

2

TRABAJO FIN DE MÁSTER
MÁSTER UNIVERSITARIO EN DESARROLLO DE SOFTWARE

Agile software development
techniques to be proposed for
validation with a case study of
the vehicle driving automation

industry

Acronym

Autor
Zain Ulabdeen Mohammed

Director
Manuel I. Capel Tuñón

Escuela Técnica Superior de Ingenierías Informática y de
Telecomunicación

—
Granada, February 2024

Se propondrán técnicas ágile de desarrollo de software para
su validación con un estudio de caso de la industria de la

automatización de la conducción de vehículos

Zain Ulabdeen Mohammed

Keywords: Ágil, sistemas críticos respecto de la seguridad, ISO-26262,
FDD, STPA, TDD, sistema de control de crucero

Resumen

Las metodologías de desarrollo de software ágiles han sido consideradas
durante la última década por la comunidad de Ingeniería de Software una
de las más importantes metodologías para realizar de forma confiable y efi-
cazmente la compleja actividad que denominamos “desarrollo de software”
debido a la flexibilidad que presentan estas metodologías respecto del cambio
de los requerimientos, colaboratividad y desarrollo iterativo en los menciona-
dos procesos de desarrollo.

A pesar de las ventajas anteriores, los métodos ágiles no han sido adop-
tados con generalidad en el desarrollo de algunos tipos de sistemas complejos
y, entre estos, cabe destacar los denominados sistemas críticos respecto de
la seguridad (SCS), que podemos definir como aquellos sistemas en los que
no se puede tolerar su fallo, mal funcionamiento, o errores que puedan llevar
a pérdidas económicas significativas o de vidas humanas. Ejemplos de SCS
son los sistemas de aviónica o aeroespaciales, sistemas de control de cen-
trales nucleares y sistemas médicos; la razón fundamental de no adoptarse
las metodologías ágiles en el desarrollo de los sistemas anteriores se debe a
que requieren de una adhesión estricta a los estándares oficialmente acepta-
dos durante el proceso de desarrollo, y este hecho contradice los “principios
ágiles”.

El principal objetivo de nuestro trabajo es proponer una metodología
ágil adaptada a los requisitos de los mencionados SCS. En consecuencia,
aquí se propone una nueva metodología basada en el método de desarrollo
dirigido por características (FDD), que se adaptaría a las estrictas normas
de desarrollo exigidas por SCS.

Para validar esta nueva propuesta de metodología, se ha desarrollado un
caso práctico a la refactorización sistemática de un software complejo (control
automático de la velocidad del vehículo AVSC), cuyo principal cometido es
controlar la velocidad del vehículo con seguridad. Tal caso de estudio se ha
realizado de acuerdo con la norma ISO 26262, que es una norma internacional
de seguridad en el funcionamiento de vehículos, y que puede servir como
guía para el desarrollo de sistemas eléctricos y electrónicos en vehículos de
carretera.

4

Entre los objetivos alcanzados a partir de los resultados de este trabajo
está el de contribuir al desarrollo de sistemas seguros siguiendo el mencionado
estándar ISO 26262 con un coste menor y en un plazo de entrega más corto,
sobre todo teniendo en cuenta que el coste de desarrollo de SCS es muy el-
evado y requiere un largo plazo que se puede llegar a prolongar años hasta
su entrega final validada. La aplicación de esta metodología a otros casos de
estudio, con la adición de métodos de verificación formal como futuros estu-
dios, contribuiría a aumentar las posibilidades de evaluación de la utilidad
práctica del método propuesto.

5

Agile software development techniques to be proposed for
validation with a case study of the vehicle driving

automation industry

Zain Ulabdeen Mohammed

Keywords: Agile, Safety-critical system, ISO-26262, FDD, STPA, TDD,
Cruise control system

Abstract

Agile development methodologies have been considered one of the most
important methodologies in software development in the last decade due to
their flexibility in changing requirements, collaboration, and iterative devel-
opment processes. Despite these advantages, Agile is still not adopted in the
development of some types of complex systems, and among these systems
are the so-called safety-critical systems(SCS), which we can define as sys-
tems that do not allow failure, malfunction, or error to occur that may lead
to significant human or physical losses. Examples of this are aerospace and
avionics systems, nuclear plant control systems, and medical systems. the
reason for not adopting agile methodologies is that SCS require strict ad-
herence to standards in the development process, and this contradicts agile
principles.
The main objective of our work is to propose an agile methodology adapted
to the requirements of SCS. A new methodology based on the feature-driven
development (FDD) method has been proposed, which would adapt to the
strict development standards required by SCS.
To validate this methodology, it was applied practically to refactoring com-
plex software (automatic vehicle speed control AVSC), whose responsibility
it is to control the speed of the vehicle, as a case study and in accordance
with ISO 26262, an international functional safety standard for the develop-
ment of electrical and electronic systems in road vehicles.
The results of applying this proposed methodology showed that a safer
(AVSC) was obtained compared to what it was while adhering to the re-
quirements of the ISO 26262 standard.

Among the effects of the results of this work is that it contributes to
the development of safe systems following the standard at a lower cost and
a shorter delivery time, especially since the cost of developing SCS is very
high and requires a long time extending to years for delivery. This is consid-
ered an inappropriate option for companies that compete with each other at
this time, which is characterised by rapid development and changing require-
ments. applying this methodology to other study cases, with the addition

6

of formal verification methods as future studies, would help to increase the
opportunity for its evaluation

Acknowledgments

I am especially indebted to my supervisor Dr. Manuel I.Capel, I am grateful
for his support and how he made me think as a researcher, and I consider
myself fortunate to have had him as my supervisor.

Originality statement

Zain Ulabdeen Mohammed

I explicitly declare that the work presented as Master’s Thesis (TFM),
corresponding to the academic year, is original, in the sense that no sources
have been used for the preparation of the work without proper citation.

Granada February 8, 2024

Signed:

Zain Ulabdeen Mohammed, student of the Master’s Degree in Soft-
ware Development of Universidad de Granada, with Passport A6124386, I
authorize the location of the following copy of my Master’s Thesis in the
library of the University so that it can be consulted by the persons who wish
it.

Signed Zain Ulabdeen Mohammed

Granada February 8, 2024.

3

D. Manuel I. Capel (tutor), Profesor del Area de Lenguajes y Sistemas
Informaticos del Departamento LSI de la Universidad de Granada.

Informa:

Que el presente trabajo, titulado "Se propondrán técnicas ágile de desar-
rollo de software para su validación con un estudio de caso de la industria de
la automatización de la conducción de vehículos", ha sido realizado bajo su
supervision por Zain Ulabdeen Mohammed, y autorizo la defensa de dicho
trabajo ante el tribunal que corresponda.

Y para que conste, expido y firmo el presente informe en Granada a 8 de
febrero de 2024 .

El director:

Manuel I. Capel

5

Contents

1 Introduction 11

1.1 Context . 11

1.2 Problem description . 11

1.2.1 Agile software development (ASD) 11

1.2.2 Software architecture(SA) 13

1.3 Stakeholders in this TFM . 14

1.4 Justification . 14

1.4.1 Motivation and foreseeable outcomes 14

1.4.2 Technologies to be used 16

1.4.3 Project Scope . 16

1.4.4 Initial hypothesis . 17

1.4.5 General methodology and process to follow in the de-
velopment of the TFM 19

1.5 Costs and sustainability study 20

1.6 Planning and task scheduling 21

1.6.1 Description of tasks to be performed, estimates and
Gantt chart . 22

1.6.2 Resources . 23

1.6.3 Risk management . 23

2 State of the art 25

2.1 Agile Software Development 25

2.2 Safety Critical System software Development 26

2.3 Agile development methodologies in safety critical systems . . 28

7

8 CONTENTS

3 Background 31

3.1 Software Development Methodologies (SDM) 31

3.1.1 Plan-driven software development methodologies . . . 31

3.1.2 Agile development . 34

3.2 Hazard Analysis . 46

3.2.1 System-Theoretic Process Analysis (STPA) 46

3.2.2 Fault Tree Analysis . 48

3.2.3 Failure Modes and Effects Analysis 49

3.3 ISO 26262 . 50

3.3.1 ISO 26262 parts . 50

3.3.2 ISO 26262-6 Software Development Level 52

3.4 Software Architecture (SA) 53

4 Methodology 57

4.1 What is a Cruise Control System 57

4.1.1 Automatic vehicle speed control(AVSC) software . . . 58

4.2 A proposed new agile approach for developing safety-critical
systems . 61

4.3 Risk assessment test cases . 63

4.3.1 Unsafe acceleration scenario 64

4.3.2 Unsafe deceleration scenario 71

4.3.3 Unsafe scenario when cruise control 74

4.4 Implementation of the Proposed Method 76

4.4.1 Product backlog . 76

4.5 Implementation of STPA . 80

4.5.1 Determine unsafe control action(UCA) and associated
reasons. 81

4.5.2 Occasional factors . 82

4.6 Application of the FDD . 84

4.6.1 Develop an overall model 85

4.6.2 Build a Features list 89

4.6.3 Plan by Feature . 90

4.6.4 Design by Feature . 91

CONTENTS 9

4.6.5 TDD . 101

4.6.6 Build by Feature . 104

5 Results and Discussion 109

5.1 Results . 109

5.2 Discussion . 110

6 Conclusions and future work 113

6.1 Conclusions . 113

6.2 Future work . 114

7 References 115

8 acronyms 125

9 Figuers 129

10 Tables 135

Chapter 1

Introduction

1.1 Context

Agile software development (ASD) is currently considered one of the most
widely used methodologies in the development of various types of software
due to its efficiency in adapting to the changing requirements of the systems,
trying to satisfy the customer and providing fast delivery of the software,
however, Safety critical system (SCS) adhere to strict standards in their
development and try to avoid changing specifications during development to
reduce potential risks, therefore, this type of system has not yet made wide
use of the advantages of developing software using agile methodologies.

1.2 Problem description

1.2.1 Agile software development (ASD)

ASD offers considerable benefits to the software development, such as rapid
delivery of software products, instant feedback to the stakeholders, quick re-
sponse to change and better coordination and collaboration[34]. In 2001 an
"Agile Manifesto" was declared by 17 signatories (see https://agilemanifesto.
org/authors.html)), which spans in 12 ideals within four fundamental val-
ues. The latter ones involve individuals and interactions over processes,
software development based on detailed documentation, consultation with
consumers supported by contract agreements and respond to change accord-
ing to schedule[1]. These agile principles are good for software that needs
getting speed in achieving the stages of the development cycle or does not
depend on strict standards in its development. As it is the case of SCS,
which do require extensive documentation and no changes in the develop-
ment plan, a lot of drawbacks must be overcome to attain compatibility of

11

https://agilemanifesto.org/authors.html
https://agilemanifesto.org/authors.html

12 1.2. Problem description

(SCS) development with agile principles; and therefore, most research nowa-
days deals with removing obstacles for an smooth adaptation SCS to agile
principles. More specifically, these problems have an impact in four areas
often covered in the current literature [32] on the subject:

• Light documentation.

where the documents indicate that light documentation in agile soft-
ware development is an obstacle in the development of these systems
because "agile" focuses on "software works as the complete documen-
tation"[1] and this is one of its principles as in the Agile Manifesto,
however, this does not mean that agile ignores the documentation pro-
cess, however, the effort is less compared to "plan-driven" development
processes. However, it has to be considered, that from the point of view
of reliable SCS development, documentation is the evidence of com-
pliance with all standards and processes, and also that the system is
secure and offers the required quality. Therefore, the long development
period of critical systems needs to elaborate a heavy documentation
for the system to continue in case of a change of the development team
members, but the elaboration of heavy documentation leads to addi-
tional costs and less flexibility in the development.

• Flexible requirements written in user stories.
Requirements management differs in agile from the traditional meth-
ods used in developing critical safety systems in two ways. Agile pro-
cesses encourage changing requirements because they must easily and
efficiently adapt to changes, although, in the development of critical
safety systems it is not encouraged changing requirements because this
causes an increase in the cost of redesign, documentation, testing, and
red such changes delay delivery. Secondly, agile production can rely on
loosely organized requirements such as user stories written in a simple
way and thus it arises a conflict with traditional ideas of requirements
where the development of critical safety systems requires the identi-
fication of complete, well documented and good requirements; and,
therefore, documentation becomes very necessary. Changes can cause
problems in the system structure, however, adaptation to systems’ pa-
rameters or variables is also necessary for software development in gen-
eral. When a complex medical device is developed, it needs years and
changes are likely to be needed during this long period of time. Re-
quirements can be divided into two parts, the first part is functional
requirements and the second is safety requirements which are often not
completely stable as long as system’s requirements change dramatically
over time

• Iterative and incremental life cycles.

Introduction 13

In Agile, iterative is used at all phases of the development process
in order to be flexible and adapt to changes. The customer can try
iterative results in the issuance of a tested version, and, often, a V-
Model is used in developing critical safety systems. Therefore, it is not
implemented iterative and incremental, as is the case in Agile. V-Model
encourages testing preparation to occur in parallel with requirements,
design, and development phases, which is the only similarity with Agile
methods. V-Model can be rigid and less flexible in comparison to agile
methodologies. with a focus on quality management. Thus the life-
cycle plan-driven must be adapted to become iterative in order for us
to develop critical safety systems using agile. This is one of the barriers
that prevent the use of agile in this type of system.

• Test-first process.

Agile makes extensive use of test-driven development, for example, in
the case of extreme programming (XP), testing is an essential practice
in which test cases are written before the program, and all stages of
testing are tested before code is developed. In contrast, in the devel-
opment of safety-critical systems, thorough testing of the code is an
important issue.. In the V model the testing is in the final stages of
software development and the developers themselves write the tests
needed to perform the test-driven development and this violates some
of the rules in safety-critical systems, where the tester must separate
his responsibility from the developer, i.e., tester and developer have
to be two different people. In addition to all of the above, to develop
SCS, it is necessary to add another test to verify compliance with the
strict regulatory process, which is a complicated issue that, in principle,
limits the use of agile.

1.2.2 Software architecture(SA)

The architecture of a software system represents the decomposition of the
system into "modules" (or software components in general) and their interac-
tions through interface contracts. In safety-critical systems, the architectural
design is in accordance with strict standards and does not allow the design
to be changed easily, it is possible that this change will result in a system
failure in terms of non-compliance with security requirements, even if all
functional requirements are still satisfied, and therefore the most important
feature of agility when dealing with changing requirements is to prove that
strict constraints (security requirements) will continue to be satisfied before
accepting the change in the software architecture.

14 1.3. Stakeholders in this TFM

1.3 Stakeholders in this TFM

The main agents involved in this project are the following:

• Developer: the developer is a computer specialist who is in charge of
devising and programming the software needed to solve a problem.

• Project supervisors: The supervisor is the person who has overall re-
sponsibility for properly defining the strategies for initiating, planning,
designing, executing, monitoring, controlling and closing a project.

• Beneficiaries: the people who will benefit from the results of the project
implementation. The main beneficiaries of the project are:

– Interested companies: companies using neural networks can greatly
benefit from the results of this project.

– Spin-Offs of research projects of the group in which the work is
framed. Among them, we have to highlight GRX Qualias Technol-
ogy S.L., whose activity is mainly dedicated to providing quality
assurance and software testing services.

1.4 Justification

The application of Agile development methodology in safety-critical systems
offers many advantages, especially in today’s era, which is characterized by
the rapid development of technology. Therefore, implementing a methodol-
ogy that adapts to urgent changes and produces high-quality software while
providing more space for the customer to participate in software development
processes at a (relatively) low price would be of great benefit.

1.4.1 Motivation and foreseeable outcomes

Safety-Critical systems (SCS) can be understood simply as those that in the
event of a failure their behavior will " result in injury to people, damage
to the environment or extensive economic losses". This is is why any er-
ror that leads to their failure cannot be tolerated because it causes serious
damage. Examples of such systems are pathogen detection, vehicle traffic
control, avionics systems, etc.[32] To ensure safety in these systems strict
standards are followed[18], such as the IEC 61508 standard, which refers to
safety-related systems, where one or more of those systems include electrical
and/or electronic and/or programmable devices. Standards like ISO 26262 in
vehicle systems, and DO-178 B / C in avionic systems are of special interest
for these latter types of SCS. These guidelines govern safety practices that

Introduction 15

span over the whole life cycle of product production, along with the required
technologies. Nowadays, the industry aims to fulfil these criteria in order
to maintain a sufficient standard of safety to validate the issuance of certifi-
cates . This has led many organizations to follow the traditional waterfall
approach in software development. However, it is difficult to make changes
to requirements, when this phase is completed, if a traditional approach to
developing SCS is used in their life cycle. As consequence of using the tra-
ditional waterfall model for the development of SCS software, the cost and
delay in the final delivery date and an increased effort to change the product
and then re-adopt it will be an impediment to providing new features or the
ability to respond to customer requirements during development.[22] The
research carried out by different groups working of SCS development indi-
cates that agile methodologies can be suitable to achieve Quality of Service
(QoS) and comply with standards and regulatory requirements that open
the way for SCS can be developed using an agile approach[33]. The research
literature demonstrates that organizations use at moment a variety of agile
process elements when developing SCS. However, the development of their
processes has to be customized to satisfy the regulatory criteria when using
agile methods for this particular purpose, and which is the main motivation
of the work to be carried out in this project. The main benefits that come
out of the development of critical safety systems by using an agile software
development process are the following ones:

• Continuous feedback, whether for clients, for the programmer‘s team,
or testing team.

