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A B S T R A C T

The management of the aging built infrastructure stands as a paramount concern on the political
agendas worldwide, bearing far-reaching socio-economic impacts. The growing trend of tragic
collapses in recent years underscore the urgent need for efficient structural health maintenance
(SHM) strategies to support decision-making in prioritizing intervention and rehabilitation
actions. Vibration-based SHM systems utilizing Operational Modal Analysis (OMA) have gained
popularity owing to their non-destructive nature, global damage assessment capabilities, and
relatively straightforward automation with minimal intrusiveness. Nevertheless, state-of-the-art
OMA techniques often face significant scalability limitations, primarily driven by extensive
computational requirements and need for substantial expert involvement. In this context,
recent advances in the realm of artificial intelligence (AI) offer great promise in addressing
these scalability issues, paving the way for next-generation SHM systems. In this light, this
work introduces a novel Multitask Learning Deep Neural Network (MTL-DNN) model designed
for fast and automated blind source modal identification of structures. By encapsulating the
principles of second-order blind source identification (SOBI) within the network’s architecture,
the proposed model can extract the complex-valued modal components concealed within
input raw response acceleration data. This enables the direct extraction of complex-valued
mode shapes from the weights of the network, and the corresponding resonant frequencies
and damping ratios are estimated through a computationally light single-degree-of-freedom
identification algorithm. The efficacy of the presented approach is validated through three case
studies: a theoretical non-proportionally damped system, a laboratory steel frame structure, and
a real-world reinforced concrete arch bridge. The presented results demonstrate the capability
of the proposed technique to conduct near-instantaneous automated modal identification with
minimal expert intervention, holding great potential as a scalable technique for SHM of large
infrastructural systems.

. Introduction

The management of aging infrastructure poses a paramount challenge for most developed countries. A significant portion of the
xisting infrastructure was constructed in the aftermath of World War II and, consequently, it is approaching or exceeding its lifespan

∗ Correspondence to: Department of Structural Mechanics and Hydraulic Engineering, University of Granada, Av. Fuentenueva sn, 18002 Granada, Spain.
E-mail addresses: israela42@correo.ugr.es (I.A. Hernández-González), enriquegm@ugr.es (E. García-Macías), gabriele.costante@unipg.it (G. Costante),

ilippo.ubertini@unipg.it (F. Ubertini).
vailable online 22 February 2024
888-3270/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

ttps://doi.org/10.1016/j.ymssp.2024.111267
eceived 7 September 2023; Received in revised form 30 December 2023; Accepted 16 February 2024

https://www.elsevier.com/locate/ymssp
https://www.elsevier.com/locate/ymssp
mailto:israela42@correo.ugr.es
mailto:enriquegm@ugr.es
mailto:gabriele.costante@unipg.it
mailto:filippo.ubertini@unipg.it
https://doi.org/10.1016/j.ymssp.2024.111267
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2024.111267&domain=pdf
https://doi.org/10.1016/j.ymssp.2024.111267
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mechanical Systems and Signal Processing 211 (2024) 111267I.A. Hernández-González et al.

i
b
a
d
f
o
i
I
o
a
m
a
p

a
r
c
s
a
t
l
c
N
i
c
i
t
G
c
E
i
t
i

m
h
t
[
o
a
d
c
d
o
b
n
i
a
A

of 50–100 years. Tragic collapses, such those of the I-35W bridge in 2007 [1] (Minnesota, US — 13 fatalities), the Morandi Bridge in
2018 [2] (Genoa, Italy — 45 fatalities), or the Nanfang’ao Bridge in 2019 (Yilan County, Taiwan — 6 fatalities), starkly underscore
the grave risks of inadequate maintenance. In 2019, the German Federal Highway Research Institute (BASt) [3] reported that 12.2%
of the almost 40,000 national road bridges were significantly deteriorated. Likewise, the last report from the American Road &
Transportation Builders Association (ARTBA) in 2023 [4] highlighted that 36% of all US bridges–over 222,000 spans–require major
repairs, including 76,600 bridges needing outright replacement. These circumstances have spurred substantial R&D actions on the
realm of Structural Health Monitoring (SHM) as an effective means of preventive maintenance. In this context, vibration-based SHM
approaches through Operational Modal Analysis (OMA) have become particularly popular owing to their minimal intrusiveness, fully
non-destructive nature, and suitability for long-term SHM [5]. Nonetheless, despite the growing establishment of OMA techniques
in engineering practice, their implementation on a regional scale and across numerous structures introduces new challenges that
require innovative solutions.

Output-only OMA techniques exploit ambient response acceleration records to extract the modal signatures of a system, namely
ts natural frequencies, mode shapes, and damping ratios [6,7]. The fundamental premise is that inferring structural damage
ecomes feasible through tracking permanent variations in its modal parameters, given their dependency on the mass, stiffness,
nd damping properties of the monitored structure [8,9]. In this light, considerable research efforts have been devoted in the last
ecades to the development of diverse time-, frequency-, and time–frequency-domain OMA techniques (interested readers may
ind a comprehensive state-of-the-art review in Refs. [10–12]). Nonetheless, most recent efforts have focused on the development
f automated OMA procedures suitable for continuous SHM [13]. In particular, a number of approaches have been proposed
n the literature for the automated interpretation of stabilization diagrams obtained through time-domain Stochastic Subspace
dentification (SSI), either in its covariance-driven (CoV-SSI) [14] or data-driven (Data-SSI) [15] versions. These include, among
thers, hierarchical clustering [16], fuzzy clustering [17], Gaussian Mixture Models (GMM) [18], density-based clustering [19],
nd blind k-means [20]. Such techniques automate the identification of stable modal poles, enabling the tracing of time series of
odal signatures through a modal tracking approach. However, adopting them as a standard for SHM of infrastructural systems at
regional scale is hindered by low efficiency. On one hand, these techniques require expert intervention to set the identification

arameters and, on the other hand, they exhibit low computational efficiency when dealing with dense sensor networks.
In recent years, blind source separation (BSS) techniques have garnered growing interest as efficient alternatives to SSI

lgorithms. Originally emerging in the 1990s as powerful signal processing tools for extracting individual audio sources from
ecordings, BSS approaches are finding extensive applications in Structural Dynamics. The purpose of BSS is to recover independent
omponents (sources) from the observations (mixing), which holds a direct connection with the modal expansion theorem. The
ources are, indeed, the modal responses, whereas the mixing matrix embodies the mode shape matrix of the system [21]. A key
dvantage of BSS over parametric OMA methods lies in its simplicity. In most cases, the modal identification problem in BSS reduces
o resolving a linear system of algebraic equations, thus mitigating the need for model order selection (stabilization diagrams) and
essening the dependence on expert intervention [22]. Once identified, the resonant frequencies and damping ratios of the system
an be readily extracted from the independent components using simple single-degree-of-freedom (DOF) identification algorithms.
umerous BSS-based modal identification methods have been developed in recent years [23], with the most notable ones including

ndependent component analysis (ICA) [24], second-order blind identification (SOBI) [25], time–frequency BSS [26], and sparse
omponent analysis (SCA) [27]. Many of these techniques have shown proficiency in OMA of large-scale structures. Noteworthy
s the contribution by Yang et al. [28] who proposed a ICA-based time–frequency BSS approach for the modal identification of
he University of Southern California (USC) hospital building during the Northridge earthquake in 1994, highlighting the lack of
aussianity and stationarity assumptions in BSS, unlike classical OMA methods. Xu and co-authors [27] applied SCA to successfully
onduct OMA of two full-scale in-operation bridges: a 36 m long steel girder bridge and 109 m long cable-stayed footbridge in
xeter, UK. Li et al. [29] explored the use of SOBI to avoid the need for stabilization diagrams in CoV-SSI, showcasing its efficacy in
dentifying the modal properties of the Longyangxia hydropower dam in China. Despite these successful experiences that highlight
he significantly reduced complexity of BSS techniques compared to standard SSI methods, their automated implementation in
nfrastructural systems with large-scale structures still requires substantial expert intervention and parameter tuning.

