48. All of them
except 43Ca have zero nuclear spin, so they lack of hyperfine structure. In its
singly ionized form, calcium (and the other alkaline-earth metals) has only one
valence electron in the 4s shell.

Figure 2.4 shows the five lower-energy levels of the calcium even isotopes. For a
7-T magnetic field, the spin-orbit interaction still dominates over the effect of the
external magnetic field. The otherwise degenerated fine-structure levels of total
angular momentum J⃗ split into the magnetic quantum number MJ . The energy
shifts were calculated using perturbation theory in M. J. Gutiérrez’s thesis [65]. Up
to the third order in the perturbation series is necessary to determine the energy
shift with uncertainties below the lasers’ linewidth. The second-order perturbation
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866 nm

854 nm

P1/2

S1/2

397 nm

6.9 ns

P3/2
6.6 ns

1.17 s D5/2

1.20 s D3/2

∆ ≈ 130 GHz

∆ ≈ 65 GHz

∆ ≈ 120 GHz

∆ ≈ 200 GHz

∆ ≈ 80 GHz

Figure 2.4. Atomic structure and relevant transitions of calcium even isotopes
in the 7-T magnetic field. ∆ denotes the order of the Zeeman splitting, which
is asymmetric at gigahertz level in most cases [65]. The branching ratios for the
decay of 3p64p 2P1/2 to 3p64s 2S1/2 and 3p63d 2D3/2 are 0.935 65(7) and 0.064 35(7),
respectively [78]. The branching ratio for the decay to 3p63d 2D5/2 at 7 T
is ≈ 1/50 000 [65,79]. The lifetimes are taken from Refs. [80–82].

term predicts the coupling between levels of equal total angular momentum, break-
ing the weak-field approximation. In particular, the so-called J-mixing between
3p63d 2D3/2 and 3p63d 2D5/2 leads to a measurable population transfer between
these states for |MJ | ≤ 3/2 [79].

Table 2.1 provides a summary of the wavelength, linewidth and saturation pa-
rameter for the transitions shown in Fig. 2.4 in the absence of magnetic field. The
frequency shifts due to the Zeeman effect in terms of the magnetic field strength can
be found in Ref. [65]. The dipole transition 3p64s 2S1/2 ⇔ 3p64p 2P1/2 is used for
Doppler cooling and fluorescence detection of 397-nm photons. The non-negligible
probability of decaying into 3p63d 2D3/2 and the long decaying time from this

Table 2.1. Frequency (ωge/2π), linewidth (Γ/2π) and saturation intensity (Isat) of
the transitions involved in Doppler cooling of 40Ca+. The saturation intensity has
been calculated using Eq. (2.25). The 397-nm and 866-nm shifts for the rest of the
stable even isotopes can be found in Ref. [83] and the 854-nm shifts in Ref. [84].
For an extensive review of the isotope shifts in singly-ionized calcium, see Ref. [85].

ωge/2π (THz) Γ/2π (MHz) Isat (µW/mm2)
S1/2 ⇔ P1/2 755.222 765 896(88) [86] 21.57(8) [80] 451
D3/2 ⇔ P1/2 346.000 234 867(96) [83] 1.482(8) [80] 2.99
D5/2 ⇔ P3/2 350.862 882 823(82) [86, 87] 1.350(6) [88] 2.84
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metastable state to the ground state (1.2 s) makes necessary to re-pump the pop-
ulation back to 3p64p 2P1/2 by 866-nm lasers. The J-mixing between the D-states
makes also necessary to re-pump the population trapped in 3p63d 2D5/2 by 854-nm
light. Although not used in this thesis work, the 729-nm quadrupole transition
3p64s 2S1/2 ⇔ 3p63d 2D5/2 is utilized for sideband cooling or to implement a qubit
transition.

2.3 Precision measurement of the cyclotron fre-

quency in a Penning trap: techniques in use

The techniques currently employed to determine the motional frequencies in a
Penning trap can be classified into two groups, depending on whether the detection
involves the loss of the particle or not. Destructive techniques usually detect
the charged particle by impinging it on an electron-multiplying device, such as a
microchannel plate (MCP), while in non-destructive techniques a dedicated circuit
is normally attached to the trap to measure the current induced on an electrode.

Destructive techniques

The two most important destructive techniques in mass spectrometry are time-of-
flight ion-cyclotron-resonance (ToF-ICR) [11,13] and phase-imaging ion-cyclotron-
resonance (PI-ICR) [14]. Figure 2.5 shows the fundamentals of these two meth-
ods. In both of them, the ions’ motional amplitudes are manipulated by external
RF electric fields inside the Penning trap before the ejection through a magnetic-
field gradient in a time-of-flight (ToF) section and detected with an MCP. In
ToF-ICR, only the time between the ejection and the detection is recorded, while
in PI-ICR the phase of the motion is also extracted by using a position-sensitive
MCP with a delay-line anode.

In ToF-ICR, the ion is firstly excited to a particular magnetron amplitude
by an electric dipolar field at ω−. After that, an external electric quadrupolar
field at variable frequency ωquad is applied during a fixed time texc so that the
motion partially becomes modified-cyclotron. At this point, the ion has a magnetic
moment in the axial direction µz (ωquad) which is dominated by the modified-
cyclotron component of the motion, since ω+ ≫ ω−. When it is ejected and goes
through the magnetic-field gradient, it experiences a force along the axial direction
larger for a higher magnetic moment. This force will be maximum when ωquad = ωc,
i.e., for a more resonant quadrupolar field. Figure 2.5 shows a typical ToF-ICR
signal, where the dip is centred around ωc. The ToF can be calculated as

ToF (ωquad) =

∫ √
m

2 (E0 − qV (z)− µz (ωquad)B (z))
dz, (2.31)
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Figure 2.5. Pictorial description of mass-spectrometry techniques based on de-
structive detection.

where E0 is the initial energy and V (z) is the ToF-section electric potentials [13].
In PI-ICR, a radial eigenfrequency ωu can be determined from two measure-

ments of the motional phase [14]. If the ion is driven at a particular amplitude
by an electric dipolar field and ejected straight away, it will originate a reference
spot i at an angle ϕi on the MCP detector (see Fig. 2.5). If another ion is left to
evolve for an accumulation time tacc before it is ejected, the spot on the detector j
will form an angle ϕj. The frequency ωu can be calculated as

ωu/2π =
Nacc +∆ϕu/2π

tacc
, (2.32)

where Nacc is the number of complete turns during tacc and ∆ϕ = ϕf − ϕi. In
this way, two spots are necessary to determine each radial eigenfrequency, and the
cyclotron frequency is calculated using Eq. (2.9).

ToF-ICR routinely achieves a relative uncertainty of 10−8 for the usual single
quadrupolar driving field, improving to the level of 10−9 using a Ramsey excitation
scheme [89]. In the case of PI-ICR, the fact that the uncertainty is not limited by
the properties of the Fourier transform but by the size of the spot makes possible
to attain the 10−10 level [90].

Non-destructive techniques

Figure 2.6 shows a schematic of the bolometric technique [91], which relies on the
detection of the image current induced by an oscillating ion on a pair of electrodes
of the Penning trap,

Iion = αu
qvu
du

, (2.33)

where vu is the ion’s velocity in the direction of detection u. The trap inherently
contributes with a parasitic capacitance Ctrap to the detection circuitry, so that
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Figure 2.6. Pictorial description of mass-spectrometry techniques based on the
detection of induced currents.

a proper value of the inductance L is chosen to build a parallel-LC tank circuit
resonant with the ion’s motional frequency ωu. The inductance is usually provided
by a superconducting coil operating at 4 K [92]. An alternative based on the
use of quartz crystals at room temperature is under development, having already
provided results for ion clouds [47,48]. At the resonance frequency ωLC, this tuned
circuit has an effective parallel resistance

Rp = ωLCLQLC, (2.34)

where QLC is the quality factor, defined as the ratio between the energy stored
in the resonator and the energy lost in one oscillation cycle, accounting for the
parasitic resistances. The voltage drop produced by the induced current Iion,
Vion = RpIion, is usually amplified by low-noise field effect transistors. The resul-
tant signal can be recorded by an oscilloscope or a spectrum analyser.

The effect of the ion in the Lorentzian lineshape of the resonant circuit can
be seen differently depending on its relative temperature compared to the sur-
roundings. If the ion is hotter, it acts as a current source, and its intensity is
superimposed to the thermal component, therefore appearing as a peak at fre-
quency ωu (see Fig. 2.6). If the ion is at thermal equilibrium with the surroundings,
it is excited by the thermal noise and damped by the induced current, following
the dynamics of a driven damped harmonic oscillator. It can be modelled by a
LC-series circuit so that the amplifier input impedance is given by

Z (ω) =

 1

Rp

[
1 + iQLC

(
ω

ωLC

− ωLC

ω

)]
+

1

i
ωCion

(
ω
ωu

− ωu

ω

)


−1

, (2.35)

where Cion = αuq
2/ (mω2

ud
2
u). At the ion’s oscillation frequency ωu, it acts as a

perfect conductor and the impedance vanishes to zero, giving rise to a dip feature
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in the frequency spectrum (see Fig. 2.6) [49]. Another model based on two coupled
oscillators has been recently developed in this group for experiments with quartz
crystals [93].

The measurement of the dip spectrum can typically reach the 10−10 level of
precision. Better values can be reached by phase-sensitive techniques. In pulse-
and-phase (PnP) [16], the ion’s amplitude is increased by a short dipolar excitation
and it is then left to evolve during a certain accumulation time. The phase of the
peak signal for different accumulation times is used to calculate the motional fre-
quency in an equivalent way as in PI-ICR. Pulse-and-amplify (PnA) is a variation
of PnP in which the dipolar field is partially substituted by a quadrupolar one
with the aim of improving the accuracy [94]. The lowest uncertainty reached by
these methods is in the order of 10−11 [5, 20–23,95].

2.4 The optical method

The optical method relies on the use of a suitable ion for laser cooling as a sensor to
determine the cyclotron frequency of the target ion in the Penning trap [35]. In this
work, the optical method has been implemented on single ions and on a two-ion
Coulomb crystal [37]. The photons scattered by an atomic electric dipole transition
of the sensor ion are utilized to extract information about its motional state. For
the two-ion crystal, the cyclotron frequency of the target ion in the bare magnetic
field is calculated by means of the generalized invariance theorem, Eq. (2.20).

The simplest measurement protocol consists of an external dipolar electric ex-
citation around each of the eigenfrequencies and subsequent Doppler cooling of
the system. A photomultiplier tube (PMT) and an electron-multiplying charge-
coupled device (EMCCD) located after a suitable optical system are used to record
the fluorescence signal, as shown in Fig. 2.7. If the PMT is set to read from the
time ti, just after the excitation is switched off and laser cooling is turned on, until
tf , it will register a number of counts NPMT given by

NPMT =

∫ tf

ti

Rsc (r⃗, v⃗) dt, (2.36)

where Rsc is the scattering rate given by Eq. (2.22). The ion’s position r⃗ (t) and
velocity v⃗ (t) can be obtained by solving the corresponding differential equations
for the two-ion crystal, including the damping effect of Doppler cooling and axial-
ization. During the same time interval, the EMCCD provides spatial resolution of
the photon distribution. In particular, the recorded 2D photon array corresponds
to the convolution of the spatial probability density function in the plane rz while
the ion is being cooled, P (r, z), and the point spread function (PSF) of the optical
system,

NEMCCD (r, z) = P (r, z) ∗ PSF (r, z) . (2.37)
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Figure 2.7. Pictorial description of the motional-frequency measurement using the
optical method.

The registered photons NPMT and NEMCCD (r, z) do not present a trivial functional
dependence on the external excitation frequency. In general terms, a resonant ex-
citation will lead to a drop in NPMT due to Doppler broadening, while the corre-
sponding projection (r or z) in NEMCCD (r, z) will become wider due to the increase
of the ion’s amplitude. A more detailed discussion of the particular parameters of
this experiment is given in Sec. 5.1.

Compared with the destructive techniques presented in Sec. 2.3, the optical
method has the advantage of demanding only one ion to measure the mass of the
target specie. Laser cooling also allows the ion to be prepared at a much lower tem-
perature, in contrast to the combination of buffer gas cooling and electric centring
fields used in ToF-ICR and PI-ICR (amplitudes below the micron compared to
about 90 µm in PI-ICR) [96]. This means lower motional amplitudes are required,
which translates into lower systematic shifts for equivalent trapping fields.

The main advantage of the optical method compared with induced-current
techniques comes from its universality. The resonant detection scheme used in the
latter restricts the range of frequencies accessible. This can be partly overcome
by tuning the trap parameters and/or by charge breeding to compensate for the
frequency decrease when addressing heavy masses. Another benefit is laser cooling,
which decreases the cooling time compared to resistive cooling and reduces the
detectable ion’s amplitude due to a lower initial temperature in the order of 1 mK
compared to 4 K.

The main theoretical limitation of the optical method when the two ions are
in the same trap has to do with the amplitude-dependent frequency shifts caused
by the highly non-harmonic Coulomb interaction. If the generalized invariance
theorem is applied to the six frequencies measured at arbitrary amplitudes, sys-
tematic shifts in the order of 10−7 per phonon are predicted [37]. This requires
a full characterization of the amplitude dependence for the determination of the
zero-amplitude eigenfrequencies. The latter is envisaged by implementing the op-
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tical method in the quantum regime [38]. In the ground state of motion, the
amplitude-dependent shifts due to the non-harmonic Coulomb potential will be
highly reduced, and the application of an external field will lead to an increase
in the phonon number that can be read out by means of the electron-shelving
technique [97].



Chapter 3

Experimental setup

This chapter is devoted to the description of the Penning-trap beamline at the Ion
Traps and Lasers Laboratory in Granada. An important part of this was built
during J. M. Cornejo’s thesis [64]. Several modifications and new implementations
have been carried out within the thesis work presented in this manuscript: new
ion sources, the improvement of the vacuum conditions, the laser system and
beam access for Doppler cooling in all directions, and a new optical system for
fluorescence detection. The latter is an important part of this thesis and a key
aspect to detect single ions in the Penning trap. Besides this, the Penning-trap
control system based on ARTIQ (Advanced Real-Time Infrastructure for Quantum
physics), the development of which started during M. J. Gutiérrez’s thesis [65], is
also presented, focusing on the contributions made during this work.

3.1 The Penning-trap beamline

A three-dimensional computer-assisted drawing (CAD) of the Penning-trap beam-
line [98] is shown in Fig. 3.1. The 7-T superconducting magnet accommodates two
Penning traps: the preparation trap (PT) and the measurement trap (MT). On
the left side (upstream), a Paul-trap and a laser-ablation ion sources are located.
The ions are guided from these sources to the traps through a transfer section.
On the right side (downstream), a time-of-flight (ToF) section can be used to de-
tect ions using a movable microchannel plate (MCP). The optical elements used
for laser-beam preparation and the photon detectors are located behind the ToF
section, outside the vacuum system.

The superconducting magnet1 was energized in October 2012 and has been
continuously running since then, being periodically refilled with cryogens (liq-
uid helium and nitrogen). It has two 1-cm3 regions of high homogeneity located
20 cm apart and centred in the bore, where the PT (∆B/B < 10 ppm) and the
MT (∆B/B ≈ 0.1 ppm) are placed. A detailed description of the magnet’s specifi-
cations and its commissioning can be found in Ref. [64]. This magnet was replaced

1AgilentTM 7T/160MM AS
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Figure 3.1. Three-dimensional technical drawing of the Penning-trap beam-
line. MCP: microchannel plate. GT: gate valve. TMP: turbo-molecular pump.
SIP: sputter ion pump. PT: preparation trap. MT: measurement trap.
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by a new cryogen-free superconducting one2 in December 2022. The new magnet
features one region with a field homogeneity of 0.1 ppm in a 15× 15× 15 mm3

cube and 2 ppm in a 15× 15× 60 mm3 parallelepiped, both centred in the mag-
net’s bore. A new support assembly based on two U-shaped customized optical
tables placed at both sides of the magnet has been designed to hold the whole
beamline. Such a system includes a rail configuration that facilitates the mainte-
nance operations in the whole Penning-trap beamline and minimizes the relative
misalignment between the beam-access optics (mounted before in an independent
optical table) and the MT.

DC potentials provided by high voltage (HV) power supplies3 are used to guide
the ions across the transfer section through Einzel lenses, steerers, and benders.
The transmission values are optimized by measuring the counts detected on the
MCP4 located at the end of the beamline. The whole system is operated under
ultra-high vacuum (UHV) conditions. To accomplish that, different types of pumps
are used: turbo-molecular pumps (TMPs) backed by scroll pumps, sputter ion
pumps (SIPs), and a customized cryopump. Further details about the vacuum
system are given in Sec. 3.2.

The PT is a cylindrical Penning trap [64, 99] designed under the guidelines
of the MATS experiment [100] that has been devoted to cool and purify samples
from external ion sources. The MT is separated from the PT by a diaphragm with
2 mm in diameter and 23 mm in length. Further information about the design
and a comparison with other Penning-trap geometries can be found in Ref. [65].

Figure 3.2 shows the MT. All the measurements presented in this manuscript
were performed using this trap, so it is referred to as the Penning trap (or simply
the trap) from Sec. 3.1.1 onwards. It consists of two symmetric sets of four concen-
tric rings, and the electrodes are made of oxygen-free high conductivity (OFHC)
copper and electrically separated by polyether ether ketone (PEEK) insulators. A
new version of the MT made of gold-plated OFHC electrodes and sapphire insu-
lators has been designed during this work. The new prototype, which improves
mechanical stability, is planned to operate at cryogenic temperatures and will be
installed in the Penning-trap beamline in the medium-term future. Further details
can be found in Appendix A.

A two-dimensional cut of MT’s open geometry is shown on the right side of
Fig. 3.2. The harmonic electric field is generated using the electrodes EC, CE,
and RE. It has been found both by simulations [65] and through induced-current
measurements that the ratio (VCE − VRE)/(VEC − VRE) = 0.60 (1) makes the field
quadrupolar. The potential applied to RE is used to adapt the trap voltage to
the energy of the incoming ions. A four-fold segmentation of RE allows for the
application of external RF fields in dipolar or quadrupolar configurations. The DC

2Scientific Magnetics 7T240
3CAEN 1733N & N1470
4TOPAG Lasertechnik MCP-25-10
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potential for the MT electrodes is supplied by a high-precision HV power supply5.
Electrical switches6 are used both to capture externally-produced ions and to eject
unwanted ions.

The open-ring geometry features optical access in the axial and radial direc-
tions. In the case of radial access, two right-angle mirrors are used to allow the
incoming beam to pass through the trap centre. The fluorescence emitted by the
ion(s) is collected radially. The beginning of the optical system, with the first
lens placed 22 mm apart from the trap centre (2.1 % collecting efficiency), is indi-
cated in Fig. 3.2. It magnifies and translates the axial and radial projections from
the trap centre to the detection systems, located outside the vacuum system (see
Fig. 3.1).

The ions can be produced internally or using external sources. The internal
source is shown in Fig. 3.2, and it consists of a calcium metal vapour sample
that delivers calcium atoms by sublimation when heated by Joule effect (inten-
sity within 3 - 5 A typically). The ionization is carried out through a two-step

5Stahl Electronics HV 200-16
6Stahl Electronics HS-200
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resonant process [101]. A tunable 422-nm laser7 is used to excite the transition
3p64s2 1S0 ⇔ 3p64s4p 1P1 and a free-running 375-nm laser8 is used to move the
excited electron to the continuum. Both laser beams are overlapped using a po-
larizing beam splitter (PBS).

The internal source was used for the first laser-cooling experiments since it
provides slow calcium atoms (kinetic energy below 100 meV) that can be cooled
within times well below 1 s. However, its operation at hundreds of degrees Celsius
close to the MT increases the background pressure. Thus external ion sources,
described in the following section, had to be developed.

3.1.1 Ion sources

Two ion sources have been developed and characterized during this thesis work. A
Paul-trap ion source, placed close to the magnet (see Fig. 3.1), is used to provide
calcium ions with high reproducibility in the loading process. A laser-ablation ion
source is placed at the beginning of the beamline and can provide any kind of ion.

Figure 3.3 shows the Paul-trap ion source. It has the same open-ring geome-
try as the Penning trap, which allows for the injection of ions produced upstream
in the beamline, e.g., by the laser-ablation source. This trap was used before
in an independent setup to test the open-ring geometry in laser-cooling experi-

7Toptica DL pro
8Toptica iBeam smart
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ments [66]. The RF field is applied to the inner electrodes. The signal from an
arbitrary waveform generator9 (AWG) feeds a non-resonant amplifier10 to gener-
ate the RF voltage, the amplitude of which is provided by a DC source11. The
typical operating values are νRF = 600 kHz and VRF = 225 Vpp, which correspond
to Mathieu parameters [61,62] of qr = 0.243 and qz = 0.485.

The ions are produced by photoionization. The overlapped laser beams can be
directed axially, using a movable in-vacuum right-angle mirror, or radially. The
first case is simpler and more efficient since there is no Doppler effect, but only the
second configuration allows for the simultaneous operation of the two ion sources.

The RF trap can confine and accumulate calcium ions for several seconds before
it saturates. The extraction takes place when a HV pulse is applied to the middle
electrode on the upstream side of the trap. The HV pulse is provided by a general-
purpose power supply12, and the HV switch13 features rising times below 1 µs. The
TTLs triggering the extraction can be locked to the RF phase by feeding the control
system with the AWG’s synchronization signal. This makes the characteristics of
the extraction similar between different cycles.

Figure 3.4 shows the laser-ablation ion source. It is based on the miniature

9Agilent 33210A
10Stahl Electronics HF-D 200 A
11Agilent N5752
12CAEN N1471
13BEHLKE HTS 151-01



3.2. Vacuum system 29

Table 3.1. Specifications of the vacuum pumps shown in Fig. 3.1. TMP-1 and
TMP-2 are both backed by an Edwards nXDS15i dry scroll pump. TMP-3 and
TMP-4 are backed each by an Edwards XDS35i dry scroll pump. The pumping
speeds are specified for N2.

Pump Manufacturer Model Speed (l/s)
TMP-1 Pfeiffer HiPace 300 260
TMP-2 Edwards STP-451 DN100CF 480
TMP-3/4 Edwards STP 803C DN160CF 800
SIP-1 Gamma Vacuum 300 TV 300
SIP-2 Gamma Vacuum 600 TV 600

radio-frequency quadrupole (mini-RFQ) operating at SHIPTRAP [102]. The ions
are produced directly by irradiating a solid sample with 532-nm pulsed laser light
provided by a frequency-doubled Nd:YAG laser14. The pulse duration is 4 ns and
the energy can be up to 300 mJ, with a repetition rate of 10 Hz. The discharge
lamp’s synchronization signal is used to trigger the control system when this ion
source is used (see Sec. 3.5 for further details).

The targets are placed on a metallic plate biased to a certain voltage. This
plate is attached to a rotary drive so that the target can be exchanged without
breaking the vacuum. The system can be operated as an ion buncher if buffer-gas
cooling is added and an RF field is applied15 to the mini-RFQ so that the ions can
be confined radially. A quadrupole bender is used either for introducing the ions
in the beamline or for detection using an MCP.

3.2 Vacuum system

The specifications of the vacuum pumps shown in Fig. 3.1 are detailed in Tab. 3.1.
Both TMPs and SIPs are used in a complementary way to reach the UHV regime.
The Penning-trap vacuum system can be completely isolated from the outside
and also from the laser-ablation ion source by closing gate valves16. The pres-
sure is measured both using the SIPs themselves and two dedicated active ion
gauges17 (AIGs) located just above TMP-3 and TMP-4. A residual gas anal-
yser18 (RGA) can also be used to monitor the pressure and quantify the gas com-
position. The forepressure between the primary pump and the TMP is measured
using a Pirani gauge19.

14Litron Nano S 150-10
15Stahl Electronics HF-DR
16VAT UHV Gate Valve
17Edwards AIGX-S-DN40CF
18Leybold LEYSPEC view 100S
19Edwards APG100-XLS
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Employing these pumps, pressures in the order of 10−9 mbar at the AIGs
and several parts in 10−10 mbar at the SIPs were reached. However, a still-short
ion’s half-life (in the order of 30 s) motivated the investigation of the vacuum
system performance. Simulations using Molflow+ [103] and the implementation
of a custom cryogenic pump are detailed below.

3.2.1 Principles of vacuum simulation

The dynamics of a vacuum system strongly depends on the type of gas flow. Three
main gas flow regimes can be identified for pressures ranging from atmospheric val-
ues to very low pressure [104]. The Knudsen numberKn, defined as the ratio of the
mean free path lMFP to the characteristic dimension of the vacuum chamber Lpipe,

Kn =
lMFP

Lpipe

, (3.1)

is used to set the boundaries between the different regimes. The Penning-trap
beamline operates in the so-called molecular regime, Kn > 1. The density is so
low that the particles hardly interact with each other, behaving analogously to an
ideal gas. The dynamics of the system is governed by the vessel geometry. The
pumping speed Spump is defined as the volumetric gas flux per unit time. The
quantity of gas (at a fixed temperature) flowing across a specific cross-section per
unit time is denoted by the throughput Qpipe, and it can be related to Spump as

pSpump = Qpipe, (3.2)

where p is the equilibrium pressure. By analogy with an electrical circuit, the gas
flow through a specific part of the vacuum system is controlled by the conduc-
tance Cpipe, a purely geometrical parameter [104]. An equivalent expression to the
Ohm’s law is

Qpipe = Cpipe∆p, (3.3)

where Qpipe and the pressure difference ∆p play the role of intensity and voltage
drop, respectively, in an electrical circuit.

In principle, Eqs. (3.2) and (3.3) can be used to describe a vacuum system as a
network of linearly connected elements, each characterized by a value of Cpipe. The
outgassing sources are quantified by Qpipe, while the vacuum pumps are described
by Spump (see Tab. 3.1). However, calculating the conductance for every geometry
feature can already become a challenging task, and solving the corresponding linear
problem for complex geometries using a standard computer might be unfeasible.
Alternatively, computational tools based on the Monte Carlo method have been
developed to determine pressure profiles and conductances.

Molflow+ is a software package based on the test particle Monte Carlo (TPMC)
method [103]. TPMC independently calculates the trajectory of a large limited
number of virtual test particles to get a picture of the system performance [105].
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The geometry surfaces are represented by a series of polygons with associated
physical parameters. Only one particle is simulated at a time in an event-driven
way: the iteration is not over time, but over collision events, and the trajectory
between wall hits is determined by ray tracing.

For each new virtual particle, the probability of choosing a certain starting
point is proportional to the local particle flux Qpipe/kBT , with kB the Boltzmann’s
constant and T the temperature, according to the ideal gas law. The particle
direction probability is proportional to the cosine of the angle created with the
surface normal, which is known as Knudsen’s cosine law [104] and is also employed
for subsequent rebounds. The determination of the velocity probability is based on
the Maxwell-Boltzmann distribution [106]. All the polygons are assigned a sticking
factor sc, defined as the probability for the particle to be pumped out from the
system. It is related to the pumping speed as

Spump =
1

4
scv̄Apol, (3.4)

where v̄ is the mean speed of the particles and Apol is the polygon’s area [104].
The pressure on a specific surface is given by the orthogonal moment exchange

with the particles [106]. Therefore, each polygon surface has a counter for the
accumulated orthogonal momentum change

∑
I⊥ =

∑
mv⊥, with m the particle’s

mass and v⊥ the velocity component orthogonal to the surface. The pressure is
calculated as the rate of momentum change per unit area,

p =
1

Apol

dI⊥
dt

≈ 1

Apol

KMC

∑
I⊥, (3.5)

where KMC = (dNreal/dt) /Nvirtual is the ratio of the total particle flux rate to the
number of virtual particles employed in the simulation [106].

3.2.2 Simulations at room temperature

Figure 3.5 shows the outcome of the vacuum simulations of the original sys-
tem (without customized cryopump). A simplified version of the CAD drawing
shown in Fig. 3.1 was implemented in Molflow+. The part of the beamline as-
sociated with the laser-ablation ion source (below GT-1 in Fig. 3.1) is not shown
because the simulations were performed before attaching this module to the main
beamline. Nevertheless, this region has a minimal effect on the trap’s pressure since
the CF40 tube placed just behind GT-1 strongly reduces the vacuum conductance
between the two parts.

For the simulation shown in Fig. 3.5, a certain sticking factor is attributed to
the pumps’ inlet surface to reproduce the total pumping speed specified by the
manufacturer according to Eq. (3.4). The surfaces of the vacuum chambers are
simulated considering an outgassing rate per area of 3 · 10−10 mbar·l/(s·cm2) to
reproduce the pressure readout at the different gauges locations. It also agrees
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Figure 3.5. Vacuum simulations before installing the customized cryopump. The
upper part corresponds to a top view of part of the system shown in Fig. 3.1, where
the pump nomenclature was also explained. The electrodes and the contour of the
vacuum chambers are displayed in white colour, indicating that no collisions occur.
The ablation-source setup is not included. The lower part shows the pressure along
the z axis, which is centred on the Penning trap and also serves for the colour map
above.

with the literature values for the outgassing rate of non-baked stainless steel [107].
For the components made of copper and aluminium, the outgassing rate is set
to 3 · 10−12 mbar·l/(s·cm2), according to Ref. [107].

From this simulation, the pressure in the Penning trap (MT in Fig. 3.5) was
above 10−8 mbar, thus too high for the envisaged motional-frequency measure-
ments. Such pressure leads to short coherence times in the ion’s motion and even
to the loss of the calcium ion, which can form an oxide due to the combination
with oxygen background molecules. This vacuum level could not be improved with
the existing TMP and SIP vacuum pumps, as they could not be moved closer to
the trap due to the high-intensity magnetic field. Baking the vacuum chamber
inside the bore was neither possible, so the implementation of a customized pump
close to the Penning trap was found the only solution.

3.2.3 A customized cryogenic pump

Cryopumping is the action of evacuating residual gas by setting surfaces in a vac-
uum system at low temperatures. Two main mechanisms contribute to this [104]:

� Cryocondensation. It is the pumping mechanism due to the phase transition
from gas to liquid or solid. The ultimate pressure achievable at a given
temperature is the vapour pressure, i.e., the pressure exerted by the gas at
equilibrium with the condensed phase.
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� Cryosorption. If the surface is sufficiently cold, the gas particles impinging
on it lose enough energy so that they stay attached to the surface by weak
intermolecular Van der Waals forces. This mechanism can retain particles at
a higher surface temperature than needed for cryocondensation. However,
the sticking coefficient (Eq. (3.4)) is much lower, and only a few monolayers
of particles are created.

� Cryotrapping. It refers to the possibility of employing a condensable gas to
concurrently pump a non-condensable one by entrainment. The molecules
of the non-condensable gas are caught and buried in the cryo-deposit of the
more abundant condensable gas.