• Re-planning, based on the last requirements elicitation during all the
development cycle.

• Be able to relate safety and functional requirements.

• Continuous monitoring (from requirements to coding and from coding
to testing).

• Propitiate working as a team and define key-roles and responsibilities,
such as: customer, development team, and evaluation team

• Enhance cooperation with the engineer, with regard to ensure reliabil-
ity, availability, ease of maintenance and safety of the software product,
as well as with that of the responsible of assigning the roles of quality
assurance.

• Development of "first-test" of safety-critical systems [72]

16 1.4. Justification

1.4.2 Technologies to be used

Agile includes many methodologies such as Scrum, XP, FDD, Crystal, etc.
Our research will highlight the Feature-Driven Development (FDD) method-
ology because it is characterized by its adaptability to complex and scalable
systems, and this is what we need in critical safety systems because they
are complex systems. The FDD methodology is integrated with System-
Theoretic Process Analysis (STPA) technology in order to perform safety
analysis and assessment of the possible causes of system failure before it oc-
curs. In addition to using Test-Driven Development (TDD), which will allow
us to produce more quality software with better productivity and improve
the design before the actual code is written, unit tests are performed in TDD
using junit. These techniques are integrated with each other as a case study
to develop the automatic vehicle speed control (AVSC) program in Java and
verify that it is safe according to the ISO 26262 standard.

1.4.3 Project Scope

The general aim of this TFM is to define a methodology of specific soft-
ware development for the design of systems based on architectural patterns
and ASD methods to develop a complex software system that has critical
safety characteristics. For its definition we will cover different agile methods
of Software development, pattern analysis, development principles, archi-
tectural alternatives. A final application proposal will be carried out: a
validation supported by a case study based on the development in Java of a
software for automatic vehicle driving. The specific research objectives are
listed as it follows:

1. Get started, study and deepen the knowledge for the development of
SCS software

2. Study state-of-art of selected agile methodologies: eXtreme Program-
ming, Scrum, Feature Driven Development.

3. Define a new agile approach, so that safety-critical agile methodologies
can be used in industrial software development of SCS reliably

4. Obtain an agile solution to the automatic vehicle speed control (AVSC)
system software provided

5. Quality Assurance in Regulated environments: new proposals adapted
to the AVSC

6. AVCS software refactoring according to the Quality assurance (QA)
requirements found out in this investigation

Introduction 17

7. Carry out an evaluation of the quality of the results obtained

There may be some expected obstacles to the implementation of our
project, especially in small or less complex projects. The methodology pro-
posed by us is based on the FDD methodology, which is characterized by
its adaptation to large and complex projects and a heavy structure of devel-
opment compared to other agile methodologies, which require the presence
of a team with good experience in order to be able to produce safe and
high-quality software [5].

1.4.4 Initial hypothesis

We propose to apply agile methods to re factorize a cruise control system in
autonomous vehicles, which software has been delivered at the beginning of
this project as the Automatic vehicle speed control AVSC system. Due to
the complexity involved in such software and the need to implement safety
standards, we will use this prototype as a study case to apply our approach
in order to demonstrate final product‘s SCS properties fulfillment. The stan-
dard to be applied for QA assessment is ISO-26262 to develop software for
electrical vehicles, and to verify that the product will meet the all the safety
standards. More specifically, the methodology to deploy in this research
work can be structured according to the following steps:

1. Selection of agile methodologies at stake today and can be used for
SCS development

2. Study of methodological aspects that must be defined for obtaining a
effective SCS- software development cycle according to the agile prin-
ciples

3. "Implementation" of the new SCS development methodological ap-
proach

4. Definition of the "first tests process" considered as a key stone of the
new methodology

5. Development of concrete tests, measures and analysis of results regard-
ing AVSC refactoring with the new methodology

Project requirements

Most of the SCS are embedded systems, and that is why hardware plays
an important role in the development of these types of systems, which are
naturally complex systems that are governed by strict standards and require

18 1.4. Justification

a very long time to develop with significant risks in the verification and
validation process, in addition to very high costs, and for this reason, we
have adopted in our project In a simulation of a automatic vehicle speed
control to test the possibility of applying agile in the development of a safety
system, we see that some of the following requirements are available in order
to understand the system and how to implement the standards:

1. It is necessary to fully understand how the system works and how the
hardware components interact with each other.

2. Clearly specify the safety requirements.

3. Analyze the system’s safety and assess the hazards.

4. The life cycle of the system must be compatible with all phases of
development imposed by the standards.

Introduction 19

Possible obstacles and risks

One of the most prominent obstacles that we faced during the research is
the lack of a methodology for software development in agile for the devel-
opment of SCS, as most of the methodologies used are still the subject of
research more than their actual applied aspect. It looks more theoretically
than practical because SCS are characterized by complexity, high risks, and
high costs.
In addition to the lack of a clear methodology. Defining safety require-
ments was one of the obstacles in the project, so we had to research for a
mechanism that could adapt to agile methodologies that could extract safety
requirements with high efficiency. And to predict possible risks in order to
be avoided during development.
We had to do a lot of research to understand how the proposed automatic
car speed control system works and how the hardware components and its
software architecture interact. We also have to understand the relationship
between patterns and software architecture and their impact on safety re-
quirements.
In terms of risks, there are no actual risks during the implementation of
the project. In fact, because the applied system is a simulator, there will
certainly be potential risks if the application is practically on a vehicle. Po-
tential risks that may arise from the safety point of view of this project
during the implementation of this simulator should be prevented by first
identifying their causes and then taking measures to control them.

1.4.5 General methodology and process to follow in the de-
velopment of the TFM

Work methods

In this work, we have to propose an agile methodology that can be adapted
to develop SCS. The system as a case study is the cruise control system
that is present in vehicles, and although we already have the software, we
have to re-design or refactor it to comply with ISO 26262-6:2018. The need
to develop safe and high-quality software requires taking into account six
processes:

1. safety hazard identification,

2. safety requirements engineering,

3. quality requirements engineering,

4. quality requirement fulfilment verification;

20 1.5. Costs and sustainability study

5. design implementation; and

6. verification.

TFM tracking tool

Git is a version control system that allows the developer to control all changes
made to a project. This allows to have an absolute control of everything that
happens in the code, being able to go back to a previous point in time or to
continue through different branches of development.

Validation methods

Once the validation of the delivered AVSC software is finished, unit test-
ing and requirements verification will be performed, according to the agile
methods that we will use in the development of this project. These tests
will consist of tracing backwards, from the system implementation to the
functional and security requirements, satisfying them and testing their op-
eration in a simulation environment in order to be able to to evaluate its
performance.

1.5 Costs and sustainability study

Here we will discuss the different elements to be considered when calculating
the cost of the project. Normally, in an engineering project, an estimate is
usually made of the cost of each element with respect to its implication in
the complete development of the project. Such costs are classified according
to the following categories:

• Personnel

• Hardware

• Software

• Indirect and incidental costs

Personnel costs

Role Cost per hour (AC per hour)
junior programmer 10,0
junior researcher 9,00
project manager 13,00

Introduction 21

The above information has been obtained from https://www.indeed.
es/salaries. Once we have the hourly cost of each of the roles of the
participants in this project, we calculate for each one the hours spent in the
performance of each task and, in this way, we calculate the cost of each of
these tasks.

Hardware costs

This section specifies the costs of the hardware resources shown in the fol-
lowing table,

Hardware Cost (AC) Useful life (Years) Amortization (AC)
Laptop 1450 4 363
Screen 200 4 50

Keyboard 20 4 5
Logitech mouse 15 4 4

Software costs

All software resources used in this project are free of charge. Some software
services offer paid versions but these will not be necessary for the project.

Indirect and incidental costs

This section includes expenses derived from costs that are not directly nec-
essary for the realization of the project.

Product Hourly cost (AC/h) Hours Cost (AC)
Office 1500

Internet connection 0.08 446 35.68
Electricity 0.07 446 31.22

Total 1566.90

1.6 Planning and task scheduling

In order to plan the time schedule of the project, it is convenient to define
in detail the tasks that constitute it as well as the key dates that delimit its
duration. The reading of this project is scheduled for July 2023, so this TFM
has had an approximate duration of XXX days, starting MM/DD/YYY and
ending on 06/30/2023. The estimated time of development of this project
has been 450 hours, which implies a dedication of about 20 hours per week.
which implies a dedication of about 20 hours per week.

https://www.indeed.es/salaries
https://www.indeed.es/salaries

22 1.6. Planning and task scheduling

1.6.1 Description of tasks to be performed, estimates and
Gantt chart

To carry out the project, the tasks have been grouped as follows,

1. Project management

1. Introduction, contextualization and definition of the scope of the
project.

2. Project planning: definition of the roadmap; breakdown of the
tasks to be performed and their timing.

3. Budget: the cost of the project is estimated.

4. Review and grouping of the documents delivered in tasks 1.1, 1.2
and 1.3 for the delivery of a final document.

5. Meetings: weekly meetings will be held with the project director
to follow up on the work carried out and clarify the work carried
out and to clarify possible doubts.

2. Analysis and Design

1. Search and review of similar studies carried out for SCS system
developments.

2. Study of the AVSC software supplied: the operation of the Java
project packages was studied in detail in order to know and un-
derstand how to validate the implementation of the system.

3. Definition of functional and safety requirements and internal sys-
tem functionalities. standards.

3. Implementation, testing and validation

1. Study agile methodologies for SCS software development.

2. Define requirements of a new agile methodology for SCS

3. Define iterations, sprints, scenarios, and organize the development
cycle

4. risk assessment of AVCS by concrete test cases

5. Refactoring AVCS software using a new agile methodology to-
wards scs

6. Verify that the refactored software meets safety standards.

4. Documentation

1. Writing of the project book.

2. Preparation of the TFG defense presentation

Introduction 23

Figure 1.1: Project Gantt chart

Gantt Chart of the project development

1.6.2 Resources

In order to carry out this project, a series of minimum and indispensable
resources must be available. The resources can be classified in three types,
personal, material and software:

• Personal resources: One person, the developer, will be in charge of
carrying out the project following the planning defined above. The
project supervisor also participates as a guide and support role.

• Material and software resources: The following table shows the mate-
rial and software resources of this project and the tasks in which they
are needed.

Resource Task
Office: Main workplace and meeting room at Google Meet All
Office equipment: chair, desk, monitor, keyboard... All
Laptop All
Git: Software for version control T3
GitHub: Repository where the code will be stored T3
Overleaf: Software for the preparation of deliverables T1, T2, T4
Eclipse: Refactoring AVCS and implementation test cases T2,T3
Visual Paradigm: visual modelling and diagramming T3
Google Chrome: Browser for information search All

1.6.3 Risk management

As previously mentioned, in any project of a certain size, unforeseen events
and complications can always arise, in this section we describe the possible
ways to deal with these obstacles, and we have generously estimated the

24 1.6. Planning and task scheduling

duration of the main sub-tasks. In case of having to extend the duration of
any task, it would be decided to dedicate more hours per day to solve that
problem in order to avoid that the other tasks are affected.

The task that can generate more inconveniences is the testing of the
AVSC, since new cases could arise that contain structures or code fragments
possibly not taken into account during the its implementation, and this im-
plies having to modify the code or even rethink the way it works, so the
duration of this task may have a great variability.

Chapter 2

State of the art

2.1 Agile Software Development

At the end of the last century, the agile software development methodology
emerged due to the failure of plan-based development processes such as the
waterfall model[73, 14], and this failure is a result of changing requirements
severely in the world of software development. As researchers consider in
[71, 64, 3], one of the additional criticisms added to traditional methodolo-
gies is that the software delivery time does not keep pace with the rate of
changing requirements. In other words, the software delivery time could be
significantly delayed by a small change in requirements.

There are many agile methodologies that share the development process
with each other according to the basic principles of the agile manifesto[1].
The most notable methods are Crystal, Feature Driven Development [57],
Extreme Programming (XP) [12] and Scrum [64]. Although the most obvi-
ous characteristic among them during the development process is that they
are concurrent and iterative.
The iteration process typically occurs for two or three weeks, or perhaps less.
At the end of each iteration, there is a delivery of a partial product to the
customer, who gives his review and feedback.
In contrast to plan-oriented methodologies, multiple development activities
(requirement analysis, design, implementation, and testing) in agile method-
ologies may occur concurrently. However, each of the agile methodologies
is distinguished from the others by the practices taken in managing devel-
opment of processes. During the past decades, it is noted that research
in the field of agile methodologies touched on the practical side of applica-
tions and in various types of systems, starting from pure intensive-software
to complex systems such as modern cyber-physical systems. By complet-
ing a comprehensive literature review to summarize recent studies on ASD,

25

26 2.2. Safety Critical System software Development

authors [24]provide a current representative picture. Their findings demon-
strate that ASD increase developer and customer productivity, as well as
satisfaction.

2.2 Safety Critical System software Development

In Knight’s view [42] "Safety-critical systems are those systems whose fail-
ure could result in loss of life, significant property damage, or damage to
the environment." These kinds of systems are extensively used in a number
of vital fields, including medical, aerospace, nuclear, and defense [66],Due
to the high risks that can result from failure in the system, SCS are often
developed within strict public or private standards according to the field in
which the system will be used, such as ISO 26262 for applying to E/E sys-
tems in vehicles or IEC62304 for medical device software and IEC61513 for
nuclear installations[32], and these systems usually consist of the interaction
of their software components with hardware and firmware, and this diversity
of components is a major challenge for developers to ensure that reliability
and safety certification and standards are met[62].
Safety critical projects are usually organized in sequential stages[50]. The V-
model is preferred by many to develop this type of software. The V-model is
another form of the waterfall model,however, quality management and test-
ing is extensively emphasized.[30],and it discourages incremental progress
and iterations [29],The V-model is chosen for the development of SCS be-
cause it generates the high-quality documents required to obtain regulatory
certification [50]. Yet, according to the authors[49, 45, 50, 60], regulatory
standards processes do not impose a certain development life cycle, How-
ever, in the V model, or in the more traditional waterfall models, they are
presented as a model that have to meet the requirements of the regulation,
and if you decide to follow a different model, you must argue how you are
going to meet the requirements. [52].

On the other hand, multiple studies have discussed how to present iter-
ative development in SCS [31, 55]. However, studies show a challenge when
iterative documentation and validation of the incremental are adopted [56,
39, 16], Beznosov[15] found that is the use of an iterative life-cycle in soft-
ware development is similar between SCS and traditional systems, but, in
the end, it becomes more complex in SCS. To change management is a major
challenge with iterative development approaches where documentation must
be constantly updated. Most iterations involve changes, which may cause
an inability to ensure safety when a system is developed incrementally [39].
When planning to work iteratively, it is also challenging to assess the qual-
ity of safety. Therefore, it is recommended to carry out the safety analysis
iteratively and incrementally to validate the safety properties of the system

State of the art 27

[40].

282.3. Agile development methodologies in safety critical systems

2.3 Agile development methodologies in safety crit-
ical systems

The application of agile methodologies to develop safety-critical systems has
led to a lot of discussion among researchers, some of them recognize the dif-
ficulties of integrating agile methods into this kind of system:

• Ernst Stelzmann [69]argued that since safety-critical systems involve
both hardware and software, the hardware development lifecycle will
encounter difficulties if development phases are in the form of small
iterative sprints.

• While conducting interviews with 21 participants from different soft-
ware organizations, Lubna Siddique [65] found that agile methodologies
are not the typical choice when developing scalable projects, safety-
critical-oriented software projects, or projects that have predefined
requirements, and that the most appropriate model is the waterfall;
and therefore, it is advised not to abandon the waterfall versus agile
model. Nevertheless he suggests that the methodology must be inte-
grated between waterfall and agile, thus achieving the advantages of
both methodologies at the same time.

• Regarding the review of agile methods and plan-driven methods, Boehm
found the type of project is what determines the development method,
and that is why he believes that safety-critical systems require stable
requirements and that agile methods do not seem suitable for these
types of systems because they do not assume the existence of predeter-
mined requirements. Moreover, he believes that a more comprehensive
and advanced planning will reduce the risks of this type of system[17].

On the other hand, there are researchers who have conducted case studies
of agile implementation with a variety domain of safety systems:

• The authors provide an analysis of agile practices for European railway
software development within the EN 50128 standard. Agile practices
all support some of the goals of that standard, according to a mapping
between EN 50128 standards and those practices. They concluded that
most agile processes need to be adapted to meet standards[38].

• The authors believe that the development of agile methodologies will be
adopted to develop software systems for medical devices because agile
methodologies provide many advantages, the most important of which

State of the art 29

are a rapid response to problems or integration of new requirements
and self-management. The outputs of this methodology will be high-
quality software and more flexible systems[48].