Artificial intelligence (AI) has emerged as a pivotal field of development in today’s world, with the potential to revolutionize
any aspects of industry and society. In civil engineering, although still in its early stages, several studies in the literature have
ighlighted the enormous potential of AI in addressing a broad spectrum of problems [30]. These encompass various areas such as
he resolution of complex differential equations [31], data compressive sensing [32], computer vision-based structural inspection
33], and data anomaly detection [34]. In the domain of SHM, a substantial portion of research has been dedicated to the extraction
f efficient damage indicators [35,36]. Among these, it is worth mentioning the work by Giglioni and co-authors [37], who presented
damage detection approach using autoencoders to reconstruct raw acceleration data. Trained on data collected from a healthy

atabase, the residuals between the AI predictions and newly acquired data can be used as damage sensitive features. Rosso and
o-authors [38] explored the use of subspace-based features to train supervised multi-layer perceptron (MLP) networks for multiclass
amage classification, showing promise for damage localization in a laboratory I-beam. However, there has been limited exploration
f deep learning for modal identification of dynamic systems. Among the few reports in the literature, it is worth noting the work
y Liu and co-authors [39], who developed a two-level AI algorithm for SSI. The algorithm includes a model order determination
eural network (NN), followed by a second modal identification NN. Their approach showcased comparable accuracy to classical SSI
n a real-world suspension bridge, achieving remarkable reductions in computational burden. Similarly, Shim et al. [40] presented
n SSI-based long-short term memory (SSI-LSTM) method to track variations in the modal parameters of structures. The developed
2

I model takes raw acceleration data as input and is trained to reproduce the modal estimates obtained by CoV-SSI, enabling quasi
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real-time estimation of the evolution of the modal signatures. While drastically reducing computational demands, the large number of
parameters involved in SSI, along with the various user-defined hyper-parameters in the AI, remains a major limitation for extensive
implementation. In view of the simplicity of BSS techniques and the potential of AI for developing fast identification models, their
combination suggests great potential for addressing the scalability limitations of OMA. This intuition was pursued by Lin et al. [41],
who encapsulated the principles of BSS into the loss function of a self-coding NN, yielding promising results in a real-world steel box-
girder cable-stayed bridge. Similarly, Shu and co-authors [42] recently developed a multi-task DNN for the automated identification
of independent modes extracted from SCA. In this approach, mode shapes are directly extracted as the weights between the last two
layers of neurons in the NN, and resonant frequencies and damping ratios are estimated from the independent components using
the random decrement technique (RDT). The presented numerical results demonstrated the effectiveness of the NN in a cable-stayed
bridge, the Tianjin Yonghe Bridge in Tianjin (China), achieving comparable accuracy levels to FDD and CoV-SSI with critically lower
computational time demands.

Motivated by the vast potential of AI for developing next-generation OMA methods, this work presents a novel Multitask
earning Deep Neural Network (MTL-DNN) for fast BSS and automated modal identification of structures. Unlike the previous
imilar AI approaches reported in the literature (e.g. [41,42]), the present approach employs a multi-task learning deep NN
apable of extracting both the real and imaginary components of the independent modal sources, offering comprehensive modal
dentification capabilities. The developed AI-based OMA approach takes ambient acceleration data as input and provides quasi
eal-time identification with minimal computational demands. Likewise Ref. [42], the mode shapes (here in complex form) are
xtracted from the weights between the last two layers of the NN. Subsequently, the resonant frequencies and damping ratios are
stimated from the (complex) independent modal components through the robust Ibrahim time-domain (ITD) identification method.
oreover, a set of hard-criteria (HC) are introduced to automatically eliminate the influence of spurious modes (including modal

omplexity), enabling its applicability for long-term SHM. The effectiveness of the developed approach is appraised through three
ase studies, involving a (i) theoretical 5-DOFs dynamic system, a (ii) laboratory steel frame, and a (iii) real-world in-operation
ridge: the Montecastelli bridge in Italy. The reported results and discussion demonstrate the ability of the proposed approach to
onduct fast and automated modal identification with minimal expert intervention, as well as exceptional generalization capabilities
or damage identification, showing great promise for extensive SHM of infrastructural systems.

The paper is organized as follows. Section 2 overviews the fundamentals of BSS and the proposed MTL-DNN. Section 3 presents
he numerical results and discussion obtained for three different case studies, namely (i) a theoretical 5-degree-of-freedom system,
ii) and laboratory steel frame, and (iii) a real-world in-operation bridge, the Montecastelli Bridge in Italy. Finally Section 4 closes
he manuscript with some concluding remarks.

. Theoretical background

.1. Second order blind identification

The governing equation of motion of an 𝑛-degree-of-freedom (DOF) dynamic system can be expressed according to the principles
f structural dynamics theory as:

𝐌𝐗̈(𝑡) + 𝐂𝐗̇(𝑡) +𝐊𝐗(𝑡) = 𝐅(𝑡), (1)

with 𝐌, 𝐂 and 𝐊 ∈ R𝑛×𝑛 denoting the mass, damping, and stiffness matrices of the system. The vectors 𝐅(𝑡) and 𝐗(𝑡) ∈ R𝑛 are the
external force and the response displacement vectors, respectively, and dot notation is used to indicate differentiation with respect
to time. Let us consider that only a number 𝑚 ∈ N∗ of sensors are available, recording a measurement data vector 𝐱 (𝑡) ∈ R𝑚.
Assuming the system is linear time-invariant and a number 𝑙 ∈ N∗ of natural modes of vibration are excited, the system’s response
can be expanded using modal superposition as:

𝐱(𝑡) = 𝜱 𝐪(𝑡) =
𝑙

∑

𝑖=1
𝝋𝑖𝑞𝑖(𝑡), (2)

where 𝜱 ∈ C𝑚×𝑙 is the modal matrix composed of 𝑙 mode shape vectors 𝝋𝑖 ∈ C𝑚, and 𝐪(𝑡) =
[

𝑞1(𝑡),… , 𝑞𝑙(𝑡)
]T stands for the modal

displacement vector. Note that, in general, the modal matrix is complex-valued when the damping matrix 𝐂 is non-classical. In
large-scale civil engineering structures, complex mode shapes can arise for various reasons [43], including the existence of non-
proportional and non-viscous damping, gyroscopic effects, asynchronous sampling, non-linearities, or limitations in the identification
of low-excited modes.

In this context, the dynamic identification problem reduces to the estimation of the modal responses q(𝑡) and mode shapes 𝜱 from
the system response 𝐱 (𝑡). In particular, BSS techniques seek a set of signals 𝐬(𝑡), the so-called sources or independent components,
from observations of their mixtures in 𝐱(𝑡) [44]:

𝐱(𝑡) = 𝐀𝐬(𝑡) + 𝐧(𝑡), (3)

where 𝐀 ∈ C𝑚×𝑛 is the so-called mixing matrix, and 𝐧(𝑡) represents an additive (temporally and spatially) stationary white noise.
pon comparing Eqs. (2) and (3), it becomes apparent that the mixing-matrix and the independent components are related to the
odal matrix and the modal displacements, respectively. Among the various BSS techniques available in the literature (refer to Ref.
3

23] for a comprehensive state-of-the-art review), second-order blind identification (SOBI) has been adopted in this work due to its
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demonstrated potential for conducting OMA and its robustness against measurement noise [45]. A fundamental assumption in SOBI
is that the sources are stationary and shift-uncorrelated, so their covariance matrix at a time lag 𝜏 reads [46]:

𝐑𝑠 (𝜏) = E
[

𝐬(𝑡)𝐬H(𝑡 + 𝜏)
]

= diag
[

𝜚1,… , 𝜚𝑛
]

, (4)

where superscript ‘‘H’’ denotes the complex conjugate transpose operator. In addition, the sources are often scaled to have unit
variance, i.e. 𝐑𝑠 (0) = 𝐈. Therefore, from Eq. (3), the correlation matrix of the observations can be stated as:

𝐑𝑥 (𝜏) = E
[

𝐱(𝑡)𝐱T(𝑡 + 𝜏)
]

= 𝐀𝐑𝑠 (𝜏)𝐀H, (5)

which, given that 𝐑𝑠 (𝜏) is a diagonal matrix, reveals that the mixing matrix 𝐀 can be identified through a diagonalization procedure.
It is important to emphasize that the mixing model in Eq. (3) is the sole model assumption in BSS. Therefore, BSS techniques may
be used as a time-domain non-parametric modal identification approach in the presence of some types of non-linearities.

In general, the diagonalization problem in Eq. (5) is overdetermined, with the rank of 𝐀 being 𝑛 ≤ 𝑚. For simplicity, and given
that determined SOBI suffices for the investigated case studies in Section 3, the complex-valued extension reported by McNeill [47]
of the determined SOBI algorithm in [25] has been adopted in this work. Nevertheless, to solve the under-determined problem,
that is the case in which there are more hidden components 𝑛 than sensors 𝑚, different approaches are available in the literature,
including (i) the application of SOBI to different frequency broadbands containing ≤ 𝑚 components, (ii) combining BSS with concepts
from state–space control theory [48], and (iii) adopting simultaneous matrix diagonalization-based techniques [49].