The customized cryopump consists in a one-meter long OFHC copper rod con-
nected to the first stage of a cryocooler20 (T ≈ 30 K). The arrangement of the
cryopump within the beamline is shown in Figs. 3.1 and 3.2. The temperature at
the end of the rod, close to the trap, can be determined by assessing the system’s
heat load and the cryocooler’s cooling power. The heat load by radiation is given
by the Stefan-Boltzmann law applied to the rod,

dQr = 4πϵσSBT
4rroddx, (3.6)

where ϵ is the surface’s emissivity, σSB is the Stefan-Boltzmann constant, and
rrod is the rod’s radius. The temperature profile along the rod can be calculated
according to the Fourier’s law,

Qc = kth
dT

dx
, (3.7)

where kth is the rod’s thermal conductivity. Combining Eqs. (3.6) and (3.7), and
taking the average values of conductivity, a temperature of T ≈ 50 K has been esti-
mated at the end of the rod, ensuring the pumping of the residual water molecules
by cryocondensation. Commercial or customized getter pumps were also con-
sidered, but discarded since the high activation temperature (T = 400 - 500 ◦C,
typically) could have melted some of the plastic materials used in the setup or
even caused the gold plating to diffuse into the copper.

Figure 3.6 shows the outcome from the vacuum simulations including the cry-
opump. A sticking factor of sc = 0.1 was assigned to the cryopump. The criteria
followed was again the reproducibility of the pressure measured at the gauge po-
sitions. An improvement in the pressure around the trap (MT in Fig. 3.6) by a
factor of five is predicted. Experimentally, a clear increase in the typical trapping
times was found: the ion always lasted for several minutes up to a few tens. Other
solutions have been also worked out for the medium-term future. Further details
can be found in Appendix A.

20Sumitomo RP-082B2
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Figure 3.6. Vacuum simulations after installing the cryopump. The plot arrange-
ment is identical to Fig. 3.5.

3.3 Laser system

The light fields required to excite the Doppler-cooling transitions are generated by
diode lasers21. Their output power is in the order of tens of milliwatts, being pos-
sible to tune the frequency within a few nanometres with a mode-hop-free range
of up to 20 GHz. As described in Sec. 2.2.2, it is necessary to address ten transi-
tions to efficiently cool the ion to the Doppler limit in the 7-T magnetic field (see
Fig. 2.4). In addition, some transitions must be addressed axially and radially to
cool the three motional modes simultaneously. To meet these requirements, the
laser system shown in Fig. 3.7 has been built. A total of nine tunable diode lasers
are used. B1 and B2 produce the light to address one of the cooling transitions
radially and axially, respectively. B3 generates the other two cooling beams. R1,
R2, R3, and R4 are used to cover the four 866-nm repumping transitions. Finally,
the light produced by R5 and R6 is passed through an electro-optical modula-
tor22 (EOM) to generate sidebands to drive the remaining four 854-nm repumping
transitions [65].

All the lasers are regulated in frequency within 10 MHz absolute accuracy (ac-
cording to 3σ criterion). 10% of the emitted power is fed into a wavelength me-
ter23 (WLM) via an optical switch (OSW) that allows for the sequential mea-
surement of several lasers at the same time. The WLM is calibrated using a
helium-neon (He:Ne) laser24. A proportional-integral-derivative (PID) algorithm
is used to calculate the necessary output voltage delivered by a digital-to-analog
card (DAC) PC board to be applied to the laser’s piezo. Due to its limited reso-

21Toptica DL and DL pro
22EOSPACE PM-AV5-40-PFA-PFA-900
23HighFinesse WSU-10 (WLM-1) & WS8-10 (WLM-2)
24Sios SL 04



3.3. Laser system 35

WLM-2

WLM-1

Mirror AOM
EOM
VCO

Fiber coupler
λ/2 waveplate
PBS Amplifier

Symbols

H
e:
N
e

R1

B1

422 nm
R2

R6

R5

R4

R3

B2
B3

to
experiment

OSW-1

OSW-3

OSW-2

to
e
x
p
e
ri
m
e
n
t

to
e
x
p
e
ri
m
e
n
t

to
e
x
p
e
ri
m
e
n
t

to
experiment

to
experiment

to
e
x
p
e
ri
m
e
n
t

from
URUKUL

Figure 3.7. Optical table dedicated to preparing the Doppler-cooling laser beams.

lution (14 bits), a trade-off between the regulation’s linewidth and range is found
by inserting more or fewer voltage attenuators behind the DAC’s output.

The four 397-nm light beams are transported separately to the Penning-trap
setup using single-mode optical fibres. The four 866-nm beams are combined
into a single fibre using PBSs and the same is done for the 854-nm laser beams.
The combination of R3 and R4 laser beams is passed through an acousto-optic
modulator25 (AOM) mounted in single-pass configuration. This AOM is used to
switch on and off laser cooling within 1 µs.

Figure 3.8 shows the setup devoted to the combination of the different light
beams before they enter the vacuum. There are two optical tables dedicated to
preparing the axial and radial beams. The former comprises all the repumping
laser beams and the two cooling beams delivered by B1 and B3. A dichroic mirror
is used to overlap 397- and 866-nm beams. The radial beam only contains 397-nm
laser light. The beams’ position in both directions can be monitored using a beam

25Crystal Technologies AOMO 3200-125
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Figure 3.8. Entrance of the laser-cooling beams in the Penning-trap setup. Left:
rendered drawing of the optical elements and detectors, placed at the beamline.
Right: scheme showing laser-beam superposition.

profiler26 located at the same distance as the trap centre. This sensor is used for
adjusting the spot diameter and for estimating the beam displacement in the trap
centre. Piezo motor-driven mirror mounts27 are used to move the beams in the
radial direction in 20-µm steps (0.001◦ resolution). It is operated together with
the beam profiler to circumvent the piezo’s hysteresis (0.01◦ repeatability).

3.4 Optical imaging system

A new optical system devoted to detecting individual ions and Coulomb crystals
in the Penning trap has been designed, tested and successfully installed in the
Penning-trap setup during this thesis work. The system magnifies the ion’s pho-
ton distribution and projects it onto the detection devices: an electron-multiplying
charge-coupled device28 (EMCCD) and a photomultiplier tube29 (PMT). These
detectors complement each other in several ways. The EMCCD offers spatial res-
olution (1024× 1024 pixels of 13× 13 µm) but the processing time is in the order
of only milliseconds even for regions tens-of-pixel wide. On the contrary, the PMT
features sub-microsecond timing resolution but there is no position information.
In the following, the necessary concepts of optical-system analysis are introduced
before presenting the design guidelines and the computer simulations, to finally
discuss the out-of- and in-vacuum performance of the system.

26Duma Beam Analyzer BA3-UV-USB
27Newport CONEX-AG-M100D
28Andor iXon Ultra 888
29Hamamatsu H11870-02
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Figure 3.9. Wavefront transmittance of a single lens and the concept of wave
aberration. Left: effect of a converging lens on a normally incident plane wave.
Right: the graphical concept of wave aberration W (x, y).

3.4.1 Principles of analysis

Image formation by an optical system can be studied at different levels of detail
depending on the theory used. A simple picture is given by geometrical optics,
where light propagation is described in terms of rays. However, certain optical
effects such as interference or diffraction are not described in geometrical optics.
The studies carried out in this section are based on the scalar diffraction theory,
which describes the light field by a complex scalar potential U (complex amplitude
of the electromagnetic field) and is valid for dimensions of the optical components
much larger than the wavelength [108]. A brief description of the most important
results of this theory can be found in Appendix B.

In a composite imaging optical system, the limiting aperture that gives rise
to diffraction is called the aperture stop. The effect it has on the image can
be directly analysed by applying diffraction theory to the exit pupil (image of
the aperture stop formed by the part of the system which follows it), which can
be modelled as a finite aperture on an infinite opaque screen [108]. The Huygens-
Fresnel principle (Eq. (B.5)) states that every point on a wavefront can be regarded
as the source of new spherical wavelets, and it might be applied to the exit pupil
to calculate the complex scalar potential U at an observation point behind it. The
Fresnel diffraction simplifies the spherical waves by parabolic ones, giving rise to

U (u, v) =
eikz

iλz0

+∞∫∫
−∞

U (x, y) ei
k
2z [(u−x)2+(v−y)2] dx dy, (3.8)

where {u, v} and {x, y} are the coordinates at the exit pupil and the observation
point, respectively, both separated by a distance z0. k = 2πλ is the wavenumber,
with λ the wavelength. The integral limits are expanded to the whole plane and
U is assumed to be zero outside the exit pupil.

Apart from diffraction due to its finite size, an optical imaging system has a
phase-transformation effect on the wavefront. The left side of Fig. 3.9 illustrates
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Figure 3.10. General model of an optical system as a black box. The transfer
function is given by the transmittance (Eq. (3.9)) and the diffraction due to the
stop aperture (Eq. (3.8)). Adapted from Ref. [109].

this for a single positive lens. The corresponding transmittance function T (x, y)
can be written as

T (x, y) = P (x, y) e
−i k

2f ′ (x
2+y2), (3.9)

where f ′ is the focal distance. P (x, y) is the generalized pupil function,

P (x, y) = P (x, y) eikW (x,y). (3.10)

P (x, y) is the pupil function, equal to one within the exit pupil and zero outside.
W (x, y) is the wave aberration, which quantifies the optical path difference be-
tween the reference sphere (ideal wavefront in the paraxial approximation) and the
actual wavefront. The right side of Fig. 3.9 illustrates this concept graphically.

In general terms, an optical system can be treated as a black-box, as shown
in Fig. 3.10. The evolution from the entrance pupil (image of the aperture stop
formed by part of the system which precedes it [108]) to the exit pupil is given
by a transmittance function (Eq. (3.9)) that captures the impact of all the optical
components. Fresnel diffraction is applied on the exit pupil to account for the
finite aperture stop. Given the linearity of the electromagnetic field, the image
scalar field Ui (u, v) produced by the optical system can be expressed in terms of
the object scalar field Ug (ξ, η) utilizing the superposition integral,

Ui (u, v) =

+∞∫∫
−∞

hPSF (u, v; ξ, η)Ug (ξ, η) dξ dη, (3.11)

where hPSF (u, v; ξ, η) is the so-called point spread function (PSF) [109]. This func-
tion is analogous to the impulse response function in signal processing, describing
the system’s output at a point (u, v) in the image space for a Dirac-delta input at
a point (ξ, η) in the object space. The point-source impulse wavefront UPSF at the
entrance pupil in the paraxial approximation is

UPSF (x, y; ξ, η) =
1

iλzg
e
i k
2zg

[(x−ξ)2+(y−η)2], (3.12)
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where zg is the longitudinal distance between the object and the entrance pupil. If
observation takes place on the paraxial image plane, i.e., the lens law is satisfied,
the PSF can be expressed in terms of the optical-system pupil function as

hPSF

(
u, v; ξ̃, η̃

)
=

1

λ2zgzi

+∞∫∫
−∞

P (x, y) e
−i 2π

λzi
[(u−ξ̃)x+(v−η̃)y] dx dy, (3.13)

where ξ̃ = Mξ, η̃ = Mη being M the magnification, and zi is the distance between
the exit pupil and the image plane [109]. Therefore, the PSF is precisely the Fraun-
hofer diffraction of the generalized pupil function [109]. Equation (3.13) also im-

plies the space invariance of the PSF, since hPSF

(
u, v; ξ̃, η̃

)
≡ hPSF

(
u− ξ̃, v − η̃

)
.

The space-invariant PSF, hPSF (u, v), is the Fourier Transform of the generalized
pupil function from the pupil coordinates (x, y) (at the exit pupil) to the spatial

frequency coordinates
(

u
λzi

, v
λzi

)
(at the image plane).

In the ideal case of a non-aberrated circularly-symmetric optical system, the
wave aberration W is zero, P (x, y) is constant over the exit pupil, and the PSF is
the Airy disc [108]. In general, W can be expanded into the Zernike polynomials
Zm

n as

W (r, ϕ) =
∑
n

n∑
m=−n

cnmZ
m
n (r, ϕ) , (3.14)

where r and ϕ are the radial distance and polar angle in spherical coordinates. The
Zernike polynomials constitute a system of orthogonal polynomials in the unit cir-
cle that, for low orders, have a direct relation to the primary aberrations: defocus,
astigmatism, comma, spherical, etc. They are defined as [108]

Zm
n (r, ϕ) = Rm

n (r) cos(mϕ) for m < 0,

Zm
n (r, ϕ) = Rm

n (r) sin(mϕ) for m > 0,
(3.15)

where

Rm
n (r) =

n−m
2∑

s=0

(−1)s
(n− s)!

s!
(
n+m
2

− s
)
!
(
n−m
2

− s
)
!
rn−2s. (3.16)

Coming back to Eq. (3.11), the image formation of an extended object will
greatly depend on whether the source is coherent or incoherent. If a coherent light
source is used, the system is linear in the electromagnetic field’s amplitude. If the
light source is incoherent, the system is linear in intensity [109]. The intensity in
the image plane for the latter can be computed as

Ii (u, v) =

+∞∫∫
−∞

∣∣∣hPSF

(
u− ξ̃, v − η̃

)∣∣∣2 Ig (ξ̃, η̃) dξ̃ dη̃. (3.17)
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Figure 3.11. Relevant measures in Fourier optics. Note that an incoherent measure
can be deduced from its coherent counterpart, but not vice versa.

Fluorescence emission by an ion Coulomb crystal is a clear example of incoherent
illumination since there is no correlation between the different emission points.

The level of detail that the optical system can reproduce from an object can
be quantified by studying the transmission of the spatial frequency f . The am-
plitude transfer function (ATF) is defined as the PSF’s Fourier Transform, and
it quantifies how well the system transfers spatially sinusoidal inputs at different
frequencies when a coherent-light source is used. Taking into account that the PSF
is a Fraunhofer diffraction pattern, it is possible to demonstrate that the ATF is
proportional to the pupil function scaled with units of λzif [109]. The equivalent
function for incoherent illumination is called optical transfer function (OTF),

HOTF (fu, fv) =

+∞∫∫
−∞

|hPSF (u, v)|2 e−i2π(fuu+fvv) du dv

+∞∫∫
−∞

|hPSF (u, v)|2 du dv

. (3.18)

Similarly to the ATF, the OTF also has a direct relation with the pupil function
and can be computed as the normalized autocorrelation function of the latter. The
module of the OTF is called modulation transfer function (MTF), and it provides
the relative modulation of the image as a function of the input frequency. It can
be demonstrated that aberrations always contribute to decreasing the MTF [109].
Figure 3.11 illustrates the connection among these optical measures. Assuming
the Rayleigh criterion, an optical system can resolve the position of two points if
the value of the MTF is higher than 0.2 for the corresponding spatial frequency.
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3.4.2 Design and simulations

The new optical imaging system was designed with the assistance of Zemax30.
This optical design software takes the geometrical specifications of the optical
system as input and delivers multiple optical measures, such as the wave aberra-
tion (Eq. (3.10)), the PSF (Eq. (3.13)), or the OTF (Eq. (3.18)), which were used
to assess whether the system’s performance met the requirements imposed by the
experiment.

Regarding the detection of fluorescence, the optical system had to spatially
resolve the position of two laser-cooled trapped ions, which in the case of 40Ca+ are
separated 10 - 20 µm for typical axial frequencies in the range of 100 - 500 kHz.
In addition, it had to provide enough magnification so that the two spots are
a few pixels apart when projected into the EMCCD sensor (13× 13 µm). The
fluorescence collection efficiency had to be maximized. This is accomplished with
a high numerical aperture, defined as NA = D/2f ′ with D the pupil diameter, and
maximizing the transmission through the optical components for the operating
wavelength, λ = 397 nm.

Regarding the Penning-trap setup, the optical system had to physically fit into
the free space available inside the magnet bore. It had to magnify the axial and
radial projections (optical axis perpendicular to B⃗) and collimate the image of the
ion(s) downstream along the axial direction to the place where the detectors are
located (see Fig. 3.1). It also had to operate under UHV conditions throughout
1.2 m, being rigidly anchored to the Penning-trap tower.

The maximum numerical aperture, limited by the ring Penning-trap geometry,
is NAmax ≈ 0.29. The use of a single spherical lens for such a value of the NA would
have implied aberrations that prevent from achieving the resolution envisaged. One
way to overcome this problem could have been using (spherical) lenses of different
shapes and focal distances. Diffraction-limited objectives made of four lenses have
been widely used for ion and optical traps. The first proposals were made in the
early 2000s [110], and a comprehensive review for optical traps can be found in
Ref. [111]. This type of system has also been used in Penning traps [112]. Another
option was the use of a non-spherical or aspheric lens [113]. This kind of lens is
flatter at its edge compared to spherical lenses, which reduces the refracting ray
angle so that all the rays are brought to a common focus position [114].

For the Penning-trap optical system, commercial parts were preferred due to
the high costs of custom components. The little space left inside vacuum made the
use of standard 1” optics impossible, so 1/2”-diameter components were chosen
for the parts inside the magnet bore. The new optical system is based on a first
objective and then a series of relays. Using a single objective would have led to an
intensity per pixel too low, and the system would have also been highly sensitive
to misalignments since it is under vacuum and cannot be moved. The idea of
reducing aberrations using an objective made of several lenses was also explored.

30Zemax OpticStudio® 2020
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Figure 3.12. Cross-section sketch of the optical system (not-to-scale). O: objective;
M: mirror; FL: field lens; R: relay; VP: viewport.

In the case of three lenses, it was possible to achieve an optimal configuration
with commercial parts that fitted into the vacuum chamber, but the performance
was not diffraction-limited. In the case of four lenses, the available space was not
enough.

Figure 3.12 shows the final design. It consists of one objective that provides
5× and a series of relays that transport the image without magnification. The
final factor 15× is achieved by adding a last single lens outside vacuum. The
relays are doublets of plano-concave and bi-convex commercial lenses in which the
relative distance was optimized to achieve diffraction-limited performance. The
field lenses are pairs of plano-convex lenses centred on the image plane to avoid
vignetting. Using a single bi-convex lens instead would perform the same but
imaging imperfections might exist [115].

The objective’s lenses specifications, including one of the field lenses of FL1 (see
Fig. 3.12), are detailed in Tab. 3.2. The relative distances were optimized using
Zemax, for which the wave aberration (see Eq. (3.10)) was used as the figure of
merit to minimize. First, the asphere’s focal point for λ = 397 nm was determined,
giving rise to a working distance of 21.963 µm. Then, the relative distance in the
doublet consisting of the bi-convex and the plano-concave lenses was optimized.
The gap between the asphere and the doublet was chosen arbitrarily (5 mm in
this case), and the field lens was likewise placed at a certain distance from the
image plane. The effect the latter has on the image formation is minimal, and
it only affects as a defocus. Finally, the optimization routine was run again for
the two distances previously varied. Near on-axis diffraction-limited performance
was achieved in all the cases, which was observed in the MTF (see Eq. (3.18)) or
wave-aberration plots.

The specifications of the optical elements used for the relays are listed in
Tab. 3.3. These parts are symmetric, so only half of the lenses are detailed. As in
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Table 3.2. Objective’s components and relative separation. The distance is de-
fined between adjacent surfaces. All the lenses are commercial models from Thor-
labs, Inc..

Type Model Separation (mm)
Object - 21.963
Asphere AL1225G-A 5
Bi-convex LB1844-A 6.897
Plano-concave LC4413-UV 84.723
Plano-convex LA1207-A 2.5
Image - -

the case of the objective, one of the field lenses is included. A sequential proce-
dure similar to the one explained for the objective’s simulations was followed here.
The last part of the optical system, called R4 in Fig. 3.12, consists of half of a
one-inch relay plus a single lens with focal length f ′ ≈ 750 mm (model LA1978-A
of Thorlabs, Inc.). Although it is a simple plano-convex lens, it does not introduce
further significant aberrations due to its small NA. All the lenses are made from
N-BK7 or Fused Silica and have anti-reflective coating for λ = 397 nm.

Figure 3.13 shows a rendered image of the full optical system installed in the
Penning-trap setup. The optical mounts are custom-designed and were machined
by a local company. In general, the outer diameter is 17 mm for the half-inch
components and 32 mm for the rest (the exceptions are the objective and the
mounts at the magnet bore). The distance between these pieces is maintained
using hollow tubes, with M14× 0.5 mm and M27× 0.75 mm very-fine threads to
assure a good alignment. The material used is aluminium 6061-T6, employed in
commercial lens tubes due to its good machining properties when it is threaded.
All the pieces are perforated to pump the inner volume of the tubes. The optimal
distances between lenses found in the simulations are physically defined by the

Table 3.3. Half- and one-inch relay’s components and relative separation. The
distance definition between elements is defined in Tab. 3.2. The lenses are com-
mercial models from Thorlabs, Inc. (T) and Newport Corporation (N).

Model Separation (mm)

Type 1” 1/2” 1” 1/2”
Object - - 2.5 3.75
Plano-convex LA1207-A (T) LA1461-A (T) 83.496 172.666
Plano-concave LC4413-UV (T) SPC025 (N) 7.227 14.814
Bi-convex LB1844-A (T) LB1676-A (T) 2.5 5
Image - - - -
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Objective

Field lens 3

Relay 1
30 cm

Field lens 4

Figure 3.13. Rendered three-dimensional drawing of the optical system installed
in the beamline. Several distinctive parts are zoomed in.

lens separators. These are rings with a thickness of 0.5 mm and 0.75 mm, having
the shape of the corresponding spherical lens so that the contact is made on the
full contour of the surface for better alignment. The optical system is attached to
the Penning-trap tower at several positions inside the magnet bore (see Fig. 3.13).

Figure 3.14 shows some of the simulation results for the whole optical system.
Zemax computes the optical system performance starting from the wave aber-
ration (right side of Fig. 3.14). This function can be analytically calculated by
simply knowing the shape of the lenses, listed in Tabs. 3.2 and 3.3. Then, the
MTF, shown in the left part of Fig. 3.14, is calculated as the normalized autocor-
relation of the pupil function (see Eqs. (3.10) and (3.18)). Although the system
is diffraction-limited for on-axis performance, it cannot be moved once installed
and under UHV, and thus it is important to know its off-axis performance. For
that purpose, the impulse was placed at different field distances from the optical
axis on the object plane. The particular line containing the object’s position and
the optical axis is called the tangential direction, while the perpendicular is the
sagittal direction. The MTF and the root mean square (RMS) spot radius (in-
set) show that a position deviation of 200 µm, equivalent to a wave aberration of
1.5 λ, is the maximum affordable deviation to resolve 10 - 20 µm. In the case of
the modulation, a value of 0.2 is equivalent to the Rayleigh criterion for two-point
resolution.

3.4.3 Out-of-vacuum performance analysis

The optical system was experimentally tested before its installation in the Penning-
trap setup. The response of the system to quadratic impulses using a 1951 USAF
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units. Bottom right: tangential (left) and sagittal (right) cross sections of the
wave aberration for an object placed at different field positions.

test target31 was studied. As described on the right side of Fig. 3.15, the object,
placed in the objective’s focal plane, consisted of sets of two groups of three parallel
bars, oriented in two perpendicular directions and separated by different distances.
Measuring the maximum and minimum intensities, Imax and Imin, it was possible
to determine the contrast Copt, defined as

Copt =
Imax − Imin

Imax + Imin

. (3.19)

The contrast can be considered analogous to the modulation (module of the OTF,
Eq. (3.18)) for square impulses. The contrast transfer function (CTF) describes
how well the system transfers square impulses of different spatial frequencies and
is analogous to the MTF.

The system’s performance was evaluated in two other ways based on its linear
properties. If the set of square impulses is chosen as a complete and orthogonal
basis, the contrast can be simply calculated as the inner product of the object and
the image, both normalized to the total intensity. Another option is to work on
the Fourier basis so that the convolution theorem can be applied,

|F{Ii}| = |HOTF| · |F{Ig}| , (3.20)

31Thorlabs Inc. R1DS1P
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Figure 3.15. Investigation of the resolution using a square-impulse target. Left: pic-
torial description of the measurement of contrast of a square-impulse target.
Right: 1951 USAF resolution test chart used in the experiment. Groups −2 to
−1 are represented, comprising 6 elements each. The spatial frequency, in line
pairs per millimetre, is calculated as 2group+(element−1)/6.

where Ig and Ii are the intensities in the object and image planes, respectively,
and |HOTF| is the MTF. In principle, it should have been possible to fully recover
the system’s MTF using deconvolution techniques. However, the associated uncer-
tainties became large for frequencies at which the object has a small component.
In the case of square impulses, the frequency component is almost zero for even
multiples of the fundamental frequency and maximum for odd multiples.

Figure 3.16 shows the characterization measurements for the whole optical
system. For these tests, the optical system was fixed to an optical table, and the
resolution target was mounted on a three-axis stage so that the region of interest
could be placed at the focal point. The camera used was a scientific complementary
metal–oxide–semiconductor (sCMOS) image sensor32. The target was illuminated
with 397-nm light, and measurements were performed on groups 5, 6, and 7 of
the USAF 1951 resolution target (see Fig. 3.15). The magnification obtained is
16.8(4)×. The square impulse analysis is shown on the left side of Fig. 3.16. The
two types of analysis mentioned before were used and both yield similar results.
The performance is close to the diffraction limit down to at least 5 µm of line sepa-
ration. It was only possible to study frequencies as high as 228.1 mm−1 (7th group,
6th element) due to the features of the resolution target itself.

A deeper insight into higher frequencies was reached by employing the method
using the deconvolution theorem to measure the system’s MTF. In the analysis
shown on the right side of Fig. 3.16, the fundamental frequency and the third
harmonic were used, obtaining reliable results. From the relationship between the
modulation and the Rayleigh criterion, the optical system is capable of resolving

32Andor Zyla 4.2 sCMOS
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Figure 3.16. Frequency analysis of the measurements based on the 1951 USAF
resolution target. Left: CTF measured directly and from the image-object product.
Right: MTF calculated using the convolution theorem. The lower grey line includes
the sensor (6.5 µm × 6.5 µm) frequency transmission [116]. In all the cases, the
displayed data are the average of the performance for each two perpendicular bar
sets of the test target (right part of Fig. 3.15).

two points separated by only 1.5 µm. Employing Eq. (3.20) for higher harmonics
led to large uncertainties.

3.4.4 In-vacuum performance analysis

The final system’s characterization was done using a trapped ion itself. A single
trapped ion cooled to the Doppler limit is a perfect target to test the optical sys-
tem’s PSF. In the case of the Penning trap, the axial frequency was νz = 333 kHz,
which means a motional amplitude zmax ≈ 300 nm for 40Ca+ at 1 mK (Doppler
limit). This implies zmax < λ, and the ion can be thus considered as a good ap-
proximation to a point-like source. In case the ion’s temperature was higher, these
results would be the worst-case scenario for the optical system performance.

The measured intensity PSF, IPSF ≡ |hPSF|2, can be directly related with the
Zernike polynomials through Eq. (3.13). Taking into account that Fraunhofer
diffraction is a Fourier Transform,

IPSF =
∣∣F{e−ik

∑
m,n cnmZm

n }
∣∣2 . (3.21)

Since the modulus is not a bijective function, a direct decomposition of IPSF into
the Zernike polynomials basis is not possible. In this sense, fitting algorithms have
been developed to find the best approach [117,118]. This method has already been
employed before in a Paul trap [119].

The outcome from the analysis of the ion image is shown in Fig. 3.17. The image
has been rotated 131.7◦ here so that the trap’s axial and radial axes match the
page’s horizontal and vertical axes, respectively. The magnification was calculated
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Figure 3.17. Wave aberration without external correction. Top: comparison be-
tween the measured image and the best fit, including a 100-factor increased res-
olution plot of the latter. The accumulation time for the measured image is 1 s.
Bottom: weight of the first 21 (piston, X-, and Y-tilt are omitted) Zernike poly-
nomials used in the best fit. The different colours stand for the five orders in the
radial coordinate (see Eq. (3.16)).

from the ion-ion distance dion-ion in a two-ion Coulomb crystal (Eq. (2.16)). The
value obtained is 15.4(1)×, compatible with the design specifications. Compared
to the diffraction-limited case, for which FWHM ≈ 0.8 µm, the measured image
was much broader and strongly asymmetric. A total of 21 Zernike polynomials,
up to fifth order in the radial coordinate, were used in the fitting procedure, for
which a reduced chi-square of χν = 3.45 was obtained. Introducing sixth-order
Zernike polynomials did not improve the results significantly. A plot of the fitting
results having a factor of 100 better spatial resolution is also shown to observe the
interference patterns averaged by the sensor pixel size.

The Zernike polynomials decomposition revealed a strong astigmatism, notice-
able even in its second-order component. The defocus can be used to find the
least-confusion point, and should not be considered as an aberration. The second
most prominent component was comma. Both types of aberration appear when
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Figure 3.18. Study of the optical system’s astigmatism. Top left: ray tracing
showing the appearance of astigmatism in a spherical lens when the object is placed
out of the optical axis. PT : tangential focus. PL: least confusion. PS: sagittal focus.
RT : tangential radius. RS: sagittal radius. Top right: variation of the ion image
width in axial and radial directions when the EMCCD is scanned along the optical
axis. Bottom: ion image recorded for the points analysed in the graph.

the object is not placed on the optical axis. This is consistent with a misalign-
ment of the optical system with the trap due to machining tolerances in different
anchoring points along the Penning-trap tower. The working distance was right
since the magnification agrees with the design value.

Astigmatism can be easily identified by the appearance of two different focal
positions for two perpendicular directions. Figure 3.18 illustrates the occurrence
of this effect and the measurements carried out with a single ion. Due to the dif-
ferent radius of curvature seen by the off-axis object for the tangential and sagittal
components of the light cone, two focal points appear where the image becomes
sharp in either of these directions. Following the results shown in Fig. 3.17, a fo-
cus scan was performed around the least-confusion point. The analysed images in
Fig. 3.18 confirmed that there was astigmatism in the optical system. A difference
of 25 mm was observed between the tangential and sagittal focus. The tangential
and sagittal directions nearly coincide with the trap’s axial and radial directions,
respectively, and a sharper focusing was obtained for the former (z ≈ 90 mm) com-
pared to the latter (z ≈ 65 mm). These two observations indicate a lateral shift
in the position of the optical system from the trap centre.

Astigmatism can be corrected using a cylindrical lens, which provides focusing
only in one direction. A negative lens with f ′ = −400 mm was chosen, so that the
first (tangential) focus point is forced to coincide with the second (sagittal). It
was placed 110 mm before the image plane and the final configuration was found
experimentally by minimizing the ion’s spot radius.



50 Chapter 3. Experimental setup

A
st
ig
m
at
ism

45
◦

D
ef
oc
us

A
st
ig
m
at
ism

90
◦

Tr
ef
oi
l 4
5
◦

Co
m
m
a
Y

Co
m
m
a
X

Tr
ef
oi
l 9
0
◦

Q
ua
dr
af
oi
l 4
5
◦

A
st
ig
m
at
ism

2
nd

45
◦

Sp
he
ric
al

A
st
ig
m
at
ism

2
nd

90
◦

Q
ua
dr
af
oi
l 9
0
◦

Z(
5,
-5
)

Pe
nt
af
oi
l 2
2.
5
◦

Co
m
m
a
2
nd

Y

Co
m
m
a
2
nd

X

Pe
nt
af
oi
l 4
5
◦

Z(
5,
5)

Z
m n
(n
m
)

200

0

−200

Better resolutionResidualsBest fit

B⃗

Measured

10 µm

Figure 3.19. Wave aberration after implementing the cylindrical lens. The figure’s
layout is identical to Fig. 3.17.

