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Abstract: Schizophrenia (SZ) is a complex disorder characterized by a range of symptoms and
behaviors that have significant consequences for individuals, families, and society in general. Elec-
troencephalography (EEG) is a valuable tool for understanding the neural dynamics and functional
abnormalities associated with schizophrenia. Research studies utilizing EEG have identified specific
patterns of brain activity in individuals diagnosed with schizophrenia that may reflect disturbances in
neural synchronization and information processing in cortical circuits. Considering the temporal dy-
namics of functional connectivity provides a more comprehensive understanding of brain networks’
organization and how they change during different cognitive states. This temporal perspective would
enhance our understanding of the underlying mechanisms of schizophrenia. In the present study, we
will use measures based on graph theory to obtain dynamic and static indicators in order to evaluate
differences in the functional connectivity of individuals diagnosed with SZ and healthy controls
using an ecologically valid task. At the static level, patients showed alterations in their ability to
segregate information, particularly in the default mode network (DMN). As for dynamic measures,
patients showed reduced values in most metrics (segregation, integration, centrality, and resilience),
reflecting a reduced number of dynamic states of brain networks. Our results show the utility of
combining static and dynamic indicators of functional connectivity from EEG sensors.

Keywords: EEG; graph measures; schizophrenia; mind wandering; on task

1. Introduction

Schizophrenia (SZ) is a heterogeneous disorder characterized by a range of symptoms
that can vary in severity and presentation among affected individuals, including positive
(e.g., hallucinations and delusions), negative (e.g., blunted affect, alogia, and avolition),
and cognitive symptoms (e.g., disorganized speech, thought, and/or attention). These
symptoms have substantial consequences for individuals’ lives, affecting various domains
such as cognition, employment, education, relationships, and quality of life [1,2]. SZ not
only imposes a substantial burden on families and caregivers but also leads to high levels of
stress, emotional strain, and disruptions within family dynamics due to its chronic nature
and the unpredictability of symptoms [3]. The financial costs associated with treatment,
medications, and supportive services further contribute to the burden experienced by
families [4]. SZ also has significant social consequences, impacting healthcare systems,
public resources, and social welfare programs. The costs of hospitalization, outpatient care,
and long-term treatment for individuals diagnosed with SZ pose a substantial economic
load [5]. Advancing our understanding of the underlying causes of schizophrenia can lead
to improved diagnostic accuracy, personalized treatments, early intervention strategies,
prevention programs, and reduced societal burdens. Moreover, research plays a vital role
in challenging misconceptions, reducing stigma, and promoting a more inclusive and
supportive environment for individuals living with schizophrenia.
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Electroencephalography (EEG), while not a standalone diagnostic tool for schizophre-
nia, offers valuable insights into the disorder’s neural dynamics and functional abnormali-
ties due to its high temporal resolution [6–8].

Research studies employing EEG have identified various patterns of brain activity
in individuals diagnosed with SZ. These findings include alterations in oscillatory ac-
tivity, such as increased theta and delta activity, and decreased alpha and beta activity
in specific brain regions [9–12]. These abnormalities may reflect disturbances in neural
synchronization and information processing in cortical circuits. Additionally, functional
connectivity studies have revealed alterations in the connectivity between brain regions in
individuals diagnosed with SZ. Disruptions in large-scale networks, including the default
mode network and the fronto-parietal network, have been observed, suggesting impaired
integration and coordination of neural activity [13–15].

While numerous EEG studies on SZ have utilized resting state data to uncover spon-
taneous brain activity and connectivity [8,16–20], this paper shifts its focus towards a
task-based EEG analysis. Although this approach presents challenges in patient work, it
enables the exploration of specific altered cognitive processes in SZ, including working
memory deficits and event-related potentials (ERPs) [21,22]. Moreover, it provides a more
ecologically valid assessment of brain activity and cognitive functioning by simulating
real-life scenarios and enabling the investigation of functional connectivity patterns during
specific cognitive processes [12]. The present study aims to perform EEG-based analysis
in order to compare the functional connectivity in people diagnosed with SZ and healthy
controls while they are focused on the content of a series of video clips with respect to
when their attention goes away from the task at hand (mind-wandering) [23,24].