The SOBI algorithm proposed by McNeill [47] allows the identification of complex-valued mixing matrices 𝐀 (and so, complex
mode shapes) by augmenting the recorded signals 𝐱(𝑡) in their analytic form through the Hilbert transform. The Hilbert transform
of 𝐱(𝑡), 𝐱̃(𝑡) =  (𝐱(𝑡)), imparts a phase shift of 90 degrees, that is ℱ (𝐱̃(𝑡)) (𝜔) = −𝑖sgnℱ (𝐱(𝑡)) [50], ℱ and 𝑖 =

√

−1 denoting the
Fourier transform operator and the imaginary unit, respectively. If adopting the augmented measured data, 𝐱̌(𝑡) = 𝐱(𝑡) + 𝑖 𝐱̃(𝑡), the

ixing model in Eq. (3) can be simply reformulated as 𝐱̌(𝑡) = 𝐀𝐬̌(𝑡) [25].
Then, the core step in the SOBI algorithm involves estimating an orthogonal matrix 𝜳 that approximately diagonalizes several

time-shifted covariance matrices with time lags 𝜏𝑖, 1 ⩽ 𝑖 ⩽ 𝑝. Following the original SOBI algorithm reported in [25], this is
accomplished using the joint approximate diagonalization (JAD) algorithm proposed by Belouchrani et al. [51]. This JAD algorithm,
based on the Jacobi rotation technique, is well-suited for joint diagonalizing unitary matrices (i.e. 𝐀H𝐀 = 𝐀𝐀H = 𝐈); therefore, it is
necessary to first whiten the observed data. Whitening or sphering consists of a linear transformation to 𝐱̌(𝑡) such that the whitened
ata 𝐳(𝑡) are uncorrelated and have unit variance. This can be accomplished by removing the mean from 𝐱̌ and normalizing its

covariance matrix using principal component analysis (PCA). The latter is carried out through the eigenvalue decomposition of the
covariance matrix of the observations, that is E

{

𝐱̌(𝑡)𝐱̌(𝑡)H
}

= 𝐑𝑥 (0) = 𝐄𝐃𝐄H, where 𝐃 and 𝐄 correspond to the diagonal eigenvalue
and the orthogonal eigenvector matrices, respectively. On this basis, the whitened (zero-mean, unit variance; 𝐑𝑧 (0) = 𝐈) data vector
𝐳(𝑡) can be obtained as:

𝐳(𝑡) = 𝐃−1∕2𝐄H𝐱̌(𝑡) = 𝐖m𝐱̌(𝑡) = 𝐀′ 𝐬̌(𝑡), (6)

where matrix 𝐖m = 𝐃−1∕2𝐄H is the so-called whitening matrix. It is important to note that the effect of whitening is to transform
the mixing matrix 𝐀 into a new unitary mixing matrix 𝐀′ = 𝐖m𝐀, so that the whitened data z(𝑡) can be used for unitary JAD. The
JAD algorithm aims to minimize the off diagonal terms of 𝜳 𝑇𝐑𝑧(𝜏𝑖)𝜳 for 𝑝 covariance matrices, which can be formalized through
the following optimization problem [25]:

𝜳H𝐑𝑧(𝜏𝑖)𝜳 ≈ diag
[

𝜌1(𝜏),… , 𝜌𝑚(𝜏)
]

⇒ min
𝛹

𝑝
∑

𝑖=1
off

(

𝜳H𝐑𝑧(𝜏𝑖)𝜳
)

, 1 ≤ 𝑖 ≤ 𝑝, (7)

where 𝐑𝑧(𝜏) = E
{

𝐳(𝑡)𝐳(𝑡 + 𝜏)H
}

is the time-shifted covariance matrix of the whitened data, and terms 𝜌𝑖(𝜏) denote their autocovari-
ances. Thus, the mixing matrix 𝐀 and the independent components 𝐬̌ can be obtained as [52]:

𝐀 = 𝐖−1
m 𝜳 = 𝐄𝐃1∕2𝜳 , and 𝐬̌ = 𝐖𝐱̌, (8)

with 𝐖 = 𝐀−1 denoting the de-mixing matrix. Once extracted, the mode shapes (arbitrarily scaled in the case of OMA) are directly
extracted from the mixing matrix 𝐀. On the other hand, the resonant frequencies and damping ratios can be readily derived from the
independent components 𝐬̌(𝑡) using a single-degree-of-freedom (SDOF) modal identification approach. Note that the real or imaginary
parts of 𝐬̌(𝑡) have the same power spectral density (PSD) and only differ in phase. There, the identification can be conducted on
either of them or, alternatively, the averaged independent components 𝐬̄(𝑡) =

[

Re(𝐬̌(𝑡)) + Imag(𝐬̌(𝑡))
]

∕
√

2 [25] (the 1∕
√

2 factor is
introduced to preserve the PSD amplitude).

The modal identification problem in SOBI relies on the evidence that the modal displacements in Eq. (2) are approximately
shift-uncorrelated [25]. Nevertheless, it is important to note that 𝐪(𝑡) are not perfectly shift-uncorrelated (mutually independent),
which may induce certain errors in the modal identification estimates by SOBI. The presence of some time correlation among the
modal displacements stems from the inherent characteristics dynamic systems, which are generally damped (non-conservative), and
the finite length of the observation data (refer to Ref. [53] for a further theoretical discussion). While the first limiting factor is
typically unavoidable in practice, SOBI has demonstrated proficiency in separating lightly damped modes [54], as it is often the case
in most civil engineering structures. Instead, modal correlation effects induced by discrete sampling can be effectively minimized
4
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by windowing the input data before applying SOBI. In this work, as recommended by McNeill and Zimmerman [25], a Gaussian
window has been adopted, which is given by:

𝑤(𝑡) = 𝑒−0.5(𝛼𝑡)
2
, 𝑡 = 2

𝑡𝑚𝑎𝑥
𝑡 − 1, (9)

where 𝑡 ∈ [−1, 1] denotes a normalized time, 𝑡𝑚𝑎𝑥 is the time duration of the data, and 𝛼 is the spectral bandwidth parameter
of the window. In this work, the bandwidth parameter has been set to 𝛼 = 2.5, a value within the recommended range in [25],
after inspecting the correlation functions obtained in the different case studies presented hereafter. Other alternative one-step
JAD algorithms are available in the literature requiring no pre-whitening, such as the high-performance Weighted Exhaustive
Diagonalization with Gauss itErations (WEDGE) [55] or parallel factor (PARAFAC) decomposition [49].

Lastly, it is important to remark that the assumption of approximately time-shift uncorrelated modal displacements holds true
only for free vibrations or random white excitations. However, when forcing is colored random in the vicinity of the natural
frequencies of the system, the deviation of the excitation forces from a flat spectrum may introduce time correlation between the
modal displacements, thus diminishing the quality of the modal estimates by SOBI.

Recall that both the mixing matrix and the independent components are complex-valued, hence one can write:

𝐀 = 𝐀𝑅 + 𝑖 𝐀𝐶 , 𝐬 = 𝐬𝑅 + 𝑖 𝐬𝐶 , with 𝐀𝑅,𝐀𝐶 ∈ R𝑚×𝑛, 𝐬𝑅, 𝐬𝐶 ∈ R𝑛×1, (10)

where the ‘‘𝑅’’ and ‘‘𝐶 ’’ indexes correspond to the real and imaginary parts of the respective terms. Then, substituting Eq. (10) into
(3), and considering that the observed data 𝐱(𝑡) are real-valued, it can be readily found that the condition 𝐀𝑅 𝐬𝐶 + 𝐀𝐶 𝐬𝑅 = 𝟎 must
be satisfied. In this light, the system’s response 𝐱 can be expressed as a linear combination of the real and imaginary parts of 𝐬(𝑡)
as:

𝐱(𝑡) =
(

𝐀𝑅 + 𝑖 𝐀𝐶
) (

𝐬𝑅(𝑡) + 𝑖 𝐬𝐶 (𝑡)
)

= 𝐀𝑅 𝐬𝑅(𝑡) − 𝐀𝐶 𝐬𝐶 (𝑡), (11)

and, hence, the system’s response can be expressed as the mixing of two independent sources, 𝑠𝑅(𝑡) and 𝑠𝐶 (𝑡), each phase-shifted by
90 degrees, and mixed using two separate mixing matrices, 𝐀𝑅 and 𝐀𝐶 .

2.2. AI-driven BSS: MTL-DNN

Building upon the formulation of the SOBI algorithm outlined above, a novel multitask learning deep neural network (MTL-DNN)
for automated OMA of structures is presented herein. The primary goal of the proposed network is to simultaneously extract the
real and imaginary parts of the independent components, so enabling the identification of complex mode shapes.

2.2.1. Network architecture
The fundamental steps in the BSS formulation described above are encapsulated in the architecture of the proposed MTL-DNN.

Drawing upon the findings previously reported in Eq. (11), this is achieved by defining two separate branches in the network with
the objective of estimating the real and imaginary parts of the independent components 𝐬(𝑡). These two branches are then fully
connected through linear activation functions, resulting in the mixing matrix (mode shapes) in complex form. In this light, the
architecture of the proposed MTL-DNN is sketched in Fig. 1. The input of the MTL-DNN corresponds to the measured acceleration
time series 𝐱(𝑡), discretely acquired with a sampling frequency 𝑓𝑠 or, alternatively, with a time step 𝛥𝑡 = 1∕𝑓𝑠. The output of the
network is the reconstructed signal 𝐱′(𝑡) produced by the network after applying Eq. (3) with the estimated mixing matrix. To
account for the sequential nature of the input time series, a time lag 𝜏 is imposed between the observation data 𝐱(𝑡) and the outputs
of the network (i.e. 𝐬(𝑡) and 𝐱′(𝑡)). This allows the network to capture and learn the temporal correlations between the inputs and
the outputs (see Fig. 1).