• In this paper[76], the author discusses how agile and XP(eXtreme pro-
gramming) practices can enhance hardware software for flights. This
shows how developers are constrained by the strict RTCA DO-178B
standard, which imposes limitations on traceability and authentication.
This is essential in the aviation software industry because authorities
need proof that software complies with standards imposed for develop-
ment. However these two things take their toll in terms of slow work.
By following iterative methods, especially by applying them to each
iteration, the researcher expects that the adoption of agile processes
for aeronautical software development will be a necessity in the future
and will produce safe software as in other methodologies.

Some researchers have adopted improved traditional agile methodologies and
adapted them to the constraints of safety-critical systems development pro-
cesses:

• Fitzgerald and others have successfully applied agile concepts in a regu-
lated environment at QUMAS Organization and the R-Scrum method-
ology has been proposed. Quality Ansurance (QA), security, safety,
traceability, effectiveness, verification, and validation are key aspects
that showed compliance with ASD if applied to regulated development
environments, which can be improved by using this general method
compared to traditional use of Scrum[27].

• Several researchers[68] worked on improving the Scrum model to make
it better suited to the development of safety systems, so that it is more
flexible in terms of requirements specification, planning and documen-
tation and therefore acceptable according to IEC 61508. Among the
proposed changes were to make safety analysis processes, define safety
requirements, and describe the general scope prior to the completion
of an iteration so that validation and verification can be done at the
end of the iteration or the entire project, and to recommend the use of
Test-Driven Development (TDD) for the design to be considered before
being implemented by the developers’ and thus make the TDD output
a simple documentation as required by the IEC 61508 standard .

• In order to increase flexibility and ensure safety, Wang has integrated
System-Theoretic Process Analysis (STPA) technology with Safe-Scrum,
as he found that this step may stimulate future research on whether
moving Safe-Scrum from academia to its application in the software

302.3. Agile development methodologies in safety critical systems

industry could be useful and mandatory to obtain a better develop-
ment practice of SCS. Wang concluded that Safe-Scrum helps ensure
safety, but it is less agile compared to traditional Scrum. Agility and
Safety are improved with Scrum Security amendment[74].

• The authors [19] presented a new methodology, S4S, for developing
software with critical safety features, especially in railway systems.
This methodology is an extension of Scrum. The results of this research
showed the possibility of safe iterative development while providing
updated documentation and making all processes safe and responsive
to human errors. The researchers suggested applying this methodology
to other projects, especially those that include external components.

Chapter 3

Background

3.1 Software Development Methodologies (SDM)

A SDM is considered a framework for the application of software engineering
concepts, whose purpose is to provide a roadmap for software development.
That is why SDM is considered an essential part of software engineering,
which demonstrates the way to implement in a timely manner and work in
an orderly manner according to the different technologies used[58].

3.1.1 Plan-driven software development methodologies

The plan-driven software development approach is characterized by a se-
quential set of activities mentioned by Hirsch[35]:

1. To specify requirements in advance with respect to performing a de-
tailed project planning,i.e., from start to finish.

2. Requirements are specified in detail, and changes to requirements are
strictly implemented afterwards.

3. Design of the system (at different levels of detail) is carried out be-
fore implementation, as well as the specification of the architectural
software.

4. Coding is only performed in the programming phase.

5. At the end of the project, different tests are conducted in the produced
software and the entire system.

Examples of methodologies that adhere to the principles of the plan-driven
software development approach include the waterfall model, V-model, and
Rational Unified Process (RUP) .

31

32 3.1. Software Development Methodologies (SDM)

Waterfall model

One of the most famous software development models is the waterfall model,
also known as the cascading model. It was first introduced in 1956 by Fe-
lix Torres and D.Benington, but as the first process diagram developed by
W.Royce in 1970[61]. The waterfall model explained the phases of big soft-
ware development projects by starting in a sequence of:

• requirements identification

• analysis

• design

• coding

• testing

• and operations

W.Royce indicated that at the same time, despite his belief in this con-
cept, he does not hide his concern that the testing is the last phase. In
addition to the fact that this model faces difficulty in the event of changing
requirements and therefore must be re-designed, in addition to the difficulty
of making use of an iterative approach. The following figure3.1 illustrates a
diagram of the waterfall model.

Figure 3.1: Waterfall model diagram

Background 33

V-model

The V-Model was developed by NASA in the year 1991 and is also called the
Vee Model, which is another variant of the waterfall model that is V-shaped
as in the figure 3.2. The model descends as in the waterfall model until the
low top of the model is reached, then upwards towards the right side of the
figure, where the component assembly, verification, validation, and integra-
tion processes take place ,The verification is carried out in accordance with
the level of the stem in the form of the corresponding side of the V stem at
each phase. upwards[28].
On the V-model, testers and developers collaborate simultaneously. One
benefit of the V-model is that the testers will actively participate in identi-
fying the requirements and writing tests. Changes to the requirements are
acceptable under this approach. Despite this, the drawback of the V-model
form is its rigidity and inflexibility; if the requirements change, the test doc-
umentation and the requirements must be updated as well. This may result
in significant costs and a delay in delivery. Therefore, this model is typically
used for long-term projects[21].

Figure 3.2: V-model process diagram [63]

34 3.1. Software Development Methodologies (SDM)

3.1.2 Agile development

Based on the "Agile Vision" defined in the Agile Manifesto, ASD is a com-
bination of an incremental and iterative approach. In 2001 [1], the "Agile
Manifesto" was signed, which introduced four key values and derived twelve
principles from them.

Agile manifesto values

1. "individuals and interactions over processes and tools."

2. "working software over comprehensive documentation."

3. "customer collaboration over contract negotiation."

4. "responding to change over following a plan."

Agile Principles:

1. "Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software."

2. "Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage"

3. " Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale."

4. "Business people and developers must work together daily throughout
the project."

5. "Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done"

6. "The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation."

7. " Working software is the primary measure of progress."

8. "Agile processes promote sustainable development. The sponsors, de-
velopers, and users should be able to maintain a constant pace indefi-
nitely."

9. "Continuous attention to technical excellence and good design en-
hances agility."

Background 35

10. " Simplicity the art of maximizing the amount of work not done is
essential."

11. "The best architectures, requirements, and designs emerge from self-
organizing teams."

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly."

Most agile models share these principles and values and strive to achieve
them. The following models have received a great deal of interest by re-
searchers:

Scrum

Scrum was proposed by K Schwaber in the 1990s as a process for software
development and is considered one of the most famous methodologies that
follows the principles of Agile. Scrum follows an iterative and incremental
approach to predicting and controlling potential risks.[64].Scrum is described
as a flexible framework that manages the resources available from develop-
ment teams, technologies and tools to achieve a better product, the following
figure 3.3 illustrates the scrum processes, in addition to this model, there are
three main stakeholders[10].

Figure 3.3: scrum life-cycle [10]

• Product owner

his duty is to determine the functional and non-functional requirements
and any requirements that work on them, and arrange these require-
ments according to the priorities requested in the requirements queue
product backlog.

36 3.1. Software Development Methodologies (SDM)

• Master Scrum

He is the project manager who has to remove obstacles to work, manage
timing and conduct meetings, and maintain scrum values and practices.

• Scrum team or development team

Responsible for developing the requirements defined in the product
backlog

The kickoff, the meet sprint planning meeting, the sprint, the daily scrum,
and the sprint review meeting are the five main steps in the Scrum pro-
cess[20].

1. A sprint planning meeting brings together the developer team (scrum
team), the product owner, and the scrum master at the start of the
iteration (sprint). The duration of the meeting is one day, and its
outputs are in two parts. The first one is to determine the product
backlog, the goal of the sprint, and the expected results from this
sprint, and the second part is the meeting for planning the work and
define tasks during the next sprint, often determined by the scrum
team. This output is known as the sprint backlog.

2. The kick-off meeting is similar to the sprint planning meeting, but the
difference between them is that in the kick-off, the key objectives of
the project and the high-level product backlog are defined.

3. After that, the sprint begins, in which tasks are developed and ac-
cording to what was specified in the sprint backlog. This race usually
takes between one and four weeks, and it is not possible to change the
requirements during the sprint.

4. Usually,before sprint making a daily scrum meeting with the scrum
team and scrum master takes place for a quarter of an hour to answer
specific questions, which are what you did, what you will do, and what
prevents the work from continuing.

5. A sprint review meeting is held at the end of the sprint, during which
the product owner is informed of what has been accomplished. This
meeting is characterized as informal and is not disruptive to the Scrum
team.

Background 37

eXtreme Programming (Xp)

One of the widespread agile approaches developed by Kent Beck in 1996,
is characterized by highly flexible, adapting to ambiguous and changing re-
quirements, is keen on producing high-quality software, and is oriented to-
wards small development teams.To guide XP practices, there are four core
values that must be followed[12]:

1. Communication

Communication among development team members, managers, and
customers is the highest priority in order to avoid failure that could
affect the project.

2. Simplicity

Start writing the program and design work as soon as the requirements
are obtained without predicting the future because anticipation means
that there is a delay in the work and an additional cost. This means
that you should think about making things simple as much as possible

3. Feedback

XP Practices are designed to provide the development team with early
feedback by running early test cases for unit testing and integration
testing, and with this feedback, the development team can be assured
that work is being done in the right way.

4. Courage

Encourage taking bold steps in the work without hesitation as a re-
design or refactoring of the code can always be carried out at a later
date.

The practices of XP
According to Beck[37], XP practices can be divided into 12 practices that
are considered the XP lifecycle, and these practices are under the umbrella
of the values mentioned earlier[54].

1. Planning: Define the next iteration range by working with clients who
provide tasks priorities and with developer who provide technical esti-
mates, the story card be useful in this case .

2. Small Releases: Getting a quick version of the system leads to getting
reviews and comments from the customer to improve the product.

38 3.1. Software Development Methodologies (SDM)

3. Metaphor: This is the phase of designing the system architecture, in
which it is explained how the system works, whether for developers or
the customer point of view.

4. Simple design: One of the values that XP depends on is simplicity. In
this practice, a simple design is made for what we have as requirements
without going into details or thinking about the future.

5. Testing:Through this practice, test units are conducted by program-
mers, and tests need acceptance by the customer.

6. Refactoring:is to re-design the system without affecting the design
goals, and programmers show this behavior in order to improve quality.

7. Pair Programming:To improve the quality of the product, work is
done in the form of pair programmers, and this is one of the features
of XP, where the code is written by one of them and the other writes
tests.

8. Collective ownership: The code can be accessed by all the development
team in order to contribute to improving the quality by reviewing the
coding and accelerating the work.

9. Continuous integration: Work on the integration of the program units
and testing of them is done upon completion of each task. This process
reduces future failures when the integration test will be performed.

10. 40-hour week:Encouraging not to work long hours

11. On-site customer:The customer is part of the work team and, therefore,
acceptance tests are approved.

12. Coding standards:Sharing the code with colleagues and following the
standards to write the code leads to clean and high quality code.

XP roles and responsibilities
In the XP team, there are seven roles and responsibilities that must be
defined[7, 12]:

• programmer:responsible for writing the code, which is the main effec-
tiveness of the XP model, as well as the programmer to perform the
tasks of the designer, analyst, and architect, because the XP model is
devoid of these responsibilities.

• customer:The customer’s job is to write requirements stories and ap-
prove the results of functional tests.

Background 39

• tester:Cooperating with the customer to write and verify tests, but
he does not do the unit-tests because it is the responsibility of the
programmer in the XP model

• tracker:His responsibility is to monitor the progress of the iteration
and gather information from the team work on each task, how much
time was spent, and the remaining missions to the end of the sprint.

• coach:He has the ability to communicate between work teams in addi-
tion to having the administrative and technical qualifications to main-
tain the workflow correctly.

• consultant:This role is not always available, but an expert is contracted
for a short period to guide the developer team in the event of technical
problems

• manager:He is the actual project manager, and decision-making is his
responsibility, by communicating with the work team and assessing the
situation.

Xp Process
The lifecycle of XP is divided into six phases, in order and as shown in figure
3.4[3].

Figure 3.4: Xp life-cycle[3]

1. Exploration. At this phase: an exploration of the requirements is
made for the version or written by the customer through story cards,
and the work team tries to adapt techniques and tools to meet these

40 3.1. Software Development Methodologies (SDM)

requirements in the project, while the system architecture is explored
by making a prototype.

2. Planning:The first version of the system is planned by prioritizing a
set of requirements stories and estimating the number of programmers
they need to develop these requirements according to a schedule that
usually does not exceed two months, while the planning phase takes
two days.

3. Iterations to Release:Following the initial planning phase, the work
is broken down into a number of iterations in accordance with the
timetable. Typically, the implementation phase lasts a week to a
month. We acquire an initial release of the system after selecting by
the customer which of the stories will be implemented in each itera-
tion, implementing the customer’s specified tests at the end of each
iteration.

4. Productionizing phase:At this stage, many tests and verification are
conducted on the system before delivery to the customer, and if new
changes are found, they can be implemented in the current version or
postponed with the documentation of these changes

5. Maintenance and Death:In the maintenance phase, it occurs when the
iterations are completed and the initial release is produced. Therefore,
the team working with the customer is keen to make this version still
work, and during that time, other iterations are made until the cus-
tomer’s stories run out. This is called the "death stage." It is also called
"death" in the case that the results do not match the requirements of
the customer, because this will be too expensive, and documentation
is also being done at this phase.

Feature-Driven Development (FDD)

Jeff De Luca invented it in 1997 for a Bank of Singapore software develop-
ment project. In 1999, Jeff De Luca, Eric Lefebvre, and Peter Coad published
the book"Java modelling in Color with UML" where the world first learned
about FDD. Later, S. Ballmer and M. Felsing released "a practical guide to
Feature-Driven Developmen" that is distinct from Java modelling, as well as
a more detailed explanation of how FDD operates[57].
FDD is a flexible and adaptive approach that follows an incremental, iter-
ative principle in software development processes. Client satisfaction is the
goal of this approach, which is characterized by a focus on software devel-
opment processes at the building and design phases ,and follow the ETVX
template,Because it does not cover all development processes, the FDD is

Background 41

made to be integrated with other activities in the software development pro-
cess.However, it is not necessary to utilize a particular process model.The
FDD has demonstrated its effectiveness in the industrial sector, where it
places a focus on quality throughout the whole process and involves regular
tangible deliveries as well as precise tracking of the project’s progress. [57,
4, 5, 3].

FDD process
FDD processes contain five consecutive processes and provide the principles
and techniques that stakeholders need while working on system development,
in addition to roles and timelines in project management. This approach is
characterized by being suitable for critical systems, as claimed by Palmer and
Felsing[57, 4]. The five processes according to Palmer and Felsing, illustrated
in the following figure3.5, are:

Figure 3.5: FDD process according into Palmer and Felsing [58]

1. Develop an Overall Model.
It is considered the first stage of this model, where its outputs are the
development of an overall model of the system. A walkthrough high-
level meeting is held before this model is developed, and afterwards, a
set of models are developed by domain experts. One or several models
are chosen that are unified into this one comprehensive model, and it
is possible to improve this overall model later[4].

2. Build a Features List.
it is the second phase and from the name it turns out that it is a
set of features where it is easy to identify these features based on the
domain object model that was previously defined. These features are
collected into groups according to the link between them. Usually the

42 3.1. Software Development Methodologies (SDM)

implementation time of each feature is a maximum of two weeks, but
if it is expected that the feature needs a longer time, it is divided into
sub-features and all these features are approved by the customer[4].

3. Plan by Feature.
Any feature that will be implemented is planned by assigning each fea-
ture to a chief programmer (or programmer), and the choice of which
feature will be implemented depends on the dependencies between fea-
tures. In addition to their priority, their level of the complexity, and
the estimated load on the work team[57].

4. Design by Feature.
The previously identified features are scheduled at this phase, and sev-
eral features are assigned to a group of programmers, particularly those
who use the same classes, and the owners of these classes are defined.
The feature assigned programmers team generates a set of sequence di-
agrams for the chosen features, and the overall object model is refined
and the design is verified in accordance with these detailed sequences
[58, 57].

5. Build by Feature.
The final phase of FDD involves working on the features that have
decided to make it through the design phase, producing the essential
code for them, performing unit testing and code inspection, and if the
tests are passed successfully, carrying the features to the building by
integrating the features and modules[5].

FDD Roles and responsibilities
There are many roles that are categorized according to FDD [57, 3] into
three taxonomies:

1. key roles.

1. project manager:Leading the project is one of his responsibilities,
as he is an observer of the progress and financial management
and must eliminate anything that could affect the progress of the
work.

2. chief architect:Overall design is a chief architect’s responsibility
and management of a design session, and he has the final word in
design decisions.

3. development manager: The team’s problems are resolved by the
development manager, who also guides daily development efforts.
In addition, this position has the duty of addressing resource is-
sues. The duties of this position might be merged with those of
the project manager or chief architect.

Background 43

4. chief programmer: An experienced programmer leads small teams
and participates in the effectiveness of analysis, design, identifi-
cation of features that enter into iteration and are developed, and
identification of each class with its owners in the programmers’
teams. He/she is also responsible for solving technical problems
and reporting on work progress weekly.