Conversely, much SZ research underscores the hypothesis that the disorder is under-
pinned by connectivity issues in various brain regions, emphasizing the role of disrupted
functional connectivity in SZ’s pathophysiology [25–28]. While traditional studies have
provided significant insights using average time series values to characterize functional con-
nectivity [26,29], recent studies acknowledge the brain’s dynamic nature, advocating for a
shift towards examining functional connectivity patterns across different time points [30,31].
Aligning with this, our work seeks to identify potential anomalies in SZ brain connectivity,
utilizing both static (average of time series) and dynamic (temporal dynamics of functional
connectivity) indicators.

The measures of graph theory, the mathematical study of networks, allow for the
quantitative characterization of global and local topological properties within and between
large-scale brain networks. The ability to analyze these networks with graph theory
measures offers a psychologically meaningful research program capable of identifying
critical changes in certain properties of the networks, both in normal cognitive function
and in disordered states. Previous research on graph theory in schizophrenia has shown
the sensitivity of these measures to capturing a disturbed balance between segregation and
integration within functional brain networks [14,32–35]. In this paper, this approach will
be adopted.

Considering all of the above from EEG data, the present study aims to use measures
based on graph theory to obtain dynamic and static indicators of the functional connectivity
of individuals diagnosed with SZ and healthy controls, both in situations in which they
are focused on a task and when they are mind wandering (stimulus-independent and
task-unrelated thoughts).

2. Materials and Methods

Our dataset was part of a large investigation designed to compare internally guided
cognition states in individuals diagnosed with SZ and healthy controls [36]. The results
to be presented in this paper have not been published, and the research questions are
original. Since the sample description and the cognitive functioning assessment procedures
used have been previously described in detail [36], in this section, those procedures are
briefly described.
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2.1. Participants

Our dataset was part of a large investigation designed to compare internally guided
cognition states in individuals diagnosed with SZ and healthy controls [36]. The results
presented in this paper (see Table 1) have not been previously published, and the research
questions are original. Since the sample description and the cognitive functioning assess-
ment procedures used have been previously described in detail [36], in this section, these
procedures are only briefly described.

Table 1. Demographical and clinical variables. Values expressed as mean ± standard deviation.

SCZ HC Test, p-Value

N 22 23
Age (y) 36.5 ± 10.2 38.8 ± 11.8 U = 222, p = 0.25 a

Sex (M:F) 15:7 19:4 χ2 = 0.91, p = 0.33 b

Education
(Prim.:Second.:High) 5:13:7 2:14:7 χ2 = 2.12, p = 0.34 b

SCIP-S—VLi 17.5 ± 4.2 20.8 ± 4.5 U = 150, p < 0.01 a

SCIP-S—VLd 5.6 ± 2.4 6.6 ± 2.2 U = 213, p = 0.17 a

SCIP-S—VF 13.4 ± 4.2 17.2 ± 4.2 U = 142, p < 0.01 a

SCIP-S—WM 17.4 ± 4.2 19.2 ± 3.1 U = 207, p = 0.14 a

SCIP-S—PS 8.1 ± 3.3 11.1 ± 3.2 U = 144, p < 0.01 a

PANSS-P 14 ± 6.0
PANSS-N 18.8 ± 7.6
PANSS-G 32.4 ± 9.3

SCZ: Individuals diagnosed with schizophrenia, HC: healthy control, VLi: iImmediate verbal learning, delayed
verbal learning: VLd, verbal fluency: VF, working memory: WM, processing speed: PS, PANSS-P: positive
symptoms, PANSS-N: negative symptoms, PANSS-G: general subscale. a Mann-Whitney test; b χ2 test.

Cognitive functioning was measured using a Spanish adaptation of Screening for
cognitive impairment in psychiatry [37]. SCIP-S allows for the detection of cognitive
deficits in people with mental disorders, although it can also be used to assess the cognitive
status of adults without a mental disorder. SCIP-S provides a score for each of the following
subscales: immediate and delayed verbal learning, verbal fluency, working memory, and
processing speed.