The intensity PSF analysis of the optical system after inserting the cylindri-
cal lens is shown in Fig. 3.19. The first 21 Zernike polynomials were used as in
the previous analysis, just to allow a direct comparison. A reduced chi-square
of χν = 13.1 is obtained, although for the fitting using the first 15 polynomials,
this value decreases to χν = 11.5. The astigmatism is well attenuated compared
to Fig. 3.17, and only some components of comma and trefoil remain. The magni-
fication now becomes 17.9(1)×, larger than before, justified by the translation of
the tangential focus point to the sagittal focus point utilizing the cylindrical lens.

Figure 3.20 shows the final performance in terms of the MTF and PSF. Both
the images before and after the cylindrical lens inclusion are analysed. The MTF
is calculated directly from the single-ion PSF using FFT (see Eq. (3.18)). The
maximum spatial frequencies computed, 580 mm−1 (before the cylindrical lens
correction) and 670 mm−1 (after), are limited by the pixel size of 13 µm. As was
mentioned in Fig. 3.16, the effect of the detector pixel size is taken into account
to establish the real diffraction limit performance (lower dashed line in Fig. 3.20).
The resolution is detailed in Tab. 3.4. It must be mentioned that the intensities
are normalized to the maximum value in the PSF comparison. Finally, a seven-ion
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Figure 3.20. Final performance of the optical system. Top left: MTF before and
after inserting the cylindrical lens compared to the ideal diffraction-limited case.
Top right: axial and radial intensity PSF. Bottom: image of a seven-ion linear
chain and profile along the axial axis.

linear chain is shown in the lower part of Fig. 3.20. In this particular case, the ions
were oscillating at νcom

z = 333 (1) kHz, resulting in a ion-ion distance in the range
dion-ion = 8.01 (16) - 6.77 (17) µm. An equivalent expression to Eq. (2.16) for the
ion-ion distance in a chain can be found in Ref. [120].

Table 3.4. Resolution of the optical system before and after inserting the cylindrical
lens. These values are calculated from Fig. 3.20 using the Rayleigh criterion (mod-
ulation equal to 0.2).

Resolution (µm)

Situation Axial Radial
Before 6.96(5) 7.89(9)
After 3.69(3) 2.75(3)
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3.5 Control and acquisition system

The control system of the Penning-trap setup is based on ARTIQ [121]. This open-
source system provides both software (called ARTIQ as well) and hardware (Sinara
boards) support to perform ion-trap experiments, and its use in the community
is spreading rapidly. Python is used as a high-level programming language that
facilitates the writing of experimental sequences. The associated hardware pro-
vides nanosecond timing resolution and sub-microsecond latency due to the use of
a field-programmable gate array (FPGA) card where the code is compiled and run.
External devices can be also integrated within ARTIQ’s ecosystem by building a
so-called network device support package (NDSP). This piece of software commu-
nicates with the specific device using the application programming interface (API)
functions contained in the associated driver. Remote procedure calls (RPCs) us-
ing simple Python communications (SyPiCo) are employed for communications
through the network.

Figure 3.21 shows a schematic of the Penning-trap control system and the
interconnection among its different parts. ARTIQ’s modular rack and other needed
devices to perform motional-frequency measurements are shown. The experiments
are scheduled and executed by the Master PC. The Client PC is usually used to
develop the Python code. The graphical user interface (GUI) can be run on both
PCs.

TTL, RF, and DC signals can be produced by ARTIQ with a precise tim-
ing (1 ns) by the FPGA33. TTLs are generated by three modules of eight digital
input/output34 (DIO) channels each. Four of these channels are configured as
TTL-IN and can be used to determine the arrival time of an external TTL signal.
The rest of the channels are configured in output mode and are used to trigger
different devices across the experiment. Four direct digital synthesizers35 (DDSs)
produce RF signals from 1 MHz to 400 MHz with 0.25 Hz frequency resolution.
The DC board36 can provide ±10 V with 4 ppm stability.

Both ARTIQ’s RF and DC boards need to be complemented with other devices
to meet all the experiment’s requirements. AWGs37 are used to excite the ion’s
motional modes, since νz, ν− < 1 MHz. Urukul is used to apply the quadrupolar
excitation at νc and also to drive the AOM utilized to switch on and off laser
cooling. As discussed in Sec. 3.1, all the voltages along the beamline are provided
for dedicated general-purpose and high-precision DC sources.

The NDSPs for the EMCCD, the AWGs, and one of the HV DC sources were
developed in a previous thesis work [65]. During this work, drivers for the PMT’s
counting unit38, the Penning trap’s DC power supplies, and the other HV DC

33Kasli v1.0
34DIO BNC
35Urukul AD9910
36Zotino v1.0
37Agilent 33210A
38Hamamatsu C8855-01
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Figure 3.21. ARTIQ control system and peripheral devices. LAN connection is
used where possible due to the higher speed and lower latency compared to USB.

source have been developed. A similar procedure as used before for the EMCCD’s
driver based on Python’s module ctypes and the dynamic-link library (DLL) pro-
vided by the manufacturer was employed here. Although theWLM is not fully inte-
grated within ARTIQ’s environment, a communication protocol based on Python’s
socket module has also been developed. This protocol is used to vary the lasers’ fre-
quency through the PID regulation protocol during some experimental sequences.
A server is continuously running in the WLM PC that receives commands from
the ARTIQ program that runs in the Master PC. It communicates with the WLM
employing the DLL the manufacturer provides and returns the status afterwards.

The necessary scripts to perform motional-frequency measurements developed
during this thesis work use TTL-OUT channels and DC sources to transport and
adapt the trap to the ions’ energy, RF modules and the AWGs to apply the
motional excitations, and the EMCCD and PMT to measure the ion’s motional
amplitude. Of particular importance has been the development of code to use
TTL-IN channels in the experiment. Temporal synchronization in the two ion
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Listing 3.1. Python readout method used to register the PMT and MCP output
TTLs.

1 def readout(self):

2

3 ref = now_mu ()

4 cursor = self.ttl0.gate_rising(self.extraction_time)

5

6 for i in range(self.nmax): self.tof_register[i] = -1

7 i = 0

8 while True:

9 tof = self.ttl0.timestamp_mu(cursor)

10 if tof == -1: break

11 self.tof_register[i] = self.core.mu_to_seconds(tof -ref)

12 i += 1

sources is achieved using this hardware. In the Paul-trap ion source, the extraction
pulse can be locked to a specific phase of the RF trapping field. In the laser-ablation
ion source, the Nd:YAG laser is running continuously, and any script involving the
use of this source is paused until a pulse from the laser lamp is detected. TTL-IN
channels are also used to read the output signals from the PMT and the MCP.
Both systems can be operated by dedicated hardware (PMT’s control unit and
MM6 control system [122]), but the integration in ARTIQ’s environment is much
easier using TTL-IN channels. Listing 3.1 shows the excerpt of code used to read
and save in self.tof register the arrival times of TTL signals produced by
the PMT or the MCP. Here, the channel ttl0 is set to register rising edge events
during a time interval between now mu() and now mu()+self.extraction time in
the future. The arrival times are determined with nanosecond resolution, retrieved
sequentially by timestamp mu() and stored in tof register.

Although TTL-IN methods are very useful and flexible to precisely quantify
TTL arrival times, limitations appear when detecting high count rates or locking
quickly to an external trigger. The system needs ≈ 2 µs to process one event
and its memory is only able to allocate 64 events. If the readout (while loop) is
not fast enough to remove one event before the 65th arrives, a so-called overflow
exception is raised and the experiment stops. The aforementioned processing time
also imposes a minimum delay of a few microseconds between an incoming trigger
and the system’s response. For lower delays, an underflow exception appears.



Chapter 4

Preparation and characterization
of a single ion in the Doppler
limit

The implementation of two major technical improvements, namely the new optical
system (see Sec. 3.4) and the customized cryopump (see Sec. 3.2), has been key
to the successful operation of the Penning-trap experiment. The optical system
has enabled the detection of single ions, while the cryopump and the external ion
production have contributed to reducing the background pressure so that lifetimes
in the order of several minutes made possible to perform precision measurements.

In this chapter, the ion production and its cooling to the Doppler limit are
characterized. The performance of two ion sources developed during this thesis
work is also studied. This is followed by the characterization of the crystallization
process, starting from large ion clouds to reach the single-ion case. Finally, a
detailed study of axialization, used to efficiently cool the radial eigenmotions,
is presented, together with spectroscopy measurements to accurately define the
frequencies of the repumping transitions from the observation of dark resonances.
Most of the results presented in this chapter have been published in Ref. [77].

4.1 Ion injection in the magnetic field

4.1.1 Paul-trap ion source

The geometry and operational parameters of the Paul-trap ion source can be found
in Sec. 3.1.1. The ions were produced by two-step resonant photoionization [123,
124] of atoms evaporated from a metal vapour source that is heated by the Joule
effect. Typical currents of 5 - 6 A were used in this setup, which correspond to
temperatures of 850 - 900 K [125] and ion kinetic energies around 110-120 meV for
the calcium isotopes. The transition 4s2 1S0 ⇔ 4s4p 1P1 is resonantly addressed by
422-nm laser light, with a typical power of 12 mW is delivered over 500 µm at the

55
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trap centre, which implies a saturation parameter s ≈ 15 (see Eq. (2.25)). A
375-nm laser with a similar beam waist and delivering around 10 mW provides
the remaining energy to remove one electron. The ionization process has a cross-
section of 60 - 280 Mb [126], leading to an overall efficiency of ∼ 10−3.

The photoionization laser beams can be directed along the axial or radial direc-
tions of the Paul trap, as shown in Fig. 3.3. Photoionization in the axial direction
is approximately five times more efficient, but only the radial configuration allows
for the injection of ions produced by the ablation source (see Fig. 3.3). In the lat-
ter, the 422-nm laser frequency has to be detuned from resonance since the laser
beams propagate in opposite direction to the ions, shifting the resonant frequency
in the ion’s reference frame due to the Doppler effect [101]. A shift of 0.75 pm/A
was measured in the interval 5 - 6 A applied to the atom oven.

The trap saturates after ≈ 3 s of continuous ion production. Assuming a spher-
ical potential shape, the maximum number of ions contained in a Paul trap can
be estimated as

Nmax =
4πε0r0
qD̄

, (4.1)

where ε0 is the vacuum permittivity, r0 is the trap’s characteristic dimension (see
Fig. 2.1), q is the ion’s charge, and D̄ = (qV 2

0 ) / (4mr20ω
2
RF) is the average potential

depth, with m the ions’ mass, and V0 and ωRF the voltage and frequency of the os-
cillating field, respectively [62]. Considering the trapping parameters V0 = 112.5 V
and ωRF = 2π × 600 kHz, and the trap dimension r0 = 12.5 mm (see Sec. 3.1.1),
Nmax ≈ 2.5 · 106.

The electrostatic voltages applied along the transfer section to guide and inject
the ions in the magnetic field are shown on the left side of Fig. 4.1. Ions were
typically created in the Paul-trap source during 1 s. Afterwards, a 575-V pulse
was applied to the middle electrode on the upstream side of the trap (for the
trap’s geometry, see Fig. 3.3). The extraction-pulse potential was chosen so that
the ions’ energy matches the voltages applied to the Penning-trap electrodes to be
in-flight captured. The voltages applied to the Einzel lenses in the transfer section
are detailed in Tab. 4.1. These values have been found experimentally. The time
sequence is shown on the right side of Fig. 4.1. The trapping voltage produced
by a non-resonant amplifier decays within one period of the signal; specifically, it
drops exponentially to half its maximum value within 735 ns. The details about
the phase locking of the trapping field during extraction are given in Sec. 3.5.

One of the most important features of an ion source is its energy spread. Sharp
energy distributions are beneficial to maximize the trapping efficiency and to have
well-defined initial conditions before any cooling method is applied. In the Paul-
trap ion source, the energy spread was strongly affected by the delay time tdelay
between the oscillating trapping potential being switched off and the extraction
pulse being turned on. In the left side of Fig. 4.2, the time-of-flight (ToF) signals
of 40Ca+ ions extracted using different delay times are shown. The ions were sent
through the magnetic field in transmission and detected in MCP2 (z3 in Fig. 4.1).
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Figure 4.1. Ion transport and injection in the magnetic field. Left: electric po-
tentials (left axis) and magnetic-field strength (right axis) along the Penning-trap
beamline. The positions of the Paul-trap ion source, z1, and the Penning trap,
z2, are indicated by a green and a dashed red line, respectively. Right: Paul-trap
voltages during the extraction process. The trapping voltage of 225 Vpp oscillates
at 600 kHz. The blue line represents the TTL pulse (in arbitrary units) controlling
the non-resonant amplifier switch (see Fig. 3.3). The solid red line is the ejection
pulse at 575 V.

For a short tdelay, the ToF signal is wide due to the residual trapping voltage. For
a long tdelay, the ions start to disappear due to the absence of confinement force.
In these experiments, the delay time was fixed to tdelay = 2.8 µs, resulting in an
energy spread of 22.3(25) eV (FWHM) for the measurements shown in Fig. 4.2.

The Paul-trap ion source can deliver several naturally abundant calcium iso-
topes. Figure 4.3 shows transmission ToF signals of ACa+ for A = 40, 42, 44, 48.
The optimal laser frequency for the resonant transition was chosen based on
isotope-shift measurements carried out with ions produced by the internal ion
source located inside the magnet (see Fig. 3.2) [65]. While a clean signal of each
isotope was obtained by applying dipolar excitations to remove other isotopes from
the trap, some of the ions of interest were also lost. This could be attributed to
the proximity of their motional frequencies compared with the frequency resolu-
tion in the Paul trap. Nevertheless, the isotopic separation can be accomplished
by properly tuning the transfer time to the Penning trap. In particular, transfer
times of 47/48.2/49.3/51.5 µs have been used for A = 40/42/44/48.

The ions delivered by the Paul-trap source were captured in-flight by rapidly

Table 4.1. Voltages used in the transfer section. L10 to L16 are consecutive Einzel
lens placed between the Paul-trap ion source and the magnet.

Lens L10 L11 L12 L13 L14 L15 L16
Potential (V) -1500 -1200 -2200 -300 -800 0 0
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Figure 4.2. Extraction process in the Paul-trap ion source. Left: ToF signal
of ions ejected from the Paul-trap source for different values of tdelay. Upper
right: standard deviation (grey circles) and total number of detected ions (blue
squares) of the ToF signals shown on the left side. Middle right: number of
detected ions in the MCP detector at the end of the beamline vs voltage applied
to EC2 (see Fig. 3.2) to create a potential barrier. The data are fitted to the
Gaussian cumulative distribution function. tdelay = 2.8 µs for these measurements.
Lower right: energy spread of the ions produced in the Paul-trap source calculated
as the derivative of the data in the middle right panel. The data are fitted to a
Gaussian distribution.
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Figure 4.3. Production of calcium isotopes by the Paul-trap ion source. The
grey-shaded spectra are obtained when the resonant photoionization 422-nm laser
is detuned 390/790/1530 MHz for A = 42/44/48 from 40Ca+ to produce more
efficiently the ion of interest. The coloured-shaded data are obtained when a
dipolar excitation at the axial motional frequency of 40Ca+ (and 44Ca+ for the
yellow-shaded data in the 48Ca+ spectrum) is superimposed to the trapping field
to remove unwanted isotopes.

switching (within 1 µs) one of the Penning trap’s halves between two voltages. The
trapping voltages were VEC = 180 V, VCE = 168 V, and VRE = 150 V (see Fig. 3.2
for the Penning trap’s geometry), while the lower voltage in all the electrodes
was 150 V for injection and extraction. The energy distribution has been studied
by scanning the lower voltage of the trap when extracting the ions. The injection
potentials and several extraction configurations used in this study are shown in the
upper-left panel of Fig. 4.4. The trapping efficiency is ≈ 30 %, calculated as the
ratio between the number of ions ejected from the Penning trap and the detected
ions in transmission. The upper-right panel shows the number of ions vs voltage
applied to EC2. The ions’ energy spread is shown in the lower panels. The energy
distribution is asymmetric, and it is centred in 17.5 eV with FWHM = 1.75(15) eV.
The trap depth could not be decreased to 0 V by only scanning EC2. Only when
the trap was fully open (dash-dotted red line in the upper-right panel), the count
rate increased by 14(2) % due to low-energy ions.

4.1.2 Ablation ion source

The ablation ion source was tested using a dedicated setup with a one-meter ToF
section before it was coupled to the Penning-trap beamline. This setup was also
used to study the production of molecular ions [127]. As it is explained in Sec. 3.1.1,
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Figure 4.4. Energy characterization of ions produced by the Paul-trap source and
captured in the Penning trap. Upper left: potentials applied for injection (a)
and extraction (b) used for the energy characterization of the trapped ions. Only
a few cases are shown: (i) VEC = 170 V, (ii) VEC = 160 V, (iii) VEC = 150 V,
(iv) VEC = 140 V, (v) VEC = 130 V, (vi) VEC = 100 V, (vii) VEC = 40 V, and
(vii) VEC = 0 V. The horizontal dashed blue line (a) represents the mean ions’
kinetic energy from the measurements presented in Fig. 4.2. The dash-dotted red
lines represent the potential configuration for injection (a) and the configuration
to extract all the ions from the trap (b). Upper right (c): number of detected
40Ca+ ions for different values of VEC (some of them are shown in the upper left
part of this figure). The red line is the fit using a Gaussian cumulative distribu-
tion function. Lower left (d): number of detected ions vs the effective trap depth,
extracted from SIMION simulations. Lower right (d): negative derivative of the
number of detected ions vs their energy in the trap. The red line is the fit using
an exponentially modified Gaussian distribution.
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Figure 4.5. ToF spectra from the laser-ablation ion source using a dedicated setup.
Samples of gold (vi), rhenium (vii), and thorium (viii) were used. The four blue
vertical dashed lines in the thorium spectrum mark the expected mean ToF for
232Th+ and the oxides 232ThO+, 232ThO2

+, and 232ThO3
+. The peaks (i) - (v)

are contaminants. Based on the gold peak, their masses are estimated to be
(i) 23.6(33) u, (ii) 39.4(17) u, (iii) 46.9(16) u, (iv) 57.4(97) u, and (v) 95.3(60) u.
The targets are biased to 1000 V.

a rotary feedthrough swaps between different targets without the need to open the
vacuum system. Natural samples of gold, rhenium, and thorium were installed.
Gold was used for calibration since it has only one stable isotope, 197Au. Rhenium
was installed because of the interest to complement studies of the β− decay of
187Re in the context of neutrino mass determination [50]. The study of the natural
isotope 232Th is the first step in this laboratory towards the investigation of the
nuclear isomer 229mTh, the unique candidate to implement an optical clock based
on an isomeric nuclear transition [59].

Figure 4.5 shows the ToF spectra measured for gold, rhenium, and thorium at a
kinetic energy of 1000 eV. The mean ToFs for gold and rhenium are 46.0(15) µs and
44.56(96) µs, respectively. The uncertainty given is one standard deviation of the
ToF distribution. The two abundant and stable rhenium isotopes, 185Re+ (37.4 %)
and 187Re+ (62.6 %), are not resolved at 1000 eV, although the two peaks should be
distinguished at higher energies [50]. The thorium peak is compatible with 232Th+

and also with oxide compounds with up to three oxygen atoms (232ThO3
+) based

on the gold and rhenium reference measurements. Contaminant peaks labelled
(i) - (v) are of unknown origin and not relevant in the experiments.

The energy distribution of the ablation ion source was studied in the same
way as with the ions from the Paul-trap source. The Penning trap’s EC2 elec-
trode was used to create a potential barrier for the ions transmitted through the
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Figure 4.6. Characterization of the laser-ablation ion source in the Penning-trap
beamline. Upper left (a): number of detected ions as a function of the potential
applied to the EC2 electrode of the Penning trap. A Gaussian cumulative distribu-
tion function is used to fit the data. Lower left (b): ions’ energy spread, calculated
as the negative derivative of the data shown in the panel above. The data are fit-
ted to a Gaussian function. Right: ToF measurement of the ions delivered by the
ablation ion source when the targets are metallic calcium (c,d) and thorium (e,f).
In the trapping spectra (d,f), the ions are in-flight captured and trapped for 20 ms
before they are ejected from the Penning trap to the detector.

magnetic field so that the cumulative distribution function of the ions’ energy can
be obtained from the number of detected counts in MCP2. Figure 4.6 shows the
results. An energy spread of 21.1(38) eV (FWHM) is obtained. The distribu-
tion is centred in 152.0(14) eV (target plate biased to 150 V) to capture the ions
in the Penning trap using the voltage configuration employed for the Paul-trap
source (see Fig. 4.4).

The ions were in-flight captured in the Penning trap using the same scheme
shown in Fig. 4.4. The transfer times between the ablation source and the Pen-
ning trap for 40Ca+ and 232Th+ were 85 µs and 205 µs, respectively. The acqui-
sition system was locked to the ablation-laser repetition rate, as it is explained in
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Secs. 3.1.1 and 3.5. ToF spectra of calcium and thorium ions, both directly trans-
mitted through the magnetic field and trapped in the Penning trap for 20 ms, are
shown in Fig. 4.6. A laser fluence of 44(15) mJ/cm2 and 50(17) mJ/cm2 was used
in these measurements. Several peaks are visible in the thorium ToF transmission
spectrum, being the highest one compatible with the expected ToF for 232ThO2

+.

4.2 Laser cooling of a single ion to the Doppler

limit

4.2.1 Cooling parameters

The laser setup is described in Sec. 3.3, and the 40Ca+ energy levels and relevant
transitions for Doppler cooling are shown in Fig. 2.4. A total of twelve laser
beams are used to cover the 397-nm (×4), 866-nm (×4), and 854-nm (×4) optical
transitions in the 7-T magnetic field. Figure 4.7 shows a pictorial representation
of the laser beams associated with transitions, including the specific nomenclature
used in this work. The power P delivered by each laser beam, the estimated spot
diameter at the trap centre w, and the saturation parameter s (Eq. (2.25)) are
given in Tab. 4.2. The 866-nm and 854-nm transitions are strongly addressed,
which assures a fast repumping from the metastable states and thus a high level of
fluorescence. The two cooling transitions are also addressed above saturation. It
has been checked that a higher saturation parameter could result in ion heating,
something detected from the widening of the ion image observed with the electron-
multiplying charge-coupled device (EMCCD). A lower value of s may lead to lower
temperatures but decreases the fluorescence signal. The spot diameter of the radial
laser beams at the ion location must fulfil Eq. (2.28) to perform cooling efficiently.
In the case of 40Ca+ oscillating at ν+ = 2.679 MHz and ν− = 10 kHz, the radial
spot diameter must lie within 1.7 and 460 µm. In general, the smaller the spot
size the more efficient the magnetron cooling. Although the spot diameter of B2 is
higher than 460 µm, this laser also contributes to cooling the ion when axialization
is applied (see Sec. 2.2.1).

As it is shown in Sec. 4.1.1, the mean initial energy of 40Ca+ ions in the
Penning trap is 17.5 eV. A cooling time of 165(64) s was observed in a series of
17 measurements with a single ion. According to Ref. [128], the time t needed to
cool a single ion is related to its initial energy E as

t =
4

3
t0
√
r

(
E

E0

)3/2

, (4.2)

where t0 = 2 (1 + s) /sΓ and Γ the cooling-transition linewith. r = (h̄k)2 / (2mE0)
with h̄ the reduced Planck’s constant, k the photon wave number,m the ion’s mass,
and E0 = (h̄Γ) /2

√
1 + s the recoil energy. The cooling lasers were detuned Γ/2

from the resonance frequency. Taking the saturation parameters of Tab. 4.2, it is
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Figure 4.7. Laser-driven transitions to perform Doppler cooling of calcium ions
in 7 T [98]. The boxes gather the transitions according to the fine structure.
The cooling transitions are addressed both in the axial (parallel to the magnetic
field) and radial (dashed lines) directions. The repumping laser beams are directed
parallel to the magnetic field since their influence on the momentum transfer during
the cooling process is small compared to the 397-nm transition. The calculations
to address the four 854-nm transitions using two lasers and an electro-optical
modulator (EOM) can be found in Ref. [65].

possible to deduce a lower limit for E of 4.2(2.3) eV, which does not coincide with
the value of 17.5 eV obtained in Sec. 4.1.1. The energy difference was removed by
the interaction between the ions and the residual-gas atoms. To prove this, laser
cooling was switched on at time tB after ion capture. The subsequent time needed
for the ion to be laser-cooled to the Doppler limit was shorter for longer times tB.
For a total of 16 measurements with tB ranging from 0 to 200 s, it was possible
to extract a decay-time constant of about 225 s. The presence of this background
gas is beneficial to shorten the cooling time of an initially hot ion but prevents
a long coherence time in the motional-frequency measurement. To achieve faster
cooling without the need for gas cooling, the frequencies of the axial cooling lasers
B1 and B3a were scanned starting after loading the ion from 8 GHz to about
10 MHz below resonance, which is equivalent to a change in the kinetic energy of
the ions from 2 eV to 3 · 10−6 eV (Doppler limit). If the initial ion’s energy is below
2 eV, the cooling is boosted at the time the laser frequency matches the maximum
frequency shift, and the ion is progressively brought to the Doppler limit by the
frequency ramp.

Table 4.2. Power, spot diameter, and saturation parameter of the Doppler-cooling
laser beams. The saturation is determined using Eq. (2.25) and the values in
Tab. 2.1.

Laser B1 B2 B3a B3r R1 R2 R3 R4 R5 R6
P (mW) 0.52 0.34 0.28 1.4 0.75 1.4 0.40 0.32 2.3 2.2
w (mm) 0.50 0.85 0.50 0.22 1.6 1.6 1.6 1.6 1.6 1.6
s 11 7.0 6.1 29 230 420 120 100 710 680
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4.2.2 From ion Coulomb crystals to a single ion

Figure 4.8 shows a few examples of ion clouds ranging from several thousand to
one single ion. Spatially ordered structures known as ion Coulomb crystals (ICCs)
are observed. Note that these images were collected using the non-corrected op-
tical system, thus suffering from several optical aberrations that are explained in
Sec. 3.4. The number of ions Nion given in the caption of Fig. 4.8 is determined
based on the volume of an ellipsoid as

Nion =
π

6
NzN

2
r , (4.3)

where Nz and Nr are the number of layers in the axial and radial directions,
respectively. The value obtained using Eq. (4.3) is compared with the ratio between
the fluorescence photons from the cloud and one ion, and the difference is used
to quote the uncertainty. The layers can be readily determined by taking the
projection across the axial and radial directions at the cloud centre, as shown in
the right side of Fig. 4.8. The number of registered photons at the centre position
is higher for the ICC than for a single ion due to the contribution of the other layers
of ions. In the case of the ICC, the peaks are likewise not fully resolved due to
the background fluorescence contribution from other layers. The ions’ equilibrium
positions are defined by the equilibrium between the repulsive Coulomb interaction
and the attractive force exerted by the trapping fields. In the case of a two-ion
crystal, their relative distance along the z axis dion-ion is given by Eq. (2.16). For
these measurements, dion-ion = 18.3 µm.

Although the ion cloud always exhibits a crystalline structure in the mea-
surements presented in Fig. 4.8 that can be considered as a solid structure, con-
figurations where the cloud behaves like a liquid or a gas have also been re-
ported [129–131]. The transition between these phases is governed by the Coulomb
correlation parameter ΓC , defined as the ratio between the electrostatic energy of
neighbouring charges and the thermal energy. It can be calculated as

ΓC =
1

4πε0

q2

aWSkBT
, (4.4)

where aWS is the Wigner-Seitz radius defined by (4π/3)n0a
3
WS = 1, with n0 the

particle density, kB is the Boltzmann’s constant, and T is the cloud tempera-
ture [132, 133]. If ΓC ≪ 1, the system is said to be weakly correlated and the
ions move independently. Numerical simulations have shown that ordering char-
acteristics of liquids appear at ΓC ≈ 2 [134]. ΓC ≫ 1 denotes a strong coupling
among the ions, with a relevant correlation between the dynamic variables of the
particles. Crystallization occurs at ΓC ≈ 178 [135, 136], and the ICC aspect ratio
r0/z0 depends in a non-trivial way on the specific eigenfrequencies and the laser
cooling rate [137]. Using this lower limit for ΓC , it is possible to find an upper
limit of T ≈ 5 mK for the ICC’s temperature.
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Figure 4.8. Ion Coulomb crystals. Left: EMCCD images of ICCs in the 7-T
Penning trap formed by different amount of ions Nion. (a) Nion = 5000(400),
(b) Nion = 1200(100), (c) Nion = 550(50), (d) Nion = 117(3), (e) Nion = 2, and
(f) Nion = 1. The exposure time is 1 s. The crystal structure becomes clearly
visible from (b). In these cases, the ions were created inside the trap using the
internal ion source. The Penning trap was operated with an axial oscillation fre-
quency for a single 40Ca+ ion of νz = 170 kHz. Right: projections (sum of ten
pixels around the trap’s centre) along the magnetic field axis (top) and the radial
direction (bottom) of the crystal (d) and of the single ion (f) shown on the left
side.
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Figure 4.9. Characterization of the PMT signal. Left: PMT 397-nm detected
photons for a time window of 260 s and a gate of 5 ms when two ions are loaded
and sequentially cooled in the trap. Right: SNR from a single laser-cooled 40Ca+

ion in the Penning trap as a function of the PMT gate.

4.2.3 PMT characterization

As described in Sec. 3.4, half of the fluorescence collected by the optical system
is directed towards the photomultiplier tube (PMT). A typical PMT signal where
two ions were sequentially cooled is shown on the left side of Fig. 4.9. The detection
of the first ion at t ≈ 115 s and the second at t ≈ 160 s gives rise to two discrete
levels in the fluorescence signal. The signal-to-noise ratio (SNR) can be calculated
as

SNR =
S −B

FWHMB

, (4.5)

where S and B are the signal and background noise height, respectively, and
FWHMB is the full width at half maximum of the noise distribution sample. In
the right side of Fig. 4.9, the SNR is studied as a function of the gate time.
The higher the gate time, the higher the SNR, but at the expense of a slower
performance.

The drops observed in the fluorescence signal (left side of Fig. 4.9) were due to
elastic collisions with the background gas molecules at room temperature. In these
collisions, the electric field created by the trapped ion polarizes the molecules, with
a collision cross section σcol that depends on the molecule’s polarizability αpol [138]
and velocity vmol as

σcol = πΓ (1/3)

[
αpolq

2

16ε0h̄vmol

]2/3
, (4.6)

where Γ (a) is the gamma function with argument a [139]. The collision rate γcol
depends on the gas density n0 and the collision cross section as γcol = n0 ⟨σcolvmol⟩,
where the average is over the thermal distribution. It can be calculated in in-
ternational units as γcol = 1.23 · 105α2/3

pol (ṽ)
1/3, being ṽ = (2kBT/µ)

1/2 the reduced
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Figure 4.10. Characterization of the axial trapping frequency. Evolution of the
measured common-mode axial frequency (grey squares) and optically-determined
ion-ion distance (blue circles) vs trap depth. The solid red lines fit the data points.
The fitting function for the frequency data is proportional to the square root of
the trap depth, while that for dion-ion is inversely proportional to the cube root.
The green-shaded area marks the limit to resolve two ions.

velocity and µ the reduced mass of the two-particle system [139]. The background
pressure can be calculated from n0 using the ideal-gas equation. The most abun-
dant molecules below 10−8 mbar are H2O and H2, due to the difficulty of pumping
them out. In this experiment, γcol ≈ 0.1 s−1, which means a background pressure
p ≈ 3 · 10−10 mbar if the drops in the fluorescence signal were caused, as assumed,
by collisions with H2O or H2.