5. class owner:Class owners carry out the tasks of designing, cod-
ing, testing, and documenting under the direction of the chief
programmer. He is in charge of the class’s development for which
he has been assigned as the owner. The class owners whose classes
are chosen as features for the following development iteration are
participating in each iteration.

6. domain experts: The customer, business analyst,sponsor, or a
combination of these may be the domain expert. His or her re-
sponsibility is to understand how the various requirements for the
system being developed should operate. Domain experts provide
this expertise to the developers so that they may produce a reli-
able system.

2. supporting roles.

1. Release manager: By evaluating the chief programmer’s progress
reports and having brief progress meetings with them, the release
manager manages the process’s progress. He notifies the project
manager on the status.

2. language lawyer:A team member responsible for having in-depth
knowledge especially when the team is working on a new technol-
ogy

3. build engineer: a person in charge of installing, running, and
maintaining the build process, as well as producing documenta-
tion and administering the release control system.

4. tool smith: the toolsmith’s job is to create small tools for a
project’s development, testing, and data conversion.

5. system administrator:his or her responsible for configuring, man-
aging, and troubleshooting the servers, workstation network, and
development and testing environments used by the project team.

3. additional roles.

1. Tester: Performs acceptance tests and ensures that requirements
are being implemented correctly.

2. Deployer:his or her task is to publish new versions while specifying
the format that the system requires in order to function properly
and configuring the settings.

44 3.1. Software Development Methodologies (SDM)

3. Technical Writer:Performs system documentation.

Background 45

Test-Driven Development (TDD)

TDD is a popular Agile practice for software development that Kent Beck
introduced in 2002, and he claimed TDD will enhance and produce quality
software products, both internally and externally (i.e., in terms of function-
ality), while improving developer’s productivity[13, 8].
Following are the phases in the TDD methodology[59]:

1. Before starting to write the actual code, a test is written for the specific
function (it was a class or method) that is planned to be executed

2. Execution of the test and the test’s output must be a failure (red test)
or passing test (green test) to ensure that the test writing was correct.

3. Writing a simple code that leads to the fulfillment of the requirements
of the function to be tested. In the event that the test passes, the
integrity of the code will be confirmed; in the event of failure, the code
must be refactored to achieve the functional requirement.

4. Improving the code to be easily readable and maintainable.

5. Back to step1

Figure 3.6: TDD phases diagram [59]

46 3.2. Hazard Analysis

3.2 Hazard Analysis

There are a number of different ways that the term "hazard analysis" may be
defined, and these definitions change based on the industry and the specific
topic being discussed. Hazard analysis is "the process of identifying hazards
and their potential causal factors" according to Leveson’s definition. The
purpose of doing a hazard analysis is to avoid, minimize, and-or regulate the
dangers and the factors that produce them [43]. Methods of hazard analysis
may either be "inductive" or "deductive," depending on how they arrive at
their conclusions. According to Ericson[25],[77], "inductive" procedures are
employed for the identification of hazards(bottom-top) while "deductive"
studies are used for the identification of root causes(top-bottom). For in-
stance, the FTA and STPA are examples of a deductive approach, whereas
the FMEA is an example of an inductive method. Regarding the topic of our
study, we will cover the STPA approach in more depth than other methods,
since it is the technique used to analyze risks in our project.

3.2.1 System-Theoretic Process Analysis (STPA)

The Systems-Theoretic Accident Model and Processes (STAMP) has been
created by Levinson 2004 then she developed a System-Theoretic Process
Analysis (STPA). Using STAMP as a base, the STPA method has been
created in 2012 to assess the system’s safety. For complex systems, the theory
of systems is particularly important [36]. When dealing with such complex
systems, it is necessary to utilize a method that focuses on the system as
a whole, rather than the sum of separate subsystems, as the division of
systems into components does not give a clear picture of the safety of the
system or conclude an inaccurate result. This technique analyzes risks at
the level of the system as a whole. It takes into account the interactions of
the components of the system among themselves, whether they are software,
hardware, the environment, or even human factors.[43].
In order to do a hazard analysis in accordance with STPA standards, a
control action diagram must be created as shown in the figure 3.7. This
control diagram must include the components of a system as well as their
respective channels of control and response. The STPA is performed in the
two phases that are detailed below[70]:

1. Determine if there is a possibility that the system is not being ad-
equately controlled, which might result in a dangerous situation. A
condition is considered to be hazardous if it violates the safety criteria
or limits of the system and, as a result, has the potential to result
in some kind of loss, whether it be in terms of life, the mission, or
finances.

Background 47

2. Find out how each potential risk control action specified in step one
could happen (identify the causal factor),then safety determinants that
avoid or mitigate the impact of unsafe actions are concluded. Unsafe
actions are categorized according to the table3.1

Figure 3.7: Control structure Diagram illustrate a casual factor[36]

Before beginning the process of safety analysis, we first locate any poten-
tial accidents or risks in the whole system. When putting STPA into practice,
we begin with the control structure of the system as a kickoff point. Using
the control structure as a guide, we examine each control action with regard
to four broad categories of potentially hazardous behavior. The following
are the four categories of control actions:

1. Required control action is not provided.

2. Provided (not required) is an unsafe control action.

3. Too early or late control actions are provided (wrong time).

4. Stopping control action too soon or applying for a long time.

These four points will be placed in a table as in Table 3.1 and fill in the infor-
mation that will later be considered basic safety requirements. By applying
the second step of the STPA, the causal factors of the hazard are revealed.

48 3.2. Hazard Analysis

Unsafe Control Action(UCA)
control ac-
tion

required(not pro-
vided)

provided(not
required)

Provided too (ear-
ly/late)

provided
too(long/soon)

Table 3.1: STPA Step 1

3.2.2 Fault Tree Analysis

Traditional safety analysis techniques such as Fault Tree Analysis (FTA) are
often used to find the underlying reasons and potential of an undesirable
event occurring. These are the aims of using FTA. This technique, starts
by searching for the events that cause the risks from the top, then it derives
the causes to the bottom. We can search for all the possible causes[25], and
by the FTA, the design of the system will be improved and be made more
reliable. This technique is considered a deductive method because it works by
decomposing hazard events into smaller parts. Failure states are represented
graphically and in isolation in this method. Failures can be traced back to
their root causes using a tree-based approach based on logic gates as in the
figure 3.8, probability, and Boolean algebra concepts. Building the Fault
Tree (FT) is the most important part of this technique, and it is why this
method is referred to as "Fault Tree."[25, 44].

Figure 3.8: simple Example of fault tree

Background 49

3.2.3 Failure Modes and Effects Analysis

FMEA It is a method that ends the inductive approach in the sense that
it analyzes the causes of failure from the bottom-up, unlike (STPA, FTA),
by which the causes of potential hazardous and negative effects on the sys-
tem are determined. This method adopts the inductive approach, that is,
starting from the bottom up. With this method, the design can be improved
early on, potential hazards can be found, and steps can be taken to deal with
them [70]. According to the author’s opinion,[6], FMEA can be summarized
in the following steps, and to be more clear, as shown in the figure 3.9.This
method is considered a systematic and iterative approach that begins with
a clear definition of a process that leads to failure, and this process is deter-
mined by an experienced team. A classification is made into failure patterns
according to the severity of the risks and their frequency, and it helps in this
classification by making a graphical map of potential risk events with data
entry in a table to make an analysis of them. Then, it comes the process
of redesigning or modifying the operations to avoid failures or reduce their
impact, and then implementing and evaluating the efficiency of the improved
procedures.

Figure 3.9: Steps of FMEA[6]

50 3.3. ISO 26262

3.3 ISO 26262

The series of standards is specifically intended to provide a benchmark in
the development and design of electrical and/or electronic (E/E) systems
intended for use within road vehicles. ISO 26262 was adaptated from IEC
61508.developing automobiles, particularly as vehicles are becoming more
complicated due to the incorporation of sophisticated technology and soft-
ware into their manufacturing. This complexity raises the chances of software
or hardware failures, increasing the hazards to passenger safety. This stan-
dard, ISO 26262, thus provides guidelines for mitigating or avoiding such
risks[2].
To ensure functional safety, the ISO 26262 standard provides:

1. a reference for the automotive safety life-cycle and supports the tailor-
ing of the activities to be performed during the life-cycle phases,

2. a risk-based method tailored specifically to the automobile industry to
establish integrity levels. Automotive Safety Integrity Levels (ASIL),
utilizes ASIL to identify which of the ISO 26262 requirements are rel-
evant in order to minimize unacceptable residual risk.

3. Functional safety management specifications, design and implementa-
tion, as well as verification, verification and confirmation procedures.

4. requirements for customer-supplier relationships.

3.3.1 ISO 26262 parts

This standard consists of 12 parts at different levels of development, ten parts
of which are normative (1–9, and 12), and two parts are guidelines (10,11).
These parts can be summarized in the following figure3.10. We note in Figure
that the ISO 26262 standard specifies the interdependence between its parts
by shading the parts (3,4,5,6 and 7), and this shading is in the form of V,
where the V-model is the default model for product development[2].

1. "ISO 26262-1:2018, Road Vehicles Functional Safety Part 1: Vocabu-
lary."

2. "ISO 26262-2:2018, Road Vehicles Functional Safety Part 2: Manage-
ment of functional safety."

3. "ISO 26262-3:2018, Road vehicles Functional safety Part3: Concept
phase."

4. "ISO 26262-4:2018, Road vehicles Functional safety Part 4: Product
development at the system level."

Background 51

5. "ISO 26262-5:2018, Road vehicles Functional safety Part 5: Product
development at the hardware level."

6. "ISO 26262-6:2018 Road vehicles Functional safety Part 6: Product
development at the software level"

7. "ISO 26262-7:2018, Road vehicles Functional safety Part 7: Produc-
tion, operation, service and decommissioning."

8. "ISO 26262-8:2018, Road vehicles Functional safety Part 8: Supporting
processes"

9. "ISO 26262-9:2018, Road vehicles Functional safety Part 9: Automo-
tive Safety Integrity Level (ASIL) oriented and safety-oriented analy-
ses"

10. "ISO 26262-10:2018 Road vehicles Functional safety Part 10: Guide-
lines on ISO 26262"

11. " ISO 26262-11:2018 Road vehicles Functional safety Part 11: Guide-
lines on application of ISO 26262 to semiconductors"

12. "ISO 26262-12:2018 ,Road vehicles Functional safety Part 12: Adap-
tation of ISO 26262 for motorcycles"

Figure 3.10: An overview of the ISO 26262 standard parts[2]

52 3.3. ISO 26262

3.3.2 ISO 26262-6 Software Development Level

For automotive applications, this part of document specifies software level
development requirements, including the following[2].

• Fundamental themes for software-level product development.

• The software safety requirement specification.

• Software architectural design

• Design of software units.

• Verification of software unit

• Integration and verification of software.

• Embedded software testing.

The following model clarifies the software life cycle, and this V-model is
included in ISO 26262’s sixth and fourth parts.

Figure 3.11: The V-model of software development according to ISO 26262-
6[2]

Background 53

3.4 Software Architecture (SA)

SA It is the collection of structures of software components, as well as their
interactions and attributes, used to reason about a software system[11],
During the design process, functional requirements and quality attributes
are taken into consideration while making software architecture design deci-
sions[26]. There are frequent challenges that software engineers face during
software design, and to solve these problems, there are design solutions to
these common problems that would reduce development costs as well as
risks. These solutions are called architectural patterns[41].There are several
prevalent architectural patterns, including the ones listed below,and for more
details[9]:

• Layers.

• Pipes-Filters.

• Model View Controller (MVC).

• Broker.

• Microkernel.

• Blackboard.

Specific quality attributes (QAs) for each architectural design pattern vary
from those of the other patterns based on the nature of the interaction be-
tween software components. One of the responsibilities of the software archi-
tect is to prioritize some qualities over others, and the process of prioritizing
QAs over others is referred to as a trade-off.
In our research, we place more emphasis on patterns that are closely associ-
ated with safety qualities, such as the following architectural patterns:

• Protected Single Channel. In this pattern, errors are detected by
examining the inputs and outputs as well as optional, and usually
the application of this pattern is used to provide safety at the lowest
cost[23].

• Homogeneous Redundancy.When we want to make the system
more available even in the event that there is a fault with the primary
channel, we will apply this pattern. The purpose behind this design is
that in the event that errors are detected that prevent the work of the
primary channel from continuing, the work will be switched to an alter-
nate channel in order to assure the system’s continued operation[23].

54 3.4. Software Architecture (SA)

Figure 3.12: protected single channel [46]

Figure 3.13: Homogeneous/Heterogeneous redundancy [46]

• Heterogeneous Redundancy. This pattern is similar to the ho-
mogeneous pattern, but differs in that each channel develops indepen-
dently of the other to ensure that the same mistakes are not repeated
because the alternative channel in the homogeneous pattern is an exact
copy of the main channel. Although this pattern is more reliable than
the previous pattern, it is more expensive[46].

• Safety Executive.In some patterns, when a particular failure occurs,
they treat it by shutting down the system so that the state of danger
does not remain continuous. However, in this pattern, a shut down
system may be very dangerous in the event of an error. In the safety
executive pattern, there will be a series of complex procedures before
reaching a state of fail-safe mode[23].the pattern is shown in figure
3.14.

Background 55

Figure 3.14: safety executive [46]

• 3-level Monitoring This pattern consists of three levels: the first level
monitors the system’s internal state; the second level checks the inputs
and outputs; and the third level monitors the system’s functionality.
This pattern provides a safe and economical solution, especially in the
automotive industry.[46].

Figure 3.15: Three level monitoring [46]

Chapter 4

Methodology

4.1 What is a Cruise Control System

A Cruise Control System (CCS) is one of the important systems in vehicles
to help drivers control the speed of the vehicle while driving, especially over
long distances. In this system, the driver can adjust the speed according
to his desire and leave the pressure on the accelerator pedal, and then the
system is an alternative to control the required speed without the need to
press the accelerator pedal.
in addition to maintaining a constant velocity, this system accelerates or
decelerates the vehicle without using the accelerator pedal.

Figure 4.1: Cruise control system in the car

The ways in which the CCS is used vary based on the automobile man-

57

58 4.1. What is a Cruise Control System

ufacturer, but they all follow the same basic idea. As shown in the figure
above, this system typically includes a number of buttons.

• on/off
The driver uses it to activate or deactivate the CCS.

• ACC
It is used to increase vehicle acceleration

• SET
When you need to maintain the speed, this button is used

• Resume
The CCS is immediately terminated in the cruise system if the brake
pedal is depressed, therefore if the driver wishes to return to the last
set speed, he will utilize this button.

• COAST
It is used to decelerate the vehicle’s speed

4.1.1 Automatic vehicle speed control(AVSC) software

A software that simulates the work of the CCS. Since there are issues in
implementing the research to the actual cruise system in automobiles, this
program will be refactored to be safer utilizing a new agile method pro-
posed.the figure 4.2 represents the simulator software’s user interface.
The simulator contains buttons similar to the work of the real system of
cruise control in vehicles:

• Arrancar/Apagar
Simulate engine start and shutdown.

• Acelerar
used to boost a speed

• Pisar Freno
When this button is pressed, the brake pedal action is simulated as the
speed is slowed down and the speed limit is canceled

• Parar
It is used to decelerate the speed

• Mantener
This button set the speed to a specified level.

• Reniciar
Returns to the previous speed level

Methodology 59

Figure 4.2: AVSC simulator

In addition, the simulator user interface displays the speedometer (gauge),
the distance driven in kilometers per hour, the quantity of fuel injection, and
the fuel consumption, and when the cruise is set, the selected speed is dis-
played.

60 4.1. What is a Cruise Control System

Figure 4.3: Components Diagram for simulator software

The simulator program includes three main packages as shown in the
figure 4.3:

1. ControlAutomatico
manages the automatic vehicle’s speed control.

2. InterfazGrafica
responsible for creating the applet that will run the application, is
composed of four panels each in charge of a part of the vehicle, the
speedometer, the lever, the automatic control panel and the fuel mon-
itor and the injector. In addition, it initializes all the objects to be
used in the application

3. SimuladorVehiculo
Responsible for simulating the operation of the vehicle and sending
vehicle data to the interface

So because automatic control package is in responsible for controlling the
speed, the use case 4.4 demonstrates how it performs.

Methodology 61

Figure 4.4: Use-case of speed automatic control

4.2 A proposed new agile approach for developing
safety-critical systems

To develop SCS using an agile methodology, we have proposed a method
that is used for the first time to the best of our knowledge, covering different
phases of the development life cycle of this type of system, The following
figure presents the general structure of the proposed approach.

This approach is divided into four major sections, which are described
below:

1. Product backlog
It is the first step in our proposed method because, as in the agile
methodologies, the requirements to be developed in it are collected. In
this step, we collect the functional and safety requirements but sepa-
rately from each other. The authors[68, 32] advise to make this separa-
tion between requirements, safety requirements are usually clearer and
more stable compared to functional requirements change over time.
This helps us identify and emphasise safety requirements. The follow-
ing phase will make more sense of the safety analysis of these require-
ments.