The number of input neurons is equal to the number of sensors in the structure. This is followed by 𝑑 dense layers of 𝑓 neurons
per layer (‘‘H’’), which simulate the whitening process and the JAD technique of the BSS. The second and the second-to-last layers of
this group, as well as the second-to-last layers of branches ‘‘J’’ and ‘‘K’’ introduced hereafter, are regularization (dropout) layers (‘‘D’’)
aimed at favoring the generalization of the network. The working principle of these layers lies in the removal of some neurons, so
that their contribution to the activation of downstream neurons is temporally removed on the forward pass, and any weight updates
are not applied to the neurons on the backward pass. Therefore, the remaining neurons will have to handle the representation
required to make predictions for the missing neurons, allowing the network to learn multiple independent internal representations
and becoming less sensitive to the specific weights of neurons, resulting in a network with better generalization and less prone to
overfitting the training data. The following part of the network is divided into two dense branches (‘‘J’’ and ‘‘K’’), both containing ℎ
dense layers with 𝑔 neurons per layer, except for the last layers of these two branches that contain 𝑛 neurons, equal to the number of
identified independent components. As aforementioned, this division serves the primary purpose of separating the real and complex
part of the independent components, as extracted in the output layers 𝐑 and 𝐂 of branches ‘‘K’’ and ‘‘J’’, respectively. From Eq. (10),
it can be obtained that 𝐬𝑅 = 𝐑, 𝐬𝐶 = 𝐂, and 𝐬 = 𝐑+ 𝑖 𝐂. Thus, the complex independent components 𝐬 for an input time series of 𝑁
data-points can be extracted from the outputs of layers 𝐑 and 𝐂 as:

𝐬 =

⎡

⎢

⎢

⎢

⎢

⎢

𝑅11 + 𝑖 𝐶11 … 𝑅1𝑗 + 𝑖 𝐶1𝑗 … 𝑅1𝑛 + 𝑖 𝐶1𝑛
⋮ ⋮ ⋮

𝑅𝑖1 + 𝑖 𝐶𝑖1 … 𝑅𝑖𝑗 + 𝑖 𝐶𝑖𝑗 … 𝑅𝑖𝑛 + 𝑖 𝐶𝑖𝑛
⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

∈ C𝑁×𝑛. (12)
5

⎣
𝑅𝑁1 + 𝑖 𝐶𝑁1 … 𝑅𝑁𝑗 + 𝑖 𝐶𝑁𝑗 … 𝑅𝑁𝑛 + 𝑖 𝐶𝑁𝑛⎦
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Fig. 1. Architecture of the proposed MTL-DNN for automated operational modal analysis of structures.

Fig. 2. Weights between the penultimate and final layers of the MTL-DNN used for the estimation of complex mode shapes.

Fig. 2 shows a detailed view of the penultimate and last layers of the neural network. The last layer has as a linear activation
unction so that the outputs of the network 𝑥′𝑗 (considering the biases equal to 0) have the expression:

𝑥′𝑗 =
𝑛
∑

𝑟=1

[

(𝑅𝑟𝐴𝑟𝑗,𝑅) − (𝐶𝑟𝐴𝑟𝑗,𝐺)
]

, 𝐀𝑅 =
⎡

⎢

⎢

⎣

𝐴11,𝑅 … 𝐴𝑛1,𝑅
⋮ ⋱ ⋮

𝐴1𝑚,𝑅 … 𝐴𝑛𝑚,𝑅

⎤

⎥

⎥

⎦

, 𝐀𝐶 =
⎡

⎢

⎢

⎣

𝐴11,𝐶 … 𝐴𝑛1,𝐶
⋮ ⋱ ⋮

𝐴1𝑚,𝐶 … 𝐴𝑛𝑚,𝐶

⎤

⎥

⎥

⎦

. (13)

Note that the weights between layers R and C and the reconstruction layer represent the real and imaginary parts of the mode
hapes (𝐀 , and 𝐀 ) as shown in Eq. (13). Comparing Eqs. (10) and (13), the mixing matrix containing the complex mode shapes
6
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can be obtained as:

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴11,𝑅 + 𝑖 𝐴11,𝐶 … 𝐴𝑖1,𝑅 + 𝑖 𝐴𝑖1,𝐶 … 𝐴𝑛1,𝑅 + 𝑖 𝐴𝑛1,𝐶
⋮ ⋮ ⋮

𝐴𝑖𝑗,𝑅 + 𝑖 𝐴𝑖𝑗,𝐶 … 𝐴𝑖𝑗,𝑅 + 𝑖 𝐴𝑖𝑗,𝐶 … 𝐴𝑖𝑗,𝑅 + 𝑖 𝐴𝑖𝑗,𝐶
⋮ ⋮ ⋮

𝐴1𝑚,𝑅 + 𝑖 𝐴1𝑚,𝐶 … 𝐴𝑖𝑚,𝑅 + 𝑖 𝐴𝑖𝑚,𝐶 … 𝐴𝑛𝑚,𝑅 + 𝑖 𝐴𝑛𝑚,𝐶

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ C𝑚×𝑛. (14)

Along with the reconstructed signals, the output of the branches R and C (i.e. s𝑟 and s𝑐) are also monitored. In this way, the
loss function for the MTL-DNN is defined as:

𝐿 = 1
𝑁

[ 𝑛
∑

𝑙=1

𝑁
∑

𝑖=1

(

𝑅𝑖𝑙,𝜏 − 𝑅̂𝑖𝑙
)2 +

𝑛
∑

𝑙=1

𝑁
∑

𝑖=1

(

𝐶𝑖𝑙,𝜏 − 𝐶̂𝑖𝑙
)2 +

𝑚
∑

𝑙=1

𝑁
∑

𝑖=1

(

𝑥𝑖𝑙,𝜏 − 𝑥̂𝑖𝑙
)2
]

+𝑤𝑑L2𝑛𝑜𝑟𝑚(weights), (15)

where 𝑅𝑖𝑙,𝜏 and 𝐶𝑖𝑙,𝜏 represent the real and complex part of the modal response obtained by SOBI, respectively; 𝑅̂𝑖𝑙 and 𝐶̂𝑖𝑙 represent
the real and complex parts of the modal response predicted by the MTL-DNN, respectively; 𝑥𝑖𝑙,𝜏 and 𝑥̂𝑖𝑙 represent the input and
reconstructed data, respectively. Note that the subscript 𝜏 is employed to indicate the corresponding terms are time-shifted to align
them with the time sequence of the network’s output. The last term in Eq. (15) represents a penalty condition for regularization,
often referred to as a weight decay term [56]. This penalty involves applying the L2 norm to all the weights in the model with the
purpose of avoiding gradient explosion and limiting over-fitting problems. The loss function 𝐿 in Eq. (15) is minimized using the
Adam algorithm [57], and adaptive gradient-descent backpropagation approach. On this basis, the updating of the weights of the
network can be expressed as:

𝑚𝑞 = 𝛽1𝑚𝑞−1 +
(

1 − 𝛽1
)

𝑔𝑞 , 𝑚̂𝑞 =
𝑚𝑞

1 − 𝛽𝑞1
, 𝑣𝑞 = 𝛽2𝑣𝑞−1 +

(

1 − 𝛽2
)

𝑔2𝑝 , 𝑣̂𝑞 =
𝑣𝑞

1 − 𝛽𝑞2
,

𝜃𝑞+1 = 𝜃𝑞 −
𝛼

√

𝑣̂𝑞 + 𝜖
𝑚̂𝑞 ,

(16)

where 𝑚𝑞 and 𝑣𝑞 represent the exponentially weighted moving averages of the gradients 𝑔𝑞 and their squared values 𝑔2𝑞 with respect
to the parameters at iteration 𝑞, respectively. The terms 𝑚̂𝑞 and 𝑣̂𝑞 are the bias-corrected versions of 𝑚𝑞 and 𝑣𝑞 taking into account
the initial biases and decay rates 𝛽1 and 𝛽2, respectively. The term 𝜃𝑞+1 stands for the updated weights at iteration (𝑞 + 1), which
s calibrated considering a learning rate 𝛼. Finally, the term 𝜖 is a small constant added for numerical stability to avoid division by
ero, typically set to 10−8.

The hyper-parameters of the proposed MTL-DNN include the number of layers and neurons of the network, the decay rates 𝛽1 and
2, the learning rate 𝛼, and the weight decay parameter 𝑤𝑑 . The number of layers (𝑑, ℎ) and neurons (𝑓, 𝑔), as well as the learning
ate and the dropout rates (percentage of eliminated neurons) of the regularization layers, are fine-tuned through manual trial and
rror depending of the specific case study. The decay rates 𝛽1 and 𝛽2 in the Adam algorithm are set to 0.9 and 0.9999, respectively,
n accordance with common recommendations in the literature [58]. The activation functions used for all the hidden layers are
et to hyperbolic tangent (tanh), except for the last two layers, which use linear activation. Finally, satisfactory generalization is
chieved in all the considered case studies with a weight decay value 𝑤𝑑 of 1E−4.