4.2.4 Trap characterization

Figure 4.10 shows the distance dion-ion in a two-ion crystal as a function of the trap
potential, covering a common-axial mode frequency from 170 kHz to 500 kHz. The
dependency of dion-ion on the axial frequency is given by Eq. (2.16). If these results
are extrapolated to higher frequencies, even a two-ion crystal at the maximum
axial-mode frequency the trap can be operated, νz = 1.902 MHz, could be spatially
resolved by the optical system. For such a frequency, dion-ion = 3.65 µm.

4.2.5 Cooling of the radial modes. Axialization

As it was stated in Sec. 2.2, the modified-cyclotron and the unstable magnetron
motions can be cooled simultaneously by tuning the position of the laser beam in
addition to its frequency. Experimentally, this has been achieved by scanning the
beam position in small steps (20 µm) around the trap centre. The final position was
a compromise between the maximum fluorescence signal observed from the trap
centre and the minimum width in the projection of the photon radial distribution.
However, this method presented several drawbacks. In the Penning-trap setup, the
outputs of the laser beams from fibre collimators are located 1.5 m away from the
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Figure 4.11. Axialization of a single ion. Left: evolution of the radial FWHM of
a single ion as a function of the axialization voltage. The axialization frequency
was always νquad = 2689 365 Hz. The quadrupolar field was created by alternating
opposite polarity. Right: EMCCD images of a single ion for different axialization
voltages. These images are the average of ten consecutive measurements with 1-s
exposure time.

trap (see Fig. 3.8) on an optical table physically separated from the beamline struc-
ture. This made the final position of the radial laser-cooling beam very sensitive to
mechanical instabilities. With the cooling parameters given in Tab. 4.2, and using
Eq. (2.27), the ratio between the cooling rates for the oscillation-amplitude of the
modified-cyclotron and magnetron motions is

(
d
〈
ρ2−
〉
/dt
)
/
(
d
〈
ρ2+
〉
/dt
)
≈ 0.025.

This means a much slower energy reduction in the magnetron mode. A quadrupo-
lar field at ν ≈ νc was applied simultaneously with the laser interaction to speed
up the cooling of the two radial motions. This field produces an energy exchange
between the two motions allowing to efficiently cool the magnetron through the
modified-cyclotron. This technique is normally called axialization since the ion’s
motion is squeezed into the axial axis. Its first experimental implementation is
reported in Ref. [140].

In Fig. 4.11, the axialization technique is studied for a single 40Ca+ ion. The
minimum radial width obtained is FWHMr (100 mVpp) = 1.87(9) µm, compared to
FWHMr (0 mVpp) = 2.25(17) µm when axialization is not applied. Once a steady
state has been reached for strong axialization (see Sec. 2.2.1), the phonon num-
bers n± in the two radial motions become equal due to the energy exchange in-
duced by the interaction with the quadrupolar field [77]. Assuming this equilibrium
condition, upper values can be given for each of the amplitudes of the radial mo-
tions based on the EMCCD-image projections. Starting from the radial motional
equation, Eq. (2.7), the measured FWHM can be related with the ion’s motional
amplitudes ρ+ and ρ− as FWHM = 2

√
ln 2
√
ρ2+ + ρ2−. Taking into account the

dependence of the ion’s energy on the motional amplitudes (Eq. (2.8)), ρ+ = ρ−
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Figure 4.12. Axialization of a two-ion crystal. Left: evolution of the radial FWHM
of a two-ion crystal as a function of the axialization voltage. Right: EMCCD
images of a two-ion crystal for different axialization voltages. The crystal was
stable along the axial direction in regions (I) and (III). In the region (II), the
crystal oriented most of the time in the radial plane.

in the steady state. Thus, each of the radial-motion amplitudes can be directly
calculated from the image width as

ρ± =
FWHM

2
√
2 ln 2

. (4.7)

An amplitude ρ± < 674(32) nm is estimated.
According to Ref. [13], the cooling rate achieved by axialization should increase

monotonically with the voltage and tend to a maximum value limited by the laser
cooling rate of the modified-cyclotron motion. However, an increase of the ion’s
amplitude is observed in Fig. 4.11 for high Vquad, which could be attributed to a
residual dipolar field originated as a consequence of misalignments between the
electrodes.

Figure 4.12 shows a similar analysis to that presented in Fig. 4.11 but for
a 40Ca+ - 40Ca+ balanced crystal. The minimum radial amplitude for ion 1 is
FWHMr (25 mVpp) = 2.09(16) µm, compared to FWHMr (0 mVpp) = 2.40(14) µm
when axialization is not applied, and for ion 2 FWHMr (25 mVpp) = 2.01(17) µm,
compared to FWHMr (0 mVpp) = 2.36(16) µm obtained when axialization is not
applied. Using again the hypothesis that the number of phonons is shared for the
radial modes, an amplitude ρ± < 753(36) nm is estimated.

Three regions can be identified in Fig. 4.12 depending on the crystal orientation.
In regions (I) and (III), the crystal is axially oriented as expected when it is cooled
to temperatures in the range of millikelvin. However, in region (II) the two-ion
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crystal is oriented radially in a much higher angular-momentum configuration. No
fundamental reason has been found that could explain this behaviour, which would
need further investigation.

4.2.6 Spectroscopy on the D3/2 ⇔ P1/2 transition. Dark res-
onances

The atomic level scheme of 40Ca+ in the 7-T magnetic field can be found in Fig. 2.4.
In the experiments presented in the following, one of the repumping 866-nm lasers
was scanned around resonance while the rest of the lasers used in Doppler-cooling
remained at a steady frequency. It was possible to observe dark resonances (drops
in the fluorescence level) superimposed to the Lorentzian profile of the cooling
transition when a Λ-type transition between the 866-nm laser and one of the
others was formed [141, 142]. The left side of Fig. 4.13 shows a four-level model
representing the relevant states involved in the dark-resonance phenomenon. In the
cooling scheme used in this experiment, each of the P1/2 Zeeman sublevels (|2⟩ in
Fig. 4.13) is connected to one of the S1/2 (|1⟩) and to two D3/2 Zeeman sublevels (|3⟩
and |4⟩). Therefore, two dark resonances are observed for each repumping-laser
frequency sweep (right side of Fig. 4.13).

The dynamics of the system is described by a Hamiltonian consisting of two
components,

H = HA +HI . (4.8)

HA is the atomic Hamiltonian,

HA =
4∑

a=1

h̄ωa |a⟩ ⟨a| , (4.9)

where ωa is the Bohr frequency of the state |a⟩. HI accounts for the ion-laser
interaction,

HI =
1

2
h̄Ω12

(
|2⟩ ⟨1| e−iω12t + |1⟩ ⟨2| eiω12t

)
+

1

2
h̄Ω32

(
|2⟩ ⟨3| e−iω32t + |3⟩ ⟨2| eiω32t

)
+

1

2
h̄Ω42

(
|2⟩ ⟨4| e−iω42t + |4⟩ ⟨2| eiω42t

)
,

(4.10)

where ωab and Ωab are the transition and Rabi frequencies of the lasers addressing
|a⟩ ⇔ |b⟩ [143]. Ωab is defined in terms of the electric dipole moment D⃗ab and the

electric field amplitude E⃗ab as h̄Ωab = D⃗ab · E⃗ab. In the interaction picture [143],
and having established h̄ω2 as the zero point of energy, the total Hamiltonian
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Figure 4.13. Dark resonances in the 7-T magnetic field. Left: the four-level system
used to describe the observation of dark resonances. |1⟩ represents one of the S1/2

Zeeman sublevels connected to the corresponding P1/2 sublevel |2⟩ by a 397-nm
laser field detuned ∆12 from the resonance frequency. Levels |3⟩ and |4⟩ represent
D3/2 Zeeman sublevels. |3⟩ is connected to |2⟩ by 866-nm light detuned ∆42 from
the resonance frequency, while the laser frequency of the transition |3⟩ ⇔ |2⟩ is
scanned around resonance (vertical dashed line). Right: number of registered
photons from the S1/2 ⇔ P1/2 transition as a function of the frequency of one of
the D3/2 ⇔ P1/2 lasers. The inset zooms the region where the two dark resonances
appear. In this particular case, the scanning laser was RE2, according to the
nomenclature established in Fig. 4.7. See the text for more details about the
fitting.

matrix representation is

H =


∆12

Ω12

2
0 0

Ω12

2
0 Ω12

2
Ω42

2

0 Ω32

2
∆32 0

0 Ω42

2
0 ∆42

 , (4.11)

where ∆ab is the detuning of the lasers addressing the transitions |a⟩ ⇔ |b⟩. The
diagonal elements correspond to HA and the rest to HI [144].

To encompass the dissipative and incoherent processes originating from the
spontaneous emission and the laser finite linewidth, it is necessary to study the
interaction of the ion with the surrounding [145]. Since the complete quantum
system belongs to an infinite-dimension Hilbert space, as the radiation field has
infinite modes, the usual approach is to model the ion as an open quantum system.
Under these circumstances, a statistical description of the system, provided by the
density-matrix formalism, becomes necessary. The density matrix ρ̂ is a general-
ization of the wave function to describe the state of the system. While the latter
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can only represent pure states, ρ̂ can be used to describe a statistical ensemble con-
sisting of different pure states prepared with certain probabilities. The evolution
of a quantum open system is given by the Lindblad master equation [145],

dρ̂

dt
= − i

h̄
[H, ρ̂] + L (ρ̂) , (4.12)

where L (ρ̂) is the Lindblad operator defined as

L (ρ̂) =
∑
k

[
Ciρ̂C

†
i −

1

2

(
C†

iCiρ̂+ ρ̂C†
iCi

)]
, (4.13)

with the transition operators Ci describing the different dissipative processes. The
spontaneous decay from |2⟩ to |1⟩, |3⟩, and |4⟩ is described by [146]

Cba =
√
Γba |a⟩ ⟨b| , (4.14)

where b ≡ 2 and a ≡ 1, 3, 4. The finite laser linewidths are also accounted as a
dissipative operator as [146]

Caa =
√

Γla |a⟩ ⟨a| , (4.15)

where a ≡ 1, 3, 4 and Γla = 2πσa with σa the linewidth of the laser addressing the
transition |a⟩ ⇔ |2⟩.

Equation (4.12) leads to a set of ten differential equations known as optical
Bloch equations [143]. The stationary state is found by imposing (dρ̂) / (dt) = 0,
which implies finding the solution of a linear system comprising ten equations to
find the density matrix elements, for which Mathematica1 was used. The number
of 397-nm photons detected in the experiment is proportional to the population
in the upper state ρ̂22.

In the right side of Fig. 4.13, a functional form proportional to ρ̂22 is used to fit a
frequency scan of laser R2. Qualitatively, a dip in the fluorescence profile appears
when ∆32 = ∆42,∆12, and its width and depth are governed by the operators
Cba and Caa, associated to the natural linewidth of the transition and the laser
linewidth, respectively. Three parameters of the laser beam are extracted from the
fit: detuning, saturation, and linewidth. While saturation and linewidth can be
experimentally estimated by optical power and wavelength meters, respectively,
this is the more reliable way to fix the detuning. In general, the cooling and
repumping lasers are set to 15 MHz and 20 MHz below resonance, respectively, in
order to achieve the lowest ion temperature [147]. For the particular case shown
in Fig. 4.13, ∆12 = −2π × 14.48(50) MHz and ∆42 = −2π × 23.1(11) MHz.

1Wolfram Mathematica 12.2.0.0





Chapter 5

Cyclotron-frequency ratios of
42,44,48Ca+ and 40Ca+

The cyclotron-frequency ratios of the calcium isotopes 42,44,48Ca+ - 40Ca+ have
been precisely determined using the optical detection method for the first time.
Since all these isotopes can be laser cooled, the measurements have been performed
using one single ion at a time in the trap, alternating between one of the isotopes
and 40Ca+. Most of the results presented in this chapter have been recently pub-
lished in Ref. [148]. The general case, i.e., measurements with a two-ion crystal,
is presented in Chapter 6.

The values obtained in this thesis work agree within 1σ with the literature
values [149], although similar precision is only obtained in the case of 44Ca+.
These results, however, constitute the first characterization of the sensor ion [35]
in the Penning trap before the implementation of the optical detection method
on an unbalanced crystal [37], and they have been used to estimate the ultimate
precision achievable with the existing apparatus.

The optical detection method is described in the first part of the chapter, pre-
senting the optimization of the experimental parameters. The full analysis process
of a complete mass-ratio measurement is shown, and the results obtained from
all the motional eigenfrequencies applying the invariance theorem are compared
with the case using only the radial ones. Afterwards, the analysis procedure of the
frequency ratios of the pairs 42,44,48Ca+ - 40Ca+ is presented, showing a direct mea-
surement of the ion position and amplitude for each measurement. The ultimate
precision limit is discussed, and the mutual dependence of the three eigenfrequen-
cies is studied through a correlation analysis. Finally, and beyond its application in
mass spectrometry, the potential exploitation of this technique in the fields of force
sensing [32,150] and to probe fundamental symmetries [83,151] are underlined.

75
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5.1 Motional frequency measurements on a laser-

cooled ion

The use of the fluorescence signal from a dipolar transition employed for Doppler
cooling in the field of Penning-trap mass spectrometry was proposed and first tried
in the 80s [152]. An approach of this idea has been exploited in Paul traps for
the identification of molecular ions, reaching a typical mass resolution of ∼ 10−4

[153–158]. In the Ions Traps and Lasers Laboratory at the University of Granada,
previous studies using that approach have been carried out with an open-ring
Paul trap with a single ion [159] and a two-ion balanced crystal [160]. In Penning
traps, it has been only tried with ion ensembles [161,162] with outcomes far away
from the level of precision reached using other techniques based on bolometric
detection [91]: ion-balance technique [20], pulse-and-phase (PnP) [163], or pulse-
and-amplify (PnA) [23]. In this thesis work, a suitable measurement protocol has
been developed for the determination of the three ion’s eigenfrequencies in the
Penning trap using the optical signal registered on a electron-multiplying charge-
coupled device (EMCCD) and a photomultiplier tube (PMT).

5.1.1 Measurement procedure

The measurement protocol is described in Fig. 5.1. A full measurement of any
mass ratio comprised the determination of the cyclotron frequency νc of both the
reference ion and the ion of interest, which play an analogous role to that of
the sensor and target ions in the Coulomb crystal. The value obtained from the
reference ion (whose mass is well known) was used to calibrate the magnetic field
so that the charge-to-mass ratio of the ion of interest can be directly calculated
from its cyclotron frequency according to Eq. (2.3).

In the experiment, the ion was loaded from the external Paul-trap source (see
Secs. 3.1.1 and 4.1.1) and cooled to the Doppler limit. During the in-flight trap-
ping sequence, the Penning trap was biased to 150 V, matching the ion’s kinetic
energy (see Fig. 4.2). After the capture, the trap potentials were adiabatically re-
duced to reach 0 V in the ring electrode. To achieve the Doppler limit within a few
seconds, the frequencies of the cooling lasers were ramped towards resonance to
match the ion’s Doppler shift due to its initial energy (see Sec. 4.2). The motional
frequency measurement was triggered once the ion’s fluorescence was observed
with the EMCCD.

The measurement sequence has been fully automated in ARTIQ and/or the
Master PC (see Sec. 3.5). Several measurements of each eigenfrequency were
carried out, as shown in the green box of Fig. 5.1, with 5/3/5 runs for ν+/ν−/νz in
this case. The relative number of measurements for each eigenfrequency depends
on its contribution to the overall uncertainty of the cyclotron frequency. The values
chosen are discussed in Sec. 5.1.3, where the dependence on the excitation time is
presented.
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Figure 5.1. Measurement protocol. A block diagram of a complete mass- or
cyclotron-frequency ratio measurement is presented in the upper part, including
the time sequence used for each individual cycle. All the information contained in
this box is scheduled in a Python script compiled and executed both in the Master
PC and ARTIQ’s FPGA. A detailed description of the experimental setup was
presented in Chapter 3.

The timing sequence for each measurement is depicted in the blue box of
Fig. 5.1. Each ion’s eigenfrequency was determined by scanning the frequency
of an external electric dipolar field applied to one of the segments of the trap’s
ring electrode RE2 (see Sec. 3.1) around the resonance value. Before probing the
ion, it was checked to be cold (orange box in Fig. 5.1). For that purpose, the
script states a minimum number of photons to be detected on a specific region of
the EMCCD before it launches the frequency scan. A quadrupolar field oscillating
at the cyclotron frequency was applied in the radial direction for axialization (see
Sec. 4.2.5). Once the three ion’s eigenmotions were cooled, the excitation was
turned on and laser cooling was switched off. To accomplish the latter in less than
1 ms, an acousto-optic modulator (AOM) was used on two of the four 866-nm
repumping lasers (see Sec. 3.3). After the dipolar excitation was turned off, the
cooling lasers were switched on again to observe the ion’s motional amplitude
through the scattered photons. The photons scattered by the ion show a widened
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fluorescence image in the EMCCD along the excitation direction and/or a drop
of the number of detected photons in the PMT. The first observation is a direct
consequence of the ion’s higher orbit and the second is due to Doppler broaden-
ing. If a collision with a background molecule occurred, the number of detected
photons decreased below a specific threshold, and the measurement was discarded
and repeated.

Since laser cooling was switched off while probing the eigenfrequency, the
linewidth is not broadened due to the damping force of the cooling laser. There-
fore, these experiments have yielded more precise measurements than previous
experiments with Penning traps [152, 161, 162], or other experiments carried out
in the laboratory with a Paul trap [159, 160], where the cooling laser was never
switched off.

5.1.2 Data analysis

As mentioned above, the oscillation amplitude of the ion after the excitation
was read out through the fluorescence photons scattered on the cooling transi-
tion (3p64s 2S1/2 ⇔ 3p64p 2P1/2 in the case of 40,42,44,48Ca+) and recorded by the
EMCCD and the PMT. The time evolution of the ion image in the EMCCD after
it was resonantly excited at the modified-cyclotron frequency is shown in Fig. 5.2.
At t = 0, the excitation amplitude is ρ+ = 27(5) µm, while the photon signal in the
PMT remains constant all the time. It was necessary to excite the ion to higher
amplitudes (ρ+ > 50 µm) to observe a drop of counts in the PMT. This behaviour
can be explained based on two main points. First, the radial cooling rate was low
enough to observe a time evolution in the order of milliseconds, even when axial-
ization and the position of the radial beams were optimized. This allowed for the
observation with the EMCCD, impossible if the cooling dynamics had taken place
within microseconds. Second, the scattering rate was dominated by the interac-
tion with the axial beams (see Tab. 4.2). Thus, the level of fluorescence remained
basically unaltered for small radial excitations. For the magnetron motion, the
situation is equivalent.

The only limit in sensitivity for the radial eigenmotions was the resolution of
the optical system, which is 2.75(3) µm (see Tab. 3.4), and the time constant of
the evolution of the ion’s amplitude, shown on the right side of Fig. 5.2, equal
to 80(23) ms. The latter has been used to estimate the ion’s amplitude just
after the excitation is turned off. In the actual experiment, the minimum radial
amplitude that can be measured with reasonable statistics has been limited to
10 µm by the fluctuations in the scattering rate, which may arise from changes in
the cooling rate.

In order to extract the ion’s radial eigenfrequencies, the EMCCD images have
been automatically analysed using a Python script. The first image with 75-ms
accumulation time (upper left corner in Fig. 5.2) is used for the analysis. The
image has been rotated for the analysis, as shown in Fig. 5.3 (a,b). The most
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Figure 5.2. Time evolution of the EMCCD image after excitation. The exposure
time is 75 ms, and the start time for each frame is triggered every 100 ms. Left:
images and projections along the radial plane r (sum of 10 pixels along the axial
axis). Right: radial width as a function of time for several measurements on
resonance with the modified-cyclotron motion. The small blue solid circles are
individual measurements, and the big dark grey ones are their average. They are
fitted to an exponential decay function.

important parameter is the width of the radial distribution. Two ways have been
considered to determine the uncertainty: weighting the data points by the photon
count statistical uncertainty (square root of total number of registered photons,
according to Poisson distribution) or weighting the data points uniformly. In the
first case, Gaussian error propagation has been used to estimate the uncertainty
of the width from the photons’ projection in the radial direction. In the second
case, the necessary amount of error to obtain a good fit featuring χ2 = 1 has
been associated with the data points, and Gaussian error propagation is likewise
applied. The first method calculates the fitting internal uncertainty while the
second calculates the external uncertainty. The larger of these two values has
been used as the uncertainty associated with the extracted ion’s amplitude.

The resonance curve has been built by representing these amplitudes as a func-
tion of the excitation frequency, as shown in the right side (e) of Fig. 5.3, where
a Gaussian function is used to fit the data. The procedure using internal and
external fitting uncertainties discussed above has been applied to estimate the
uncertainty associated with the central frequency. The analysis has been carried
out both using Gaussian (like in Fig. 5.3) and sinc functions, obtaining equivalent
results in terms of the central frequency and its associated uncertainty.

In the case of the axial motion, the PMT was more sensitive to axial amplitude
variations than the EMCCD: the cooling rate in the axial motion, well below the
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Figure 5.3. Analysis of the EMCCD data. Left: analysis steps to extract the ion’s
radial width. The original tilted image (a) is rotated to the natural matrix axis
using interpolation methods (b). Gaussian and Lorentzian fittings are performed
to a ten-pixel wide projection along the radial plane (c,d). The ion’s amplitude
is estimated as half of the full width at half maximum (FWHM) from the fit.
Right (e): radial amplitude as a function of the excitation frequency. Each point
is obtained by performing the analysis described on the left side of the figure. The
excitation time was 1 s and the excitation voltage was 6 µVpp.

75-ms EMCCD acquisition window, was much higher than in the radial ones.
It was also easier to see a drop in the number of fluorescence photons due to the
Doppler modulation since most of the scattered photons arose from the interaction
with the axial laser beams. To observe changes in the EMCCD image, either a
higher amplitude or a smaller cooling power would have been needed. In the first
situation, the systematic effects originated by the field imperfections would have
increased. In the second case, much higher statistics would have been necessary
to overcome the loss of signal-to-noise ratio (SNR) (Eq. (4.5)).

The analysis procedure has been automated by a Python script, like in the
case of the EMCCD images. The number of photons is registered within a time
window from the instant the lasers are switched on to a few milliseconds later. This
is indicated by the yellow dashed line on the left side of Fig. 5.4. The resulting
resonance curve has a dip around resonance, as shown in the right side of Fig. 5.4.
Equivalently to the analysis of the radial eigenmotions, both Gaussian and sinc
functions have been used to fit the resonances, obtaining analogous results.
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Figure 5.4. Analysis of the PMT data. Left: photon histograms for three different
excitation frequencies (the letters (a)-(c) indicate the correspondence with the
right side). If the excitation frequency coincides with the ion’s motional frequency,
the red line is obtained. The grey and blue lines represent the out-of-resonance
and intermediate cases, respectively. The binning is 1 ms. Right: number of
accumulated photons during a time delimited by the yellow dashed line (left side)
as a function of the excitation frequency. The excitation time is 100 ms.

5.1.3 Optimization of the excitation time and voltage

A higher excitation time implies a better frequency resolution, by the properties of
the Fourier transform. However, instabilities and drifts limit this time. Resonance
curves are shown on the left side of Fig. 5.5 for three different excitation times. The
excitation voltage was modified accordingly so that the product of the excitation
time and voltage, t+dip · V

+
dip, was kept constant. In principle, the ion’s amplitude

ρ+ at the resonance frequency should be the same for all the excitation times, but
an increase in the data dispersion and a decrease of the mean value have been
observed for longer times, which is attributed to the above-mentioned frequency
instability.

To determine the optimum excitation time, a normalized time-independent
frequency uncertainty was calculated as

∆Ωu = ∆νu

√
tudip
t0

N

N0

, (5.1)

where ∆νu is the uncertainty obtained in a measurement with excitation time
tudip that is repeated N times, and t0 and N0 are a reference time and number
of measurements, respectively. ∆Ωu represents the uncertainty that would be
obtained if scans using an excitation time tudip were performed during the same
time it takes to complete N0 scans using an excitation time t0. ∆Ω+ is shown
on the right side of Fig. 5.5 for different excitation times, including those plotted
on the left side. t0 = 1 s and N0 = 5 in this case. The normalization factor in
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Figure 5.5. Optimization of the excitation time. Left: modified-cyclotron reso-
nances for 100 ms, 500 ms, and 2 s excitation time. The longer the excitation
time, the smaller the resonance width. Five scans were taken for each excita-
tion time. The average data are plotted in grey and the solid lines represent the
Gaussian fits. Right: normalized uncertainty (Eq. (5.1)) obtained for the central
frequency and SNR for the different excitation times. For these measurements,
ν+ ≈ 2 685 578 Hz.

Eq. (5.1) (root-squared term) has been applied according to the evolution of the
uncertainty of the mean value in a Gaussian distribution. The optimal excitation
times for ν+/ν−/νz are 500-1000/100-200/50-100 ms.

The invariance theorem (Eq. (2.10)) has been used to determine the cyclotron
frequency νc, so the propagation of each eigenfrequency νu uncertainty goes as

∂νc
∂νu

=
νu
νc
. (5.2)

The higher the frequency the more its contribution to the overall uncertainty of
the cyclotron frequency. The optimal excitation time for each eigenfrequency was
used, and the number of scans N performed was adjusted to reduce the statistical
uncertainty as needed.

The final value of the eigenfrequency has been calculated as the weighted mean
of the individual eigenfrequency measurements νi obtained from the fit in each
scan,

ν̄ =

∑
N wiνi∑
N wi

, (5.3)

where wi = 1/ (∆νi)
2 is the weighting factor. Two uncertainties can be associated

with the sample: internal and external [164]. The internal uncertainty, defined as

∆νint =

√
1∑
N wi

, (5.4)
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is calculated from Gaussian error propagation on the data sample. If the uncertain-
ties are well estimated for each νi, ∆νint is a good estimate of the eigenfrequency
uncertainty. The external uncertainty ∆νext, defined as

∆νext =

√∑
N wi (νi − ν)2

(N − 1)
∑

N wi

, (5.5)

accounts for the statistical dispersion of the sample νi. The eigenfrequency uncer-
tainty is chosen as ∆ν = max (∆νint,∆νext).

For low statistics, the probability of finding the ion’s frequency in the interval
[ν̄ − σs, ν̄ + σs], with σs the standard deviation of ν, is lower than expected for a
Gaussian distribution centred in ν and with standard deviation ∆ν. In particular,
the random variable (ν − ν̄) /

√
σ2
s/N has a Student’s t-distribution with N − 1

degrees of freedom [165,166]. Given the symmetry of this distribution, the proba-
bility of finding the frequency ν within a certain interval around the average value
can be expressed in terms of the Student’s cumulative distribution as

P

(
ν̄ − cs

σs√
N

< ν < ν̄ + cs
σs√
N

)
= 1− 2P

(
ν − ν̄√
σ2
s/N

> cs

)
, (5.6)

where cs is a coefficient that determines the interval size in units of σs/
√
N . For a

confidence level of 68.3 %, the coefficient cs corresponds to the 84.1th percentile of
the Student’s t-distribution. The eigenfrequency uncertainty ∆ν has consequently
been multiplied by cs to obtain a realistic estimate of the uncertainty even for a low
number of measurements N . cs is always higher than one, decreases monotonously
with N , and tends to one for N → ∞ [166].

The other basic parameter that has been optimized is the excitation voltage.
For the detection of the radial eigenmotions using the EMCCD signal, a com-
promise has been found between a desirable small amplitude to attenuate the
systematic effects due to the field imperfections and a good SNR. In the left side
of Fig. 5.6, the FWHM of the ion image in the radial plane is plotted for different
excitation voltages maintaining the excitation time fixed. For low voltages, the
fluctuations in the fluorescence signal led to poor SNRs. This is pointed out by
the chi-squared test, where χ2 < 1 confirms that it is improperly fitting noise. On
the contrary, for high ion amplitudes, the signal became blurry, since the number
of photons registered in each individual pixel was very low. This translates into a
high value of χ2 which suggests that the uncertainties are being underestimated.
An optimal configuration was found for V +

dip ≈ 4− 8 µVpp in this case. A similar
compromise was obtained for the PMT detection in the axial eigenmotion.

As discussed in Sec. 2.1, the motional frequencies varies with the ion’s ampli-
tude as a consequence of the imperfections of the magnetic and electric field. To
quantify this deviation, the axial frequency was measured for different excitation
voltages. The results are shown on the right side of Fig. 5.6. The frequencies
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Figure 5.6. Optimization of the excitation voltage. The blue smaller solid circles
and the bigger grey ones represent the individual and average data, respectively.
Left: FWHM of the modified-cyclotron distribution as a function of the excitation
voltage. In the upper part, both the R2 (coefficient of determination) and the
reduced chi-squared statistics are plotted. Right: axial frequency as a function of
the axial oscillation amplitude (bottom x axis) and dipolar excitation voltage (top
x axis). The data points are obtained from the fits of the resonance curves as
shown in Fig. 5.4. ν0 = 271 329.748 Hz.

have been corrected to take into account the drift of the electric field during the
measurement. The axial amplitude has been estimated as

ρz =
1

2

Ez

Er

ν1
νz

(
ρ+

V z
dip

V +
dip

t+dip
tzdip

+ ρ−
V z
dip

V −
dip

t−dip
tzdip

)
, (5.7)

where Er,z are the radial and axial components of the electric field in the trap
centre (calculated using SIMION1), ν1 = ν+ − ν−, and ρ+,− are the modified-
cyclotron and magnetron amplitudes obtained from the EMCCD images. V +,−,z

dip

are the excitation voltages and t+,−,z
dip the excitation times. Comparing the re-

sults from the fit in the right side of Fig. 5.6 with Eq. (2.13b), a coefficient ratio
C4/C2 = 1.23(20) · 10−2 is obtained.

5.1.4 Filtering of spurious data

Some of the experiments threw faulty data on the ion’s amplitude or the scattered
photons, mostly originating from the collisions with background particles during
the excitation time. These data needed to be deleted during the analysis. For this
purpose, each of the values obtained for the ion’s width (EMCCD) or the scattered

1SIMION Ion and Electron Optics Simulator v8.0
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Figure 5.7. Filtering of faulty measurements in a set of consecutive scans. The
points which deviate more than a fixed number of standard deviations (around
five) from the mean (green solid circles) are discarded. ν+ = 2675 607.174(25) Hz.

photons (PMT) have been compared with the rest of the data taken under the same
circumstances in other frequency scans. A specific data point has been discarded
when it differs more than a number of standard deviations (around ten) from the
mean value of the rest of the experiments applying the same excitation frequency
and voltage. An example of this kind of filtering of faulty measurements is shown
in Fig. 5.7.

In addition to the filtering of individual erroneous experiments, full scans have
been also discarded when the expected fit using a sinc/Gaussian functional form is
not possible. In most of these cases, the ion was lost in the middle of a frequency
scan and the resonance curve was not fully completed. In other cases, some prepa-
ration steps in the experiment may have failed, such as the laser regulation, but it
was detected at the time.