62
4.2. A proposed new agile approach for developing safety-critical

systems

Figure 4.5: A proposed agile method

2. System-Theoretic Process Analysis (STPA)
At this stage, we analyze safety at the system level, which is an im-
portant phase in the life cycle of SCS to determine safety require-
ments. This phase receives system requirements, whether functional
or non-functional, and analyzes the relationship between the various
components of the system, whether hardware, software, agent, or en-
vironment. As a result of the hazard analysis, the product backlog
will be provided with more comprehensive and accurate safety require-
ments. In our research, we preferred to use the (STPA) technology
because it is a modern technology, it has been successfully applied in
various fields such as automobiles, aviation, and medical systems[74],
it gives good results when used in complex systems, and it can be used
in various stages of the system development process, either at the be-
ginning or at the end, in addition to using it with agile methodologies
successfully as in Safe Scrum[75].

3. Test-Driven Development (TDD)
To boost productivity and enhance the design, we use TDD at this step
before proceeding to the FDD’s design phase[8, 13, 67]. As a result,
it is better to conduct failure tests based on the causal factors that
arise as a result of the implementation of STPA. As an outcome, the
test-first approach improves the design, and failure in the system is
avoided as early as feasible before the developers create the code.

4. Feature-Driven Development (FDD)

Methodology 63

This phase is considered the initiation of the development process,
during which we picked the FDD methodology as one of the agile ap-
proaches, with minor modifications as indicated in the figure 4.5, to
address the requirements of developing SCS.
This method is suitable for large and complex systems, which is one of
the features of SCS[53, 4]. In addition to the emphasis of this method
on the design and building process, we also aim to focus in the de-
velopment of software and production of a high-quality product[57],
accompanied with good documentation.

4.3 Risk assessment test cases

In this section, we will put the AVSC simulator to the test by introducing
several potentially hazardous scenarios that could lead to violating safety
requirements. Before we begin the tests, we would like to clarify some of
the variables that affect speed control, based on their names in the code, as
shown in the table below.

Variable name Description
MaxInyector The maximum amount of fuel injec-

tion is 100, which is also it’s a de-
fault value.

CteACELERACION represents the ratio at which we
want to increase the maximum fuel
input to the motor, and the default
value is 5.

rozamientoSuelo Represents the ground resistance to
wheel rolling and its default value is
0.05.

rozamientoAire Represents the air resistance and its
default value is 0.004318.

velocidad Represents the current vehicle
speed.

velocidadAutomatico Represents the value of the main-
tained speed.

Table 4.1: Variables that affect vehicle speed

64 4.3. Risk assessment test cases

4.3.1 Unsafe acceleration scenario

At first, We made a simple change in the original code so that we could carry
out the tests. Results were documented only if entries were within acceptable
limits. Then we entered variables and data outside the acceptable range to
examine the change in the system’s behavior and make sure that unsafe
outputs occurred. We assumed the execution time was (10) seconds to check
the behavior of the system during this period. Before proceeding with test
cases, we will call the classes and methods that are necessary to program test
cases and are repeated in most of them, the "Run" method in the four classes
(ControlAutomatico,Vehiculo, Acelerador, CalculadorVelocidad) is executed
before any test, as shown in the figure 4.6.

Figure 4.6: illustrate classes, methods, and variables called in the test case

Methodology 65

In this scenario, we will have simulated unintended acceleration during
the previously specified period (10s), and the vehicle’s acceleration behavior
was checked when:

1. The maximum fuel injection is more than the specified value.

Test case section Details

Variables MaxInyctor = 300
CteACELERACION = 5

Test Description In this test, we changed the Max value of the in-
jection ("MaxInyctor") while fixing the amount
of increase of the injection in a normal value
("CteACELERACION") to illustrate the impact
of the maximum injection on the speed, as the
normal max value of injection is 100 .

Test Result We notice a rapid increase in acceleration in 10
s., i.e., the speed reaches 170 km / hour in only
10 s., while in safe mode the speed reached would
have been 55 Km/h. A margin of error was
imposed on the test case and, therefore, we as-
sumed that if there is an increase of up to 2 units
over the normal limit, we would not consider an
unsafe state has been reached and safety test has
failed.

Table 4.2: Details of Test Case 1

66 4.3. Risk assessment test cases

Figure 4.7: Running Test Case 1

2. Injecting too much fuel in a specified period of time.

Test case section Details

Variables MaxInyctor = 100
CteACELERACION = 10

Test Description In this test, we examine the effect of chang-
ing the value of the injector ("CteACELERA-
CION"), whose safe value we know to be 5, and
in the test we assign the value 10 while keeping
the value of the max value of the injection in its
normal position, for the purpose of checking the
effect.

Test Result The test failed because the speed exceeded the
limit set, which is 3 km/h per second, this value
was obtained in the normal situation, which is 5
for ("CteACELERACION")

Table 4.3: Details of Test Case 2

Methodology 67

Figure 4.8: Running Test Case 2

3. Change in the fuel mixing equation.

Test case section Details

Variables MaxInyctor = 100
CteACELERACION = 5
Inyector * 0.01 To *0.03

Test Description Changing the value multiplied by the value of
the injector and its effect on the amount of ac-
celeration.

Test Result The test failed because a very high acceleration
was produced, unintentionally. The test was first
performed for a normal case and, therefore, a
speed of 55 km/h. m. was obtained. By chang-
ing the equation, however, a speed value of 168
km/h. m was obtained, which was far from the
speed value of the normal case.

Table 4.4: Details of Test Case 3

Figure 4.9: Running Test Case 3

68 4.3. Risk assessment test cases

4. Change in ground friction and their effect on acceleration.

Test case section Details

Variables MaxInyctor = 100
CteACELERACION = 5
rozamientoSuelo = 0.002

Test Description A decrease in the degree of friction with the
ground leads to an increase in acceleration, ac-
cording to the formula for calculating the veloc-
ity.

Test Result The test failed due to a speed increase of 2 km/h
from the normal limit

Table 4.5: Details of Test Case 4

Figure 4.10: Running Test Case 4

5. Change in air resistance and their effect on acceleration

Test case section Details

Variables MaxInyctor = 100
CteACELERACION = 5
rozamientoAire = 0.00008

Test Description A decrease in the coefficient of friction with the
air causes an increase in acceleration, according
to the formula for calculating the vehicle’s speed.

Test Result The test failed due to poor air resistance, result-
ing in unintended acceleration

Table 4.6: Details of Test Case 5

Methodology 69

Figure 4.11: Running Test Case 5

6. Check X value of Acceleration(CteACELERACION).

Test case section Details

Variables MaxInyctor = 100
CteACELERACION = 10

Test Description In this test, we examine the effect of chang-
ing the value of the injector ("CteACELERA-
CION"), whose safe value we know to be 5, and
in the test we assign the value10 while keeping
the value of the max value of the injection in its
normal position, for the purpose of checking the
effect.

Test Result Failure of the system behavior occurs when the
injector value ("CteACELERACION") is raised
to 10, which causes acceleration by two seconds
less than allowable limit.

Table 4.7: Details of Test Case 6

Figure 4.12: Running Test Case 6 in normal state

70 4.3. Risk assessment test cases

Figure 4.13: Execution of the test case 6 in unsafe state

7. Checking the distance traveled during a given period if we
had not set the speed to any specific value.

Test case section Details

Variables MaxInyctor = 300
CteACELERACION = 15

Test Description Check the distance if the injector value exceeds
the normal limit.

Test Result The result of this test is certainly an excessive
increase in the distance traveled because the ac-
celeration increases, another reason why this test
was performed was to make sure that it also af-
fects other functions of the program.

Table 4.8: Details of Test Case 7

Figure 4.14: Running Test Case 7

Methodology 71

8. Check injector value

Test case section Details

Variables MaxInyctor = 300
CteACELERACION = 5

Test Description Checking the current value of the injection after
10 seconds of execution.

Test Result The test has failed because the value of the vari-
able that controls the injection of the vehicle has
exceeded the safety limit (100), this value being
the upper limit that must not be exceeded.

Table 4.9: Details of Test Case 8

Figure 4.15: Running Test Case 8

4.3.2 Unsafe deceleration scenario

This scenario is similar to the previous one, but we will examine the factors
that affect the speed deceleration, and the system is in acceleration mode.
We assume that the speed of the vehicle is 180 km/h and tests will be done
for a given period of time to show the effect ,
the classes, methods, and variables that were used before each test case was
executed for deceleration as in 4.16 ,

72 4.3. Risk assessment test cases

Figure 4.16: illustrate classes, methods, and variables called in the deceler-
ation test scenario

deceleration behavior was checked when:

1. Check the effect of air resistance

Test case section Details

Variables MaxInyctor = 100
velocidad = 120
rozamientoAire = 0.009318 .

Test Description To examine the effect of wind resistance when
calculating the vehicle’s speed in 25 s

Test Result Test failed due to deceleration of more than 3
km

Table 4.10: air resistance Test case 9

Figure 4.17: Running air resistance Test Case 9

Methodology 73

2. Check the effect of ground resistance

Test case section Details

Variables MaxInyctor = 100
velocidad = 120
rozamientoSuelo = 1.005

Test Description To check the effect of ground resistance on the
vehicle’s forward speed calculation in 25 sec

Test Result Test failed due to deceleration of more than 3
km

Table 4.11: Ground resistance Test Case 10

Figure 4.18: Running ground resistance Test Case 10

3. Check if the fuel injection value is too low

Test case section Details

Variables MaxInyctor = 100
velocidad = 120
CteACELERACION = 10

Test Description This test is used to test the effect of the injector
variable value being greater than required
during deceleration, this test used a Ve-
hiculo.disminuirInyector(CteACELERACION)
a method responsible for the slowdown of speed

Test Result The test failed because the difference between
the maximum allowable fuel injection value and
the current injection value exceeded 5, which is
the normal fuel injection value in the program.

Table 4.12: Fuel injection test case 11 is less than required

74 4.3. Risk assessment test cases

Figure 4.19: Execution of an inadequate fuel injection test case 11.

4.3.3 Unsafe scenario when cruise control

In this section, we’ll consider that the system is in cruise control mode and
that there has been an unintentional acceleration or deceleration of the ve-
hicle’s speed.

1. Unsafe acceleration

Test case section Details

Variables velocidad = 90
velocidadAutomatico = 60

Test Description This test reveals any unintentional acceleration
that occurs while using cruise control.

Test Result The test case failed because there is a significant
difference between the set speed and the vehicle’s
actual speed.

Table 4.13: Test case 12 illustrate unintended acceleration during maintained
speed

Methodology 75

Figure 4.20: running the test case 12 for unexpected acceleration with the
cruise control engaged.

2. Unsafe deceleration

Test case section Details

Variables velocidad = 50
velocidadAutomatico = 60

Test Description This test reveals any unintentional deceleration
that occurs while using cruise control.

Test Result The test case failed because there is a significant
difference between the set speed and the vehicle’s
actual speed.

Table 4.14: Test case 13 illustrates unintended deceleration during main-
tained speed

Figure 4.21: running the test case 13 for unexpected deceleration with the
cruise control engaged.

76 4.4. Implementation of the Proposed Method

4.4 Implementation of the Proposed Method

In this part, we will implement our method, taking into consideration the
ISO-26262 requirements.

4.4.1 Product backlog

In this backlog, we will collect functional requirements and safety require-
ments independently to simplify the process of tracing safety requirements
and conducting a hazard analysis. The requirements will be defined using
the Easy Approach to Requirements Syntax (EARS) standard. see[47]For
details, The requirements are collected according to what is available or ob-
tained from the customer, and it is not necessary to specify which of the
requirements will be worked on in advance or to determine the team that
will accomplish them because when applying the section of the FDD there
is another backlog responsible for this thing.

Functional Requirements

The purpose of functional requirements is to identify what tasks must be
completed by the system and its behavior in order to correctly perform the
specified functions. These requirements are frequently modified by the cus-
tomer. In the following table 4.15, we will list a few of the system’s most
important essential needs.

Methodology 77

Functional Re-
quirements No

Description

FR-1 FR-1.1 When <press> the <accelerator> the
vehicle shall be <have an acceleration >
FR-1.2 While <acceleration> the accelerator
shall < keep the acceleration > until the mode
is changed by the driver
FR-1.3 The <accelerator >shall <stop acceler-
ating> when the <brakes are applied>

FR-2 FR-2.1 The <maintainer> shall <keep the speed
>at the same average
FR-2.2 When <maintainer is pressed>, the
<current speed> shall be saved
FR-2.3 The <maintainer >shall <stop keep
cruising> when the <brakes> are applied

FR-3 FR-3.1 The <resume> shall <return >to last
saved speed
FR-3.3 when The <accelerator pressed> the
<resume>shall <canceling>

Table 4.15: Functional Requirements table

Safety Requirements

Generally, safety goals are more constant, although the specifications of these
requirements might be challenging. According to ISO-26262, technical safety
requirements, the system design architecture, and the hardware-software in-
terface (HSI) should be addressed as prerequisites, As a result, the method
of safety analysis (STPA) will assist us in identifying these requirements,
and as depicted in the figure 4.5, In the following table, we specify the initial
safety goals and relate the most relevant safety requirements with safety ob-
jectives to facilitate comprehension and make it simpler to trace and verify
compliance with the requirements.

Safety Goals How to achieve the safety goal
SG-1 Ensure that there is no

unintended acceleration or de-
celeration

Monitor the system in case of unintended
acceleration or deceleration.

maintain the safe speed cruising
notify the driver when fault occurs

Table 4.16: Safety Goal table

78 4.4. Implementation of the Proposed Method

Safety Require-
ments (SR) for
SG1

description

SR1 The <actuator> shall <run> from one program
SR2 The <actuator> signal shall have a<range

check>
SR3 while a <signal delayed> shall <send >error

code
SR4 The <speed> value shall <send> from one pro-

gram
SR5 while a <speed value> < delayed> shall <send

>error code
SR6 The <current speed> value shall have a <Com-

pared> with a set speed
SR7 While the <current speed> is <delayed>, an

error signal should be <sent>

Table 4.17: safety requirments table

ASIL Determination

According to the ISO-26262 standard, risks are classified into four categories,
beginning with the lowest degree of risk (A) and progressing to the highest
degree (D) Hazards that are identified as QM do not dictate any safety re-
quirements". There are three specific variables to consider when determining
the classification for the safety goal and safety requirements, namely:

• Severity: Indicates the level of survival in the event of a system failure.
It is classified into four levels:

1. S0: no injury .

2. S1: mild and moderate injuries .

3. S2: severe and potentially fatal injuries, with a good chance of
survival

4. S3:life-threatening injuries with a low chance of survival, as well
as fatal injuries .

• Exposure: It reflects the probability that a hazard will occur.

1. E0: It is extremely unlikely to occur.

2. E1 : Very little chance to occur.

3. E2: Low probability.

4. E3: Medium probability.

Methodology 79

5. E 4: High probability.

• Controllability : The ability to avoid risk by controlling failure, whether
through human intervention or system control.

1. C0: controllable in general.

2. C1: simply controllable.

3. C2: normally controllable.

4. C3 : Uncontrollable .

The table below demonstrates how to determine the ASIL level in accordance
with ISO 26262.

Figure 4.22: ASIL determination table [51]

Referring to the previous table, we will determine the level of ASIL for
each of the safety goal and safety requirements.

Safety Goals No Severity Exposure Controllability ASIL

SG-1 S2 E3 C3 ASIL B

Table 4.18: Safety goal ASIL determination

80 4.5. Implementation of STPA

Safety requirments No Exposure Sever Controlability ASIL
SR1 E2 S1 C1 QM
SR2 E3 S2 C1 A
SR3 E3 S2 C3 B
SR4 E2 S1 C1 QM
SR5 E3 S2 C3 B
SR6 E4 S2 C2 B
SR7 E3 S2 C3 B

Table 4.19: Safety requirments ASIL determenation

4.5 Implementation of STPA

To initiate the analysis process utilizing STPA technology, with a general
description of the system and an understanding of the components and their
interactions, including agents. The system is typically described by display-
ing documents or explanations by specialists, resulting in the creation of a
control structure diagram that simulates how the control of system com-
ponents performs, The following figure shows a simplified diagram of the
control structure of the cruise system

Figure 4.23: ccs control structure diagram

Methodology 81

In this control structure, to comprehend how to control the speed, the
driver sends commands to set the speed, the cruise control unit sends the
appropriate signal to the actuator, who adjusts its position based on the
inputs to it, the vehicle control unit handles the changes and sends the
updated data to the speed control unit to check if the current speed equal
to desired speed , and then notifies the driver of the current state.

4.5.1 Determine unsafe control action(UCA) and associated
reasons.

In this section, we identify the actions that could lead to the hazards and
the accidents that result from these actions.

Control actions

Referring to the figure 4.23, we will determine which control action (CA)
lead to the risks:
CA1:Sending an X-value signal to the actuator from the automatic speed
control unit
CA2:Send the amount of current speed
CA3:Compared the actual speed to the desired speed

Possible accidents as a result of unsafe actions

AC1:vehicle can collide with a vehicle in front of it, a barrier or even a pedes-
trian.
AC2:The possibility of colliding with another car from behind

Hazards predicted as a result of control actions

H1:Unintended acceleration of the vehicle when the speed is set, will lead to
AC1.
H2:Unintended deceleration of the vehicle when the speed is set,will lead to
AC2

82 4.5. Implementation of STPA

Unsafe Control Action(UCA)
control ac-
tion

provided not provided Provided
too(early/late)

provided
too(long/soon)

CA1 UCA1:not re-
quired providing,
lead to H1.