2.2.2. Modal parameter extraction
Once the MTL-DNN model is trained, the mode shapes are directly obtained as the weights between the penultimate and the last

layers of the network (see Eq. (14)). It remains to determine the frequencies and damping ratios from the independent components
𝐬𝑖, 1 ≤ 𝑖 ≤ 𝑛. In this work, this is achieved by applying the SDOF Ibrahim Time-Domain (ITD) dynamic identification approach [59].
This approach starts by computing the free decay response for a particular component 𝐬𝑖. Specifically, using the Natural Excitation
Technique (NExT), the auto-correlation function 𝑅𝑠𝑖 ,𝑠𝑖 (𝜏) for a certain time-lag 𝜏 is obtained as:

𝑅𝑠𝑖 ,𝑠𝑖 (𝜏) = E
[

𝑠𝑖(𝑡)𝑠T
𝑖 (𝑡 + 𝜏)

]

= ℱ −1 [𝑆𝑖(𝑤)𝑆𝑖(𝑤)∗
]

, with 𝑆𝑖(𝑤) = ℱ
[

𝑠𝑖(𝑡)
]

, (17)

where the asterisk indicates the complex conjugate. On this basis, the time discrete free decay response obtained from Eq. (17) is
organized into a Hankel matrix with four block rows and 𝑛𝑝 columns as [60]:

⎡

⎢

⎢

⎢

⎢

⎣

𝑅(1) 𝑅(2) … 𝑅(𝑛𝑝)
𝑅(2) 𝑅(3) … 𝑅(𝑛𝑝 + 1)
𝑅(3) 𝑅(4) … 𝑅(𝑛𝑝 + 2)
𝑅(4) 𝑅(5) … 𝑅(𝑛𝑝 + 3)

⎤

⎥

⎥

⎥

⎥

⎦

=
[

R1
R2

]

, (18)

here the terms 𝑅(𝑘) correspond to the 𝑘th time samples of the auto-correlation function 𝑅𝑠𝑖 ,𝑠𝑖 , evaluated in a total of 𝑛𝑝 samples.
On this basis, it has been shown that the system matrix 𝐓 can be obtained as [61]:

𝐓 = (𝐓1 + 𝐓2)∕2, (19)

with matrices 𝐓1 and 𝐓2 determined as:

𝐓 = 𝐑 𝐑† = 𝐑T(𝐑 𝐑T)−1, 𝐓 = 𝐑 𝐑† = 𝐑 𝐑T(𝐑 𝐑T)−1. (20)
7
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with † denoting the pseudo-inverse. On this basis, the discrete time poles of the independent component, 𝜇𝑖 and 𝜇∗
𝑖 , can be extracted

as the eigenvalues of the system matrix 𝐓. These discrete time poles are related to the continuous ones as:

𝜆𝑖 =
ln
(

𝜇i
)

𝛥𝑡
, (21)

from which the natural frequency and damping ratio (omitting the complex conjugate pole) can be obtained as:

𝑓𝑖 =
|

|

𝜆𝑖||
2𝜋

, 𝜉𝑖 = −
Re

(

𝜆𝑖
)

2𝜋 𝑓𝑛
. (22)

.2.3. Elimination of spurious modes
The number of independent components 𝑛 in the broadband frequency of interest is generally unknown beforehand. As a first

pproximation, the inspection of the eigenvalues of the covariance matrix of the observations may provide insight into the number
f influential components. Nonetheless, some of these may not truly represent physical model but rather spurious or mathematical
odes stemming from noise and identification errors. Hence, in any OMA algorithm, it is essential to discriminate between physical

nd spurious/mathematical modes. In this study, an automatic procedure is adopted involving the following steps:

(A) Hard criteria (HC): Spurious/mathematical modes are first identified as those violating certain physically meaningful ranges in
terms of frequency 𝑓𝑖 ∈

[

𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥
]

, damping ratio 𝜉𝑖 ≤ 𝜉𝑚𝑎𝑥, and modal complexity. The latter, known thanks the developed
multi-task architecture of the network, can be appraised in terms of their modal phase collinearity (MPC). The MPC metric
quantifies the level of linearity of the modal displacements of a complex mode 𝝋 in the complexity plane [62]. Denoting the
real and imaginary parts of 𝝋 as 𝝋𝑅 and 𝝋𝐶 , respectively, their covariances can be cast into the covariance matrix 𝐒 given
by:

𝐒 =

[

𝝋T
𝑹 𝝋𝑅 𝝋T

𝑹 𝝋𝐶

𝝋T
𝑪 𝝋𝑅 𝝋T

𝑪 𝝋𝐶

]

∈ R2×2, (23)

whose eigenvalues, denoted as 𝜆1 and 𝜆2, provide insights into the complexity of the mode shapes. On this basis, the MPC
metric is defined as:

MPC(𝝋) =
(

𝜆1 − 𝜆2
𝜆1 + 𝜆2

)2
, (24)

which ranges from 0 (not collinear at all) and 1 (perfect collinearity). In this way, since too complex modes are often due
to identification errors, these modes can be eliminated as spurious/mathematical modes by imposing a certain threshold
MPC(𝝋) ≥ MPC𝑚𝑖𝑛.

(B) Elimination of low influential components: It is reasonable to assume that physical independent components will contribute more
intensively to the observed data. This can be interpreted in energetic terms by inspecting the spectral density functions of
the identified independent components. From this consideration, a non-dimensional energy contribution metric 𝐸𝑐 is defined
as:

𝐸𝑐 =
∫ 𝑓𝑛𝑦
0 𝑆𝑐 (𝐬𝑖) d𝑓
𝑓𝑠 𝑆𝑐,𝑚𝑎𝑥

, (25)

where 𝑆𝑐 (𝐬𝑖) is the spectral density function of a certain independent components 𝐬𝑖 evaluated in the frequency broadband
ranging from 0 to 𝑓𝑛𝑦, with 𝑓𝑛𝑦 denoting de Nyquist frequency, i.e. 𝑓𝑛𝑦 = 𝑓𝑠∕2. The normalization term 𝑆𝑐,𝑚𝑎𝑥 corresponds
to the spectral density value at resonant peak. The energy metric in Eq. (25) permits ranking the identified components
in terms of their overall contributions to the observed data, so allowing the elimination of the least influential ones as
spurious/mathematical modes.

3. Numerical results and discussion

The effectiveness of the proposed MTL-DNN is illustrated through three different case studies: a theoretical dynamic system, a
laboratory structure, and a real full-scale bridge. The first case study is a 5-DOFs spring–mass damped model serving as a control
case study to validate the neural network. In addition, various levels of noise are included in the validation data-set to assess the
robustness in the predictions. The second case study is a 3D laboratory steel frame instrumented with low-cost sensors. This case
study offers a realistic scenario suitable for testing the proposed algorithm for the elimination of spurious/mathematical modes.
The third case study is a real-world reinforced concrete bridge, the Montecastelli Bridge in Italy. The neural networks were trained
in a server computer Intel® CoreTM i9-11900K (CPU@3.5 GHz), and evaluated in a personal computer Intel® CoreTM i7-10750H
(CPU@2.60 GHz). The neural networks were coded using the open-source Python library PyTorch.
8
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Fig. 3. Five DOFs linear spring–mass damped system.

Fig. 4. Noise-free system response under stationary white Gaussian excitation for Case Study I: 5-DOFs system.

3.1. Case study I: Theoretical 5-DOFs system

The investigated 5-DOFs dynamic system shown in Fig. 3 is a benchmark case study used by several researchers in the literature
(e.g. [41,42]). The structural matrices used in the model are:

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐊 = 100 ×

⎡

⎢

⎢

⎢

⎢

⎢

⎣

8 −8 0 0 0
−8 24 −16 0 0
0 −16 40 −24 0
0 0 −24 56 −40
0 0 0 −40 72

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3.5 −2.5 0 0 0
−2.5 4.5 −2.0 0 0

0 −2.0 3.2 −1.2 0
0 0 −1.2 1.9 −0.7
0 0 0 −0.7 2.7

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (26)

where M ∈ R5×5 [kg] is the mass matrix, K ∈ R5×5 [N/m] is the stiffness matrix and C ∈ R5×5 [Ns/m] is defined as a non-proportional
damping matrix. The system is excited at the 5-DOFs using stationary white Gaussian noises (𝜎 = 1 N). The system’s responses are
calculated using the Newmark-beta method with a time integration step of 1 ms (1000 Hz) and a time duration of 1000 s (1E+6 data-
points), as shown Fig. 4. In this case study, the number of independent components is equal to the number of channels (𝑚 = 𝑛 = 5),
thereby the algorithm for the elimination of spurious/mathematical modes is not applied herein.

3.1.1. Noise-free measurements
Fig. 5(a) furnishes the architecture of the MTL-DNN created for this case study. The learning rate, the batch size, and the dropout

rate are set to 0.001, 200 and 30%, respectively. To generate the training data-set, the independent modal components are extracted
from the raw acceleration time series by standard SOBI. The raw acceleration responses and the estimated independent components
serve as inputs and outputs to build the data-set, considering an input/output time lag equal to 10 time samples (𝜏 = 10 ms). All
the weights of the network are randomly initialized, and the data-set is divided into training (80%), validation (10%), and test
sub-sets (10%). The loss function in Eq. (15) is iteratively computed using forward propagation, followed by the updating of the
weights using the Adam back-propagation algorithm. The training results are depicted in Fig. 5(b), where it is noted that the model
convergence is optimally reached at epoch 100. In this case, the training of the DNN took 1 h and 25 min. It is important to remark
that, while the initial SOBI takes 68 s, the source identification by MTL-DNN in the prediction step only takes 0.23 s. This represents
a reduction of approximately 99.66%.

Recall that the outputs of the penultimate layer and the weights between the penultimate and the last layers directly provide the
independent modal components 𝐬 and the complex mode shapes 𝜱, respectively. Fig. 6 displays the five modal responses and their
9
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Fig. 5. MTL-DNN architecture (a) and convergence of the loss function (b) for Case Study I: 5-DOFs theoretical dynamic system.

Fig. 6. Five independent components from 𝑠1 to 𝑠5 extracted using MTL-DNN without noise effects for Case Study I: 5-DOFs theoretical dynamic system.