To assess psychopathology, a Spanish version [38] of the positive and negative syn-
drome scale [39] was used. PANSS is composed of 30 items that evaluate schizophrenic
syndrome, each item being scored according to a scale of 7 points of severity (1: absence of
the symptom, 7: presence with extreme severity).

2.2. Procedure

Data collection was conducted in two sessions in a laboratory at the Hospital Univer-
sitario San Agustín. During the first session, after signing the informed consent form, the
participants were seated approximately 70 cm away from a computer screen. Next, the
experimenter placed a set of 32 active electrode caps on the 10–20 system, keeping their
impedance under 5 kOhm. The frequency of signal recordings was 500 Hz.

Participants were informed that they would watch four film clips and would be asked
intermittently whether they were focusing on the content of the video or on their own
unrelated thoughts. The movie would pause, approximately every 50 s, and then a message
would appear on screen, where participants were asked to indicate whether they had been
concentrating on the video (referred to as the “attention-to-task condition”) or whether
they had stopped paying attention to the video and had been focusing on internal stimuli,
such as thoughts, mental images, or memories unrelated to the task at hand (referred to as
the “attention-to-mind condition”). A researcher, who could not be seen by the participant,
recorded the verbal responses by entering a numerical code into the EEG recording. This
message remained for about 10 s, which was the time the participants had to respond.
After this time, the movie would resume until the next question. In a second subsequent
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session, participants underwent a cognitive assessment using the Spanish adaptation of
the screen for cognitive disability in psychiatry (SCIP-S). Following this assessment, for
participants who were patients, a clinician administered the Spanish version of the positive
and negative syndrome scale (PANSS). A summary of the experimental setup is presented
in Figure 1.
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2.3. EEG Data Processing

For each participant, 20 clean EEG segments were selected, each with a length of 50 s,
labeled according to the introspective answer of participants (mind wandering and on task).
Data processing was performed using Brain Vision Analyzer software, EEGLAB [40], and
MATLAB custom scripts. A bandpass filter was applied with cutoff frequencies of 0.5 and
30 Hz. Blinks, muscles, pop-up channels, and other artifacts were extracted using infomax
runica independent component analysis (ICA) [41]. ICA components with artifacts were
eliminated by visual inspection of the scalp topography, power spectra, and raw activity
from all components.

2.4. Source Reconstruction and Parcellation

Each EEG trial contained 50 s of cortical activity distributed among the 31 channels we
used for recording (in total, there were 32 channels, but as we have previously indicated,
one of them was used as a reference). Since our sampling rate was 500 Hz, for each trial, we
had 25,000 points for each of the 31 channels. A source model consisting of 15,002 current
dipoles was used to calculate Kernel inversion matrices for each participant using sLORETA,
implemented in Brainstorm [42]. We used the ICBM152 brain template, distributed with
the Brainstorm package. The orientation of the dipoles was constrained to the cortex. The
forward EEG model was computed for each subject using the boundary element method
(BEM) implemented in the OpenMEEG model [43,44]. This source modeling process
generated the complete matrices 15,002 × 25,000 × 31, where 15,002 are the virtual sources,
25,000 are the samples generated in the test (50 s at 500 Hz), and 31 are the channels.
Figure 2 shows a diagram of the main steps in obtaining metrics, analysis, and results.

In order to parcellate the source model, the Desikan–Killiany atlas [45] available in
Brainstorm was used. According to this parcellation scheme, we were able to define
the following networks: default mode network (DMN), dorsal attention network (DAN),
salience network (SAN), and visual network (VIS). Table S1 (see Table S1 in Supplementary
Material) presents an exhaustive description of the regions of interest (ROI) that define each
of these networks. In addition to the previously mentioned networks, a network (brain)
was generated from all the ROIs, regardless of their network of origin.
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2.5. Functional Connectivity

For each of the networks (DMN, DAN, SAN, VIS, and Brain), the Spearman correlation
coefficient between the electrical activity on its nodes was obtained. One of the main
advantages of using EEG recordings is the high temporal resolution, which allows us to
explore in detail the dynamics of temporal activation. For this purpose, a sliding window of
2000 ms with 90% overlap at each step was used, which produced a total of 241 functional
connectivity matrices for each participant. The duration of the time series to which the
sliding window was applied was 50 s, which corresponded to the time participants had
been watching the videos.