5.1.5 Determination of the cyclotron frequency

The cyclotron frequency has been calculated from direct measurements of the three
eigenfrequencies by means of the invariance theorem (Eq. (2.10)) since this rela-
tionship is satisfied even for first-order misalignments between the trapping fields or
for a certain degree of trap ellipticity [167]. Nevertheless, the straightforward con-
nection between the cyclotron frequency and the radial eigenfrequencies (Eq. (2.9))
has also been explored. In that case, the modified-cyclotron frequency ν+ was also
measured directly, but the magnetron frequency ν− was determined through its
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Figure 5.8. Direct eigenfrequency measurements theorem and coupling of
the radial motions. Resonance curves for the three ion’s eigenmotions and
a measurement of the sidebands around the modified-cyclotron frequency.
The centre values for the direct measurements are ν+ = 2672 839.214(37) Hz,
ν− = 16 524.82(22) Hz, and νz = 297 226.67(25) Hz. For the double-peak
measurement, νRS = 2672 829.975(29) Hz, νBS = 2672 832.234(62) Hz, and
ν+ = 2672 830.772(41) Hz. Using Eq. (5.8), the magnetron frequency is
ν− = 16 533.563(80) Hz. The excitation times are t+dip = 1 s, t−dip = 100 ms, and

tzdip = 100 ms, and the excitation voltages V +
dip = 6 µVpp, V −

dip = 60 µVpp, and
V z
dip = 100 µVpp. In the double-peak measurement, νquad = 2689 365 Hz and

Vquad = 25 mVpp.

coupling to ν+ by an external quadrupolar electric field oscillating at νquad ≈ νc.
The formalism used to describe this coupling between two of the Penning-trap
eigenmotions can be found in Ref. [70]. It can be shown that two sidebands at
frequencies νRS and νBS around ν+ appear as a consequence of this coupling. The
magnetron frequency can be calculated as

ν− = νquad + ν+ − νRS − νBS. (5.8)
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Table 5.1. Cyclotron frequency of 40Ca+ obtained by three different methods:
the invariance theorem (Eq. (2.10)), the sum of the radial eigenmotions measured
directly (Eq. (2.9)), and the same but determining the magnetron frequency from
the coupling of the radial motions (Eq. (5.8)).

Invariance Direct Double-peak
νc (Hz) 2 689 365.394(46) 2 689 364.03(22) 2 689 364.34(11)

The distance between the sidebands is controlled by the voltage of the external
quadrupolar field, while its frequency regulates the relative height of the two side-
band peaks.

Figure 5.8 shows an example of the determination of the three eigenfrequen-
cies both directly and through the double-peak signal obtained in the coupling
between radial motions. In this case, 5/3/5/5 frequency scans of the eigenmotions
ν+/νz/ν−/ (ν+ ↔ ν−) were performed. The cyclotron-frequency values obtained
are presented in Tab. 5.1. As it can be seen, the two methods using only the radial
modes agree, but they disagree with the invariance theorem results leading to a
systematic shift of 4 · 10−7. This can be used to estimate misalignment between
the magnetic and electric field θtrap or a certain degree of trap ellipticity ϵtrap (lack
of symmetry around the magnetic field). Following Ref. [168],

9

4
θtrap −

1

2
ϵ2trap =

2ν+ν−
ν2
z

− 1. (5.9)

For all the measurements presented throughout this thesis, the cyclotron frequency
calculated using only the radial motions is lower than the value using the invariance
theorem, which means that the left side of Eq. (5.9) is negative. Therefore, elliptic-
ity is a predominant phenomenon here over misalignments. Assuming ϵtrap ≫ θtrap,
ϵtrap = 0.7374(10)◦. This value did not change over time (it only depends on the
mechanical structure of the apparatus), and it could be used to correct the double-
peak cyclotron-frequency value by ν−ϵ

2
trap/2 [168].

Since the use of the invariance theorem is more robust against systematic
effects for the determination of the cyclotron frequency, it has been employed
for all the measurements presented in the following. For the data presented in
Fig. 5.8, the contributions of each eigenfrequency to the cyclotron frequency un-
certainty, (∆νc)u = (∂νc) / (∂νu)∆νu, are (∆νc)+ = 37 mHz, (∆νc)− = 1.3 mHz,
and (∆νc)z = 46 mHz. Since these quantities are quadratically added to calculate
the cyclotron-frequency uncertainty, the magnetron contribution is negligible. The
most relevant contributions come from ν+ and νz. They are usually of the same
order, so the same number of scans has been performed for the determination of
these two eigenfrequencies.
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5.1.6 Determination of the mass ratio

Cyclotron frequency measurements of two calcium isotopes were performed in an
alternating way to determine their frequency ratio. Figure 5.9 shows an example
of this. One of the isotopes was used as a reference so that the series begins
and ends with a measurement of it. In this way, the cyclotron frequency of the
reference ion can be precisely obtained at any time ti at which the ion of interest is
studied. Linear interpolation between the two nearest reference-ion measurements,
νref
c (ti−1) and νref

c (ti+1), has been used:

νref
c (ti) = νref

c (ti−1) +
ti − ti−1

ti+1 − ti−1

[
νref
c (ti+1)− νref

c (ti−1)
]
. (5.10)

Using Gaussian error propagation, the uncertainty in the cyclotron frequency of
the reference ion at ti can be estimated as

∆νref
c (ti) =

√[
ti − ti−1

ti+1 − ti−1

∆νref
c (ti+1)

]2
+

[(
1− ti − ti−1

ti+1 − ti−1

)
∆νref

c (ti−1)

]2
.

(5.11)
A value of the frequency ratio R has been obtained for each measurement of

the ion of interest, ν int
c (ti). It has been calculated as

R (ti) =
νref
c (ti)

ν int
c (ti)

, (5.12)

with an uncertainty given by

∆R (ti) = R (ti)

√[
∆νref

c (ti)

νref
c (ti)

]2
+

[
∆ν int

c (ti)

ν int
c (ti)

]2
. (5.13)

The final value of the cyclotron-frequency ratio has been calculated as the weighted
mean of the individual ratios, Ri ≡ R (ti):

R̄ =

∑
N wiRi∑
N wi

, (5.14)

with wi = 1/ (∆Ri)
2. The uncertainty analysis is described in Sec. 5.1.3 for the

eigenfrequency determination. An internal (Eq. (5.4)) and external (Eq. (5.5))
uncertainty can be associated with the sample of frequency ratios:

∆Rint =

√
1∑
N wi

, ∆Rext =

√∑
N wi (Ri −R)2

(N − 1)
∑

N wi

. (5.15)

The largest one has been taken as the statistical uncertainty ∆Rstat. The final
uncertainty associated with the cyclotron-frequency ratio is calculated by adding
quadratically the systematic uncertainty ∆Rsys,

∆R =
√

∆R2
stat +∆R2

sys. (5.16)

A discussion about the different systematic effects and the associated uncertainties
can be found in Sec. 5.5.
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Figure 5.9. Determination of the frequency ratio. The cyclotron frequency of the
reference ion, 40Ca+ in this case, is plotted in the upper panel (solid circles). The
cyclotron frequency of the ion of interest, 48Ca+ in this case, is plotted in the
middle panel. The cyclotron frequency of the reference ion at the time the ion of
interest is measured is determined from linear interpolation (blue solid triangles
in the upper panel). The frequency ratio is represented in the lower panel, where
R0 is the mean value.

5.2 Frequency ratio of 48Ca+ and 40Ca+

48Ca is a neutron-rich (0.187 % natural abundance) isotope of calcium which
contains 20 protons and 28 neutrons, which are both magic numbers and con-
tribute to an unusually high half-life of 6.4(14) · 1019 years [169]. The only ob-
served disintegration pathway is the weak second-order process of double-beta
decay 48Ca → 48Ti + 2e− + 2ν̄e [55]. Two neutrons in the atomic nucleus decay
in two two protons emitting two electrons and two antineutrinos. This decay does
not violate lepton number conservation and is allowed in the Standard Model.
There is, however, another type of double-beta decay hypothesized, known as neu-
trinoless double-beta decay, emitting only electrons, which is only possible if the
neutrino is considered as a Majorana particle [170]. The detection of the neutri-
noless double-beta decay would be a remarkable discovery by itself, clarifying the
nature of the neutrino [171,172].

48Ca is a particularly interesting nucleus since it has the highest Q-value
(4267.98(32) keV [173]) of any proposed double-beta decaying isotope. ThisQ-value
can be used in neutrinoless double-beta decay to precisely delimit the energy win-
dow in the search of events. Penning traps can provide a precise value of this
quantity by measuring the atomic mass of the mother and daughter nuclei, which
constitutes a relevant motivation for the implementation of the optical method [50].
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Figure 5.10. 48Ca+ - 40Ca+ mass ratio, ion position, and motional amplitude.
The frequency ratios are plotted in the lower panel, where the weighted mean is
compared with the bibliography value [149]. The three ion’s motional amplitudes
after excitation are represented for the two ions in the middle panel. The average
position around the centre of the trap monitored in the radial direction is plotted
in the upper panel. The day number is marked on the top.

Figure 5.10 shows the cyclotron-frequency ratios measured in this work along
with the fluctuations of the position of the ion in the radial direction and the
motional amplitudes after excitation. It comprises a total of five days of measure-
ments taken in three different periods and using different trap configurations listed
in Tab. 5.2. The first day corresponds to data taken the 13th of July of 2022, using
trap configuration 1. A total of four ratios were obtained from these measure-
ments. The second and third days shown in Fig. 5.10 correspond to the 13th and
the 14th of September, using configuration 2. The trap configuration was changed
due to the appearance of unknown noise at the modified-cyclotron frequency that
heated the ion while laser cooling was switched off. The last two days of measure-
ments on 48Ca+ were the 19th and the 20th of October. For these measurements,
a new trap configuration (number 3 in Tab. 5.2) was explored, trying to mitigate
the impact of the electric-field instability on the cyclotron-frequency uncertainty.

The final value of the cyclotron-frequency ratio is R = 1.199 938 029(15). For
the different trap configurations 1, 2, and 3 listed in Tab. 5.2, the values obtained
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are R = 1.199 938 011(20), 1.199 938 030(23), and 1.199 938 038(27). The literature
value Rbib is calculated from the atomic masses of the reference and interest ion,
mref and mint, as

Rbib =
mint −me + E

(1)
B

mref −me + E
(1)
B

, (5.17)

where me = 0.000 548 579 909 067(17) u [3] is the (atomic) mass of the electron

and E
(1)
B = 6.113 155 47(25) eV [174] is the ionization energy of calcium. For

48Ca+ - 40Ca+, Rbib = 1.199 938 024 55(81) [149]. The literature value of the atomic
mass of 48Ca was directly measured in the Penning-trap mass spectrometer SHIP-
TRAP by comparing the cyclotron frequency of 48Ca+ with that of 12C4

+ using the
PI-ICR technique [175]. For 40Ca+, the ratio 40Ca17+ - H2

+ was measured using
ToF-ICR in the Penning-trap mass spectrometer SMILETRAP [176]. For a brief
introduction to the techniques PI-ICR and ToF-ICR, see Sec. 2.3.

In addition to the central frequency, the ion’s motional amplitude and po-
sition have also been extracted from the analysis procedure. These values are
plotted in the upper panel of Fig. 5.10. The radial amplitudes for the modified-
cyclotron and magnetron motions after excitation can be extracted directly from
the EMCCD data used to obtain the ion’s radial eigenfrequencies. The initial
axial amplitude after excitation has been estimated from Eq. (5.7). The mean val-
ues of the amplitudes obtained for the three eigenmotions are ⟨ρ+⟩ = 30(20) µm,
⟨ρ−⟩ = 30(12) µm, and ⟨ρz⟩ = 46(40) µm.

The mean radial position of the ion shown in the upper panel of Fig. 5.10
describes the spatial drift of the trap centre. It takes into account both modified-
cyclotron and magnetron data. During a whole day of measurements (around
8 hours), the mean value of the position changed 1 - 2 µm. This is not a problem
since the time needed for one cyclotron measurement was around thirty minutes.
During such time intervals, only changes of tens of nanometers are observed.

Figure 5.11 shows the individual eigenfrequencies corresponding to the mea-
surements presented in Fig. 5.10. As can be observed, all the frequencies from
day two to five evolve every day following a capacitor charge curve. The relative
frequency shifts during a full day are quite high: 9.1(14) · 10−7 for the modified-
cyclotron motion, 1.71(45) · 10−4 for the magnetron motion, and 6.9(1.5) · 10−5 for

Table 5.2. Motional frequencies and excitation times of 40Ca+ for the three trap
configurations.

Config.
ν+ ν− νz ν+/νc ν−/νc νz/νc

t+dip t−dip tzdip
(MHz) (kHz) (kHz) (ms) (ms) (ms)

1 2.673 16.5 297 0.9939 0.0061 0.111 1000 100 100
2 2.676 13.8 271 0.9949 0.0051 0.101 1000 100 100
3 2.686 3.8 142 0.9985 0.0014 0.053 500 100 100
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Figure 5.11. Eigenfrequencies of 48Ca+ and 40Ca+. The three eigenfrequencies
used to compute the cyclotron frequency in Fig. 5.10 are plotted as a function of
the measurement time. The day number is marked on the top.

the axial motion. These shifts did not affect individual νc measurements due to
their shorter timescale. However, an additional uncertainty taking into account
this drift became necessary, especially for the measurements taken when it is more
pronounced (measurements in the morning). In that sense, the frequency variation
during the cyclotron-frequency measurement has been estimated for each of the
three eigenfrequencies by linear interpolation with the neighbouring values; ex-
trapolation has been used for the first and last measurements. This variation has
been added quadratically to the statistic uncertainty obtained from the analysis
procedure.

This drift seems originated from noise of an electrical nature since it is visible
in the axial motion, which only depends on the electric field. In addition, the
observed drift in the radial eigenfrequencies can be fully explained by the electric
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Figure 5.12. Correlation matrix of the 48Ca+ - 40Ca+ eigenfrequency data. In the
off-diagonal plots, the mutual dependence between the different eigenfrequencies
of the same cyclotron-frequency measurement is studied. The fitting functions are
given by Eq. (2.6) (radial motions in terms of the axial eigenfrequency) and its in-
verse function. The diagonal plots show frequency histograms. The matrix on the
left side is built from the 40Ca+ data while the one on the right side is built from
48Ca+. For 40Ca+, δνref

+ = νref
+ − 2 675 607.798 Hz, δνref

− = νref
− − 13 756.150 Hz,

and δνref
z = νref

z − 271 330.731 Hz. For 48Ca+, δν int
+ = νref

+ − 2 227 481.636 Hz,
δν int

− = νref
− − 13 770.506 Hz, and δν int

z = νref
z − 247 696.884 Hz.

field fluctuations manifested in the axial motion. In particular, the dependence of
ν± on the axial frequency is

∂ν±
∂νz

= ∓νz
νc

1√
1− 2

(
νz
νc

)2 . (5.18)

Assuming νz ≪ νc, the relative fluctuations in the radial and axial eigenfrequencies
can be related as

∆ν±
ν±

=
ν2
z

νcν±

∆νz
νz

, (5.19)

which means the electric-field fluctuations affect the frequencies ν+/ν−/νz in a pro-
portion 0.010/1.99/1. The difference between maximum and minimum frequency
observed in Fig. 5.11 are in proportion 0.0132(47)/2.5(1.2)/1. Another possible
source might be the collisions with the residual gas molecules, although this would
mean a dependence of the collision rate with the mean free path yielding a shorter
lifetime for the faster motion, opposite to the observations.

In order to gain insight into these drifts, a correlation matrix to study the
interdependence of the three eigenfrequencies has been built for both 40Ca+ and
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Figure 5.13. 44Ca+ - 40Ca+ mass ratio, ion position, and motional amplitude. The
panels show the same kind of results as in Fig. 5.10.

48Ca+. The results are shown in Fig. 5.12. The Pearson correlation coefficients
for the pairs (ν+, ν−)/(ν+, νz)/(ν−, νz) are -0.96/-0.98/0.96 and -0.92/-0.98/0.89 for
40Ca+ and 48Ca+, respectively. The high anti-correlation (negative slope) between
νz and ν+, and the correlation between νz and ν−, corroborate the hypothesis of
an electric noise source.

The magnetic field was more stable than the electric field: the relative variation
during an entire day of measurements has been ∆B/B = 1.47(80) · 10−7 (from νc
data) and ∆E/E = 2.2(16) · 10−4 (from νz data). Equation (2.6) has been used
with νc as the only free parameter to fit the frequency correlations in Fig. 5.12.
A value of νc = 2689 365.49(50) Hz is extracted from these fittings for 40Ca+,
which is compatible and has a comparable uncertainty to that obtained using the
interpolation method, νc = 2689 365.480(44) Hz.

5.3 Frequency ratio of 44Ca+ and 40Ca+

44Ca+ is the second most abundant isotope (2.09 %) of calcium. Prior to this work,
its atomic mass had only been determined from nuclear reactions [177, 178]. The
data shown in Fig. 5.13 correspond to the measurements carried out on the pair
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Figure 5.14. Eigenfrequencies of 44Ca+ and 40Ca+. As in Fig. 5.11, the three
eigenfrequencies are plotted as a function of the measurement time, but now only
trap configuration 3 was used.

44Ca+ - 40Ca+ from the 21th to the 24th of October 2022. A total of 18 individual
cyclotron-frequency ratio measurements have yielded R = 1.099 917 0772(89). The
relative uncertainty is 8.1 · 10−9, better than the value obtained for 48Ca+. The
literature value is Rbib = 1.099 917 0830(88) [149] (see Eq. (5.17)), in agreement
with the measured value in this work and with similar uncertainty.

For these measurements, the trap configuration 3 (see Tab. 5.2) was used. As
was already stated in the previous section, the aim of lowering the axial frequency
was to improve the cyclotron-frequency uncertainty. According to Eq. (2.10), a
smaller value of the axial frequency leads to a smaller impact of its uncertainty
on the cyclotron frequency. Although the ion of interest is different, a comparison
between the results on the pair 48Ca+ - 40Ca+ (most of the data were measured



96 Chapter 5. Cyclotron-frequency ratios of calcium isotopes
δν

re
f

z
(H

z)
δν

re
f

−
(H

z)
δν

re
f

+
(H

z)

δνref
+ (Hz) δνref

− (Hz) δνref
z (Hz)

1

0

−1
2

0

−2
20

0

−20

0−1 1−2 0 2−20 0 20

δν
in
t

z
(H

z)
δν

in
t

−
(H

z)
δν

in
t

+
(H

z)
δν int

+ (Hz) δν int
− (Hz) δν int

z (Hz)

1

0

−1
2

0

−2
20

0

−20

0−1 1−2 0 2−20 0 20

Figure 5.15. Correlation matrix of the 44Ca+ - 40Ca+ eigenfrequency data.
The structure is the same as for Fig. 5.12. The fitting function is likewise
given by Eq. (2.6). For 40Ca+ (left panels), δνref

+ = νref
+ − 2 685 578.023 Hz,

δνref
− = νref

− − 3 783.336 Hz, and δνref
z = νref

z − 142 624.313 Hz. For the
measurements of 44Ca+ (right panels), δν int

+ = νref
+ − 2 441 274.055 Hz,

δν int
− = νref

− − 3 784.029 Hz, and δν int
z = νref

z − 135 991.971 Hz.

using νz > 270 kHz) and the pair 44Ca+ - 40Ca+ (νz = 142 kHz) data shows an
improvement in the cyclotron frequency uncertainty.

Figure 5.14 shows the measured eigenfrequencies, observing drifts with the
same trend as in Fig. 5.11. The correlation matrices have also been plotted in
Fig. 5.15 to certify the electric nature of the noise source. For these measure-
ments, the Pearson correlation coefficients for the pairs (ν+, ν−)/(ν+, νz)/(ν−, νz)
are -0.84/-0.98/0.88 and -0.86/-0.99/0.86 for 40Ca+ and 44Ca+, respectively.

5.4 Frequency ratio of 42Ca+ and 40Ca+

42Ca+ is the third most abundant calcium isotope (0.647 %). The measurements
presented in Fig. 5.16 were taken from the 25th to the 28th of October 2022. A
total of 11 individual measurements of the cyclotron-frequency ratio have yielded
R = 1.049 948 070(11), with a relative uncertainty is 1.0 · 10−8, compared to the lit-
erature value Rbib = 1.049 948 0720(41) [149] obtained using Eq. (5.17). The mass
of 42Ca+ in Ref. [179] was not obtained from direct measurements but deduced
from spectroscopy data. For the experiments presented here, the trap configura-
tion 3 was also used. Although a worse relative uncertainty is obtained compared
to the pair 44Ca+ - 40Ca+, the dispersion of the data is of the same order: 5.4 · 10−8

against 4.0 · 10−8 for 44Ca+. Similar results for the frequencies and correlations to
those already presented in Figs. 5.14 and 5.15 are obtained.
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Figure 5.16. 42Ca+ - 40Ca+ mass ratio, ion position, and motional amplitude. The
structure is the same as for Figs. 5.10 and 5.13.

5.5 Evaluation of systematic uncertainties

The uncertainties presented in Figs. 5.10, 5.13, and 5.16 are statistical, and thus
can be reduced with the number of measurements. They are related to the concept
of precision, and in case the cyclotron-frequency ratio R has a Gaussian distribu-
tion, ∆R ∼ 1/

√
N , being N the number of measurements. In addition, there are

always sources of systematic uncertainties that cannot be avoided and limit the
final accuracy of the measurement. In motional-frequency measurements with Pen-
ning traps, there are several sources of systematic effects inducing frequency shifts,
mostly arising from the simplifications assumed when modelling mathematically
the trapped ion and its environment.

One source of systematic frequency shifts is the finite amplitude of the ion
during its excitation in the measurement cycle. A spatially homogeneous mag-
netic field and a perfect harmonic electric potential are assumed when obtaining
the motional equations of the ion. However, it is necessary to quantify how much
these hypotheses are satisfied in the real Penning trap. To do that, the electric and
magnetic fields are expanded in a power series, and perturbation theory is applied
to quantify how much the eigenfrequencies are shifted by higher-order compo-
nents [68]. The expressions for the frequency shifts caused by the quadrupolar



98 Chapter 5. Cyclotron-frequency ratios of calcium isotopes

and dipolar components of the electric potential and magnetic field, respectively,
can be found in Sec. 2.1.1.

Taking into account that in a single eigenfrequency measurement the two eigen-
motions that were not probed had negligible oscillation amplitudes compared to
the one that is excited, the shifts due to the electric field imperfections can be
calculated as

∆ν± = ±C4

C2

3

2d20

ν−
1− ν−/ν+

ρ2± (5.20)

for the radial eigenfrequencies and

∆νz =
C4

C2

3

4d20
ρ2zνz (5.21)

for the axial one (see Eq. (2.13)). C2 and C4 are dimensionless coefficients account-
ing for the harmonic and quadratic components of the potential, respectively, and
d0 is a characteristic dimension of the trap (see Eq. (2.4)).

The eigenfrequency shifts propagate into the cyclotron frequency as

∆νc =

√
(ν+ +∆ν+)

2 + (ν− +∆ν−)
2 + (νz +∆νz)

2 −
√

ν2
+ + ν2

− + ν2
z

≈ νc

(√
1 + 2

ν+∆ν+ + ν−∆ν− + νz∆νz
ν2
c

− 1

)
≈ ν+∆ν+ + ν−∆ν− + νz∆νz

νc
,

(5.22)

where ∆νu ≪ νu has been used in the last step.
Combining Eqs. (5.22), (5.20), and (5.21), the frequency shift on the cyclotron

frequency due to the imperfections of the electric field can be quantified as

∆νc =
C4

C2

3

2d20

1

νc

(
ρ2+ν+ν− − ρ2−ν

2
− +

1

2
ρ2zν

2
z

)
. (5.23)

The amplitudes of the radial eigenmotions have been directly determined from
the EMCCD images. The amplitude of the axial eigenmotion has been calculated
using Eq. (5.7). Figure 5.17 shows a histogram of the relative cyclotron frequency
shift in the measurements presented in the previous sections. The comparison
with other experiments shows that the optical method outperforms the electronic
detection technique for an equivalent mass-to-charge ratio even when there is still
room for improvement, as shown in the figure. The current limitation arises from
the measurement of the axial eigenfrequency since this motion had to be excited
to ρz > 100 µm in some cases. A way to diminish this systematic shift would be to
decrease the ion’s motional amplitude during the eigenfrequency measurements.
In this respect, Fig. 5.23 shows the best situation that can be achieved by the
technique developed during this work (UGR at Doppler limit) and the shifts that
would be obtained for an ion excited at 1 mK (in all modes). Another possible
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Figure 5.17. Systematic frequency shifts due to electric field imperfections. His-
tograms of the cyclotron frequency shift caused by the imperfections of the electric
field according to Eq. (5.23). The empty bars correspond to 40Ca+ and the ones
filled with the blue pattern to the ion of interest. The amplitude data presented in
Figs. 5.10, 5.13, and 5.16 are used. The shifts are expressed in terms of C4/C2 units,
according to Sec. 2.1.1 and Ref. [68]. The green dashed-dotted line indicates the
best possible performance of the technique, assuming the ion is excited to a min-
imum detectable initial oscillation amplitude of ρ± ≈ 4.2 µm, while for the red
dashed-dotted line ρu corresponds to 1 mK in all the eigenmotions. The yellow
dashed-double-dotted line estimates the shift in the Penning trap spectrometer
PENTATRAP at the Max-Planck Institute for Nuclear Physics in Heidelberg for
m/q ≈ 40 u/C, according to the frequency and amplitude data in Ref. [180]. The
purple dashed line indicates the frequency shift in the experiment at Florida State
University [181].

strategy would be to compensate the amplitudes of the different eigenmotions to
minimize the term between parenthesis in Eq. (5.23).

The systematic shifts due to imperfections in the magnetic field can be quan-
tified as

∆ν± = −1

2

B2

B0

ν±ρ
2
± (5.24)

for the radial eigenmotions while ∆νz = 0 for the axial one, where Eq. (2.14) (based
on Ref. [68]) has been followed and a non-negligible amplitude has only been con-
sidered for the eigenmotion that was probed in that specific measurement. Com-
bining Eq. (5.24) with Eq. (5.22), the systematic shift on the cyclotron frequency
due to magnetic field imperfections is

∆νc =
1

2

B2

B0

1

νc

(
−ρ2+ν

2
+ − ρ2−ν

2
−
)
. (5.25)
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Figure 5.18. Systematic frequency shifts due to magnetic field imperfections. His-
tograms of the cyclotron frequency shift due to imperfections of the magnetic field
according to Eq. (5.25). The bar style and the vertical lines are analogous to
Fig. 5.17. The shifts are expressed in terms of B2/B0, according to Sec. 2.1.1 and
Ref. [68].

Figure 5.18 shows the systematic shifts due to the imperfections of the magnetic
field for the measurements presented in the previous sections. Under similar condi-
tions of mass-to-charge ratio, the shifts obtained are about one order of magnitude
lower than for other techniques, mainly due to the lack of contribution of the axial-
motion amplitude.

The shifts on the cyclotron frequencies νref
c and ν int

c propagate to the frequency
ratio R as

∆R =
νref
c +∆νref

c

ν int
c +∆ν int

c

− νref
c

ν int
c

=
νref
c

ν int
c +∆ν int

c

(
∆νref

c

νref
c

− ∆ν int
c

ν int
c

)
≈ νref

c

ν int
c

(
∆νref

c

νref
c

− ∆ν int
c

ν int
c

)
.

(5.26)

If ∆νref
c = ∆ν int

c ≡ ∆ν,

∆R

R
≈ ∆ν

(
1

νref
c

− 1

ν int
c

)
= ∆ν

ν int
c − νref

c

νref
c ν int

c

∝ ∆m,

(5.27)

which constitutes the so-called mass-dependent shift [182]. Using the value of the
ratio C4/C2 estimated in Sec. 5.1.3 (see Fig. 5.6), a relative systematic shift in the
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ratio of 4.3 · 10−9, 2.3 · 10−9, and 1.7 · 10−9 has been estimated for 48Ca+, 44Ca+,
and 42Ca+, respectively. Considering a spatial homogeneity of 0.1 ppm over 1 cm3

in the Penning trap, a ratio B2/B0 ≈ 0.2 m−2 has been estimated, which translates
into a relative systematic shift in the ratio of 8.0 · 10−11, 2.6 · 10−11, and 8.2 · 10−12

for 48Ca+, 44Ca+, and 42Ca+, respectively.
Two more sources of systematic uncertainties must be quantified: relativis-

tic and image-charge frequency shifts. The fact of considering a non-relativistic
model for the description of the ion’s motion can also lead to the appearance of
a systematic shift. The mass of the ion at rest increases due to its velocity v

as mrel = m/
√
1− (v/c)2. Since ν+ ≫ νz, ν−, the modified-cyclotron motion con-

tributes dominantly to this shift. The relative shift in the cyclotron frequency can
be calculated as

∆νc
νc

=
m

mrel

− 1 =

√
1−

(ν+ρ+
c

)2
− 1. (5.28)

Considering that ν+ = 2.7 MHz and that the maximum value of the amplitude is
ρ+ ≈ 69 µm, a relative systematic shift in the cyclotron frequency of the calcium
isotopes of 1.3 · 10−13 is estimated.

The image charge the ion induces on the electrodes alters the total electric
potential, causing a shift in the ion’s eigenfrequencies. Following Ref. [183], the
relative shift in the cyclotron frequency is given by

∆νc
νc

≈ m

4πε0B2r30
, (5.29)

where ε0 is the vacuum permittivity and r0 is the trap radius. Substituting the
parameters of this experiment, a relative systematic shift in the cyclotron frequency
and in the ratio of 9 · 10−11 and 2 · 10−11 are obtained, respectively.

In the experiments presented in this chapter, two 866-nm repumping lasers
were switched off while applying the external excitation. Since the 397-nm cooling
lasers were not switched off, the ion was not in the ground state, but in some of
the D3/2-manifold states. In terms of energy, this means a difference of 1.69 eV,
which represents a relative change of 4.5 · 10−11 in the mass of 40Ca+. This is not
critical for the precision achieved in this work. If better precision is envisaged, this
shift can be removed by preparing the ion in the ground state before the excitation
and switching off all the cooling lasers during this period.

5.6 Other studies

The values of the atomic mass extracted from isotope ratios measured in this thesis
can be calculated using Eq. (5.17) and are compared with the literature values in
Tab. 5.3. The final uncertainty is dominated by the statistical contribution. As
shown in Sec. 5.5, the main source of systematic frequency shifts, which limit the
attainable accuracy, are the imperfections of the electric field, in the order of 10−9
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Table 5.3. Atomic mass of the calcium isotopes. The bibliography data are ex-
tracted from the 2020 Atomic Mass Evaluation [149].

This work Bibliography

Isotope mint (u) ∆mint/mint mint (u) ∆mint/mint
48Ca 47.952 522 82(60) 1.3 · 10−8 47.952 522 654(19) 4.0 · 10−10

44Ca 43.955 481 31(36) 8.1 · 10−9 43.955 4815(3) 6.8 · 10−9

42Ca 41.958 617 74(44) 1.0 · 10−8 41.958 617 78(16) 3.8 · 10−9

and mainly due to the axial oscillation amplitude. Nevertheless, this value could be
reduced in the future by properly tuning the trapping potentials to make the trap
more harmonic and choosing a convenient ratio of the ions’ amplitude according
to Eqs. (5.23) and (5.26). Moreover, this systematic shift could be treated as
a correction shift since the ion’s amplitude can be directly determined for each
individual cyclotron-frequency measurement.