Table 1
Comparison between the analytical and (noise-free) estimated modal parameters using MTL-DNN for Case Study I: 5-DOFs
theoretical dynamic system.
Mode Frequency [Hz] Damping [%]

Analytical MTL-DNN Rel. Diff. [%] Analytical MTL-DNN Rel. Diff. [%]

1 1.34 1.34 −0.04 1.34 1.30 −3.0
2 3.38 3.38 0.02 3.25 3.36 3.4
3 5.36 5.35 −0.01 3.50 3.44 −1.7
4 6.96 6.96 0.02 2.49 2.54 2.0
5 8.12 8.12 −0.01 1.22 1.27 4.1
10
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Fig. 7. Comparison between the analytical and the estimated mode shapes with (SNR = 10 dB) and without noise effects using the MTL-DNN for Case Study I:
5-DOFs theoretical dynamic system.

corresponding Fast Fourier Transforms (FFTs) estimated by the MTL-DNN. On this basis, the corresponding modal characteristics
can be automatically extracted using the modal identification approach previously overviewed in Section 2.2.2. The resulting modal
identification results and their comparison with the analytical results are reported in Table 1. These results reveal close agreements
between the analytical results and the estimates by the MTL-DNN. Notably, the relative differences are exceptionally small in terms
of frequencies, with a maximum value of 0.04%. However, when considering the damping ratios, it is important to acknowledge
that a maximum error of 4.1% is found for Mode 5. Although this value may appear relatively high, it is essential to recognize the
identification of damping ratios often involves considerable uncertainty in most OMA algorithms, as in this case when adopting the
ITD method.

To gain a deeper understanding of the model’s performance, Fig. 7 furnishes the mode shapes estimated as the weights between
the last two layers of the MTL-DNN. The accuracy of these mode shapes is compared against the theoretical mode shapes using the
Modal Assurance Criterion (MAC). Remarkably, the MAC values are all very close to 1.00, confirming an almost perfect correlation
between the theoretical mode shapes and those estimated by the MTL-DNN. Note that the identified mode shapes are indeed complex-
valued. This is particularly evident in the complexity plots of Modes 3, 4, and 5, for which MPC values of 97.8%, 95.8%, and 95.2%
are obtained, respectively.

3.1.2. Robustness to measurement noise pollution
To demonstrate the robustness of the proposed MTL-DNN to measurement noise pollution, white noises of increasing magnitude

are added to the input measurements. In Ref. [61], it is recommended that the minimum acceptable signal to noise-ratio (SNR) of
acceleration acquisitions for OMA applications should be in higher than SNR = 40 dB. The SNR has the following definition:

SNR (dB) = 20 log10

(

𝑆𝑠
𝑆𝑛

)

, (27)

here 𝑆𝑠 and 𝑆𝑛 are the amplitude of the signal 𝐱 and the background noise, respectively. In this way, three noise levels are added
o the observed measurements with values of SNR = [30, 20, 10] dB. For these analyses, the same architecture and hyper-parameters
efined in the previous analysis are adopted herein.

Table 2 shows the modal characteristics obtained from the MTL-DNN predictions under the three considered noise levels. Notably,
he relative differences in terms of frequencies and damping ratios do not exceed 2% and 5%, respectively. Furthermore, as the noise
evel increases, so do the errors with respect to the SOBI estimates. Specifically, for the highest noise level (SNR = 10 dB), maximum
rrors of 6.37% and 13.94% with respect to the SOBI estimates are obtained in terms of frequencies and damping ratios, respectively.
ig. 8 shows the analysis of the mode shapes, where similar conclusions are extracted. The mismatch between the SOBI estimates
nd the predictions by the MTL-DNN increases for increasing noise levels, with average traces of the MAC matrices in Fig. 8 of
1.00,0.99,0.96] for SNR= [30, 20, 10] dB respectively.

From the results of this first case study, it can be concluded that the proposed MTL-DNN model offers robust quasi-instantaneous
odal identification capabilities. Importantly, unlike previous similar AI-BSS techniques reported in the literature, the proposed
odel allows estimating the complex-valued mode shapes, offering a comprehensive modal identification. It is important to
11
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Table 2
Estimated modal parameters considering different noise levels with SNRs of [30, 20, 10] dB by means of SOBI and MTL-DNN for Case Study I: 5-DOFs theoretical
dynamic system.

Frequency [Hz]

Mode Analytical SNR = 30 dB SNR = 20 dB SNR = 10 dB

SOBI MTL-DNN Rel. Diff. [%] SOBI MTL-DNN Rel. Diff. [%] SOBI MTL-DNN Rel. Diff. [%]

1 1.34 1.35 1.36 0.93 1.35 1.33 −1.11 1.35 1.32 −1.78
2 3.38 3.42 3.44 0.64 3.42 3.40 −0.67 3.42 3.39 −1.00
3 5.35 5.40 5.37 −0.61 5.27 5.23 −0.75 5.55 5.50 −0.95
4 6.96 7.03 7.09 0.78 6.94 6.89 −0.73 6.82 6.77 −0.77
5 8.12 8.14 8.20 0.63 8.08 7.99 −1.20 8.13 7.98 −1.87

Damping ratios [%]

1 1.26 1.26 1.27 0.79 1.27 1.29 1.57 1.27 1.31 3.15
2 3.45 3.45 3.46 0.29 3.45 3.42 −0.87 3.46 3.52 1.73
3 3.41 3.41 3.44 0.88 3.43 3.44 0.29 3.44 3.49 1.45
4 2.53 2.53 2.55 0.79 2.54 2.51 −1.18 2.53 2.41 −4.74
5 1.36 1.36 1.36 0.03 1.35 1.37 1.48 1.38 1.42 2.90

Fig. 8. Comparison in terms of MAC values between the theoretical and estimated modes shapes by MTL-DNN for Case Study I: 5-DOFs theoretical dynamic
system, considering decreasing SNRs.

3.2. Case study II: Experimental three-dimensional steel frame

In this second case study, the proposed MTL-DNN is applied to a five-story laboratory steel frame with rigid joints and a total
height of 1.4 m (each level - 0.28 m), located in the Sustainable Structural Engineering laboratory at the University of Granada
(Fig. 9(a)). The monitoring system comprises 10 low-cost triaxial MEMS accelerometers model MPU-9250 (Resolution: 14 bit
(0.6μT/LSB), Scale range: ±2 g∕4 g∕8 g∕16 g, Noise Power Spectral Density: 300 μg

√

Hz) installed on the five floors of the frame
s shown Fig. 9(c). At each level, accelerations are acquired by three channels: two in the 𝑥-direction and one in the 𝑦-direction.
his amounts to a total of 15 channels labeled with C1 to C15. Such a configuration is aimed at characterizing the rigid diaphragm
otions of the floors and the global torsional modes of the frame. Two multiplexers model PCA9548A are located on the third

loor of the frame (see Fig. 9(e)), for the I2C data transmission of the 10 digital accelerometers (5 sensors per multiplexer). To
enerate a sufficient excitation level for successful modal identification, a 12 V DC motor with an eccentric mass of 82 grams (see
ig. 9(d)) is located on the upper floor of the structure. The motor is randomly activated and deactivated by an independent Arduino
ano micro-controller, and its speed is also randomly varied to simulate random excitations. The acceleration signals are recorded
ith sampling frequency of 100 Hz using a Raspberry Pi 3 Model B (see Fig. 9(b)) placed on the third level of the frame. Thirty
inutes-long acceleration acquisitions are stored in an hourly basis in separate computer files, which are then sent automatically

o a Google Drive repository. All the electronics are fixed to the frame through plastic 3D-printed supports. This case study offers a
ealistic framework to appraise the effectiveness of the algorithm for the elimination of spurious/ mathematical model previously
ntroduced in Section 2.2.3.

In this case study, the number of independent components is set equal to the number of measurement channels (i.e. 𝑛 = 𝑚 =
5) with the purpose of appraising the effectiveness of the proposed spurious/mathematical modes elimination approach. The
rchitecture of the MTL-DNN shown in Fig. 10(a) is quite similar to that of the previous case study. In this case, a total of 18
ense layers are defined (7 more compared to the network for Case Study I), including a larger number of neurons to accommodate
he more complex dynamics of this case study. The accelerations file used for training the MTL-DNN corresponds to the first 30-min
ong acquisition (167,635 samples) recorded on April 27th, 2023 at 10:30 PM (CEST). Similarly to the previous case study, the raw
cceleration data and the identified independent components by SOBI are used to form the data-set to train the network, which is
12
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divided into training (80%), validation (10%), and test sub-sets (10%). All the weights of the network are initialized randomly, and
the learning rate, the batch size and the dropout rate are set to 0.01, 250, and 35%, respectively. The size of the input/output time
lag is set to 15 time samples (𝜏 = 0.15 s). The convergence of the training process is approximately achieved at epoch 100 as shown
in Fig. 10(b). In this case, the training of the DNN took 1 h and 48 min. Notably, while SOBI takes 129 s, the prediction step of
the modal separation by MTL-DNN only takes 0.56 s (reduction of ≈99.57%).

Fig. 9. Case Study II: Laboratory steel frame. Dimensions and sensors layout (a), Raspberry Pi 3 Model B (b), MEMS accelerometer MPU-9250 (c), DC motor
(d) and multiplexer PCA9548A (e). (f) Damage Scenario 1 – June 5th: 23% reduction of the cross-sectional area of 2 columns between levels 4 and 5; Damage
Scenario 2 – June 9th: Removal of outer bolts of two joints at level 4.