UCA2: required
not providing,
lead to H2.

UCA3: too late
lead to H2 | too
early :N/A

UCA4: too long
lead to H1 Espe-
cially if signal it is
out of range

CA2 UCA5:not re-
quired providing,
lead to H1 or H2

UCA6: required
not providing,
lead to H2

UCA7: too late
lead to H2 | too
early :N/A

UCA8: too long
lead to H1 espe-
cially if a value it
is out of range

CA3 UCA9:Available
but there is a
big difference be-
tween the current
speed and the
desired speed,
will lead to H1 or
H2

UCA10: required
not providing,
lead to H1,H2
Depending on the
current speed

UCA11: too late
lead to H2 , H1
Depending on the
current speed |
too early :N/A

UCA12: too
long:N/A |
stooped to soon
could lead to
H1,H2

Table 4.20: STPA first step

4.5.2 Occasional factors

The technique in the next step evaluates the possible reasons and related
causal scenario, as illustrated in table 4.21:

Methodology 83

UCA No crucial factors (CF)
UCA1 CF1 Send a signal to the same Actuator from another

program
UCA2 CF2 Send a value equal to zero, or well below the range
UCA3 CF3 A hardware malfunction occurs in the signal

transmission
UCA4 CF4 The signal is out of range
UCA5 CF5 sending data from another program
UCA6 CF6 data equal to 0 or not readable
UCA7 CF7 A hardware malfunction occurs in the signal

transmission
UCA8 CF8 data out of range
UCA9 CF9 The influence of external factors that lead to

significant acceleration or deceleration (resistance of
ground or air, malfunction outside the speed control
unit)

UCA10 CF10 A hardware issue with the data transfer or a
significant delay transfer current speed

UCA11 CF11 significant delay transfer current speed
UCA12 CF12 significant delay transfer current speed

Table 4.21: STPA second step

84 4.6. Application of the FDD

Constraints of safety

It is considered the last step of the STPA technology, in which we define the
constraints that avoid or mitigate unsafe control actions from occurring and
from which we can derive the safety requirements,The safety constraints in
the table4.22 will be considered for transformation into safety requirements
in Section 4.4.1 .

crucial factors NO Safety constraints
CF1 Sending the control signal must be from one pro-

gram
CF2 The signal range must be checked
CF3 monitor the timing of sending the signal
CF4 check signal range
CF5 The data must be sent from one program
CF6 check information range
CF7 monitor the timing of sending the signal
CF8 check information range
CF9 Monitor current speed with required speed every

specified time period
CF10 Monitor data over time
CF11 Monitor data over time
CF12 Monitor data over time

Table 4.22: safety constraints for UCA

4.6 Application of the FDD

In this part, we will implement the FDD method, taking into account the out-
puts of the previous stages. We will use the ETVX(Entry,Tasks,Verification,Exit)
template to formalize and clarify the implementation of tasks.

Section Description
Entry A quick description of the procedure and a

list of requirements that must be satisfied
before the phase can begin.

Tasks A task list must be performed as part of
this procedure

Verification The method used to verify the outputs and
whether the criteria have been achieved.

Exit The outputs obtained

Table 4.23: ETVX template

Methodology 85

4.6.1 Develop an overall model

Section Description
Entry The inputs for this stage will be the requirements in

the product backlog. It is acceptable to follow the
same traditional steps to build the overall model. How-
ever, it is preferable that the requirements be subjected
to a safety analysis to help us determine more accu-
rate safety requirements so that the work team takes
these requirements into account while developing the
overall models. The constraints imposed by ISO 26262
must be taken into account.Those responsible for this
step are domain experts, chief programmers, and chief
architects.

Tasks

1. Reviewing the proposed system.

2. Separate the system into domains.

3. Mapping each domain in accordance with the
proposed safety requirements.

4. Safety requirements are subject to ISO 26262
regulations.

5. To create a simplified model for each domain.

6. Then assemble these subsections into an overall
model.

Verification Verify that the model complies with safety require-
ments and ISO 26262 regulations.

Exit

1. Overall model.

2. Basic class diagram.

3. Notes on why the current overall model was cho-
sen.

Table 4.24: First phase template

When reviewing how the cruise control system works, we can divide the
system into two main domains. The first domain is where the actuator

86 4.6. Application of the FDD

controls the vehicle speed 4.24, and the second domain is where the value of
the current speed is sent to the automatic speed control unit4.25, where it
is compared to the speed at which the acceleration is required to be set.

Figure 4.24: monitor acceleration domain

Figure 4.25: speed monitor domain

In this simplified class diagrams, we have added the components for mon-
itoring the signal that may be out of the safe range, and these components are
highlighted in red to distinguish them from the functional components,The
safety requirements that we have obtained are in compliance with ISO 26262-
6 7.4.12 safety mechanisms recommendations through error detection and
error handling. The next step is to unify the previous two domains into a
single, comprehensive model4.26.

Methodology 87

Figure 4.26: overall modeling

88 4.6. Application of the FDD

The previous model represents the general outline of the system, and we
note that the software components responsible for safety are isolated and do
not interfere with the work of the functional system; this is what is recom-
mended in ISO 26262; To verify that the model meets safety requirements,
Table 4.25 illustrates the matter. through this overall model, the features
will be derived.

Safety re-
quirements
No

model validation notes

SR1 According to the model, "Acelerador" will be only re-
sponsible for the actuator

SR2 acelerator Monitor has a range check
SR3 acelerator Monitor has a range check and sends an

error code if there is a signal delayed
SR4 According to the model, "Vehiculo" will be only re-

sponsible for sending speed value
SR5 According to the model, "VelocidiadMonitor" will

check the range and send an error code if there is a
delayed signal.

SR6 According to the model, "VelocidiadMonitor" will
compare a current speed with a maintained speed.

SR7 According to the model, "VelocidiadMonitor" will
compare a current speed with a maintained speed and
send an error code if there is a delayed signal.

Table 4.25: Verification of overall model

Methodology 89

4.6.2 Build a Features list

Section Description
Entry an Overall Model
Tasks A group of Chief Programmers typically forms a team

to analyze the functional decomposition of the domain
based on the partitioning previously done by Domain
Experts. The team divides the domain into several
major areas, which are then divided into smaller sets
of activities. Each activity is further divided into indi-
vidual features. This process results in a hierarchical
list of features,Emphasis will be placed on areas of con-
cern in the domain of safety.

Verification The team evaluates the list of features that has been
produced, either internally or through external assess-
ment, considering the approval of the domain expert
on these list of features.

Exit The team generates a list of features organized into
categories, beginning with major feature sets (areas)
and proceeding to feature sets (activities) and individ-
ual features within those activities

Table 4.26: second phase template

Feature
No

Major Fea-
ture set

Feature set Feature Name

F-1 Monitoring Acceleration monitoring Check the safe range of
acceleration

F-2 Monitoring Acceleration monitoring Sending an error code to
the speed control unit in
case of failure

F-3 Monitoring velocity monitoring Compare current speed
with the set speed value

F-4 Monitoring velocity monitoring Sending an error code to
the speed control unit in
case of failure

Table 4.27: features List table

90 4.6. Application of the FDD

4.6.3 Plan by Feature

Section Description
Entry The features list
Tasks

1. The project planning group includes the Project
Manager, the Development Manager, and the
Chief Programmers.

2. Task the Chief Programmers with specific fea-
ture sets.

3. Assign developers to specific classes.

Verification The Project Manager, Development Manager, and
Chief Programmers can assess the progress and effec-
tiveness of the project through their active participa-
tion in the planning process. By engaging and using
their expertise, these individuals can conduct a self-
assessment and make informed decisions.

Exit

1. The chief programmers are responsible for spe-
cific feature sets.

2. List of class owners (developers).

3. A schedule indicating the target completion
dates for major features (by month and year),
feature sets (by month and year), and features
(by week).

Table 4.28: third phase template

Methodology 91

Monitoring as (Major Feature)
Feature No Feature set Feature name from date to date class name / de-

veloper
F-1 Acceleration

Monitoring
Check the safe
range of accelera-
tion

1/7 7/7 AceleratorMonitor
/ Zain

F-2 Acceleration
Monitoring

Sending an error
code to the speed
control unit in
case of failure

8/7 9/7 AceleratorMonitor
/ Zain

F-3 Velocity
Monitoring

Compare current
speed with the set
speed value

10/7 17/7 VelocidadMonitor
/Zain

F-4 Velocity
Monitoring

Sending an error
code to the speed
control unit in
case of failure

18/7 25/7 VelocidadMonitor
/Zain

Table 4.29: timetable of the plan by feature

4.6.4 Design by Feature

In the design stage, we must take into account the safety goal that must be
achieved. From the above safety requirements, the following GSN diagram
4.27 facilitates an understanding of how to achieve that. In this phase, the
Chief Programmer is in charge of organizing the development of features
by selecting them from a group of assigned features and dividing them into
smaller groups. They also assemble teams of developers to work on specific
features, and the teams create in-depth diagrams for the chosen features.
The chief programmer then reviews and updates the object model based on
the diagrams, and the developers create class and method summaries. A
verification of the design is also conducted.

92 4.6. Application of the FDD

Figure 4.27: GSN diagram of safety goal

Methodology 93

Section Description
Entry The FDD phase three has been successfully finished

by the planning team.
Tasks

1. create sequence diagrams for features.

2. create a design according to ISO 26262-6 7.4.3
recommendation.

3. update an overall model

Verification Verify the design according to ISO 26262-6 7.4.14
Exit

1. sequence diagrams .

2. Alternative design according to safety and ISO
26262 requirements.

3. An updated overall object model with classes,
methods.

Table 4.30: design phase template

Table 4.29 will be employed to generate a sequence diagram for each
feature:

• The following sequence diagram shows how to monitor unintended ac-
celeration for feature (F-1).

Figure 4.28: sequence diagram of acceleration monitoring

94 4.6. Application of the FDD

• The following sequence diagram illustrates the classes and methods
responsible for comparing the current speed with the specified speed
for feature F-3.

Figure 4.29: sequence diagram of monitoring current speed with set one

Methodology 95

• The interface that will be utilized to create loose coupling will be used
to deliver error codes to the automatic control unit, as illustrated by
the sequence diagram for features F-2 and F-4 below.

Figure 4.30: sequence diagram of sending errors code

According to ISO 26262 standards, software architecture design is sub-
ject to general principles based on ASIL classification, as shown in the table
below, (+) indicates that it is recommended; (++) that it is highly recom-
mended.

Principles ASIL
A B C D

"Appropriate hierarchical structure of the software components" ++ ++ ++ ++
"Restricted size and complexity of software components" ++ ++ ++ ++
"Restricted size of interfaces " + + + ++
"Strong cohesion within each software component" + ++ ++ ++
"Loose coupling between software components " + ++ ++ ++
"Appropriate scheduling properties " ++ ++ ++ ++
"Restricted use of interrupts " + + + ++
"Appropriate spatial isolation of the software components " + + + ++
"Appropriate management of shared resources " ++ ++ ++ ++

Table 4.31: Software architectural design principles according to iso 26262-6
[2]

96 4.6. Application of the FDD

Usually, the system is divided into subsystems that perform a specific
function or achieve a safety goal in accordance with ISO 26262. The safety
requirements and objectives of these systems are classified according to ASIL.
From the preceding, the part related to system monitoring and error detec-
tion has been classified as ASIL B, based on the safety goal and its primary
function. From here, we will apply design principles according to their clas-
sification, as well as how to verify it.
To understand how the design will be, below is a description of the contents
of the table 4.31.

• "Hierarchical structure of software components"
The objective is attained by partitioning the large design blocks into
smaller units. This is done by proceeding from System Level Soft-
ware Elements to software components, and then to Software Sub-
Components.

• "Restricted size and complexity of software components"
The software component should be chosen based on its unique charac-
teristics and functionalities.

• "Restricted size of interfaces "
Restrict the amount of data transmitted between software components.

• "Strong cohesion within each software component"
Based on the functionality that will be used, the software component
with high cohesion is selected.

• "Loose coupling between software components"
A system with loose coupling has components that can function in-
dependently of each other, and can be replaced or modified without
affecting the overall system, Interfaces can be utilized to implement
this.

• "Appropriate scheduling "
consideration of the sequence of data transfer between software com-
ponents.

• "Restricted use of interrupts"
Using interrupt-based processing can cause the program to constantly
switch to a different mode and thus affect execution scheduling.

• "Appropriate spatial isolation of the software components"
Isolate software components in a separate memory that cannot be mod-
ified by other components.

Methodology 97

• "Appropriate management of shared resources"
Manage access to resources and ensure no conflict between components
to obtain resources.

Figure 4.31: Basic hierarchical structure

Adhering to the design principles mentioned in table 4.31 will provide
quality assurance and avoid potential failures in the system being devel-
oped. Therefore, building a software architectural design on a hierarchical
structure based on the previous design principles enables us to comprehend
how to code and how software components interact with one another. Each
component of the system must be responsible for a specific function. one, as
in the following figure 4.31, where the components that perform the moni-
toring function are grouped together, and thus we achieve strong cohesion
among the components and reduce the unwanted complexity and interfer-
ence. At the same time, a trade-off should be taken into account between
increasing the complexity of the system and reducing the dependence be-
tween the components. Furthermore, isolating the components from one
another makes it easier to manage shared resources while also reducing the
use of interrupts and interest in special scheduling. By implementing a spe-
cific function for each component in the simulation environment, there is
no possibility to physically isolate the components or use interrupts as in
embedded systems, but threads are used to make the main components. It
operates independently and has its own, albeit limited, memory. Figure
4.32 shows how each component contains its own sub-components that are
isolated from each other as much as possible.

98 4.6. Application of the FDD

Figure 4.32: hierarchical of software components

Methodology 99

To validate the design, ISO 26262 introduced several methods, as dis-
played in the table 4.32. The selection of the method is based on its capa-
bility to verify the identified safety requirements and its compatibility with
the software’s target environment. The "inspection of the design" method
is suitable to validate our design by ensuring that the system complies with
predefined safety requirements and that there are no outstanding safety re-
quirements that have not been fulfilled.

Methods ASIL
A B C D

"Walk-through of the design" ++ + o o
"Inspection of the design" + ++ ++ ++
"Simulation of dynamic behaviour of the design " + + + ++
"Prototype generation" o o + ++
"Formal verification" o o + +
"Control flow analysis " + + ++ ++
"Data flow analysis " + + ++ ++
" Scheduling analysis" + + ++ ++

Table 4.32: Verification methods for software architectural designs according
to iso 26262-6 [2]

We can trace the features and verify that they were achieved in a simple
manner using the table below.

Feature No component name check status
F-1 aceleratorMonitor checked
F-2 sendcode interface checked
F-3 VelocidadMonitor checked
F-4 sendcode interface checked

Table 4.33: Design checklist

Through the design requirements, an interface(send error) that was not
present in the overall model has been added, and for this, the overall model
will be updated as shown in figure 4.33 with the details of the classes and
methods used.

100 4.6. Application of the FDD

Figure 4.33: updated overall model

Methodology 101

4.6.5 TDD

Applying this section to the components that have been added, the purpose
of this is to avoid errors that face the design before the code is actually
written. In the next stage, simplified tests will be written for the monitoring
components.

Acceleration Monitor

Acceleration monitoring will be done by checking the safe range of the inputs,
in general. To implement TDD, the test is written before writing the code
by creating a "Rangecheck" function, the following tables show test cases for
the method we want to code later.

Input Actual output Expected output Test Result
3.14 invalid valid fail
-1 valid invalid fail
10 valid invalid fail

Table 4.34: check range red test

Figure 4.34: red test Running check range test case

Input Actual output Expected output Test Result
3.14 valid valid pass
-1 invalid invalid pass
10 invalid invalid pass

Table 4.35: check range green test

102 4.6. Application of the FDD

Figure 4.35: Running check range green test

Speed Monitoring

In the cruise control system, it is critical to monitor whether the current
speed is equal to the speed set by the driver. A function that compares the
current speed to the set speed will be tested with a margin of error of 10
as a safe difference between the two speeds. Before writing the main code
for this method, a test case will be written, indicating that this method
performs a function, comparing the two speeds without going into more
complex details, such as how to read the speeds or make them run on a
separate thread because these details will be in the function’s main code.

Input (current speed,
set speed)

Actual output Expected
output

Test Result

(85,70) invalid invalid pass
(70,70) valid valid pass
(58,70) valid invalid fail

Table 4.36: Monitroring speed red test

Figure 4.36: Running monitoring speed test case

Methodology 103

There is a failure in the test that was executed, and in the event of de-
celeration at the current speed, the function does not detect the error, and
therefore a refactor will be made for the method in order for the test to pass.
Errors that appear before the start of writing the actual code will be discov-
ered before starting the next step, and this will reduce the effort and time
on the work team.