The statistical uncertainty could be reduced either by performing more mea-
surements or by increasing the excitation time. The first strategy scales as 1/

√
t

and the second as 1/t. However, larger measurement times are also more affected
by the system instabilities, leading to lower SNRs. As it was previously inves-
tigated by the correlation analysis (see Secs. 5.2 and 5.3), the main source of
statistical noise comes from the electric field.

The DC power supply was measured to feature long-term relative stability of
4.5 · 10−5. For this, the magnetron frequency was monitored, since its relative
fluctuation is a direct measurement of the electric-field fluctuation (Eq. (5.19)). In
this sense, the reduction of the axial frequency, which implies a lower dependence
of the cyclotron frequency on the electric field, led to an increase in precision. For
44Ca+ and 42Ca+, the dispersion of the cyclotron-frequency ratios are 4.0 · 10−8

and 5.4 · 10−8, respectively, lower than 8.8 · 10−8 for 48Ca+.

Fundamental studies with calcium isotopes

The precise knowledge of the masses of the stable calcium isotopes has a spe-
cial interest in the field of isotope-shift spectroscopy for King-plot analysis. In
particular, the dependence between the isotope shift of two internal transitions
is studied. The observation of a non-linear relation between these frequencies
could be interpreted as an indication of the existence of new physics beyond
the Standard Model [184]. Besides calcium, with five stable isotopes featuring
zero nuclear spin (A = 40, 42, 44, 46, 48), Sr+, Ba+, and Yb+ are also promis-
ing candidates, with three (A = 84, 86, 88), five (A = 130, 132, 134, 136, 138), and
five (A = 168, 170, 172, 174, 176) available isotopes, respectively [184,185].

The isotope frequency shift δνA,A′

i of a transition i in the isotope A with respect

to the isotope A′ can be divided into a component due to the nuclear mass, δνA,A′

i,MS ,
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Figure 5.19. King plot of the calcium isotopes. The dark-grey solid circles are
obtained using literature values [151]. The results using the mass values of this
thesis are represented by the red solid circles.

and another due to the nuclear charge radius, δνA,A′

i,FS . It can be written as

δνA,A′

i = δνA,A′

i,MS + δνA,A′

i,FS = Ki

(
1

mA,nuc

− 1

mA′,nuc

)
+ Fiδ

〈
r2c
〉A,A′

, (5.30)

where Ki and Fi are the so-called mass and field shift constants, respectively, and

δ ⟨r2c⟩
A,A′

= ⟨r2c⟩
A − ⟨r2c⟩

A′
is the difference of the mean squared nuclear-charge

radii. mA and mA′ are the nuclear masses of the two isotopes, calculated as

mA,nuc = mA − Zme + EB, (5.31)

where Z is the atomic number, and EB is the total binding energy, which is
18510(4) eV for calcium [186]. Although the isotope masses and certain internal
transitions can be determined to a high level of precision, the nuclear-charge radii
are currently determined with an uncertainty of 10−4 - 10−3 [83, 187]. Therefore,
two internal transitions are measured so that the nuclear charge radii term can
be left out. A relation between the isotope shifts of the two transitions i, j and
masses of the ions can be deduced [188]:

µδνA,A′

i = µδνA,A′

j + (Ki −Kj) , (5.32)

where µnuc = (mA,nucmA′,nuc) / (mA′,nuc −mA,nuc) is the relative mass change. This
relationship constitutes the King plot, and it is represented in Fig. 5.19. In the case
of calcium the best results are obtained for the two electric quadrupole transitions
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3p64s 2S1/2 ⇔ 3p63d 2D5/2 and 3p64s 2S1/2 ⇔ 3p63d 2D3/2, measured in Refs. [151,
189] by means of the electron shelving technique [190] and direct frequency-comb
Raman spectroscopy [191]. As expected, the results coincide with those using the
literature values, but the level of uncertainty is not improved. In any case, the
mass appears linearly in the two axes of Fig. 5.19, which attenuates its impact on
the deviations from linearity of the King plot.

Force sensing

In the experiments presented in this chapter, the ion can be considered an ex-
tremely sensitive radiofrequency fluorescence detector. The sensitivity is com-
monly used to quantify the detector performance, and it is defined as the mini-
mum discernible force that can be measured per frequency bandwidth. The force
exerted by the external field on the ion to increase the phonon number in the
mode u, F u

dip, is directly calculated from the measured motional amplitudes as

F u
dip =

2mωρu
tudip

, (5.33)

where ω ≡ ωz for the axial motion and ω ≡ ω1 for the radial ones. The force
detection sensitivity is calculated as

Sd =
F u
dip√
B
, (5.34)

where F u
dip is the detected force in the mode u and B =

(
tudip + tdet

)−1
is the mea-

surement bandwidth, with tdet the detection time. The sensitivity is usually nor-
malized to the signal-to-noise ratio as S̄d = Sd/SNR.

From the measurements presented in this thesis, a minimum normalized sen-
sitivity of S̄d = 7.4(35) yN/

√
Hz and S̄d = 24.9(99) yN/

√
Hz is reported in the

modified-cyclotron and axial motion, respectively. For the modified-cyclotron mo-
tion, Sd = 50(14) yN/

√
Hz is obtained with SNR = 6.8(13). For the axial motion,

Sd = 97(26) yN/
√
Hz and SNR = 3.9(5). The excitation times are t+dip = 1 s and

tzdip = 100 ms, and the detection time is tdet = 75 ms. This is the best value re-
ported to date for an experiment in the classical regime. As a comparison, the
Penning-trap experiment at NIST reported in 2010 a value of 390(150) yN/

√
Hz

at 867 kHz from an experiment realized in the classical regime using the axial
mode of a ≈ 100-ion two-dimensional planar array [150]. In 2021, the same group
reported a value of 5.76(24) yN/

√
Hz at 1.59 MHz using again the axial mode of

a two-dimensional Coulomb crystal but now cooled to the ground-state and ap-
plying quantum-based schemes [32]. These results could be improved by orders of
magnitude by a single ion cooled to the ground state of motion. The equivalent
classical force to prompt a change of a single quantum might be calculated by
using the classical motional amplitudes corresponding to n = 0 and n = 1, with
n the phonon number, in Eq. (5.33). Assuming ν+ ≈ νc, forces in the order of
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3 · 10−3 yN could be detected with a singly-charged particle in a 7-T magnetic
field. As an example, one-quantum modified-cyclotron jumps of an electron os-
cillating at 150 GHz are measured within cycles of 5 s in the g-factor experiment
presented in Ref. [192], which implies a force detection sensitivity in the order of
7 · 10−3 yN/

√
Hz.





Chapter 6

A test over the generalized
invariance theorem

The use of a two-ion crystal in a Penning trap as a platform to perform high-
precision mass measurements was first proposed in Ref. [37]. This method is a
particularization of the general idea presented in Ref. [35], where the ions are
located in different traps. As it was stated in Sec. 2.4, the two main advantages
of this method are its sensitivity and universality: it only requires one target ion
to determine the frequency ratio and it can be implemented for any ion species.

The link between the six modes’ eigenfrequencies and the cyclotron frequen-
cies of the two individual ions is provided by the generalized invariance theo-
rem (Eq. (2.20)), theoretically proposed for Penning traps [41] but not yet ex-
perimentally demonstrated. This relationship is strictly correct only for infinitesi-
mal ion amplitudes since the Coulomb interaction introduces amplitude-dependent
shifts in the motional frequencies.

In this chapter, motional frequency measurements of the six eigenmodes of a
balanced (40Ca+ - 40Ca+) crystal are presented. The level of accuracy reached
by the generalized invariance theorem is evaluated by comparing with single-
ion cyclotron-frequency measurements of 40Ca+ using the technique developed in
Chapter 5. The anharmonicities arising from the Coulomb potential are clearly
visible when probing the eigenmodes in the case of the unbalanced crystal. They
are treated as a perturbation to the harmonic potential, and the method of multi-
ple scales is used to calculate the dynamics of the system (see Appendix C). The
first measurements on an unbalanced crystal (42Ca+ - 40Ca+) are also presented,
underlining the differences in the analysis procedure with respect to the balanced
crystal. The results are subject to improvement, issues that are also discussed.

6.1 Preparation of the two-ion crystal

The two constituents of the crystal can be produced separately by the two dedi-
cated ion sources (see Sec. 3.1.1). The Paul-trap ion source, located closer to the
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Figure 6.1. Injection scheme to form a two-ion crystal in the Penning trap. Left:
time sequence showing the steps to load the two ions in the Penning trap. Right:
pictorial description showing the sequential production using the two ion sources
and the Penning-trap voltage adjustment. AX+ represents any ion species that is
produced with the ablation laser source, particularly in this chapter 40,42Ca+. A
crystal 40Ca+ - 232ThO2

+ is shown in the outlook (Chapter 7).

magnet, was used to produce the 40Ca+ sensor ion and other calcium isotopes,
while the ablation source supplied the target ion (see Fig. 3.1 for a general view of
the beamline). Figure 6.1 shows the injection scheme. The simultaneous in-flight
trapping was not possible since the sensor ion was lighter. The coolant sensor ion
was trapped first, and the Penning trap was later partially opened for 2 µs to cap-
ture the target ion. The lower voltage was 2 V above the trap’s bottom potential
so that laser-cooled ions remained in the trap. The trap was set to 180/168/150 V
in EC/CE/RE (see Sec. 3.1) to match the kinetic energy of the incoming ions.
Afterwards, the potentials were lowered to 7/4.2/0 V, which corresponds to an
axial frequency of 143 kHz for a single 40Ca+ ion.

The target ion was sympathetically cooled through the Coulomb interaction
with the laser-cooled 40Ca+. Sympathetic cooling was first demonstrated in a
Penning trap [29], although it has been more widely used in Paul traps with a
high number of coolant ions [193] for spectroscopic studies on molecular ions [194]
or highly-charged ions [195], and in a more particular way in the preparation of
a two-ion crystal for quantum logic spectroscopy [196]. In Penning traps, it has
only been previously used for spectroscopy studies [197] and with prospects to cool
highly-charged ions [198]. While cooling times of about 90 s were obtained for the
40Ca+ - 40Ca+ balanced crystal (E0 = 17.5(1.8) eV, see Sec. 4.1.1), in agreement
with the studies carried out in Ref. [199], much higher and impracticable values
are predicted for the sympathetic cooling of one arbitrary ion by a single 40Ca+.

Figure 6.2 shows the fluorescence detection of a 42Ca+ - 40Ca+ crystal. The
two constituents were individually laser-cooled, which could be quickly done by
software commands since the isotope shift was smaller than the diode-lasers mode
hop-free range. Figure 6.2 also shows a ToF spectrum of simultaneously trapped
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Figure 6.2. Identification of the ion crystals. Left: balanced crystal, clearly ob-
served from the fluorescence of the two ions. Middle: fluorescence image of an
unbalanced 42Ca+ - 40Ca+ crystal. The distance between the two ions does not
depend on the mass since only electrostatic forces are involved at rest. In this case,
the identification was possible without probing any mode, by tuning the cooling
lasers first for 40Ca+ and later for 42Ca+. Right: ToF distributions resulting from
1000 measurements of simultaneously trapped 40Ca+ and 232Th+ (an/or oxide com-
pounds), delivered by the Paul-trap and the ablation source, respectively. This
detection is useful when no fluorescence from the target ion can be observed under
any circumstances.

40Ca+ and 232Th+ ions. Sympathetic cooling of 232Th+ and its oxide compounds
has also been accomplished (see Chapter 7), requiring times in the order of minutes
to reach the Doppler limit.

6.2 Measurement scheme

The measurement protocol used to determine the crystal’s eigenfrequencies is gen-
erally analogous to the one developed in Chapter 5 for the single-ion measure-
ments: for each mode, the frequency of an external electric field was scanned
around the resonance value so that the eigenmode’s amplitude was consequently
excited. However, there are two distinctive features of the two-ion crystal: the
charge distribution in the stretch modes and the anharmonicities arising from the
Coulomb interaction. Figure 6.3 depicts these two features for the axial mode.

In the common mode, the two ions carry out in-phase small displacements from
the equilibrium positions. Therefore, a spatially homogeneous (or dipolar) electric

field, such that E⃗1 ≈ E⃗2 at the two equilibrium positions, increases the oscillation
amplitude of both ions when driven around the mode resonance frequency. In the
stretch mode, the ions move in opposite phases, so an optimal coupling is achieved
if E⃗1 ≈ −E⃗2, which is accomplished by a quadrupolar field.

The dynamics of the two-ion crystal when the Coulomb interaction is approxi-
mated by a linear restoring force is studied in Ref. [37]. This model was developed
in M. J. Gutiérrez’s thesis [65], and a brief summary can be found in Sec. 2.1.2.
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Figure 6.3. Measurement of the axial eigenmodes of an unbalanced crystal. Left:
common mode. Right: stretch mode. The grey lines represent the trap and the to-
tal potential. Dashed lines are used when the dipolar/quadrupolar excitation field
is added for the common/stretch mode. Laser cooling is applied if the amplitude-
dependent frequency shift is much larger than the resonance width. A Duffing-type
resonance is obtained for the bright-ion oscillation amplitude. There is a region
with three possible oscillation amplitudes for the same frequency. Only the maxi-
mum and minimum amplitudes are observed depending on the scanning direction,
which is indicated by the arrows.

Although it is only strictly valid for infinitesimal oscillation amplitudes, it can be
used as an approximation if they are much smaller than the equilibrium distance
between the ions, dion-ion (Eq. (2.16)). For the measurements presented in this
chapter, dion-ion = 20.5(2) µm (see Sec. 4.2.4 for the characterization of the trap’s
frequencies), while the ions had to be excited to several micrometres to detect a
peak/dip signal in the EMCCD/PMT. With these values, frequency shifts have
been already observed, especially in the stretch modes. A new model including
the third- and fourth-order terms in the Taylor series expansion of the Coulomb
potential has been developed to describe these deviations from the harmonic ap-
proximation.

The Lagrangian of the two-ion crystal can be written as

Lcrystal =
1

2
msṗs ˙̄ps −

1

4
msω

2
zs

(
2z2s − psp̄s

)
+

i

4
msωcs (ps ˙̄ps − p̄sṗs)+ (6.1)

1

2
mtṗt ˙̄pt −

1

4
mtω

2
zt

(
2z2t − ptp̄t

)
+

i

4
mtωct (pt ˙̄pt − p̄tṗt)− V, (6.2)

where s and t stand for sensor and target, respectively. m is the mass, p = x+ iy,
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and V is the Coulomb potential. The crystal motional equations are presented
in Sec. 2.1.2. Within the harmonic approximation, the axial direction and the
radial plane are decoupled (see Eq. (2.17)). Moreover, the axial modes can be
diagonalized so that the differential equations obtained for the common and stretch
modes are decoupled. The motional equation for any of the axial eigenmodes Zλ

with eigenvalue Ωλ becomes

Z̈λ + Ω2
λZλ +

1

2

∂

∂Zλ

[
∑
i,j,k

∂3V

∂ui∂uj∂uk

∣∣∣∣
eq

eαi e
β
j e

γ
kUαUβUγ+

∑
i,j,k,l

∂4V

∂ui∂uj∂uk∂ul

∣∣∣∣
eq

eαi e
β
j e

γ
ke

δ
lUαUβUγUδ

]
= 0,

(6.3)

where e represents the change-of-basis matrix from the spatial coordinates {ui}
to the eigenvectors {Uα}. The radial eigenmodes are not decoupled in the har-
monic approximation. If the radial eigenmode Pλ is expressed in terms of ps,t as
Pλ = δsλps + δtλpt, where δ represents the change-of-basis matrix from the radial
spatial coordinates {ps,t, p̄s,t} to the eigenvectors {Pi}, the motional equation for
Pλ can be written as

msδ
λ
s

∑
k

δks
¨̄Pk +mtδ

λ
t

∑
k

δkt
¨̄Pk

+imsωcsδ
λ
s

∑
k

δks
˙̄Pk + imtωctδ

λ
t

∑
k

δkt
˙̄Pk

−msω
2
zsδ

λ
s

∑
k

δks P̄k −mtω
2
ztδ

λ
t

∑
k

δkt P̄k

−1

2
msω

2
zsδ

λ
s

∑
k

δkt P̄k −
1

2
mtω

2
ztδ

λ
t

∑
k

δks P̄k

+
1

2

∂

∂Pλ

[∑
i,j,k

∂3V

∂ui∂uj∂uk

∣∣∣∣
eq

eαi e
β
j e

γ
kUαUβUγ+

∑
i,j,k,l

∂4V

∂ui∂uj∂uk∂ul

∣∣∣∣
eq

eαi e
β
j e

γ
ke

δ
lUαUβUγUδ

]
= 0.

(6.4)

Equations (6.3) and (6.4) couple in principle all the six eigenmodes. How-
ever, taking into account that the amplitude of the frequency-scanned mode u ∈
{Zλ, Pλ} is much higher than that of any of the other eigenmodes, the motional
equation of the axial modes can be reduced to one of the type

ü+ ω2
0u+ α2u

2 + α3u
3 = 0 (6.5a)

while for the radial modes

ü− iωcu̇− ω2
0u+ α2u

2 + α3u
3 = 0. (6.5b)
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The parameters α2 and α3, derived from the Coulomb-potential Taylor series,
quantify the non-linearity. Since the second-order frequency shifts average zero
over the whole oscillation period due to its even parity, the third order is also
included. Multiple-scale analysis [200] is used to solve Eqs. (6.5) in Appendix C.
This method is a generalization of the standard perturbation theory where several
independent time variables are included in the hypothetical solution to describe
dynamics at disparate time scales.

In the cases where amplitude-dependent frequency shifts were discernible, the
laser was left on during the excitation period. This made possible to detect lower
amplitudes but increased the linewidth of the resonance. The mode amplitude u0

obeys the implicit equation{[
(ω − ω0)− F (α2, α3)u

2
0

]2
+ γ2

laser

}2

u2
0 =

E2
0

4ω2
0

, (6.6)

where F (α2, α3) is a real number that depends on the coefficients α2 and α3, γlaser
quantifies the laser-cooling damping, and E0 accounts for the external-field am-
plitude oscillating at frequency ν = ω/2π. Equation (6.6) predicts the frequency
spectra depicted in Fig. 6.3, which is the characteristic resonance of a Duffing
oscillator. This kind of system has already been studied in Paul traps [201, 202].
There is a region where three values of the motional amplitude coexist, and the
observation of two of them (maximum and minimum) depends on the scanning
direction, which can be considered as a hysteresis behaviour. A positive F (α2, α3)
describes a hardening oscillator, in which the frequency increases with the am-
plitude, and gives rise to a rightward-tilted curve. F (α2, α3) < 0 corresponds to
a softening oscillator. Equation (6.6) has been solved numerically using fsolve

from the Python’s package scipy.optimize.

6.3 The balanced 40Ca+ - 40Ca+ crystal: a test

over the generalized invariance theorem

The balanced 40Ca+ - 40Ca+ crystal was chosen for the first experimental tests
in which all the eigenfrequencies of a two-ion crystal are measured in a Penning
trap. The production and injection of 40Ca+ into the Penning trap was well con-
trolled (see Chapter 4 and Ref. [77]) and the cooling time was much shorter than
for an unbalanced crystal. The results have been used for the first tests of the
generalized invariance theorem.

A total of three measurements were carried out in November 2022. All the
resonances of one of these measurements are shown in Fig. 6.4. Analogously to
the measurements presented in Chapter 5, several frequency sweeps (5-10) were
performed to determine each eigenfrequency. The fluorescence signal of both ions
has been analysed, and the mean value of the number of photons and the ions’
width has been used to build the resonance curves. The study of the individual
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Figure 6.4. Eigenfrequency measurements of a balanced 40Ca+ - 40Ca+ crystal.
The common and stretch modes are shown in the upper and lower rows, re-
spectively. From left to right: modified-cyclotron, magnetron, and axial modes.
The excitation voltages were Vdip = 80/400/180 µVpp for νcom

+ /νcom
− /νcom

z and
Vquad = 250/100/100 mVpp for νstr

+ /νstr
− /νstr

z . The excitation time in the common
modes was tdip = 100 ms. The stretch modes were measured in the steady state
with laser cooling on. The data has been fitted to Gaussian/sync functions for
the common modes and to Eq. (6.6) for the stretch modes. The centre values
correspond to the first experiment listed in Tab. 6.1.

scans or the average data has led to equivalent results. The uncertainty treatment
procedure discussed in Secs. 5.1.2 and 5.1.3 has been also applied here. Note that
the modified-cyclotron modes are sometimes referred to as simply cyclotron modes
throughout this chapter for clarity.

The laser-pulsed measurement technique presented in Chapter 5 was used for
the common modes, extracting the ions’ motional amplitudes from the EMCCD
images for the radial modes and from the PMT counts for the axial mode. In the
common modes, the ions move in phase and with the same amplitude due to sym-
metry. The equations of motion are fully solvable and the three eigenfrequencies
are those of a single ion, not observing any amplitude-dependent shift due to the
Coulomb interaction [37,65].

For the stretch modes, the steady-state measurement scheme was used, ap-
plying laser cooling while the ion was excited. Analogously to the pulsed mea-
surements, 75-ms accumulation-time images were taken by the EMCCD for each
excitation frequency. It was not possible to locate the resonance peak using the
laser-pulsed technique. Taking as a reference the measurements in Chapter 5,
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Table 6.1. Eigenfrequencies of the balanced 40Ca+ - 40Ca+ crystal. νcom and νstr

stand for the common and stretch eigenfrequencies, respectively. ∆νcom and ∆νstr

are the frequency shifts with respect to the zero-amplitude value predicted based on
the single-ion measurements. (νc)single is the single-40Ca+-ion cyclotron frequency
used as calibration. The common-mode frequencies calibration values are not
affected by the motional amplitude and are exactly those of a single ion. The
stretch axial eigenfrequency is

√
3 times the common-mode one, and the radial

frequencies can be calculated using the single-ion relationship (Eq. (2.6)). (νc)crystal
is the 40Ca+ cyclotron-frequency value calculated using the generalized invariance
theorem. The frequency shift with respect to the single-ion calibration value is
also shown.

νcom (Hz) νstr (Hz) ∆νcom (Hz) ∆νstr (Hz)
ν+ 2 685 576.13(24) 2 677 947.0(95) 0.00(26) -19.6(95)
ν− 3 785.53(49) 11 493.1(70) 0.20(50) 94.9(70)
νz 142 651.74(67) 247 030(190) 0.9(13) -040(190)
(νc)single 2 689 364.75(10)

(νc)crystal 2 689 353(20) -12(20)

νcom (Hz) νstr (Hz) ∆νcom (Hz) ∆νstr (Hz)
ν+ 2 685 577.144(53) 2 677 935.1(98) 0.27(17) -34.0(98)
ν− 3 783.30(68) 11 448.4(72) 0.35(71) 52.3(72)
νz 142 638.3(31) 247 050(150) -6.5(35) 000(150)
(νc)single 2 689 365.36(74)

(νc)crystal 2 689 348(17) -17(17)

νcom (Hz) νstr (Hz) ∆νcom (Hz) ∆νstr (Hz)
ν+ 2 685 576.719(72) 2 677 937(15) 0.00(11) -31(15)
ν− 3 783.72(48) 11 444(37) 0.08(63) 47(37)
νz 142 642.43(98) 247 042(190) -1.6(20) -025(190)
(νc)single 2 689 364.98(41)

(νc)crystal 2 689 349(23) -16(23)

the stretch mode needs to be excited to tens of micrometres. The corresponding
amplitude-dependent frequency shifts have been calculated using the formalism
employed in Ref. [37], where the cross-coupling matrix that connects the frequency
shift on a specific mode with the phonon number of the rest of the modes is pre-
sented [203]. For the stretch axial mode of 40Ca+ - 40Ca+, a frequency shift above
2 kHz is already predicted for ρstrz = 1 µm.

Note the difference of several orders of magnitudes between the excitation volt-
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ages applied for dipolar and quadrupolar excitations used for the common and
stretch modes, respectively. On the one hand, the stretch-mode excitation needs
to overcome the laser damping while no resistance is found in the pulsed scheme
used in the common modes. On the other hand, the dipolar coupling in the com-
mon modes is stronger than the quadrupolar interaction in the stretch modes.

Table 6.1 shows the measured eigenfrequencies for the three experiments carried
out with 40Ca+ - 40Ca+. The first group of data corresponds to the measurements
presented in Fig. 6.4. It took typically one hour to perform each eigenfrequency
measurement, spending most of the time on the loading and formation of the
two-ion crystal. Cyclotron-frequency measurements of single 40Ca+ ions were per-
formed before and after each of the crystal series, and linear interpolation has
been used to estimate the single-ion calibration frequency at the time the crystal
was measured. The cyclotron frequency calculated using the generalized invari-
ance theorem agrees in all three cases with the single-ion value with a relative
uncertainty of 7 · 10−6.

The uncertainties obtained in the common mode are comparable to those
obtained in the single-ion measurements presented in Chapter 5, of the order
of 4.5 · 10−8/1.5 · 10−5/1.1 · 10−6 for νcom

+ /νcom
− /νcom

z . The frequencies agree with
those of a single ion (∆νcom column in Tab. 6.1), and a relative uncertainty in the
cyclotron frequency of 4.7 · 10−8 is obtained.

The uncertainty of the stretch modes clearly prevails over those of the com-
mon modes in the final value obtained through the generalized invariance theo-
rem. The relative values for νstr

+ /νstr
− /νstr

z are 4.3 · 10−6/1.5 · 10−3/7.2 · 10−4. The
main reason is the damping effect of laser cooling, leading to a linewidth of
201(12)/87.6(75)/2530(870) and a linear damping coefficient (see Eq. (C.1)) of
70(30)/21.8(61)/1440(210) Hz for νstr

+ /νstr
− /νstr

z . From these values, it can be seen
that the axial mode was the most efficiently cooled, and that, even using axial-
ization, the modified-cyclotron mode was still cooled faster than the magnetron
one. Although the highest relative uncertainty is obtained in the magnetron mode,
the major contribution to the final uncertainty through the generalized invariance
theorem comes from the axial and modified-cyclotron modes. The uncertainties
of these would need to be reduced by about an order of magnitude to gain an
equivalent factor in the cyclotron frequency determination.

A negative frequency shift of 6 · 10−6 is always observed in the cyclotron fre-
quency, which suggests a systematic shift that could have been better discernible

Table 6.2. Mean phonon number for each eigenmode of the crystal 40Ca+ - 40Ca+

in the Doppler limit. The magnetron modes are assumed to be cooled by axializa-
tion.

ncom
+ nstr

+ ncom
− nstr

− ncom
z nstr

z

3.4 3.6 3.4 3.6 73 42
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with higher statistics. This is clearly visible for the values of ∆νstr
+,− in the last col-

umn of Tab. 6.1. In fact, none of these values agrees with the prediction based on
the one-ion or the common-mode measurements, but the final cyclotron frequency
uncertainty is increased by the stretch-mode uncertainty so that it does agree with
the calibration measurement. Stretch cyclotron and magnetron eigenfrequencies
were measured for different excitation voltages, but an amplitude-dependent shift
has not been observed within the uncertainty obtained. The frequency shift ob-
served in a given mode can also be caused by a finite amplitude of any of the
others. The mean phonon number for each eigenmode when the crystal is cooled
to the Doppler limit is shown in Tab. 6.2. For the case of 40Ca+ - 40Ca+, the
cross-coupling matrix [37, 203] reads

∆νcom
+

∆νstr
+

∆νcom
−

∆νstr
−

∆νcom
z

∆νstr
z

 =


0 0 0 0 0 0
0 0.0050 0 4.8503 0 −0.1062
0 0 0 0 0 0
0 4.8503 0 −2.4049 0 25.519
0 0 0 0 0 0
0 −0.1062 0 25.519 0 0.1987




ncom
+

nstr
+

ncom
−

nstr
−

ncom
z

nstr
z

Hz. (6.7)

The common modes do not suffer from any amplitude-dependent frequency shift
since the distance between the ions is constant (see Eq. (2.15) for ms = mt). The
negative frequency shift observed in the stretch cyclotron, ∆νstr

+ = −28.2(62), can
be explained considering, e.g., nstr

z = 420(59), and assuming that the stretch mag-
netron mode was cooled to the Doppler limit (see Tab. 6.2), which is equivalent to
T str
z = 10.0(14) mK. ∆νstr

− ≈ 1 kHz is predicted after all the eigenmodes are cooled
to the Doppler limit mostly due to the contribution of nstr

z , much smaller than the
values of Tab. 6.1, ∆νstr

− = 65(21) kHz. An amplitude of the stretch magnetron
mode ρstr− > 140 nm, compatible with the observations with the EMCCD, could
explain this frequency shift.

The stretch axial mode clearly features a dependency of the frequency on the
mode amplitude. The ions explore closer relative distances for higher motional
amplitudes, which translates into a positive frequency shift and a hardening non-
linear response (see Fig. 6.3). Figure 6.5 shows the resonance curves obtained
for several excitation voltages. For values higher than 200 mVpp, there is a region
where the resolution of the implicit relation used for fitting the data, Eq. (6.6), pre-
dicts three possible motional amplitudes. Since the scanning direction in Fig. 6.5
is towards higher frequencies, the highest amplitude was observed in the three-
solution region (see Fig. 6.3). A sudden amplitude drop takes place at the point
where Eq. (6.6) predicts only one solution again. In the case of scanning the
excitation frequency in the opposite direction, the low-amplitude solution would
be experimentally observed until a break would happen likewise to go over the
one-solution region of lower frequencies.

The upper-right panel of Fig. 6.5 shows the magnitude of the sinusoidal force
applied to obtain the resonance curves on the left side. The lower-right panel shows
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Figure 6.5. Studies of the amplitude-dependent frequency shift in the stretch axial
mode of 40Ca+ - 40Ca+. Left: resonance curves for different excitation voltages.
Right: force applied over the two-ion system and resonance frequency, both ex-
tracted from the fit to the amplitude deduced in Eq. (6.6). The reference stretch
axial frequency in the lower-right plot is 247 068 Hz.

the zero-amplitude frequency obtained from the fitting routine. It agrees with the
single-ion calibration value for low voltages (Vquad ≤ 200 mVpp). However, the
uncertainty obtained is generally higher if the excitation voltage is increased.

6.4 The unbalanced 42Ca+ - 40Ca+ crystal
42Ca+ - 40Ca+ is the first two-ion unbalanced crystal for which all the six eigenfre-
quencies have been directly probed in a Penning trap. It was the easiest crystal to
prepare in the experiment since the lasers could be tuned to cool 40Ca+ or 42Ca+

by a simple software instruction in the control system. In the loading procedure,
the 42Ca+ ion was cooled first to avoid heating of 40Ca+ when tuning the lasers
since the cooling frequencies are higher for the latter. 40Ca+ and 42Ca+ single-
ion cyclotron-frequency measurements were performed before and after the crystal
studies. 40Ca+ has been used as the sensor ion, while the 42Ca+ data has been
used to check the validity of the crystal measurements.