The topological characteristics of the networks generated by binarizing the interre-
gional correlation matrix depend on the threshold value chosen. This means that if a high
threshold is used in the binarization process (i.e., the correlation is required to be high to be
considered a functional link), this results in a low number of edges, i.e., the network has
weak connectivity, which can lead to the disconnection of certain nodes. On the contrary, if
a low threshold is used (i.e., low correlations will be accepted as indicators of functional
relationships between nodes), then a network with denser connections but with a random
topology is generated [32]. To address this relationship between network topology and the
threshold used in binarization, [46] suggests that networks should ideally be evaluated
across a wide range of thresholds. In this regard and following these recommendations,
our study employed thresholds ranging from 0.1 to 0.6 at intervals of 0.1. Consequently, a
total of 241 binary matrices were generated (which were unweighted and undirected) for
each of the six thresholds explored. In this study, negative correlations were excluded from
the network, consistent with previous research [46,47].

2.6. Graph Measures

The Brain Connectivity Toolbox was used to extract graph measures [46]. The metrics
used in this study are explained in the Supplementary Material (see graph metrics section).
Detailed explanations of each metric can be found in [46,48]. In this work, 10 graph theory
measures were explored. These measures describe the basic properties of segregation
(clustering coefficient, transitivity), integration (efficiency, characteristic path length), cen-
trality (degree, betweenness, eccentricity, and diameter), and resilience (assortativity, k-core
centrality) of brain networks [46,48].
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2.7. Data Analysis

From the binary matrices, we calculated the dependent variables (graph measurements
referred to in the previous section), both static (mean) and dynamic (coefficient of variation).
The coefficient of variation (CV = (σ/µ) × 100, where: CV = coefficient of variation,
σ = standard deviation of the dataset, and µ = mean of the dataset) is a statistical measure
used to assess the relative variability or dispersion of data in comparison to its mean. It
is particularly useful when comparing the variability of datasets with different units or
scales, as it is a dimensionless ratio. In addition, the CV allows direct comparison of the
relative variability between data sets or groups independently of their means. The data
were analyzed using mixed-effects analysis of variance with group, threshold, and their
interaction as fixed factors and participants as random factors. Analyses were performed
in R (v 4.2.3) using the lmer() function of the lme4 package [49]. Post hoc comparisons
and interaction analyses were made using the emmeans package [50]. We used the fdr
procedure in order to control the error type I due to the number of comparisons [51].

3. Results

Due to the large number of dependent variables, to simplify the interpretation of the
results and since our main interest was to compare functional connectivity in individuals
diagnosed with schizophrenia with respect to the control group, the analyses were segre-
gated into two categories, depending on the content of consciousness of the participants
(mind wandering vs. on-task). The results for each condition are presented below.

Graph Measures during Mind Wandering and on-Task
Figure 3 presents the significant differences found in each of the graph metrics to

characterize functional connectivity between individuals diagnosed with schizophrenia
and the group of healthy controls for each of the networks (DAN, DMN, SAN, VIS, and
Brain). The top row of Figure 3 shows the differences found in the functional connectivity
metrics using the dynamic information of time series (coefficient of variation) and in the
bottom row using the static information (mean). In order to facilitate the understanding
of the results in Figure 3, it has been represented with diamonds if differences between
the groups appeared, regardless of whether the differences were found in one or several
thresholds. Nevertheless, all the information regarding thresholds is presented in Table S2
(Supplementary Material). To facilitate the integration and interpretation of our results,
the graph metrics have been grouped according to whether they indicate segregation,
integration, centrality, or resilience. In the following figures, a color code has been assigned
to each of these categories: segregation metrics (clustering and transitivity) have been coded
in purple, integration metrics (characteristic path length and efficiency) have been coded
in orange, centrality metrics (betweenness, degree, diameter, and eccentricity) have been
coded in green, and resilience metrics (assortativity and k-core centrality) have been coded
in pink. The tables presented are an attempt to summarize all the information obtained.
All the details of the analyses carried out and additional figures can be found in [52].