Once the 15 independent components are obtained after the MTL-DNN converges, it is necessary to determine those that truly
represent physical modes of the frame. Table 3 reports the modal parameters identified after the ITD identification of the independent
components (frequency and damping ratio), along with their corresponding MPC and energy contribution values. In this case study,
the hard criteria included 𝑓𝑚𝑖𝑛 = 2 Hz, 𝑓𝑚𝑎𝑥 = 25 Hz, 𝜉𝑚𝑎𝑥 = 10% and MPC𝑚𝑖𝑛 = 80%, resulting in a total of 8 components. Note that,
in this case, these correspond to the 8 components with highest energy contribution factors 𝑆𝑐 . The mode shapes for the selected 8
independent components are furnished in Fig. 11. It is apparent in this figure that the identified mode shapes correspond to global
modes of vibration of the frame, including 7 lateral bending modes and one first-order torsional mode. The modes have been labeled
with 𝑖F𝑑, where 𝑖 and 𝑑 denote the order and the main direction (𝑥, 𝑦, or 𝑧–torsion) of the motion, respectively. Additionally, the
MAC values between the mode shapes identified by SOBI against those by MTL-DNN are also included in this figure. The diagonal of
the MAC matrix shows values of 1, while the off-diagonal elements have values very close to zero. This indicates an almost perfect
correlation between the mode shapes identified by SOBI and MTL-DNN. With regard to the MPC values in Table 3, note that modes

Fig. 10. MTL-DNN architecture (a) and convergence of the loss function (b) for Case Study II: Laboratory steel frame.
13
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Table 3
Modal properties of the identified independent components (April 27th, 2023 10:30 PM (CEST)) by MTL-DNN for Case Study II:
Laboratory steel frame.
Mode Label Frequency [Hz] Damping ratio [%] MPC [%] 𝐸𝑐 [–]

– – 0.01 0.14 37.9 1.8
– – 0.03 0.02 41.9 2.5
1 Fx 2.70 0.37 97.8 25.0
2 Fy 4.36 1.02 98.8 70.8
– – 7.29 0.43 73.9 3.3
3 Fz 7.74 0.91 84.3 35.3
4 2Fx 8.18 0.58 97.6 41.1
5 3Fx 12.87 0.45 91.5 38.5
– – 16.16 0.55 72.4 5.1
6 4Fx 16.58 0.43 84.5 27.2
7 5Fx 18.72 0.49 90.2 15.7
– – 19.02 0.57 79.5 1.99
8 2Fy 20.72 0.57 82.3 21.1
– – 23.15 0.47 65.4 1.6
– – 26.81 0.63 58.0 7.2

Fig. 11. Mode shapes of the laboratory steel frame estimated by MTL-DNN and MAC matrix with respect to the estimates by SOBI.

Fx, Fy, 2Fx, 3Fx and 5Fx, exhibit MPC values very close to 100%, with a minimum of 90.2%. This circumstance indicates that these

modes are eminently real. Conversely, the remaining modes exhibit moderate complexity, with a minimum MPC value of 82.3%.
14
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Table 4
Comparison of modal parameters (April 27th, 2023 10:30 PM (CEST)) estimated using SOBI and CoV-SSI versus the estimates by MTL-DNN for Case Study II:
Laboratory steel frame.

Label SOBI CoV-SSI

Freq. [Hz] Rel. Diff. [%] Damp. [%] Rel. Diff. [%] Freq.[Hz] Rel. Diff. [%] Damp. [%] Rel. Diff. [%]

Fx 2.70 −0.01 0.38 −2.63 2.70 0.01 0.38 −2.63
Fy 4.36 0.00 1.02 0.00 4.36 0.01 1.00 2.00
Fz 7.74 0.01 0.89 2.25 7.78 −0.49 0.87 4.60
2Fx 8.18 0.00 0.57 1.75 8.19 −0.01 0.56 3.57
3Fx 12.86 0.02 0.45 4.88 12.85 0.11 0.46 −2.17
4Fx 16.59 −0.04 0.41 −2.00 16.60 −0.08 0.42 2.38
5Fx 18.71 0.02 0.50 −1.72 18.86 −1.27 0.46 6.52
2Fy 20.71 0.03 0.56 0.22 20.68 0.20 0.52 9.62

These complexity levels may be attributed to non-linearities induced by conceivably semi-rigid joints of the frame. Additionally, the
low sensitivity and SNR of the utilized low-cost MEMS sensors may also contribute.

The modes of vibration identified as physical are compared against the estimates by SOBI and CoV-SSI in Table 4. For the
oV-SSI, the automated algorithm implemented in the in-house software code P3P [63] has been employed. In this algorithm, the
ime lag used for the estimation of the Toeplitz matrix of the cross-correlations between the sensors has been set to 1 s, and the
ystem matrices and the corresponding modal features have been estimated considering model orders varying from 40 to 60 with
teps of 2. In this case, the identification of stable poles is conducted through a stabilization diagram. To this aim, the certainly
purious/mathematical poles are identified considering a set of hard criteria, including 𝜁𝑚𝑎𝑥, 𝑀𝑃𝐶𝑚𝑖𝑛 and maximum Mode Phase

Deviation (𝑀𝑃𝐷𝑚𝑎𝑥) with values of 8%, 80%, and 60%, respectively. Subsequently, the possibly physical (stable) poles in the
stabilization diagram are identified through a set of soft criteria, including tolerances in terms of resonant frequencies, damping ratios
and MAC values of 0.05, 0.10 and 0.03, respectively. Finally, the physical poles of the system are identified through a hierarchical
clustering algorithm following the automated procedure described in Ref. [63]. Note in Table 4 that, since the MTL-DNN model has
been trained using SOBI, the error is smaller in this case. Specifically, maximum discrepancies of 0.02% and 0.49% are found between
these two approaches in terms of frequencies and damping ratios, respectively. The discrepancies are larger when comparing with
the estimates by CoV-SSI error, with maximum values of 0.05% and 0.73% in terms of resonant frequencies and damping ratios,
respectively. Nonetheless, such discrepancies are far below the intrinsic uncertainties of most OMA techniques, thereby these results
confirm the high accuracy of the proposed MTL-DNN. Furthermore, the low computational time required in the modal identification
by MTL-DNN represents a key advantage. Specifically, the calculation time required by MTL-DNN to conduct the modal identification
of the laboratory frame is only 0.66 s, which is almost negligible compared to the 129 s (reduction of ≈99.49%) and 87 s (reduction
of ≈99.24%) required by SOBI and CoV-SSI, respectively.

3.2.1. Continuous modal parameter identification from MTL-DNN predictions
In this section, the acceleration data collected in the laboratory frame from April 26th until June 13th, 2023, are processed to

assess the effectiveness of the proposed MTL-DNN approach for continuous modal identification. This data-set comprises a total
of 710 acceleration records, each one with a duration and acquisition interval of 30 and 60 min, respectively. In this data-set,
two different damage scenarios were performed on the frame on June 5th and 9th to test the potential of the proposed MTL-DNN
approach for damage identification. The first damage scenario consists of a 23% reduction of the cross section at both endings of
the columns between levels 4 and 5 using a cutting saw, while the second scenario consists of removing the outer bolts of two joints
of level 4, as shown in Fig. 9(f).

To minimize the influence of frequencies outside the range of interest, a band-pass filter with cut-off frequencies 2 Hz and
21 Hz has been applied to the acceleration time series. A specialized network is considered in these analyses, focusing solely on
the 8 independent components identified as physically meaningful in the prior study. The architecture of this network is defined
with the same hyper-parameters and the same identical architecture, with the only difference that the input layer and the last two
layers of the network have 8 neurons. In this case, the first three 30-min acquisitions (540,000 samples) were considered in the
training data-set, resulting in a training time duration of 2 h and 33 min. This consideration proved crucial for achieving effective
network generalization and predicting the variability in the modal properties of the frame driven by the environmental conditions
(when used beyond the training phase), as reported below. The subsequent automated post-processing involves the extraction of
the complex mode shapes and modal characteristics using the ITD approach, followed by the elimination of spurious/mathematical
modes. Finally, to track the 8 physical modes throughout the whole monitoring period, a simple modal tracking algorithm was
adopted. The main purpose of the modal tracking algorithm is to match the identified poles with the modal reference baseline
previously reported in Table 3. Additionally, it aims to eliminate potential residual spurious/mathematical modes that may arise
due to identification errors. To achieve this, the poles extracted after each identification are compared to the reference baseline,
retaining those that meet a set of threshold criteria, including relative differences in terms of frequency of 0.10 and MAC values of
0.70.