Two complete measurements of the six eigenfrequencies were performed in
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Figure 6.6. Eigenfrequency measurements of an unbalanced 42Ca+ - 40Ca+ crys-
tal. The same arrangement as in Fig. 6.4 is used. The excitation voltages were
Vdip = 3000/200/300 µVpp for νcom

+ /νcom
− /νcom

z and Vquad = 30/100/200 mVpp for
νstr
+ /νstr

− /νstr
z . The excitation time in the common magnetron and axial modes was

tdip = 100 ms. Unlike the usual motional amplitude or number of detected pho-
tons, the axial distance to the trap centre is monitored for the stretch cyclotron
mode. More details can be found in the text. The centre values correspond to the
second experiment listed in Tab. 6.3.

November 2022. Figure 6.6 shows the resonances from one of them. For these
experiments, the laser-pulsed measurement scheme used in Chapter 5 could only
be used for the common axial and magnetron modes. The steady-state measure-
ment scheme keeping laser cooling on had to be used for the common cyclotron
mode, where non-linearities were observed. The stretch axial mode presents a
clearly tilted resonance, while the stretch magnetron spectrum anharmonicity is
not discernible at these amplitudes.

The stretch cyclotron is a singular case. It has been found that 40Ca+, bright
and lighter ion in this case, moved towards the trap centre as the resonance fre-
quency was approached. According to the simulations presented in Ref. [37], the
oscillation amplitude of 42Ca+ in the stretch cyclotron mode is around 20 times
higher than that of the 40Ca+ ion. Therefore, the low-amplitude hypothesis was
not valid any more when this mode was driven by an electric field to detect the os-
cillation amplitude of the 40Ca+ ion with the EMCCD. During the frequency scan,
the crystal was generally not aligned along the axial axis defined by the magnetic
field even for a small 40Ca+ oscillation amplitude. This would have needed to be
well below one micrometre to satisfy the hypothesis aforementioned. Assuming the
40Ca+ amplitude was negligible compared to the one of 42Ca+, the force balance
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Table 6.3. Eigenfrequencies of the unbalanced 42Ca+ - 40Ca+ crystal. The same
nomenclature as in Tab. 6.1 is used here.

νcom (Hz) νstr (Hz) ∆νcom (Hz) ∆νstr (Hz)
ν+ 2 681 340(150) 2 553 568(87) -540(140) -156(87)
ν− 3 785.98(36) 11 474(17) -1.01(36) 80(17)
νz 140 898.0(13) 243 800(980) 32.0(13) -370(980)
(νcs)single 2 689 364.867(60)

(νct)single 2 561 426.552(90)

(νct)crystal 2 560 670(140) -750(140)

νcom (Hz) νstr (Hz) ∆νcom (Hz) ∆νstr (Hz)
ν+ 2 681 447(76) 2 553 686(30) -441(76) -38(30)
ν− 3 784.80(40) 11 433(87) -2.20(40) 39(87)
νz 140 889.0(11) 244 850(870) 23.0(11) 720(870)
(νcs)single 2 689 364.87(22)

(νct)single 2 561 426.55(20)

(νct)crystal 2 561 002(82) -425(82)

between the trap confinement and the Coulomb interaction for the first is

ms

(
ωstr
z

)2
zstr+ =

q2

4πε0

2zstr+[
(2zstr+ )2 + (rstr+ )2

]3/2 , (6.8)

where zstr+ is the axial distance of any of the ions to the trap centre (40Ca+ is
monitored here) and rstr+ is the radial distance of the 42Ca+ to the trap centre.
Resolving for the axial position of the bright ion,

zstr+ =
1

2

√
d2ion-ion − (rstr+ )2, (6.9)

where dion-ion is the two-ion equilibrium distance defined by Eq. (2.16). Analogously
to the motional amplitudes of other modes, rstr+ is assumed to follow the non-linear
oscillator model, Eq. (6.6). The resonance described by Eq. (6.9) is an asymmetric
dip, as can be seen in the lower-left plot of Fig. 6.6.

Table 6.3 shows the resonance frequencies obtained from the fits for the two
complete measurements. The cyclotron frequency presents a statistical relative
uncertainty of 4 · 10−5, mainly dominated by the stretch axial and common cy-
clotron frequencies, determined with 3.8 · 10−3 and 4.2 · 10−5 relative uncertainty,
respectively. However, the value of νc determined through the generalized invari-
ance theorem from the crystal six-eigenmode measurements is negatively shifted
several hundreds of hertz in both measurements, giving rise to a systematic relative
uncertainty in the order of 2 · 10−4.
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Systematic shifts are perceptible in all the eigenmodes, as can be observed in the
two rightmost columns of Tab. 6.3. Analogously to the case of the 40Ca+ - 40Ca+

crystal, these frequency shifts can be explained by a non-zero population of other
modes. The cross-coupling matrix [37,203] for the crystal 42Ca+ - 40Ca+ reads

∆νcom
+

∆νstr
+

∆νcom
−

∆νstr
−

∆νcom
z

∆νstr
z

 =


0.001 −0.002 0 2.229 −0.000 −0.053

−0.002 0.001 0 2.512 −0.000 −0.052
0 0 −0 −0 0 0

2.229 2.512 −0 −2.347 0.033 24.53
−0.000 −0.000 0 0.033 −0.000 0.000
−0.053 −0.052 0 24.53 0.000 0.194




ncom
+

nstr
+

ncom
−

nstr
−

ncom
z

nstr
z

Hz,

(6.10)
where the arrangement is identical to Eq. (6.7). The matrix elements associated
to ∆νcom

− are null up to the third digit. The mean phonon number in the Doppler
limit is the same as listed in Tab. 6.2 for 40Ca+ - 40Ca+. In the following, the
population of the modes originating the cross-coupling terms is estimated from
the observed systematic frequency shifts.

The common and stretch cyclotron eigenfrequencies tend to increase with the
amplitude, as can be seen from the two first on-diagonal terms in the matrix of
Eq. (6.10). The frequency shifts ∆νcom

+ = −491(50) Hz and ∆νstr
+ = −97(59) Hz

observed from the measurements presented in Tab. 6.3 might be explained con-
sidering, e.g., T str

z ≈ 200 mK and T str
z ≈ 50 mK, respectively, assuming the rest of

the modes were cooled to the Doppler limit.
The stretch magnetron eigenfrequency tends to decrease when the oscillation

amplitude increases, as can be seen from the fourth on-diagonal term in the matrix
of Eq. (6.10). A frequency shift ∆νstr

− = 940 Hz is predicted when the ion crystal
is cooled to the Doppler limit against the observed value of ∆νstr

− = 60(21) Hz.
This can be explained by ρstrz = 2.0 µm, which is compatible with the oscillation
amplitude observed with the EMCCD.

The frequency shift in the stretch axial mode due to its own amplitude is pos-
itive since the relative distance between the ions decreases with the amplitude, as
can be confirmed from the last on-diagonal element in the matrix of Eq. (6.10).
The statistical uncertainty of 4 · 10−4, does not allow, however, to draw any conclu-
sion. In the common mode, the positive frequency shift ∆νcom

z = 27.5(4.5) Hz can
be explained from the mean number of phonons either in the stretch magnetron
mode or in the stretch axial mode or a combination of both. A thorough quan-
tification of this could be carried out after cooling the crystal to the ground state
and using quantum-based protocols with a number of phonons as low as possible.

6.5 Prospects for first precision frequency ratios

The generalized invariance theorem has been tested to a relative uncertainty
of 7 · 10−6 using a 40Ca+ - 40Ca+ balanced crystal. The current limitation is set
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by systematic shifts coming from cross-coupling between different modes. In these
experiments, one-dimensional frequency scans were performed. Thus, the model
presented in Sec. 6.2 was only able to correct for frequency shifts due to the am-
plitude associated to the excited eigenmotion. These shifts are more remarkable
for the 42Ca+ - 40Ca+ unbalanced crystal. From the two experiments carried out
so far, the generalized invariance theorem only holds up to 4 · 10−5.

The technique and analysis procedure presented in this chapter could still pro-
vide better results if the eigenfrequencies are determined using the lowest field am-
plitudes. Assuming all the eigenfrequencies were measured at the Doppler limit, a
relative uncertainty of 3.7 · 10−6 would be obtained, improving the current results
by an order of magnitude. Nevertheless, it will be necessary to cool the crystal to
the ground state to perform competitive measurements. In that scenario, by ap-
plying resonant fields at each of the crystal’s eigenfrequencies, one can see changes
in the sideband spectrum due to the increase in the number of phonons. By con-
trolling this quantity, it will be possible to obtain the systematic shift as a function
of the phonon number of the rest of the modes, yielding a precise quantification
of the systematic shift. Another variant of this approach consists in applying sep-
arated fields with opposite phases after the crystal is cooled to the ground state,
as proposed in Ref. [38], or after preparing it in a Fock state, a method devel-
oped in RF traps [204]. To illustrate this method, the very first candidate will be
42Ca+ - 40Ca+ since both ions can be laser-cooled. The extension of the technique
to a crystal with a target ion non-laser coolable will require further investigations
to characterize sympathetic cooling.





Chapter 7

Summary and outlook

This thesis presents the first measurements of cyclotron-frequency ratios using
optical detection in a Penning trap. The technique has been implemented on
single calcium isotopes and two-ion Coulomb crystals. The first scenario has served
for the characterization of the sensor ion, and it has rendered the first mass ratios
using this technique. The experiments with balanced and unbalanced crystals have
yielded useful data to test the validity of the generalized invariance theorem, and
they constitute the first universal implementation of the method. In addition to
these results, this manuscript details technical improvements implemented in the
Penning-trap setup and the characterization of ion production and laser cooling. In
the following, the main results and conclusions of this thesis work are summarized,
discussing at the end the perspectives of the experiment in the short-term future.

Technical developments

The Penning-trap experiment in the Ion Traps and Lasers Laboratory at the Uni-
versity of Granada [98] was built in the course of previous theses [64, 65]. Part
of the work presented here has been devoted to the design and commissioning of
technical improvements which enabled the implementation the optical method.

Two new external sources to deliver ions to the Penning trap have been installed
and characterized. The first one is a ring Paul trap used to deliver calcium isotopes
created by photoionization with high reproducibility. The second one is a laser-
ablation source which has been tested with gold, rhenium, and thorium, among
other species. These external sources can create and inject two different species to
generate any unbalanced crystal in the Penning trap. Before this thesis work, the
calcium ions were generated inside the Penning trap, preventing reaching better
vacuum conditions in the trapping region.

Further improvements of the vacuum in the Penning trap have been accom-
plished by installing a customized cryogenic pump, increasing the ion lifetime up
to tens of minutes, which agrees with the expected background pressure in the
order of 10−9 mbar obtained from simulations using Molflow+ [103].

The new (in-vacuum) optical system has been an important breakthrough. It
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has been designed for collecting the ions’ fluorescence and projecting the image on
the PMT and EMCCD. Simulations of the performance have been carried out with
Zemax. Out-of-vacuum measurements of the modulation transfer function and the
contrast transfer function using square impulses have shown the near-diffraction-
limited performance of the system on the optical axis. For the in-vacuum charac-
terization, a single ion has been used as a point-like source to measure the point
spread function of the system. Wave-aberration retrieval techniques have been em-
ployed to quantify the weight of each type of aberration on the Zernike polynomial
basis. The strong astigmatism aberration initially observed has been corrected by
adding a suitable cylindrical lens. The final resolutions in the axial and radial
directions are 3.69(3) µm and 2.75(3) µm, respectively.

The acquisition and control system based on ARTIQ has been completed for the
envisaged experiments in the Doppler limit. Most of the measurement protocols
have been automated: in-flight ion trapping has been synchronized with the ion-
sources ejection phase to improve reproducibility; the lasers’ frequencies and the
AOM’s output can be tuned from the measurement scripts; the readouts of the
PMT andMCP have been implemented directly through ARTIQ’s hardware, which
adds to the already-included EMCCD and AWGs [65].

Detection and characterization of laser-cooled ions

The implementation of the above-mentioned technical developments has made
laser-cooling and detection of ions at the Doppler limit possible [77]. The creation
of large ion Coulomb crystals, small chains, and single ions has been demonstrated
in the experiment. In particular, the observation of crystallization in ensembles of
up to thousands of ions implies temperatures below 5 mK.

The Penning trap has been characterized in terms of its axial frequency for a
broad range of trapping voltages by optically measuring the distance between the
two ions of a balanced 40Ca+ crystal. The photon detection sensitivity has been
pushed to its limit, obtaining signal-to-noise ratios above the unity for readout
times of milliseconds. The collision rate in fluorescence measurements suggests
an actual pressure in the trapping region around 3 · 10−10 mbar, improving the
expected gain from the customized cryopump.

Laser cooling of the radial modes of a single ion and a two-ion crystal has been
studied in detail. The axialization technique [140] has been applied to circumvent
the unstable magnetron mode and cool both radial modes simultaneously. The op-
timum conditions have been searched by monitoring the ions’ motional amplitude,
measured optically from the ion image provided by the EMCCD, as a function
of the axialization voltage. An upper limit of 753(36) nm is estimated for the
modified-cyclotron and the magnetron modes of a two-ion balanced 40Ca+ crystal,
respectively.
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Results: frequency ratios of single calcium isotopes

The optical method has been utilized to measure the mass ratio of several calcium
isotopes (A = 42, 44, 48) and 40Ca+ [148]. Single ions of each isotope have been
sequentially loaded in the trap and their three eigenfrequencies have been measured
to determine their cyclotron frequencies.

A readout protocol has been devised to determine the ion’s amplitude after
exciting each eigenmotion by a dipolar field during a time interval in which laser
cooling is switched off. The oscillation amplitude after excitation is reconstructed
by applying laser cooling again and observing the time evolution of the spatial dis-
tribution and the number of photons, recorded with the EMCCD and the PMT,
respectively. Each eigenfrequency has been directly determined by performing a
frequency sweep on the external dipolar field and monitoring the ion’s amplitude.
The resultant peak (EMCCD) or dip (PMT) is centred at the ion’s motional fre-
quency. The invariance theorem is used to obtain the cyclotron frequency from
ν+, ν−, and νz.

The three measured cyclotron-frequency ratios agree within 1σ with the liter-
ature values [149]. In the case of 44Ca+, the 18 ratio measurements yield a value
of 1.099 917 0772(89), which matches the current literature uncertainty of 8.1·10−9.
For 48Ca+, a value of 1.199 938 029(15) is calculated from 26 ratios, with a relative
uncertainty of 1.3 · 10−8. This isotope has been measured in different Penning-
trap experiments, and the current and high-precision value (a factor of 20 better)
is quoted using the PI-ICR technique [175]. The 11 frequency measurements of
42Ca+ deliver a ratio of 1.049 948 070(11), with an uncertainty of 1.0 · 10−8 which
is 2.5 times higher than the literature value.

The unique feature of the optical method of direct monitoring of the ion’s
amplitude allows for a direct estimation of the systematic uncertainty arising from
high multipolar components of the trapping fields. Furthermore, for equivalent
mass-to-charge ratios, the optical method exhibits a better performance than those
based on bolometric detection. The minimum detectable amplitude, estimated to
be around 4 µm, is only limited by the resolution of the optical imaging system
and the cooling rate, against the 10 µm needed using induced currents [205].

The current limiting factor in precision is the stability of the electric field. The
long-term stability deduced from the evolution of any of the eigenfrequencies is in
the order of 4.5 · 10−5. This value could be improved provided more stable voltage
sources are available and presumably by better isolation from external noise.

Results: test of the generalized invariance theorem and first implemen-
tation on an unbalanced crystal

The optical method has been implemented in the Coulomb crystals 40Ca+ - 40Ca+

and 42Ca+ - 40Ca+. The measurement protocol differs from that on a single ion in
applying laser cooling during the excitation for those modes where the Coulomb
force leads to large amplitude-dependent frequency shifts. In these cases, the
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system may be described in equilibrium by a non-harmonic damped and forced
oscillator and the eigenmode amplitude can be extracted directly from the ions’
image. A new model that contains second- and third-order terms of the Coulomb
force expanded in the Taylor series has been developed to fit the measured asym-
metric spectra. The corresponding differential equation has been solved using the
method of multiple scales. In addition, a quadrupolar field must be used for the
excitation of the stretch modes to achieve an effective coupling with the crystal
eigenmode.

Three complete measurements of the six eigenfrequencies of 40Ca+ - 40Ca+ have
been collected and analysed. In this balanced crystal, amplitude-dependent shifts
have only been observed for the stretch axial mode. Duffing hardening resonances
are observed for this particular eigenmode. A frequency region where three dif-
ferent values of amplitude are the solution of the differential equation leads to a
hysteresis effect. The measurements on this balanced crystal certify the validity
of the generalized invariance theorem [41] up to 7 · 10−6.

First measurements of the eigenfrequencies of the unbalanced 42Ca+ - 40Ca+

crystal in which 40Ca+ plays the role of sensor ion have been presented. The asym-
metries arising from the amplitude-dependent shifts are more pronounced than for
the balanced crystal. The modified-cyclotron stretch mode must be analysed dif-
ferently due to the factor-of-20 larger amplitude of the heavier (blind) 42Ca+ ion
which breaks the low-amplitude approximation in which the crystal aligns along
the axial axis. These first measurements are subject to further improvements,
although they have yielded the cyclotron frequency of 42Ca+ calculated via the
generalized invariance theorem with a relative uncertainty of 4 · 10−5.

Perspectives

The mass-ratio values of the calcium isotopes could be improved by using an
ultra-stable voltage source. The precision can be increased by exciting the ion for
a longer period provided a good signal-to-noise ratio is maintained. The systematic
shifts associated with the field imperfections can be attenuated by minimizing and
adjusting the relative amplitudes of the eigenmodes.

Mass values are a necessary input for the construction of the so-called King
plot, which studies the linearity of the isotopic shift between two internal transi-
tions. Combining high-precision mass measurements of several isotopes that can
be cooled by laser could be used to unveil deviations from the predicted linear be-
haviour that would be evidence of new physics beyond the Standard Model [184].
Two quadrupolar transitions have been recently measured with an accuracy of
20 Hz [151, 189] to build a King plot using the calcium isotopic chain. Further
improvements in the uncertainty of these spectroscopic values may require more
precise mass values.

The next step in the implementation of the optical method will be accessing the
quantum regime by further cooling the unbalanced ion crystal to the ground state
of motion. The lower motional amplitudes will translate into smaller frequency
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Figure 7.1. Detection of the unbalanced crystal 232ThO2
+ - 40Ca+. Left: common

mode. Right: stretch mode. The frequencies extracted from the fitting procedure
are 66 241(30) Hz and 205 600(400) Hz.

shifts. Nonetheless, it will be necessary to measure all the cross-coupling terms and
actively correct the frequency shifts at the phonon level. This can be accomplished
using well-established procedures in quantum optics experiments in RF traps [38].

Trapping and sympathetic cooling of 232ThO2
+ via 40Ca+ was demonstrated at

the end of this thesis work. Figure 7.1 shows the scan of the axial eigenfrequencies
of a 232ThO2

+ - 40Ca+ crystal in the Penning trap. In this case, anharmonicity is
observed, with a softening and hardening behaviour for the common and stretch
modes, respectively. 232Th+ is an interesting ion to test the optical method due to
its high mass compared to calcium, which will allow for a comprehensive evalua-
tion of the technique. Furthermore, the measurements envisaged can be extended
to 229Th, which is under study by an international collaboration aiming at im-
plementing a nuclear clock in an RF trap [59]. In our setup, the advantages of
the Penning trap can be exploited, i.e., the stability for a broad range of mass-to-
charge ratios, the absence of micromotion, and the low heating rates in the ground
state of motion.





Appendix A

The new cryogenic trap

A new cryogenic Penning trap has been designed during thesis work. This system
is intended to improve the background pressure in the trapping region so that it
will not be a limiting factor in long, precise motional frequency measurements. In
addition, the operation at cryogenic temperatures will also improve the ion heating
rate at the ground state of motion and open the possibility of using quartz crystals
at low temperatures.

In the design of the new cryogenic trap, the aim has been to modify the pre-
vious structure (see Fig. 3.2) as little as possible. Figure A.1 shows the new
system integrated into the Penning-trap tower. It consists of the new Penning
trap (upgrade of MT in Fig. 3.2), which conserves the electrode geometry but
has been redesigned to improve the mechanical stability, and two surrounding
cans thermally connected to the corresponding stages of a cryocooler. The trap
is thermally anchored to the inner can, which is connected to the 4-K (second)
stage by a 1/2-inch bar. The parts at 4 K are surrounded by a structure at 45 K
consisting of the outer can and a piping system around the thermal-connection
bar which provides thermal-radiation shielding from the room-temperature com-
ponents. The lens ToF-1 has been thinned to accommodate a double-bend piece
used for the pipe-can junction. The thermal connection to the cryocooler, the
trap cans, and the trap electrodes are machined from oxygen-free high conductiv-
ity (OFHC) copper (conductivity of 640 W/(m·K) at 4.2 K and 1210 W/(m·K)
conductivity at 45 K [206] for RRR = 100), and the latter are also silver- and
gold-plated to prevent oxidation (silver avoids gold to diffuse). The trap insula-
tors are machined from sapphire (α-Al2O3), which features a good thermal con-
ductivity (42 W/(m·K) at 4.2 K [207]). The interfaces between pieces at different
temperature (room at 297 K, first stage at 45 K, and second stage at 4.2 K) are
machined from G-10 (conductivity of 0.073 W/(m·K) at 4.2 K and 0.29 W/(m·K)
conductivity at 45 K [206]). All these materials present sufficiently low values of
magnetic susceptibility and magnetization.

The trap can constitute a vacuum subsystem inside which the pressure drops
due to cryopumping (see Sec. 3.2.1). The two cans are open on both sides along
the beamline so that the ions created at the upstream-located ion sources out-
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nical drawing. Upper right: longitudinal cut. Lower: right-angle cut of the Mea-
surement Trap and the radiation shieldings.



131

-1500 -1000 -500 0 500 1000
10−12

10−11

10−10

10−9

Magnet

z (mm)

p
(m

b
ar
)

5 · 10−9 1 · 10−80

p (mbar)

MTPT

SIP-1

TMP-3

SIP-2

TMP-4

Figure A.2. Vacuum simulations of the new cryogenic trap. The plot arrangement
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side the magnet can be in-flight trapped and time-of-flight measurements can be
performed using the MCP downstream. Radial lasers enter the trapping region
through a fused-silica optical window, and the optical system’s objective (at room
temperature) fits into an orifice in the outer can. A drawback of an open cryogenic
system is the pumping saturation for the background-gas species that cannot be
removed by cryocondensation (see Sec. 3.2.3 for details). In hermetically-sealed
systems, the volume is previously evacuated by mechanical pumps and the vac-
uum chamber is pinched afterwards so that everything but helium and hydrogen
is removed by cryocondensation. The number of remaining molecules of these two
species is so small that they can be pumped out by cryoadsorption.

Figure A.2 shows the outcome of the vacuum simulations of the new cryogenic
system carried out using Molflow+ [103]. The parts thermally anchored to the
cryocooler’s first and second stages are set to 45 K and 4 K, respectively, and the
sticking factor is 0.1 in both cases. The outgassing rate of the room-temperature
components was detailed in Sec. 3.2.2. The pressure p in the trapping region is
now lower than in the surroundings due to the cryopumping effect. The simulation
estimates p < 10−11 mbar, which according to the model employed in Sec. 4.2.3
would imply an average time between collisions higher than 300 s.





Appendix B

Brief description of diffraction
theory

From Maxwell’s equations and assuming a dielectric, non-magnetic, homogeneous,
and isotropic medium, any of the components of the electric and magnetic field
u (r⃗, t) obeys the scalar wave equation,[

∇2 − 1

c2
ε

ε0

∂2

∂t2

]
u (r⃗, t) = 0, (B.1)

where∇2 is the Laplace operator, c is the speed of light in vacuum, ε0 is the vacuum
permittivity, and ε is the medium (constant) permittivity. For a monochromatic
wave u (r⃗, t) = u0 (r⃗) cos (kc t+ θ (r⃗)), the phasor U (r⃗) = u0 (r⃗) e

−iθ(r⃗) follows the
Helmholtz equation, [

∇2 + k2
]
U = 0, (B.2)

where k = 2π/λ is the wavenumber, with λ the wavelength.
The Green theorem states that, for two complex-valued functions U (r⃗) and

G (r⃗), and being S0 a surface surrounding the volume V0,∫∫∫
V0

[
U∇2G−G∇2U

]
dv =

∫∫
S0

[
U
∂G

∂rn
−G

∂U

∂rn

]
ds, (B.3)

where ∂/∂rn is the partial derivative with respect to the outward normal direc-
tion r⃗n on S0. If U fulfils Eq. (B.2) and G = eikr01/r01, with r01 the distance from
the observation point P0 within S0 to the point P1 on the surface, the scalar field U
at P0 can be calculated as

U (P0) =
1

4π

∫∫
S0

[
G
∂U

∂rn
− U

∂G

∂rn

]
ds, (B.4)

which is known as the Kirchhoff-Helmholtz integral theorem. This result is of great
importance as it allows the scalar field at any point P0 to be calculated from its
boundary values on any closed surface S0 surrounding that point.
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P0

P̃0

S2

S1

Σ
R

r⃗01
P1

r⃗n

Figure B.1. Kirchhoff diffraction by a finite aperture on a planar screen. P0 is
the observation point and P1 can be any point on the surface S0 = S1 + S2 + Σ
surrounding P0. Σ is the finite-aperture surface, S2 is the spherical cap of radius R,
and S1 is the surface on the solid screen. P̃0 and P0 are symmetric respect to the
screen. Adapted from Ref. [109].

The particular case of diffraction by a finite aperture on an infinite opaque
screen serves as a basis for modelling the effect an optical system has over a wave-
front. Figure B.1 illustrates the situation. S0 is conveniently divided into three
parts, S0 = S1 + S2 + Σ. The value of the Kirchhoff-Helmholtz integral on S1 can
be made zero if the Green’s functionG is chosen to beG± = eikr01/r01 ± eikr̃01/r̃01 (if
G = eikr01/r01, both U and ∂U/∂rn must be zero on S1 to cancel the integral, which
are known as Kirchhoff boundary conditions, inconsistent since they imply U to
vanish all around [108]), where r̃01 is the distance from a second reference point P̃0

which is the mirror image of P0 respect to the planar screen (see Fig. B.1). The
Kirchhoff-Helmholtz integral is also zero on S2 provided that the wave is travel-
ling from left to right, which is known as the Sommerfeld radiation condition (U
vanishes at least as fast as a diverging spherical wave) [109]. Substituting G− in
Eq. (B.3) leads to what is known as the first solution of the Rayleigh-Sommerfeld
formulation of diffraction,

U (P0) =
1

iλ

∫∫
Σ

U (P1)
eikr01

r01
cos (r⃗n, r⃗01) ds, (B.5)

where it has been assumed that r01 ≫ λ. G+ leads to equivalent results [109].
Equation (B.5) is identical to the Huygens-Fresnel principle, which states that
every point on a wavefront may be regarded as the source of new wavelets.



Appendix C

Method of multiple scales

Equations (6.3) and (6.4) are used to model the anharmonicities arising from
the non-negligible amplitude of the frequency-scanning mode. These equations
are particular cases of a single-degree-of-freedom non-linear oscillator. Since the
ions perform small oscillations around the equilibrium positions, it is reasonable
to suppose that the motional equation deviates only slightly from the harmonic
solution. Therefore, perturbation theory can be used to resolve the problem. This
appendix encloses the mathematical derivation of Eq. (6.6) by means of the method
of multiple scales, for which Ref. [200] is followed.

Axial modes

All the measurements presented in Chapter 6 in which frequency shifts are de-
tected have been frequency-scanned maintaining laser cooling activated while the
excitation is applied, analogously as it is done in Refs. [159, 160]. The motional
equation which describes the system dynamics is that of a driven damped har-
monic oscillator. For the ion’s amplitudes presented in this chapter, the Doppler
broadening is still much lower than the natural linewidth of the cooling transition,
so the laser resistive force can be considered to depend linearly on the ion’s velocity
and is quantified by the parameter γ. Including the dimensionless parameter ϵ as
a crutch to obtain the approximate solution, Eq. (6.3) becomes

ü+ ω2
0u = −2ϵ2γu̇− ϵα2u

2 − ϵ2α3u
3 + ϵ2E cos (ωt) , (C.1)

where E quantifies the external excitation voltage. If perturbation theory to or-
der n is applied in a straightforward way, the solution obtained is invalid when
t becomes larger than O (ϵ−n). The cubic perturbation α3u

3 already introduces
terms that grow rapidly with the time variable, called secular terms. A generaliza-
tion of the perturbation theory called the method of multiple scales can be used
to obtain solutions of Eq. (C.1) that are bounded in time. This method takes into
account that the system exhibits characteristic physical behaviours at several time
scales through a series of new independent time variables

Tn = ϵnt, for n = 0, 1, 2, . . . (C.2)
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The proposed solution is assumed to depend not only on the time scale t = T0 but
also on T1, T2, . . .,

u (t; ϵ) = u0 (T0, T1, T2, . . .) + ϵu1 (T0, T1, T2, . . .)