Figure 4 shows the significant differences between the groups (SZ vs. C) for each of the
functional connectivity metrics in the different networks considered during on-task states.
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Regarding static measures (mean, see lower row in Figures 3 and 4), it can be seen
that metrics indicating integration and centrality are lower in controls than in patients, in
the global brain, and in the DAN network, especially during MW. These metrics are lower
in controls, only in the on-task condition, and also in the SAN network (Figure 4, lower
row). On the contrary, in the visual network, most metrics are higher in controls than in
patients in the on-task condition (Figure 4, lower row). Differences between groups are
more evident when dynamic measures (CV) are considered. It can be seen that centrality
metrics are higher in controls than in patients, both in the brain network and in the DMN,
when participants are mind-wandering (Figure 3, upper row). When they are on task, most
metrics are increased in controls compared to patients, in the brain network, in the DMN,
and in the visual network (Figure 4, upper row). Since the dynamic measure indicates the
temporal functional organization of the brain networks, these results seem to indicate a
more complex and rich function of brain networks in controls, which is especially evident
when participants are on task.

4. Discussion

In this research, we have examined an ample number of metrics from brain networks
in patients diagnosed with SZ and controls while they were in MW or were attending a
task (OT). The results are complex, but two patterns clearly emerge. First, when the static
measures (based on means) are considered, most of the functional connectivity metrics of
the networks are increased in patients compared to controls (except in the visual network).
However, when the dynamic measures are considered, patients with SZ showed reduced
values in most metrics (segregation, integration, centrality, and resilience), reflecting a
reduced number of dynamic states of brain networks. We will start discussing the results
for the static measures and finish with the discussion of the dynamic measures.

4.1. Static Measures

Applying graph theory principles introduced by [46], the organization of the func-
tional connectome can be described using two fundamental concepts of network structure:
segregation and integration. Segregation pertains to how much a network displays clus-
ters of regions for specialized processing, while integration refers to the effectiveness
of information transmission across the entire network. Previous studies have identified
irregularities in both the segregation and integration of the functional connectome in indi-
viduals diagnosed with schizophrenia, predominantly through the analysis of resting-state
data [14,26,32–35]. Our results from the static data using naturalistic tasks, such as film
viewing, agree with the previously mentioned results, particularly in the DMN, whose
functioning has been found to be abnormal in schizophrenia [53]. Thus, in DMN during
on-task states, participants with SZ showed significantly less transitivity (segregation)
than controls. These results could indicate that in individuals with schizophrenia, these
specialized modules that work together for specific tasks or functions might be disrupted,
leading to a more interconnected and less distinct organization of these brain regions. This
could result in difficulties with processing information efficiently and coordinating various
cognitive functions. However, during MW episodes, the segregation pattern is reversed
in the DMN, such that in the patient group, a significant increase in transitivity was ob-
served. This increased transitivity suggests that the DMN is functioning in a more clustered
manner during mind wandering in schizophrenia, reflecting a loss in the network’s ability
to efficiently switch between different cognitive states, leading to a prolonged focus on
internal cognition. These results are in line with previous results [36,54] showing that
patients diagnosed with SZ showed more frequent and longer duration of MW episodes
than controls.

Regarding integration measures, patients during OT showed higher path length
(lower integration) than controls in DAN and SAN. These results are consistent with
previous studies [26,28,33]. These altered patterns of functional connectivity may contribute
to a weakness in salience processing that, in turn, contributes to the general deficits in
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external goal-directed behavior [55]. On the other hand, we found greater integration
in patients than in controls in the DMN. Other studies have also found higher efficiency
in individuals with an SZ diagnosis [26,56–58]. This could be related to increased self-
focused rumination, heightened self-awareness, and possibly a reduced ability to disengage
from internal thoughts. While some level of DMN connectivity is essential for self-related
cognition, an overly integrated DMN might contribute to the excessive self-consciousness
and cognitive rigidity often observed in schizophrenia. This deregulation between the
integration-segregation dynamics in the systems in charge of salience processing and
external goal-directed regulation (SAN and DAN, respectively), on the one hand, and
the brain network engaged for internal thought (DMN), on the other hand, is consistent
with the idea that network dysfunction is tightly linked to deficits in regulating salient
information and maintaining the integrated self [59,60]. According to this hypothesis,
the difficulties in distinguishing between self-representation and environmental salience
processing may render the perception of neutral environmental stimuli as abnormally
salient and could underlie some symptoms of schizophrenia [60].