Input (current speed,
set speed)

Actual output Expected
output

Test Result

(85,70) invalid invalid pass
(70,70) valid valid pass
(58,70) invalid invalid pass

Table 4.37: Monitoring speed green test

Figure 4.37: Running monitoring speed test case after refactoring

104 4.6. Application of the FDD

4.6.6 Build by Feature

Section Description
Entry phase 4 design by feature completed, with design in-

spected list.
Tasks

1. Class owners implement the requirements of the
features that were previously defined, particu-
larly the safety requirements.

2. Each class owner will test the code to verify if
it fits the feature requirements; these tests are
often defined and detailed by the chief program-
mer.

3. Inspection of the code, whether before or after
testing or even during coding, is one of the chief
programmer’s tasks, and he or she must make a
decision on it.

4. After testing and code inspection are complete,
the build of the class is released.

Verification

1. code inspection and unit test.

2. unit design code inspection according to ISO
26262-6 8.4.

3. Methods for verifying software units according
to ISO 26262-6 9.4.2.

Exit The completion of each feature and the classes asso-
ciated with it after its promotion to the build via the
completion of the inspection and testing on the code
marks the end of this process.

Table 4.38: build by feature phase template

In addition to the requirements of the identified features, ISO 26262-6 spec-
ifies a number of principles that must be followed during implementation to
avoid failure, and these principles must be available when the code inspection
is performed.

Methodology 105

Principles ASIL
A B C D

"One entry and one exit point in sub-
programmes and functions"

++ ++ ++ ++

"No dynamic objects or variables, or else online
test during their creation"

+ ++ ++ ++

"Initialization of variables " ++ ++ ++ ++
"No multiple use of variable names" ++ ++ ++ ++
"Avoid global variables or else justify their us-
age"

+ + ++ ++

"Restricted use of pointers" + ++ ++ ++
"No implicit type conversions" + ++ ++ ++
" No hidden data flow or control flow" + ++ ++ ++
" No unconditional jumps" ++ ++ ++ ++
" No recursions" + + ++ ++

Table 4.39: Design and implementation principles for a software unit in
accordance with ISO 26262-6 [2]

As stated in the table below, ISO 26262 specifies different methods for
testing software units, and we can use one or more of them. The fault-
tolerance method is suitable for ensuring that the software unit detects an
error.

106 4.6. Application of the FDD

Methods ASIL
A B C D

"Walk-through" ++ + o o
"Pair-programming" + + + +
"Inspection" + ++ ++ ++
"Semi-formal verification" + + ++ ++
"Formal verification" o o + +
"Control flow analysis" + + ++ ++
"Data flow analysis" + + ++ ++
"Static code analysis" ++ ++ ++ ++
" Static analyses based on abstract interpreta-
tion"

+ + + +

"Requirements-based test" ++ ++ ++ ++
"Interface test" ++ ++ ++ ++
"Fault injection test" + + + ++
"Resource usage evaluation" + + + ++
"Back-to-back comparison test between model
and code, if applicable"

+ + ++ ++

Table 4.40: Methods for verifying software units in accordance with ISO
26262-6 [2]

Now we are testing implemented units that fulfil the features require-
ments :

• Accelerator monitor : The main idea of this function is to monitor the
accelerator outputs to check if they are within the safe range, which
is (0, 5), and if they are outside this range, an error code will be sent
to the automatic speed control unit. We assumed that the error code
that is sent is 1002 because there are no standardized fault codes among
vehicle manufacturers.

Input Actual output Expected output Test Result
3.14 0 0 pass
-1 1002 1002 pass
10 1002 1002 pass

Table 4.41: Accelerator monitoring test case 1

Methodology 107

Figure 4.38: Running Accelerator monitoring test

• velocity monitor : In this software unit, the cruise control system will
be monitored when the cruise is set, and whether the current speed is
not accelerating or decelerating by 10 from the set speed. In case of
an error, an error code will be sent to the automatic control unit.

Input (current speed,
set speed)

Actual output Expected
output

Test Result

(81,70) 1000 1000 pass
(70,70) 0 0 pass
(58,70) 1000 1000 pass

Table 4.42: Velocity Monitoring test case 2

Figure 4.39: Running Velocity monitoring test

108 4.6. Application of the FDD

Backward tracing will be used in this phase The purpose of backward
traceability is to ensure that all parts of the software development process
are linked and traceable, including testing and maintenance, Each feature is
upgraded to build after testing, code inspection, and client acceptance.

Feature No Requirement Descrip-
tion

Implementation Com-
ponent

Test
Case
Iden-
tifier

Test
Re-
sults

F-1 Monitor the output of
the accelerator in case
the output is outside the
safe range

aceleratorMonitor.java Test
case 1

pass

F-2 Send error code 1002 to
the automatic control in
case detect error

SendErrors.java Test
case 1

pass

F-3 Make a comparison of
the current speed of the
vehicle with the speed
set by the driver, and
if the difference is more
than 10 km/h, an error
code is sent to the con-
trol unit.

VelocidadMonitor.java Test
case 2

pass

F-4 Send error code 1000 to
the automatic control in
case detect error

SendErrors.java Test
case 2

pass

Table 4.43: Tracing backward features

Chapter 5

Results and Discussion

5.1 Results

List of results:

I. Methodological:

1. New methodological approach for SCS development

2. Application of STPA to AVSC validation

3. TDD-based validation and refactoring of AVSC

4. FDD-based development (initiated)

II. Design:

1. AVSC potential hazards identification through the definition of
tests cases

2. Elicitation of AVSC functional and non-functional requirements
with EARS notation

3. Risks categorization

4. Determination of AVSC’s ASIL severity levels

III. Building:

1. STPA implementation for the AVSC

2. Determination of the set of constraints that propitiate system
safety and prevent from system’s unsafe control action (UCA)

3. FDD-based construction/refactoring of the AVSC

4. Identification of the AVSC features list (monitoring acceleration,
speed control, ...)

109

110 5.2. Discussion

5. Development of a suite of tests for AVCS validation

IV. Safety:

1. The refactored software demonstrated improved safety features,
as it adhered to the safety requirements.

5.2 Discussion

I.1 A new approach for developing SCS has been proposed, starting from
a previously obtained backlog, which includes F and NF requirements
for the AVCS study case given and studied in this project.

I.2 By using STPA, we have obtained and detailed the safety requirements
of the study case through hazard analysis.

I.3 To avoid possible hidden errors in the system design, we used test-
driven development before starting to refactor the case study software.

I.4 In this phase, an FDD strategy has been outlined and, to some extent,
initiated for the AVSC study.

II.1 A re-evaluation of the AVCS case study has been carried out by deriv-
ing a set of test cases, which test possible hazardous scenarios in the
deployment and operation of the system.

II.2 The set of functional requirements has been obtained, with the help of
EARS structural notation, and the specific set of AVSC safety require-
ments according to ISO-26262.

II.3 The set of AVCS software operation risks have been categorized accord-
ing to different levels of risk attributes, i.e. severity (S0-S3), exposure
(E0-E3) and controllability (C0-C3).

II.4 A correspondence has been established between the AVCS safety re-
quirements and the severity levels (A–D) proposed by the ASIL stan-
dard.

III.1 The STPA has been implemented as a global reference control structure
diagram for the refactoring of the AVCS software, and from it the
unsafe control actions have been identified, as well as the causes that
trigger them.

III.2 The set of constraints that guarantee the satisfaction of safety require-
ments has been fully identified and, therefore, the constraints that may
prevent an AVCS operation leading to a UCA have been elicited.

Results and Discussion 111

III.3 The FDD has been applied by developing a new architectural model
that has been obtained and that separates the AVCS software architec-
ture into different sub-domains. By accessing the system requirements
in the product backlog, according to the FDD methodology, the soft-
ware components responsible for safety have been isolated according
to the iSO 26262 recommendations.

III.4 A list of the product features (case study software), in terms of accel-
eration/deceleration monitoring, speed control, has been elaborated so
that a feature-by-feature plan can be applied, according to the steps
of the FDD methodology, to validate and eventually refactoring the
AVCS software.

III.5 The development of a test suite for the AVCS software to monitor
acceleration and speed control has been proposed and schematically
introduced. A complete set of features has been identified to track
backwards to validate the AVCS from software implementation to re-
quirements, which were obtained in the first step of the FDD method.

IV.1 Finally,The refactored software included a safety mechanism for de-
tecting and handling errors, as part of the obligations that must be
considered according to ISO 26262.

Chapter 6

Conclusions and future work

6.1 Conclusions

The main objective of our research is to define agile software development
(ASD) methods for developing a complex system with critical safety charac-
teristics. By applying ASD to this type of system, we aim to leverage the
advantages of the Agile development process, such as flexibility, adaptabil-
ity to changing requirements, incremental delivery, customer collaboration,
continuous improvement, early risk identification and mitigation, budget and
cost estimation, and improvement of quality and customer satisfaction. How-
ever, developing safety-critical systems (SCS) involves strict standards that
emphasize heavy documentation and resist changes in requirements or de-
velopment plans. On the other hand, implementing Agile with SCS faces
barriers due to its focus on the development process rather than documen-
tation, the flexibility to accommodate changing requirements, reliance on
loosely written user stories, and iterative and incremental development pro-
cesses.
To address this issue, we proposed a new methodology that integrates Feature-
Driven Development (FDD), System-Theoretic Process Analysis (STPA),
and Test-Driven Development (TDD), with a backlog containing initial re-
quirements separated into safety and functional requirements, In order to
notate the requirements, an Easy Approach to Requirement Syntax (EARS)
is used. We expected this methodology to provide an acceptable compromise
between the advantages of Agile, such as flexibility, adaptability, and cus-
tomer collaboration, and the SCS development specification, such as compre-
hensive documentation and fulfilling safety regulations corresponding with
SCS development.

Through a case study of the Automatic Vehicle Speed Control (AVSC)
system, we demonstrate the effectiveness of our methodology. By refactor-

113

114 6.2. Future work

ing the AVSC software according to ISO-26262 standards and conducting
rigorous testing, we improve the safety features and verify that it complies
with safety requirements. The results of our study indicated the possibility
of developing software with safety features compatible with standards using
agile methodologies in a practical way, offering a balanced approach that
effectively addresses safety considerations while leveraging the advantages of
agile practices. Through the case study of the AVSC system, we observed
improved safety features, compliance with safety requirements, and enhanced
software reliability. this research contributes to bridging the gap between Ag-
ile development and SCS, providing valuable insights for industries seeking
to develop complex software systems with safety-critical characteristics.

The implications of our findings extend beyond the specific AVSC case
study. The proposed methodology can be applied to a wide range of SCS in
various industries. Software development teams can effectively address safety
considerations, mitigate risks, and enhance overall software reliability. This
has implications for industries such as healthcare, aerospace, and energy,
where software safety is paramount.

While our research has made knowledge contributions, it is important
to acknowledge certain limitations. The proposed methodology has been
validated through the AVSC case study, and further research is needed to
assess its applicability in different contexts and industries. Additionally,
careful consideration is required when generalizing the findings to all types
of SCS. These limitations provide opportunities for future studies to explore
these aspects in greater depth.

6.2 Future work

In this area should focus on several important aspects. First, further research
is needed to validate the proposed methodology in different contexts and in-
dustries beyond the AVSC case study. This will help assess its applicability
and effectiveness in a variety of SCS. Additionally, conducting comparative
studies that analyze the performance and outcomes of the proposed method-
ology against other existing approaches would provide valuable insights for
practitioners. Finally, investigating the scalability of the methodology for
larger and more complex software systems would be beneficial to ensure its
practicality in real-world scenarios.

Chapter 7

References

115

Bibliography

[1] url: http://agilemanifesto.org/principles.html.

[2] url: https://www.iso.org/standard/68388.html.

[3] Pekka Abrahamsson et al. “Agile software development methods: Re-
view and analysis”. In: arXiv preprint arXiv:1709.08439 (2017).

[4] Shabib Aftab et al. “Comparative Analysis of FDD and SFDD”. In:
International Journal of Computer Science and Network Security 18.1
(2018), pp. 63–70.

[5] Shabib Aftab et al. “Using FDD for small project: An empirical case
study”. In: International Journal of Advanced Computer Science and
Applications 10.3 (2019), pp. 151–158.

[6] Jayaweera A Lakshika Anjalee, Victoria Rutter, and Nithushi R Sama-
ranayake. “Application of Failure Mode and Effect Analysis (FMEA)
to improve medication safety: a systematic review”. In: Postgraduate
Medical Journal 97.1145 (2021), pp. 168–174.

[7] Faiza Anwer et al. “Comparative analysis of two popular agile process
models: extreme programming and scrum”. In: International Journal
of Computer Science and Telecommunications 8.2 (2017), pp. 1–7.

[8] Dave Astels. Test driven development: A practical guide. Prentice Hall
Professional Technical Reference, 2003.

[9] Paris Avgeriou and Uwe Zdun. “Architectural patterns revisited-a pat-
tern language”. In: (2005).

[10] Douglas Augusto Barcelos Bica and Carlos Alexandre Gouvea da Silva.
“Learning Process of Agile Scrum Methodology With Lego Blocks in
Interactive Academic Games: Viewpoint of Students”. In: IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje 15.2 (2020), pp. 95–104.
doi: 10.1109/RITA.2020.2987721.

[11] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. 2013.

[12] Kent Beck. Extreme programming explained: embrace change. addison-
wesley professional, 2000.

117

http://agilemanifesto.org/principles.html
https://www.iso.org/standard/68388.html
https://doi.org/10.1109/RITA.2020.2987721

118 BIBLIOGRAPHY

[13] Kent Beck. Test-driven development: by example. Addison-Wesley Pro-
fessional, 2003.

[14] Herbert D. Benington. “Production of Large Computer Programs”. In:
Annals of the History of Computing 5.4 (1983), pp. 350–361. doi: 10.
1109/MAHC.1983.10102.

[15] Konstantin Beznosov. “Extreme security engineering: On employing
XP practices to achieve’good enough security’without defining it”. In:
First ACM Workshop on Business Driven Security Engineering (BizSec),
Fairfax, VA. Vol. 31. 2003.

[16] Konstantin Beznosov and Philippe Kruchten. “Towards agile secu-
rity assurance”. In: Proceedings of the 2004 workshop on New security
paradigms. 2004, pp. 47–54.

[17] B. Boehm. “Get ready for agile methods, with care”. In: Computer 35.1
(2002), pp. 64–69. doi: 10.1109/2.976920.

[18] Jonathan Bowen. “Formal methods in safety-critical standards”. In:
Proceedings 1993 Software Engineering Standards Symposium. IEEE.
1993, pp. 168–177.

[19] Riccardo Carbone et al. “Scrum for safety: Agile development in safety-
critical software systems”. In: International Conference on the Qual-
ity of Information and Communications Technology. Springer. 2021,
pp. 127–140.

[20] H Frank Cervone. “Understanding agile project management methods
using Scrum”. In: OCLC Systems & Services: International digital li-
brary perspectives (2011).

[21] John O Clark. “System of systems engineering and family of systems
engineering from a standards, V-model, and dual-V model perspective”.
In: 2009 3rd annual IEEE systems conference. IEEE. 2009, pp. 381–
387.

[22] Jane Cleland-Huang and Michael Vierhauser. “Discovering, analyzing,
and managing safety stories in agile projects”. In: 2018 IEEE 26th
International Requirements Engineering Conference (RE). IEEE. 2018,
pp. 262–273.

[23] Bruce Powel Douglass. Real-time design patterns: robust scalable ar-
chitecture for real-time systems. Addison-Wesley Professional, 2003.

[24] Tore Dybå and Torgeir Dingsøyr. “Empirical studies of agile software
development: A systematic review”. In: Information and software tech-
nology 50.9-10 (2008), pp. 833–859.

[25] A Ericson Clifton. Hazard analysis techniques for system safety, Hobo-
ken. 2005.

https://doi.org/10.1109/MAHC.1983.10102
https://doi.org/10.1109/MAHC.1983.10102
https://doi.org/10.1109/2.976920

BIBLIOGRAPHY 119

[26] Siamak Farshidi, Slinger Jansen, and Jan Martijn van der Werf. “Cap-
turing software architecture knowledge for pattern-driven design”. In:
Journal of Systems and Software 169 (2020), p. 110714.

[27] Brian Fitzgerald et al. “Scaling agile methods to regulated environ-
ments: An industry case study”. In: 2013 35th International Confer-
ence on Software Engineering (ICSE). 2013, pp. 863–872. doi: 10.
1109/ICSE.2013.6606635.

[28] Kevin Forsberg and Harold Mooz. “The relationship of system engi-
neering to the project cycle”. In: INCOSE international symposium.
Vol. 1. 1. Wiley Online Library. 1991, pp. 57–65.

[29] Xiaocheng Ge, Richard F Paige, and John A McDermid. “An iterative
approach for development of safety-critical software and safety argu-
ments”. In: 2010 Agile Conference. IEEE. 2010, pp. 35–43.

[30] A Hajou, RS Batenburg, and S Jansen. “Method æ, the agile soft-
ware development method tailored for the pharmaceutical industry”.
In: Lecture Notes on Software Engineering 3.4 (2015), p. 251.

[31] Lise Tordrup Heeager. “Introducing agile practices in a documentation-
driven software development practice: a case study”. In: Journal of
Information Technology Case and Application Research 14.1 (2012),
pp. 3–24.