+ ϵ2u2 (T0, T1, T2, . . .) + . . .
(C.3)

To solve the second-order perturbation problem of Eq. (C.1), two extra time scales
are necessary, so u (t; ϵ) ≡ u (T0, T1, T2; ϵ). In general, N independent time scales
are necessary to solve a perturbation problem of orderO

(
ϵN
)
. The time derivatives

become now expansions in terms of the partial derivatives with respect to Tn,

d

dt
=

∂

∂T0

+ ϵ
∂

∂T1

+ ϵ2
∂

∂T2

+O
(
ϵ3
)
, (C.4a)

d2

dt2
=

∂2

∂T 2
0

+ 2ϵ
∂2

∂T1∂T0

+ ϵ2
[
∂2

∂T 2
1

+ 2
∂2

∂T2∂T0

]
+O

(
ϵ3
)
. (C.4b)

Applying Eqs. (C.4) to the proposed solution, Eq. (C.3),

du

dt
=

∂u0

∂T0

+ ϵ

[
∂u0

∂T1

+
∂u1

∂T0

]
+ ϵ2

[
∂u0

∂T2

+
∂u1

∂T1

+
∂u2

∂T0

]
+O

(
ϵ3
)
, (C.5a)

d2u

dt2
=

∂2u0

∂T 2
0

+ ϵ

[
∂2u1

∂T 2
0

+ 2
∂2u0

∂T1∂T0

]
+ ϵ2

[
∂2u2

∂T 2
0

+
∂2u0

∂T 2
1

+ 2
∂2u0

∂T2∂T0

+ 2
∂2u1

∂T1∂T0

]
+O

(
ϵ3
)
. (C.5b)

Introducing Eqs. (C.5) in the eigenmode motional Equation (C.1), three relation-
ships are obtained for the different orders in ϵ,

ϵ0 :
∂2u0

∂T 2
0

+ ω2
0u0 =0, (C.6a)

ϵ1 :
∂2u1

∂T 2
0

+ ω2
0u1 =− 2

∂2u0

∂T1∂T0

− α2u
2
0, (C.6b)

ϵ2 :
∂2u2

∂T 2
0

+ ω2
0u2 =− ∂2u0

∂T 2
1

− 2
∂2u0

∂T2∂T0

− 2
∂2u1

∂T1∂T0

− 2α2u0u1 − α3u
3
0 − 2γ

∂u0

∂T0

+ E cos (ω0T0 + σT2) , (C.6c)

where the excitation frequency ω has been expressed in terms of the detuning σ
respect to the natural frequency ω0 as ω = ω0 + ϵ2σ. The general solution of
Eq. (C.6a) is

u0 = A (T1, T2) e
iω0T0 + Ā (T1, T2) e

−iω0T0 . (C.7)

Substituting u0 into Eq. (C.6b) yields

∂2u1

∂T 2
0

+ ω2
0u1 = −2iω0

∂A

∂T1

eiω0T0 − α2

[
A2e2iω0T0 + AĀ

]
+ c.c. , (C.8)
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where c.c. stands for complex conjugate. The factor eiω0T0 constitutes a secular
term since it represents a resonant excitation that gives rise to a term increasing
linearly with t. To eliminate this secular term, (∂A) / (∂T1) = 0, so A = A (T2).
The solution of Eq. (C.8) is

u1 =
α2

ω2
0

[
−2AĀ+

1

3
A2e2iω0T0 +

1

3
Ā2e−2iω0T0

]
. (C.9)

Substituting Eqs. (C.7) and (C.9) into Eq. (C.6c) leads to

∂2u2

∂T 2
0

+ ω2
0u2 = − [2iω0

(
dA

dT2

+ γA

)
+

(
3α3 −

10α2
2

3ω2
0

)
A2Ā

− 1

2
EeiσT2

]
eiω0T0 −

[
2

3

α2
2

ω2
0

+ α3

]
A3e3iω0T0 + c.c. . (C.10)

Secular terms are avoided only if

2iω0

(
dA

dT2

+ γA

)
+

(
3α3 −

10α2
2

3ω2
0

)
A2Ā− 1

2
EeiσT2 = 0. (C.11)

The unknown variable A is expressed in polar coordinates, A = 1
2
aeiβ for

convenience. A set of two equations, for the real and imaginary parts, are obtained
by substituting in Eq. (C.11):

aδ̇ = aσ − 9α3ω
2
0 − 10α2

2

24ω3
0

a3 +
E

2ω0

cos δ, (C.12a)

ȧ = −γa+
E

2ω0

sin δ. (C.12b)

The new variable δ = σT2−β has been introduced to omit the explicit dependence
on T2. In the steady state, ȧ = δ̇ = 0. An implicit equation in the amplitude a
can be obtained if the trigonometric identity sin2 δ + cos2 δ = 0 is used,{[

(ω − ω0)−
9α3ω

2
0 − 10α2

2

24ω3
0

a2
]2

+ γ2

}2

a2 =
E2

4ω2
0

. (C.13)

Radial modes

The motional equation for the radial modes including the crutch parameter ϵ and
the external-driven and damping terms is

ü− iωcu− 1

2
ω2
0u = −2ϵ2γu̇− ϵ

(
α1
2u

2 + α2
2uū+ α2

2ū
2
)

−ϵ2
(
α1
3u

3 + α2
3u

2ū+ α3
3uū

2 + α4
3ū

3
)
+ ϵ2E cos (ωt) ,

(C.14)
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where the constants αi
2 and αi

3 account for the second and third-order non-linearities,
respectively. Following the same procedure as for the axial modes, the three dif-
ferential equations equivalent to Eq. (C.6) obtained for the different orders in the
parameter ϵ are

ϵ0 :
∂2u0

∂T 2
0

− iωc
∂u0

∂T0

− 1

2
ω2
0u0 =0, (C.15a)

ϵ1 :
∂2u1

∂T 2
0

− iωc
∂u1

∂T0

− 1

2
ω2
0u1 =− 2

∂2u0

∂T1∂T0

+ iωc
∂u0

∂T1

−
[
α1
2u

2
0 + α2

2u0ū0 + α3
2ū

2
0

]
, (C.15b)

ϵ2 :
∂2u2

∂T 2
0

− iωc
∂u2

∂T0

− 1

2
ω2
0u2 =− ∂2u0

∂T 2
1

− 2
∂2u0

∂T2∂T0

− 2
∂2u1

∂T1∂T0

+ iωc

[
∂u0

∂T2

+
∂u1

∂T1

]
−
[
2α1

2u0u1 + α2
2 (u0ū1 + ū0u1) + 2α3

2ū0ū1

]
−
[
α1
3u

3
0 + α2

3ū
2
0u0 + α3

3u0ū
2
0 + α4

3ū
3
0

]
− 2γ

∂u0

∂T0

+ E cos (ω0T0 + σT2) . (C.15c)

The general solution of Eq. (C.15a) is

u0 = A+ (T1, T2) e
iω+T0 + A− (T1, T2) e

−iω−T0 . (C.16)

To avoid secular terms in Eq. (C.15b), (∂A±) / (∂T1) = 0, analogously as it ap-
peared in the axial modes. The general solution of Eq. (C.15b) is

u1 = c0α
2
2

(
A+Ā+ + A−Ā−

)
+ c1α

1
2A

2
+e

2iω+T0 + c2α
1
2A

2
−e

2iω−T0

+c3α
2
2A+A−e

i(ω++ω−)T0 + c4α
2
2A+Ā−e

i(ω+−ω−)T0 + c5α
3
2Ā

2
+e

−2iω+T0

+c6α
3
2Ā

2
−e

−2iω−T0 + c7α
2
2Ā+Ā−e

−i(ω++ω−)T0 + c8α
2
2Ā+A−e

−i(ω+−ω−)T0 ,

(C.17)

where ci are real numbers depending on the frequencies ωc, ω0 and the eigen-
values ω±. Introducing Eqs. (C.16) and (C.17) in Eq. (C.15c) yields again new
secular terms. If the external excitation is close to the eigenfrequency ω+, it can
be written as ω = ω+ + ϵ2σ. The secular term at ω+ is removed if

i (2ω+ − ωc)
dA+

dT2

+ 2iω+A+γ

+2α1
2

[
c0α

2
2

(
A+Ā+ + A−Ā−

)
A+ + c4α

2
2A+Ā−A−

]
+α2

2

[
c0α

2
2

(
A+Ā+ + A−Ā−

)
A+ + c8ᾱ2

2A+Ā−A−
]

+α2
2

[
c1α

1
2A

2
+Ā+ + c3α

2
2A+A−Ā−

]
+2α3

2

[
c5ᾱ3

2A
2
+Ā+ + c7ᾱ2

2A+A−Ā−
]

+α2
3

[
A2

+Ā+ + 2A+A−Ā−
]
− EeiσT2 = 0.

(C.18)



139

If the amplitude of the mode oscillating at ω−, A−, is considered negligible com-
pared to A+, Eq. (C.18) becomes a differential equation with terms proportional
to A+ and A2

+Ā of the same type as Eq. (C.11). Therefore, the mode amplitude
follows likewise an implicit equation of the type{[

(ω − ω0)− F (α2, α3)A
2
]2

+ γ2
}2

A2 =
E2

4ω2
0

. (C.19)





Resumen extenso en español

En esta tesis doctoral se presentan las primeras medidas de ratios de frecuencia
ciclotrónica utilizando detección óptica en una trampa Penning. La técnica se ha
implementado en iones individuales de isótopos de calcio y en cristales de Coulomb
de dos iones. A continuación, se exponen las partes más relevantes del contenido de
este manuscrito, incluyendo la motivación y los objetivos de la tesis, los principales
progresos técnicos llevados a cabo en el experimento, los resultados obtenidos y
las conclusiones que se derivan de este trabajo.

Introducción

Desde que fuera ideada por Hans G. Dehmelt para medir el momento magnético
del electrón de forma directa [1], la trampa Penning ha sido ampliamente utilizada
para determinar propiedades fundamentales de las part́ıculas confinadas con una
alta precisión. Una de estas propiedades es la masa, que en el caso de un átomo
está directamente relacionada con la enerǵıa de enlace y, por tanto, contiene infor-
mación sobre su estructura interna y la interacción entre los constituyentes [10].
La masa se extrae de una medida de la frecuencia ciclotrónica, que a su vez está
relacionada con las frecuencias de movimiento del ion en la trampa.

Las técnicas existentes en la actualidad se pueden clasificar en dos grupos, de-
pendiendo del método de detección: técnicas destructivas, en las que el propio ion
genera un pulso eléctrico al impactar en un detector [11], y técnicas basadas en la
detección de la corriente inducida en un electrodo de la trampa [12]. Las técnicas
destructivas se han utilizado ampliamente en instalaciones radiactivas para medir
la masa de elementos de vida media corta. La técnica PI-ICR (phase-imaging
ion-cyclotron-resonance) [14], que determina la fase de movimiento de los iones
para extraer su frecuencia, es la más avanzada de este tipo en la actualidad, lo-
grando alcanzar incertidumbres relativas del orden de 10−10. Las técnicas basadas
en la detección de corrientes inducidas han sido empleadas mayoritariamente en
elementos estables. Aunque existen múltiples variantes, la técnica PnP (pulse-and-
phase) [16] ha sido aplicada con éxito en diferentes situaciones llegando a alcanzar
incertumbres relativas por debajo de 10−11 [20–23].

El principal objetivo del experimento de trampas Penning en la Universidad
de Granada es el desarrollo una nueva técnica de medida de masas en la que un
ion sensor enfriado por láser [24, 25] se utiliza para recabar información sobre la
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amplitud de movimiento del sistema que forma junto con el ion de interés [35].
La primera implementación está siendo desarrollada en el cristal de Coulomb for-
mado por los dos iones cuando estos son enfriados por láser [37]. En comparación
con otras técnicas, este planteamiento ofrece universalidad, ya que es aplicable
a iones de cualquier relación carga-masa, y basta con un solo ion para alcanzar
una precisión arbitraria. Además, el uso del enfriamiento por láser en la etapa
preparatoria, idealmente hasta el estado fundamental de movimiento, reduce la
amplitud de oscilación requerida, lo que se traduce en incertidumbres sistemáticas
más bajas [38].

Una de las motivaciones para el desarrollo de la técnica de detección óptica
es la determinación de la masa de elementos súper-pesados (SHE, por sus siglas
en inglés). En la actualidad, el experimento SHIPTRAP, en el GSI, es el único
espectrómetro de masas basado en trampas Penning acoplado a una instalación
capaz de producir este tipo de elementos [42]. La determinación de la enerǵıa
de enlace de los SHE proporciona información útil sobre su estructura nuclear
interna, aportando en ocasiones nuevas pistas sobre los efectos de capa necesarios
para explicar su existencia [43]. Las bajas tasas de producción, menores cuanto
mayor es la masa, hacen cada vez más dif́ıcil la implementación de la técnica PI-
ICR [46], y al mismo tiempo las técnicas basadas en corrientes inducidas no han
alcanzado hasta la fecha relaciones masa-carga superiores a 65 u/e [18].

El método óptico también también encuentra una importante aplicación en la
determinación del valor Q de procesos de desintegración β− y captura electrónica
que son de interés en el campo de la f́ısica de neutrinos [50]. La comparación del
valor Q y del punto final del espectro en estos procesos proporciona un valor de
la masa absoluta del neutrino. En este sentido,163Ho es una especie de interés,
ya que experimentos como ECHo [52] o HOLMES [53] persiguen el estudio de su
espectro de desexcitación atómica tras el proceso de captura electrónica. Aparte
de los procesos β estándar mencionados anteriormente, también es posible observar
doble desintegración beta para algunas especies como 48Ca [55]. La búsqueda de
este tipo de proceso, en su versión sin emisión de neutrinos, intenta desentrañar si
esta part́ıcula tiene naturaleza de Dirac o Majorana [56].

Finalmente, la combinación de trampa Penning y detección óptica también
tiene el potencial de ser utilizada para experimentos de espectroscoṕıa óptica que
normalmente se llevan a cabo en trampas Paul. Las principales ventajas de una
trampa Penning son la ausencia de micromovimiento en todo el volumen de atra-
pamiento, una menor tasa de calentamiento en el estado cero de enerǵıa y la
posibilidad de albergar part́ıculas con relaciones carga-masa muy diferentes. Una
aplicación de la espectroscoṕıa en trampas de iones con particular interés es la
nueva generación de relojes basados en transiciones nucleares que se encuentran
dentro del espectro óptico [59]. La principal ventaja con respecto a las transiciones
atómicas es la insensibilidad frente a ruido procedente de campos electromagnéticos
externos. El candidato mejor posicionado en la actualidad es 229Th, que tiene un
isómero nuclear de baja enerǵıa, 229mTh, a sólo 8,338(24) eV (150 nm) [60].
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Desarrollos técnicos

La trampa Penning del Laboratorio de Trampas de Iones de la Universidad de
Granada [98] se puso en marcha a lo largo de dos tesis anteriores [64,65]. Durante
esta tesis doctoral, se han llevado a cabo varias mejoras técnicas que han permitido
implementar con éxito el método óptico.

Se han instalado dos nuevas fuentes de iones externas: una trampa Paul de
anillos que se utiliza para producir isótopos de calcio y una fuente de ablación láser
que permite crear cualquier especie. Ambas han sido caracterizadas en términos de
la distribución de enerǵıa del pulso de iones que generan. La primera se ha utilizado
de forma rutinaria para inyectar iones de calcio que son enfriados por láser en la
trampa Penning, mientras que la segunda se ha empleado para producir torio,
renio y oro, entre otros elementos. El enfriamiento por láser se ha extendido al
plano radial, algo esencial para enfriar iones individuales y pequeñas estructuras
cristalinas hasta el ĺımite Doppler [77]. Se han mejorado las condiciones de vaćıo
en la zona de la trampa Penning mediante la instalación de una bomba criogénica a
medida, cuyo impacto en la ĺınea se ha simulado utilizando el paquete informático
Molflow+ [103].

El diseño e implementación del nuevo sistema óptico ha sido el avance técnico
más importante llevado a cabo durante este trabajo. Las simulaciones del sistema
óptico anterior utilizando el paquete informático Zemax mostraron que carećıa de
la suficiente resolución espacial para discernir la posición del ion en un cristal de
Coulomb. El nuevo sistema, que opera en su mayor parte en condiciones de vaćıo,
se compone exclusivamente de elementos comerciales, su diseño se ha adaptado
a la geometŕıa impuesta por el sistema de trampas Penning, y consigue generar
imágenes carentes de aberraciones para objetos situados en el eje óptico. Ha sido
caraterizado antes de su instalación en vaćıo midiendo la función de transferen-
cia de modulación y la función de transferencia de contraste utilizando impulsos
cuadrados. En su caracterización en vaćıo, se ha utilizado un ion como fuente
puntual para medir la función de dispersión de punto. El análisis de esta función
ha permitido cuantificar el peso de cada tipo de aberración en la base de poli-
nomios de Zernike. En un principio, el sistema presentaba un fuerte astigmatismo,
posiblemente por no estar perfectamente alineado con el centro de la trampa, que
se ha corregido mediante la inclusión de una lente ciĺındrica apropiada.

A lo largo de este trabajo también se han desarrollado los programas necesar-
ios para controlar el experimento y adquirir datos mediante un sistema basado
en ARTIQ. La mayoŕıa de los protocolos de medida han sido automatizados: la
captura de iones por tiempo de vuelo se ha sincronizado con la fase de extracción
de las fuentes de iones para mejorar su reproducibilidad; la frecuencia de emisión
de los láseres y los parámetros de los AOM se pueden controlar desde los propios
programas; la lectura del PMT (siglas en inglés de tubo fotomultiplicador) se ha
implementado directamente a través del hardware de ARTIQ, lo que se suma a la
cámara EMCCD (siglas en inglés de dispositivo de carga acoplada con multipli-
cación de electrones) y los generadores de funciones [65]; y la señal del detector
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MCP (siglas en inglés de detector de microcanales) ahora también se puede leer a
través del hardware de ARTIQ.

Caracterización del enfriamiento por láser

La implementación de los avances técnicos mencionados anteriormente ha hecho
posible el enfriamiento por láser y la detección de iones individuales y cristales de
Coulomb en el ĺımite Doppler [77]. En particular, la cristalización de conjuntos
de hasta miles de iones implica que se han alcanzado temperaturas por debajo
de 5 mK. La distancia relativa entre los dos iones de un cristal de 40Ca+ se ha
utilizado para caracterizar la trampa Penning en términos de su frecuencia axial
en un amplio rango de voltajes de atrapamiento. También se ha explorado la
sensibilidad de detección del PMT, obteniéndose relaciones señal-ruido superiores
a la unidad para tiempos de lectura del orden de milisegundos.

Se ha estudiado en detalle el enfriamiento por láser de los modos radiales de
un solo ion y de un cristal de dos iones mediante axialización [140]. Esta técnica
utiliza un campo cuadripolar para intercambiar enerǵıa entre los modos radiales, de
forma que el modo magnetrón se enfŕıa indirectamente por láser a través del modo
ciclotrón reducido. Se han encontrado las condiciones óptimas de operación, para
lo cual se ha monitorizando la temperatura de los iones a partir de la anchura de la
imagen del ion. Se estima un ĺımite superior de 753(36) nm para los modos radiales
en el cristal de dos iones de 40Ca+. También se ha caracterizado el fenómeno de
resonancia oscura en los sistemas de cuatro niveles que aparecen en el esquema de
bombeo láser del enfriamiento Doppler en el campo magnético de 7 T.

Medida de los ratios de frecuencia de los isótopos de calcio

El método óptico se ha aplicado en primer lugar en iones de calcio individuales.
Cada uno de los modos propios de un único ion de 40Ca+ ha sido excitado por
campos eléctricos dipolares externos durante un intervalo de tiempo en el que se
desactiva el enfriamiento por láser. La amplitud de oscilación final se ha deducido
a partir de la evolución temporal y la distribución espacial de los fotones emi-
tidos mientras el ion se enfriaba de nuevo hasta el ĺımite Doppler, para lo cual
se ha utilizado la cámara EMCCD y el PMT. Para las condiciones espećıficas de
enfriamiento de este experimento, la amplitud de los modos radiales ha podido
detectarse con una sensibilidad mayor que la del modo axial. Esto se explica por
la menor tasa de enfriamiento en el plano radial, con una constante de decaimiento
de la amplitud de 80(23) ms, que ha permitido la medida directa de la evolución
de la amplitud radial con la cámara EMCCD.

Cada una de las frecuencias propias se ha determinado a través del estudio de
la amplitud del ion cuando se realiza un barrido de la frecuencia del campo dipolar
externo. En el caso de los modos radiales, el pico resultante está centrado en la
frecuencia de movimiento del ion, mientras que para el modo axial se obtiene una
disminución en el número de fotones detectados. Se han explorado dos métodos
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diferentes para determinar la frecuencia ciclotrónica: el teorema de invariancia
y la determinación directa a través de las frecuencias radiales. En este último
caso, la frecuencia magnetrón se ha medido indirectamente a partir de las bandas
laterales detectadas en torno a la frecuencia del modo ciclotrón reducido cuando
se aplica un campo cuadripolar que acopla los modos radiales. Ambo métodos
alcanzan incertidumbres relativas del orden de 10−8 para tiempos de excitación de
500 ms en los modos ciclotrón reducido y axial. El teorema de invariancia necesita
determinar la frecuencia axial pero es más robusto frente a desalineamientos o falta
de simetŕıa en los campos de atrapamiento.

El método óptico ha sido utilizado para determinar el ratio de masas de varios
isótopos de calcio (A = 42, 44, 48) frente a 40Ca+ [148]. Los iones indiviuales de
cada isótopo se han cargado de forma secuencial en la trampa y se han realizado
varios barridos de frecuencia para cada uno de los modos propios. El ion 40Ca+ se
ha utilizado como referencia, y su frecuencia ciclotrónica en el momento en que se
mide el ion de interés se ha calculado mediante interpolación lineal. Los tres ratios
de frecuencia ciclotrónica medidos experimentalmente coinciden con la bibliograf́ıa
dentro de 1σ [149]. Para 48Ca+, se obtiene un valor de 1, 199 938 029(15) a partir
de 26 medidas, con una incertidumbre relativa de 1, 3 · 10−8 que es un factor 20
superior al valor de la bibliograf́ıa medido utilizando PI-ICR [175]. En el caso
de 44Ca+, los 18 datos recabados dan lugar a un valor de 1, 099 917 0772(89), que
coincide con la incertidumbre actual de la bibliograf́ıa, 8, 1 · 10−9. Las 11 medidas
de 42Ca+ arrojan un valor de 1, 049 948 070(11), con una incertidumbre de 1, 0·10−8

que es 2,5 veces mayor que el valor de la bibliograf́ıa.
La monitorización de la amplitud del ion en todo momento ha permitido esti-

mar de forma directa la incertidumbre sistemática debida a las imperfecciones de
los campos de atrapamiento. Para relaciones masa-carga equivalentes, el método
óptico presenta incertidumbres sistemáticas más bajos que la detección por corri-
entes inducidas. Por su parte, la monitorización de las frecuencias propias ha per-
mitido encontrar que fuertes correlaciones en su evolución temporal que apuntan
a posibles inestabilidades del campo eléctrico como factor limitante de la precisión
en estos momentos. La estabilidad para tiempos largo deducida a partir de los
valores de cualquiera de las frecuencias propias es 4, 5 · 10−5.

Primeras medidas con cristales de dos iones

El método óptico se ha implementado en los cristales de Coulomb 40Ca+ - 40Ca+

y 42Ca+ - 40Ca+. El protocolo de medida es equivalente al empleado para iones
individuales. Sin embargo, en los casos en los que la fuerza de Coulomb da lugar
a desplazamientos en frecuencia [37] mucho mayores que la anchura de ĺınea se ha
aplicado enfriamiento láser de forma continua. Para estos casos, se ha desarrollado
un modelo de oscilador no lineal que contiene los términos de segundo y tercer
orden de la fuerza de Coulomb, de cara a realizar ajustes de los datos de amplitud
de movimiento del cristal en función de la frecuencia de excitación. Además,
el campo eléctrico de excitación debe presentar una geometŕıa cuadripolar para
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lograr un acoplamiento efectivo a los modos diferenciales (los dos iones se mueven
en oposición de fases).

Se han llevado a cabo tres medidas completas de las seis frecuencias propias
del cristal 40Ca+ - 40Ca+. En este caso, sólo se ha observado dependencia de la
frecuencia con la amplitud para el modo diferencial axial. En el estado estacionario
del sistema no lineal forzado (campo dipolar eléctrico) y amortiguado (enfriamiento
láser), se observa una región de frecuencia en la que tres valores diferentes de
amplitud son solución de la ecuación diferencial, lo cual se puede interpretar como
un efecto de histéresis. Estas medidas sirven para validar el teorema de invariancia
generalizado [41] a un nivel de 7 · 10−6.

En el caso del cristal 42Ca+ - 40Ca+, se han realizado dos medidas completas.
Los desplazamientos de frecuencia son más evidentes que para el cristal simétrico,
apareciendo incluso para el modo ciclotrón reducido común. En el caso del modo
ciclotrón reducido diferencial, la discrepancia en la masa de los constituyentes im-
plica una amplitud de movimiento 20 veces mayor para el ion más pesado (42Ca+).
Por lo tanto, la excitación mı́nima de varios micrómetros necesaria para detectar
un cambio en la amplitud de movimiento del ion brillante (más ligero) 40Ca+ no
cumple la aproximación de baja amplitud en la que el cristal se alinea a lo largo
del eje axial. En este caso, se ha monitorizado la distancia axial del ion brillante al
centro de la trampa, que disminuye para una excitación resonante. La frecuencia
ciclotrónica de iones individuales de 40Ca+ y 42Ca+ se ha determinado antes y de-
spués de cada medida del cristal de cara a la calibración. La frecuencia ciclotrónica
de 42Ca+ calculada mediante el teorema de invariancia generalizado se ha derivado
con una incertidumbre relativa de 4 · 10−5.

Conclusiones

En la primera parte de esta tesis doctoral se han llevado a cabo desarrollos técnicos
que han resultado fundamentales para la primera implementación del método
óptico. Las nuevas fuentes externas de iones permiten crear cualquier tipo de cristal
asimétrico y han contribuido a la mejora del nivel de vaćıo en comparación con la
fuente interna localizada en la propia trampa. Por su parte, la bomba criogénica a
medida ha permitido alcanzar un nivel de vaćıo estimado en 3·10−10 mbar en base a
la frecuencia de colisión con el gas residual de un ion enfriado por láser. Como se ha
comentado anteriormente, el nuevo sistema óptico ha sido un elemento clave para
poder detectar iones individuales y estructuras cristalinas en la trampa Penning.
Su resolución, medida utilizando un ion en el ĺımite Doppler, es de 3,69(3) µm y
2,75(3) µm en las direcciones axial y radial, respectivamente. La integración de
varios elementos en ARTIQ, como el PMT, el MCP o el control de los láseres, ha
permitido automatizar y centralizar de forma completa el experimento en un solo
sistema de control y adquisición de datos.

Los valores de ratios de masas de los isótopos de calcio podŕıan mejorarse
fácilmente utilizando una fuente de tensión más estable y, presumiblemente, medi-
ante un mejor aislamiento frente al ruido externo. La precisión puede aumentarse
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excitando el ion durante un periodo más largo, siempre que se mantenga la relación
señal-ruido. Una ventaja del método óptico respecto a la detección de corrientes
inducidas es la posibilidad de detectar amplitudes de movimiento más pequeñas.
Por ejemplo, utilizando el protocolo de medida desarrollado en este trabajo, la am-
plitud mı́nima detectable se estima en torno a 4 µm, sólo limitada por la resolución
del sistema óptico y la tasa de enfriamiento. Las incertidumbres sistemáticas aso-
ciadas a las imperfecciones de los campos de atrapamiento se ven atenuadas para
menores amplitudes, e incluso podŕıan minimizarse ajustando adecuadamente las
amplitudes relativas en cada modo o tratarse como una corrección a la medida
experimental.

La aplicación del método óptico en el cristal de dos iones está limitada actual-
mente por la dependencia de las frecuencias propias con la amplitud de movimiento.
El modelo no lineal desarrollado es capaz de corregir los desplazamientos en fre-
cuencia debidos a la amplitud del modo analizado, pero no tiene en cuenta los de-
splazamientos sistemáticos consecuencia de los términos cruzados y además propor-
ciona una menor precisión en comparación con el protocolo de medida pulsando el
láser. El siguiente paso en la aplicación del método óptico será el acceso al régimen
cuántico enfriando el cristal hasta el estado fundamental de movimiento. La menor
amplitud de movimiento se traducirá en menores desplazamientos de frecuencia,
y será necesario medir todos los términos de acoplamiento cruzado y corregir ac-
tivamente los desplazamientos de frecuencia al nivel de un solo fonón. [38].
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[24] T. W. Hänsch and A. L. Schawlow, Cooling of gases by laser radiation, Opt.
Commun. 13, 68–69 (1975). [Pages 2 and 141].

[25] D. J. Wineland and H. G. Dehmelt, Proposed 1014 δν < ν laser fluorescence
spectroscopy on Tl+ mono-ion oscillator III, Bull. Am. Phys. Soc. 20, 637
(1975). [Pages 2 and 141].

[26] D. J. Wineland, R. E. Drullinger, and F. L. Walls, Radiation-pressure cooling
of bound resonant absorbers, Phys. Rev. Lett. 40, 1639–1642 (1978). [Page 2].

[27] W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, Optical-
sideband cooling of visible atom cloud confined in parabolic well, Phys.
Rev. Lett. 41, 233–236 (1978). [Page 2].

[28] F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Laser
cooling to the zero-point energy of motion, Phys. Rev. Lett. 62, 403–406
(1989). [Pages 2 and 12].

[29] D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J.
Wineland, Sympathetic cooling of trapped ions: A laser-cooled two-species
nonneutral ion plasma, Phys. Rev. Lett. 57, 70–73 (1986). [Pages 2 and 108].

[30] P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and
D. J. Wineland, Spectroscopy using quantum logic, Science 309, 749–752
(2005). [Page 2].



152 Bibliography

[31] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks,
H. Uys, M. J. Biercuk, and J. J. Bollinger, Engineered two-dimensional Ising
interactions in a trapped-ion quantum simulator with hundreds of spins,
Nature 484, 489–492 (2012). [Page 2].

[32] K. A. Gilmore, M. Affolter, R. J. Lewis-Swan, D. Barberena, E. Jordan,
A. M. Rey, and J. J. Bollinger, Quantum-enhanced sensing of displacements
and electric fields with two-dimensional trapped-ion crystals, Science 373,
673–678 (2021). [Pages 2, 75, and 104].

[33] J. F. Goodwin, G. Stutter, R. C. Thompson, and D. M. Segal, Resolved-
sideband laser cooling in a Penning trap, Phys. Rev. Lett. 116, 143002
(2016). [Pages 2 and 4].

[34] P. Hrmo, M. K. Joshi, V. Jarlaud, O. Corfield, and R. C. Thompson, Side-
band cooling of the radial modes of motion of a single ion in a Penning trap,
Phys. Rev. A 100, 043414 (2019). [Page 2].
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[38] J. Cerrillo and D. Rodŕıguez, Motional quantum metrology in a Penning
trap, EPL 134, 38001 (2021). [Pages 3, 22, 121, 127, 142, and 147].

[39] J. M. Cornejo, R. Lehnert, M. Niemann, J. Mielke, T. Meiners, A. Bautista-
Salvador, M. Schulte, D. Nitzschke, M. J. Borchert, K. Hammerer, S. Ul-
mer, and C. Ospelkaus, Quantum logic inspired techniques for spacetime-
symmetry tests with (anti-)protons, New J. Phys. 23, 073045 (2021).
[Page 3].

[40] M. Bohman, V. Grunhofer, C. Smorra, M. Wiesinger, C. Will, M. J.
Borchert, J. A. Devlin, S. Erlewein, M. Fleck, S. Gavranovic, J. Harring-
ton, B. Latacz, A. Mooser, D. Popper, E. Wursten, K. Blaum, Y. Matsuda,
C. Ospelkaus, W. Quint, J. Walz, S. Ulmer, and BASE Collaboration, Sym-
pathetic cooling of a trapped proton mediated by an LC circuit, Nature 596,
514–518 (2021). [Page 3].



Bibliography 153

[41] S. Jain, J. Alonso, M. Grau, and J. P. Home, Scalable arrays of micro-
Penning traps for quantum computing and simulation, Phys. Rev. X 10,
031027 (2020). [Pages 3, 12, 107, 126, and 146].

[42] F. Giacoppo, K. Blaum, M. Block, P. Chhetri, C. Droese, Ch. E. Düllmann,
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Yu. Novikov S. Raeder, D. Rodŕıguez, F. Schneider, L. Schweikhard, P. G.
Thirolf, and A. Yakushev, Direct high-precision mass spectrometry of su-
perheavy elements with SHIPTRAP, Phys. Rev. Lett. 106, 054325 (2022).
[Pages 3 and 142].

[47] S. Lohse, J. Berrocal, M. Block, S. Chenmarev, J. M. Cornejo, J. G. Ramı́rez,
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ion crystals by injection from a Paul-trap source into a high-magnetic-field
Penning trap, Phys. Rev. A 105, 052603 (2022). [Pages 15, 55, 69, 112, 124,
143, and 144].

[78] M. Ramm, T. Pruttivarasin, M. Kokish, I. Talukdar, and H. Häffner, Pre-
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