Regarding centrality measures (betweenness, degree, diameter, and eccentricity),
our results indicate that patients have significantly greater betweenness, diameter, and
eccentricity than controls in the dorsal attention network (DAN), with this pattern being
similar during both MW and OT episodes. The DAN is responsible for directing attention
to relevant stimuli in the environment and for maintaining task-specific concentration.
In addition, abnormalities in DAN connectivity, such as changes in betweenness and
eccentricity, could result in disruption of communication between brain regions [61]. An
elevated eccentricity signifies that certain nodes within the DAN are more distant or
isolated from the network’s core. This could suggest that specific regions are not effectively
integrating with the rest of the network. In SZ, an increased eccentricity might indicate
difficulties in integrating and coordinating information between different parts of the brain,
leading to disruptions in attentional processes and difficulties in integrating information
from different brain areas [62].

The most apparent change between patients and controls, in terms of centrality pa-
rameters, occurs in the SAN during OT episodes versus MW episodes. Specifically, during
mind wandering, SAN does not appear to differ between the SZ group and the control
group in terms of centrality parameters. However, during OT episodes, patients showed
more betweenness, diameter, and eccentricity than healthy controls. The salience net-
work maintains and updates task demands in order to achieve the current behavioral
goals. It has been associated with the automatic detection of significant events originating
from both internal and external sources and might play a role in regulating the transition
between the DMN (focused on internal cognition) and the DAN (focused on external
stimuli) [63]. An increase in betweenness could reflect heightened efforts to direct attention
to important stimuli. However, the increased diameter and eccentricity might hinder the
network’s ability to fully process and prioritize these stimuli. This could lead to difficul-
ties in accurately assessing the significance of events, emotions, or cognitive tasks. The
observed alterations in betweenness, diameter, and eccentricity collectively suggest that the
salience network’s ability to effectively integrate and process information is compromised.
This could contribute to cognitive deficits such as impaired decision-making, difficulty
regulating emotions, and challenges in perceiving and responding to environmental cues.

Regarding the centrality measures during OT episodes in the DMN, we found a
significant increase in the diameter in the SZ group. These results could imply that the
DMN is integrating information from a wider range of sources or regions and are consistent
with the increased integration observed in the DMN and discussed previously. This
enhanced centrality in the DMN promotes an abnormal integration of various cognitive
and self-related aspects. Disturbances in self-referential processing in SZ associated with
DMN hyperactivation have been reported in [64].

We also found a significant increase in assortativity in the SZ group during OT episodes
in the SAN. Such an increase in network assortativity could be a sign of network dysfunc-
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tion. If nodes with similar attributes are more connected, it might suggest that the network
is becoming rigid and less capable of effectively processing diverse types of information.
As mentioned previously, the SAN plays a crucial role in distinguishing between internally
focused processes and external stimuli that require attention. If the SAN becomes rigid
and fails to distinguish these processes effectively, this rigidity might lead to difficulties in
properly modulating the network’s responses to different types of information [60].

4.2. Dynamic Measures

Until recently, most of the work in the field of the study of functional relations offered
a stationary view of the relationships between network communities, as they tended
to calculate functional relationships from measures based on signal averages. In recent
times, neuroimaging research has started to unveil the dynamic organization of the brain’s
functional organization using dynamic functional connectivity. This involves observing
time-dependent correlations in the EEG signals between various brain regions over various
time intervals. Furthermore, several studies have highlighted the importance of this
phenomenon for cognitive processes and disease [65–69].

Neural dynamics lead to the formation of interconnected regions that appear and fade
away over various time scales. A novel concept emerging from this idea is the notion of a
functional repertoire of continuously revisited brain states [70]. The dynamics associated
with this functional repertoire are believed to be fundamental for cognition [71] and are
proposed to mirror the functional potential of a neural system [70,71].