[32] Lise Tordrup Heeager and Peter Axel Nielsen. “A conceptual model
of agile software development in a safety-critical context: A systematic
literature review”. In: Information and Software Technology 103 (2018),
pp. 22–39.

[33] Lise Tordrup Heeager and Peter Axel Nielsen. “Meshing agile and plan-
driven development in safety-critical software: a case study”. In: Em-
pirical Software Engineering 25.2 (2020), pp. 1035–1062.

[34] J Highsmith. “What is Agile Software Development? STSC Crosstalk”.
In: Journal of Defense Software Engineering (2002).

[35] Michael Hirsch. “Moving from a plan driven culture to agile develop-
ment”. In: International Conference on Software Engineering. Vol. 27.
2005, p. 38.

[36] Takuto Ishimatsu et al. “Modeling and hazard analysis using STPA”.
In: (2010).

[37] Ron Jeffries et al. Extreme programming installed. Addison-Wesley Pro-
fessional, 2001.

[38] Henrik Jonsson, Stig Larsson, and Sasikumar Punnekkat. “Agile Prac-
tices in Regulated Railway Software Development”. In: 2012 IEEE 23rd
International Symposium on Software Reliability Engineering Work-
shops. 2012, pp. 355–360. doi: 10.1109/ISSREW.2012.80.

https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.1109/ISSREW.2012.80

120 BIBLIOGRAPHY

[39] Henrik Jonsson, Stig Larsson, and Sasikumar Punnekkat. “Agile prac-
tices in regulated railway software development”. In: 2012 IEEE 23rd
International Symposium on Software Reliability Engineering Work-
shops. IEEE. 2012, pp. 355–360.

[40] Rashidah Kasauli et al. “Safety-critical systems and agile development:
a mapping study”. In: 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE. 2018, pp. 470–
477.

[41] Mohamad Kassab, Ghizlane El-Boussaidi, and Hafedh Mili. “A quan-
titative evaluation of the impact of architectural patterns on quality
requirements”. In: Software Engineering Research, Management and
Applications 2011. Springer, 2012, pp. 173–184.

[42] John C Knight. “Safety critical systems: challenges and directions”. In:
Proceedings of the 24th international conference on software engineer-
ing. 2002, pp. 547–550.

[43] Nancy G Leveson. Engineering a safer world: Systems thinking applied
to safety. The MIT Press, 2016.

[44] Adriana Libosvárová and Peter Schreiber. “Fault tree analysis opti-
mized by genetic algorithms”. In: Vedecké Práce Materiálovotechnolog-
ickej Fakulty Slovenskej Technickej Univerzity v Bratislave so Sıdlom
v Trnave 21.Special Issue (2013), p. 78.

[45] Weiguo Lin and Xiaomin Fan. “Software development practice for
FDA-compliant medical devices”. In: 2009 International Joint Con-
ference on Computational Sciences and Optimization. Vol. 2. IEEE.
2009, pp. 388–390.

[46] Yaping Luo et al. “An architecture pattern for safety critical automated
driving applications: Design and analysis”. In: 2017 Annual IEEE In-
ternational Systems Conference (SysCon). IEEE. 2017, pp. 1–7.

[47] Alistair Mavin et al. “Easy approach to requirements syntax (EARS)”.
In: 2009 17th IEEE International Requirements Engineering Confer-
ence. IEEE. 2009, pp. 317–322.

[48] Tom McBride and Marion Lepmets. “Quality Assurance in Agile Safety-
Critical Systems Development”. In: 2016 10th International Confer-
ence on the Quality of Information and Communications Technology
(QUATIC). 2016, pp. 44–51. doi: 10.1109/QUATIC.2016.016.

[49] Martin McHugh, Fergal McCaffery, and Valentine Casey. “Barriers to
adopting agile practices when developing medical device software”. In:
International Conference on Software Process Improvement and Capa-
bility Determination. Springer. 2012, pp. 141–147.

https://doi.org/10.1109/QUATIC.2016.016

BIBLIOGRAPHY 121

[50] Martin McHugh, Fergal McCaffery, and Garret Coady. “An agile im-
plementation within a medical device software organisation”. In: Inter-
national Conference on Software Process Improvement and Capability
Determination. Springer. 2014, pp. 190–201.

[51] Richard Messnarz et al. “Implementing functional safety standards–
experiences from the trials about required knowledge and competencies
(SafEUr)”. In: European Conference on Software Process Improvement.
Springer. 2013, pp. 323–332.

[52] Thor Myklebust and Tor Stålhane. The agile safety case. Springer,
2018.

[53] Zahid Nawaz, Shabib Aftab, and Faiza Anwer. “Simplified FDD Pro-
cess Model.” In: International Journal of Modern Education & Com-
puter Science 9.9 (2017).

[54] J. Newkirk. “Introduction to agile processes and extreme program-
ming”. In: Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002. 2002, pp. 695–696. doi: 10.1145/581441.
581450.

[55] Jesper Pedersen Notander, Per Runeson, and Martin Höst. “A model-
based framework for flexible safety-critical software development: a
design study”. In: Proceedings of the 28th Annual ACM Symposium on
Applied Computing. 2013, pp. 1137–1144.

[56] Richard F Paige et al. “Towards agile engineering of high-integrity
systems”. In: International Conference on Computer Safety, Reliability,
and Security. Springer. 2008, pp. 30–43.

[57] Steve R Palmer and Mac Felsing. A practical guide to feature-driven
development. Pearson Education, 2001.

[58] Raman Ramsin and Richard F Paige. “Process-centered review of ob-
ject oriented software development methodologies”. In: ACM Comput-
ing Surveys (CSUR) 40.1 (2008), pp. 1–89.

[59] Adam Roman and Michal Mnich. “Test-driven development with mu-
tation testing–an experimental study”. In: Software Quality Journal
29.1 (2021), pp. 1–38.

[60] Pieter Adriaan Rottier and Victor Rodrigues. “Agile development in
a medical device company”. In: Agile 2008 Conference. IEEE. 2008,
pp. 218–223.

[61] Winston W Royce. “Managing the development of large software sys-
tems: concepts and techniques”. In: Proceedings of the 9th international
conference on Software Engineering. 1987, pp. 328–338.

https://doi.org/10.1145/581441.581450
https://doi.org/10.1145/581441.581450

122 BIBLIOGRAPHY

[62] Alejandra Ruiz et al. “Reuse of safety certification artefacts across stan-
dards and domains: A systematic approach”. In: Reliability Engineering
& System Safety 158 (2017), pp. 153–171.

[63] Nayan B Ruparelia. “Software development lifecycle models”. In: ACM
SIGSOFT Software Engineering Notes 35.3 (2010), pp. 8–13.

[64] Ken Schwaber and Mike Beedle. Agile software development with scrum.
Series in agile software development. Vol. 1. Prentice Hall Upper Sad-
dle River, 2002.

[65] Lubna Siddique and Bassam A. Hussein. “Practical insight about choice
of methodology in large complex software projects in Norway”. In: 2014
IEEE International Technology Management Conference. 2014, pp. 1–
4. doi: 10.1109/ITMC.2014.6918615.

[66] Lalit Kumar Singh and Hitesh Rajput. “Dependability analysis of safety
critical real-time systems by using Petri nets”. In: IEEE Transactions
on Control Systems Technology 26.2 (2017), pp. 415–426.

[67] Maria Siniaalto and Pekka Abrahamsson. “A Comparative Case Study
on the Impact of Test-Driven Development on Program Design and
Test Coverage”. In: First International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM 2007). 2007, pp. 275–284.
doi: 10.1109/ESEM.2007.35.

[68] Tor Stålhane, Thor Myklebust, and GK Hanssen. “The application
of Safe Scrum to IEC 61508 certifiable software”. In: 11th Interna-
tional Probabilistic Safety Assessment and Management Conference
and the Annual European Safety and Reliability Conference. Vol. 8.
2012, pp. 6052–6061.

[69] Ernst Stelzmann. “Contextualizing agile systems engineering”. In: IEEE
Aerospace and Electronic Systems Magazine 27.5 (2012), pp. 17–22.
doi: 10.1109/MAES.2012.6226690.

[70] Sardar Muhammad Sulaman et al. “Comparison of the FMEA and
STPA safety analysis methods–a case study”. In: Software quality jour-
nal 27.1 (2019), pp. 349–387.

[71] Mohsan Tanveer. “Agile for large scale projects — A hybrid approach”.
In: 2015 National Software Engineering Conference (NSEC). 2015,
pp. 14–18. doi: 10.1109/NSEC.2015.7396338.

[72] Christopher M Thomas. “An Overview of the Current State of the
Test-First vs. Test-Last Debate”. In: Scholarly Horizons: University of
Minnesota, Morris Undergraduate Journal 1.2 (2014), p. 2.

[73] Xiaofeng Wang, Kieran Conboy, and Minna Pikkarainen. “Assimilation
of agile practices in use”. In: Information Systems Journal 22.6 (2012),
pp. 435–455.

https://doi.org/10.1109/ITMC.2014.6918615
https://doi.org/10.1109/ESEM.2007.35
https://doi.org/10.1109/MAES.2012.6226690
https://doi.org/10.1109/NSEC.2015.7396338

BIBLIOGRAPHY 123

[74] Yang Wang, Jasmin Ramadani, and Stefan Wagner. “An exploratory
study on applying a scrum development process for safety-critical sys-
tems”. In: International Conference on Product-Focused Software Pro-
cess Improvement. Springer. 2017, pp. 324–340.

[75] Yang Wang and Stefan Wagner. “Toward Integrating a System Theo-
retic Safety Analysis in an Agile Development Process.” In: Software
Engineering (Workshops). 2016, pp. 156–159.

[76] Andrew Wils et al. “Agility in the avionics software world”. In: Inter-
national Conference on Extreme Programming and Agile Processes in
Software Engineering. Springer. 2006, pp. 123–132.

[77] Maryam Zahabi and David Kaber. “A fuzzy system hazard analysis ap-
proach for human-in-the-loop systems”. In: Safety Science 120 (2019),
pp. 922–931.

Chapter 8

acronyms

125

Acronyms

ASD Agile software development. 11

ASIL Automotive Safety Integrity Levels. 50

AVSC automatic vehicle speed control. 16, 18

CCS Cruise Control System. 57

FDD Feature-Driven Development. 16, 40, 62

FMEA Failure Modes and Effects Analysis. 49

FTA Fault Tree Analysis. 48

QA Quality assurance. 16

RUP Rational Unified Process. 31

SCS Safety critical system. 11

STAMP Systems-Theoretic Accident Model and Processes. 46

STPA System-Theoretic Process Analysis. 16, 29, 46, 62

TDD Test-Driven Development. 16, 29, 45, 62

Xp eXtreme Programming. 37

127

Chapter 9

Figuers

129

List of Figures

1.1 Project Gantt chart . 23

3.1 Waterfall model diagram . 32

3.2 V-model process diagram [63] 33

3.3 scrum life-cycle [10] . 35

3.4 Xp life-cycle[3] . 39

3.5 FDD process according into Palmer and Felsing [58] 41

3.6 TDD phases diagram [59] . 45

3.7 Control structure Diagram illustrate a casual factor[36] 47

3.8 simple Example of fault tree 48

3.9 Steps of FMEA[6] . 49

3.10 An overview of the ISO 26262 standard parts[2] 51

3.11 The V-model of software development according to ISO 26262-
6[2] . 52

3.12 protected single channel [46] 54

3.13 Homogeneous/Heterogeneous redundancy [46] 54

3.14 safety executive [46] . 55

3.15 Three level monitoring [46] 55

4.1 Cruise control system in the car 57

4.2 AVSC simulator . 59

4.3 Components Diagram for simulator software 60

4.4 Use-case of speed automatic control 61

4.5 A proposed agile method . 62

4.6 illustrate classes, methods, and variables called in the test case 64

131

132 LIST OF FIGURES

4.7 Running Test Case 1 . 66

4.8 Running Test Case 2 . 67

4.9 Running Test Case 3 . 67

4.10 Running Test Case 4 . 68

4.11 Running Test Case 5 . 69

4.12 Running Test Case 6 in normal state 69

4.13 Execution of the test case 6 in unsafe state 70

4.14 Running Test Case 7 . 70

4.15 Running Test Case 8 . 71

4.16 illustrate classes, methods, and variables called in the decel-
eration test scenario . 72

4.17 Running air resistance Test Case 9 72

4.18 Running ground resistance Test Case 10 73

4.19 Execution of an inadequate fuel injection test case 11. 74

4.20 running the test case 12 for unexpected acceleration with the
cruise control engaged. 75

4.21 running the test case 13 for unexpected deceleration with the
cruise control engaged. 75

4.22 ASIL determination table [51] 79

4.23 ccs control structure diagram 80

4.24 monitor acceleration domain 86

4.25 speed monitor domain . 86

4.26 overall modeling . 87

4.27 GSN diagram of safety goal 92

4.28 sequence diagram of acceleration monitoring 93

4.29 sequence diagram of monitoring current speed with set one . . 94

4.30 sequence diagram of sending errors code 95

4.31 Basic hierarchical structure 97

4.32 hierarchical of software components 98

4.33 updated overall model . 100

4.34 red test Running check range test case 101

4.35 Running check range green test 102

4.36 Running monitoring speed test case 102

LIST OF FIGURES 133

4.37 Running monitoring speed test case after refactoring 103

4.38 Running Accelerator monitoring test 107

4.39 Running Velocity monitoring test 107

Chapter 10

Tables

135

List of Tables

3.1 STPA Step 1 . 48

4.1 Variables that affect vehicle speed 63

4.2 Details of Test Case 1 . 65

4.3 Details of Test Case 2 . 66

4.4 Details of Test Case 3 . 67

4.5 Details of Test Case 4 . 68

4.6 Details of Test Case 5 . 68

4.7 Details of Test Case 6 . 69

4.8 Details of Test Case 7 . 70

4.9 Details of Test Case 8 . 71

4.10 air resistance Test case 9 . 72

4.11 Ground resistance Test Case 10 73

4.12 Fuel injection test case 11 is less than required 73

4.13 Test case 12 illustrate unintended acceleration during main-
tained speed . 74

4.14 Test case 13 illustrates unintended deceleration during main-
tained speed . 75

4.15 Functional Requirements table 77

4.16 Safety Goal table . 77

4.17 safety requirments table . 78

4.18 Safety goal ASIL determination 79

4.19 Safety requirments ASIL determenation 80

4.20 STPA first step . 82

4.21 STPA second step . 83

137

138 LIST OF TABLES

4.22 safety constraints for UCA . 84

4.23 ETVX template . 84

4.24 First phase template . 85

4.25 Verification of overall model 88

4.26 second phase template . 89

4.27 features List table . 89

4.28 third phase template . 90

4.29 timetable of the plan by feature 91

4.30 design phase template . 93

4.31 Software architectural design principles according to iso 26262-
6 [2] . 95

4.32 Verification methods for software architectural designs accord-
ing to iso 26262-6 [2] . 99

4.33 Design checklist . 99

4.34 check range red test . 101

4.35 check range green test . 101

4.36 Monitroring speed red test 102

4.37 Monitoring speed green test 103

4.38 build by feature phase template 104

4.39 Design and implementation principles for a software unit in
accordance with ISO 26262-6 [2] 105

4.40 Methods for verifying software units in accordance with ISO
26262-6 [2] . 106

4.41 Accelerator monitoring test case 1 106

4.42 Velocity Monitoring test case 2 107

4.43 Tracing backward features . 108

	Introduction
	Context
	Problem description
	Agile software development (ASD)
	Software architecture(SA)

	Stakeholders in this TFM
	Justification
	Motivation and foreseeable outcomes
	Technologies to be used
	Project Scope
	Initial hypothesis
	General methodology and process to follow in the development of the TFM

	Costs and sustainability study
	Planning and task scheduling
	Description of tasks to be performed, estimates and Gantt chart
	Resources
	Risk management

	State of the art
	Agile Software Development
	Safety Critical System software Development
	Agile development methodologies in safety critical systems

	Background
	Software Development Methodologies (SDM)
	Plan-driven software development methodologies
	Agile development

	Hazard Analysis
	System-Theoretic Process Analysis (STPA)
	Fault Tree Analysis
	Failure Modes and Effects Analysis

	ISO 26262
	ISO 26262 parts
	ISO 26262-6 Software Development Level

	Software Architecture (SA)

	Methodology
	What is a Cruise Control System
	Automatic vehicle speed control(AVSC) software

	A proposed new agile approach for developing safety-critical systems
	Risk assessment test cases
	Unsafe acceleration scenario
	Unsafe deceleration scenario
	Unsafe scenario when cruise control

	Implementation of the Proposed Method
	Product backlog

	Implementation of STPA
	Determine unsafe control action(UCA) and associated reasons.
	Occasional factors

	Application of the FDD
	Develop an overall model
	Build a Features list
	Plan by Feature
	Design by Feature
	TDD
	Build by Feature

	Results and Discussion
	Results
	Discussion

	Conclusions and future work
	Conclusions
	Future work

	References
	acronyms
	Figuers
	Tables