Looking at the dynamic measures (coefficient of variation), our results indicate that
individuals diagnosed with SZ show less variability in most measures of segregation,
integration, centrality, and resilience, and this difference is especially marked in the OT
condition. Reduced variability in these measures suggests that when individuals diag-
nosed with SZ are engaged in a task, their brain network shows less variability in these
measures compared to individuals without SZ. Segregation refers to the degree to which
specialized brain regions are functionally separated, while integration refers to the extent
of communication and information flow between different brain regions. Centrality mea-
sures the importance of specific brain regions within the network, and resilience reflects
the network’s ability to maintain its functionality despite perturbations. The reduced
variability in these measures implies a narrower range of functional states in the brains
of individuals diagnosed with SZ [72]. On the other hand, since the dynamic measure
indicates the temporal functional organization of the brain networks, our results seem
to indicate a more complex and richer function of brain networks in controls, especially
evident when participants are on task.

4.3. Limitations

The first group of limitations has to do with access to clinical samples. In this regard,
in our study, the recruitment process was not randomized, which introduces the possibility
of selection bias. In addition, the sample size was relatively modest, which makes it
necessary to be cautious when generalizing our results to patients from other centers
with different ages, cultural levels, genders, treatments, and other variables that could be
relevant in this context.

Furthermore, the graphical metrics depend on how the networks are delineated. In
our investigation, the initial data came from EEG, which is characterized by restricted
spatial resolution; source reconstruction was executed without customized anatomical data;
and regions of interest (ROIs) were partitioned using an atlas. Therefore, caution is advised
in drawing comparisons between the results of this study and those of investigations that
established network definitions using alternative methodologies.

In addition, networks are subject to thresholds in order to eliminate spurious connec-
tions. When there are average between-group differences in functional connectivity, this
thresholding procedure may bias the differences. To illustrate, let us consider the scenario
in which patients show an overall decrease in connectivity. In such cases, if thresholds
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for the patient and control matrices are set to maintain the same density of connections, it
is possible that more low-weight connections—potentially spurious in nature—would be
included in the patient group data. This could result in a higher proportion of connections
that are not really meaningful. Consequently, the resulting network could adopt a more
random configuration in terms of topology (see detailed discussion in [72]. We would also
like to point out that a reduction in structural connectivity need not lead to a reduction in
functional connectivity. The brain adapts to pathology, so that dysfunction in one location
may result in a compensatory increase in activity and/or connectivity in other areas [73].
Nevertheless, despite the complexity of our results and the aforementioned limitations,
graph theory analysis is a fundamental tool in neuroscience research that facilitates the
exploration of brain connectivity, organization, and function. It offers a very interesting
perspective that helps to unravel the complex and intricate problems of brain networks
and their role in cognition, behavior, and disease.

5. Conclusions

In this paper, we have presented the results of exploring by static and dynamic
measures of graph theory functional connectivity in different networks using a naturalistic
task such as the viewing of movie fragments compared with the states of distraction or
mind wandering in a group of individuals diagnosed with SZ compared with a group of
healthy controls.

Our findings revealed significant differences in the functional connectivity networks
across various brain regions in the majority of the networks analyzed. These differences
suggest that the brain connectivity patterns in individuals with schizophrenia diverge
significantly from those in healthy controls, particularly during naturalistic tasks such as
video viewing. These disparities in functional connectivity could shed light on the neural
mechanisms underlying the cognitive and perceptual differences observed in individuals
with schizophrenia.

Dynamic analysis, which considers the temporal variability of connectivity, further
highlights the complexity of these differences. It underscores the importance of studying
brain connectivity in a time-varying context to capture subtle fluctuations that may be
overlooked in static analyses.

Our results contribute to a deeper understanding of the neural underpinnings of
schizophrenia and suggest that disruptions in functional connectivity during naturalistic
tasks may be a crucial aspect of the disorder. Future research should continue to explore
the implications of these findings for diagnosis, treatment, and our broader understanding
of schizophrenia’s neurobiological basis.

In summary, this study provides valuable insights into the differences in functional
connectivity between individuals with schizophrenia and healthy controls, emphasizing
the relevance of dynamic network analysis in uncovering the intricate patterns of brain
connectivity associated with this psychiatric condition.
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