The identified time series of resonant frequencies are depicted in Fig. 12. The aforementioned modal tracking approach
eliminated only a limited number of residual spurious/mathematical poles, with the majority of the identified modes meeting the
15
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Fig. 12. Tracking of the resonant frequencies of the laboratory steel frame from April 26th until June 13th 2023. Filled and open dots represent the estimates
by MTL-DNN and CoV-SSI, respectively.

the identification results extracted by automated CoV-SSI are also included, employing the same identification parameters as in
the previous section. In this case, due to the considerable shifts in the time series induced by the considered damage scenarios, a
multi-stage modal tracking and tight tolerance criteria of 0.05 and 0.85 in terms of frequency and MAC values were deemed critical
to obtain the results in Fig. 12. This approach involves considering different modal baselines for the healthy period, and the two
damage scenarios. This necessity is justified by the fact that the CoV-SSI identifies a higher number of poles after the automated
interpretation of the stabilization diagrams following every acquisition. This results in a considerable number of spurious poles
that need to be filtered out by the modal tracking algorithm. In contrast, the developed neural network provides only 8 poles
per acquisition, allowing for the relaxation of the tracking tolerances. It is important to mention that the time gaps visible in the
figure are not the result of errors in the identification, but rather to interruptions in the power supply of the monitoring system.
Overall, the close agreement between the two approaches demonstrates the accuracy of the proposed approach. In both cases, the
presence of certain oscillations induced by variations in environmental temperature/humidity conditions is noticeable, as depicted
in the zoom views in Fig. 12. More interestingly, it is evident in Fig. 12 that the proposed MTL-DNN is capable of tracking the
damage-induced variations with high accuracy, despite being trained exclusively on data from the healthy condition of the frame.
Indeed, these damage scenarios can be considered moderate to severe, with mean frequency decays of −0.42% and −2.17%, and
MAC values of 0.94 and 0.92 for Scenarios 1 and 2, respectively, with respect to the healthy baseline of the frame. Indeed, given the
considerable shifts in the modal properties induced by damage, a multi-stage modal tracking approach considering different modal
baselines for the healthy condition and the two damage scenarios was required to accurately track the modes of the frame using
CoV-SSI. Instead, the proposed MTL-DNN model provided direct tracking of the modes with one single reference baseline. This aspect
represents another key advantage of the proposed model, requiring no expert intervention once the network is trained. Finally, these
analyses underscore that the actual computational advantage of the proposed MTL-DNN arises when adopted for periodic dynamic
identification in continuous SHM schemes. This advantage becomes apparent after the DNN is trained, as its evaluation time is
markedly lower than that of standard OMA techniques. In particular, while the CoV-SSI required 1 h and 35 min to process the
entire data-set, the MTL-DNN model completed the analysis in just 29 min, representing a time reduction of 69.47%.

3.3. Case study III: Montecastelli bridge

This third case study investigates the effectiveness of the proposed MTL-DNN for modal identification applied to a real-world
in-operation structure–the Montecastelli Bridge. Situated between the municipalities of Città di Castello and Umbertide in the
Umbria region of central Italy, the Montecastelli Bridge is a 68.8-m-long concrete bridge that spans the Tiber River. The bridge
was constructed to replace a multi-span stone arch bridge that suffer significant damage during World War II. The original bridge
consisted of three consecutive arches, with one pylon submerged in the river and the other in the floodplain. After the war, the
two spans over the river were replaced by a single reinforced concrete arch span, resulting in the current configuration with no
pylons in the river. The two twin arches, each spanning 68.7 m with a rise of approximately 13 m, are composed of two elements
with variable cross-section connected by transverse girders. They support the concrete deck through vertical struts. The width of
the masonry arch on the north side aligns with the planar distance between the twin arches. Consequently, the longitudinal girders
of the deck extend approximately 1 m beyond the vertical struts and rest on the cantilever ends of the transverse girders. For visual
reference, Fig. 13(a) shows two photographs of the bridge taken in 1955 and 2012.
16
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Fig. 13. (a) Views of the Montecastelli Bridge (left: photography from 1955, Source: paesi.altervista.org; right: photography from 2012, Source: [64]). (b) Plan
and elevation views of the Montecastelli Bridge with the sensors layout (dimensions in m).

Fig. 14. MTL-DNN architecture for Case Study III: Montecastelli Bridge.

With the objective of identifying the dynamic characteristics of the bridge, an ambient vibration test (AVT) was carried out
on February 22nd, 2012, as documented in Ref. [64]. The monitoring system comprised 12 uni-axial piezoelectric accelerometers
(model WR 731A, 10 V/g) monitoring the vertical accelerations at 9 cross-sections of the bridge, as depicted in Fig. 13(b). In the
three cross-sections located at mid-span of the bridge, the sensors were placed on both sides of the deck, while in the remaining
six sections, the sensors were placed only on the east side of the deck. Each sensor was linked by a short cable (1 m) to a WR P31
power unit/amplifier, which supplied the continuous current required to run the accelerometer’s internal amplifier. A 24-channel
17
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Fig. 15. Ambient acceleration records (a), first four singular values (SVs) of the spectral density matrix of accelerations (b), and independent components
extracted using MTL-DNN (c) for Case Study III: Montecastelli Bridge (acquisitions carried out on February 22nd, 2012, 11.00 AM (CEST).

Table 5
Comparison between the modal parameters estimated using MTL-DNN against the estimated by CoV-SSI and Data-SSI [64] for Case Study III: Montecastelli Bridge
(acquisitions carried out on February 22nd, 2012, 11.00 AM (CEST).

Label MTL-DNN CoV-SSI Data-SSI [64]

𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝐸𝑐 [–] 𝑓𝑖 [Hz] Rel. Diff. [%] 𝜉𝑖 [%] Rel. Diff. [%] 𝑓𝑖 [Hz] Rel. Diff. [%] 𝜉𝑖 [%] Rel. Diff. [%]

V1 3.41 1.92 13.6 3.41 0.02 1.85 3.78 3.41 0.08 1.79 7.26
V2 4.00 0.81 35.6 4.00 0.02 0.79 2.53 4.00 −0.04 0.75 8.00
T1 5.69 1.20 26.1 5.69 −0.01 1.19 0.84 5.71 −0.31 1.16 3.45
T2 6.84 1.15 22.5 6.84 −0.01 1.18 −2.54 6.83 0.02 1.24 −7.26
V3 7.76 1.41 53.9 7.76 −0.01 1.41 0.00 7.76 −0.02 1.32 6.82
T3 8.03 0.81 34.7 8.03 −0.02 0.80 1.25 8.03 0.02 0.87 −6.90
V4 10.42 1.05 14.3 10.41 0.02 1.04 0.96 10.41 0.03 0.98 7.14
T4 11.15 1.83 16.2 11.15 0.00 0.81 2.47 11.15 0.01 0.77 7.79
T5 13.84 1.12 7.0 13.84 −0.01 1.11 0.90 13.84 0.01 – –

data acquisition system (24 bit resolution, 102 dB dynamic range, and anti-aliasing filters) was used to record 30 min ambient
accelerations at a sampling frequency of 100 Hz. That acquisition data (shown below in Fig. 15(a)) are retrieved in this work to
appraise the accuracy of the developed MTL-DNN approach and benchmark it against other state-of-the-art OMA techniques.

In the design of the network for this case study, the number of independent components to be determined is set equal to the
umber of sensors (𝑛 = 𝑚 = 12). The architecture of the MTL-DNN, as shown in Fig. 14, is quite similar to the ones presented in the
revious case studies. A total of 20 min of ambient accelerations (120,000 samples) are used as the training data-set, divided into
raining (80%), validation (10%), and test sub-sets (10%). The learning rate, the batch size and the dropout rate are set to 0.01,
50, and 35%, respectively. The size of the input/output time lag is set to 22 time samples (𝜏 = 0.22 s). The model convergences at
poch 100 (1 h and 53 min of training time), for which the modal separation in the prediction step takes 0.45 s.

Table 5 presents the modal parameters identified from the MTL-DNN predictions. A total of 9 components are obtained after
pplying the HC, including 𝑓𝑚𝑖𝑛 = 3 Hz, 𝑓𝑚𝑎𝑥 = 14 Hz, and MPCmin = 85%. Notably, these modes also correspond to those with
ighest energy contribution factors 𝑆𝑐 (the three components identified as spurious/mathematicals have 𝑆𝑐 factors between 1.5
nd 4.6). Fig. 15(b) and (c) show the singular values (SVs) of the spectral density matrix of accelerations and the PSD of the
ndependent components identified as physical modes, respectively. After inspecting the modal displacements shown in Fig. 16,
he components of interest in Table 5 have been labeled using ‘‘V’’ and ‘‘T’’ to denote the vertical bending and torsional modes,
espectively. Specifically, four flexural modes (V1 to V4) and five torsional modes (T1 to T5) are identified. To assess the quality
f the modal identification results by MTL-DNN, Table 5 reports its predictions with those obtained by CoV-SSI and Data-SSI
from Ref. [64]). It is noted that the predictions by MTL-DNN are considerably close to those by CoV-SSI, achieving maximum
elative differences of 0.02% and 3.78% in terms of resonant frequencies and damping ratios, respectively. On the other hand,
hen comparing the estimates by MTL-DNN with those by Data-SSI, the relative differences in terms of resonant frequencies are

onsiderably low, with a maximum value of 0.08%. However, discrepancies in terms of damping ratios are notably higher, with a
18
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Fig. 16. Mode shapes estimated by the MTL-DNN model for Case Study III: Montecastelli Bridge.

low-excited structures, as is the case in this study, these results are considered satisfactory. These differences may arise as a result
of certain limitations in the underlying SOBI technique. Specifically, note in Fig. 15(c) that some independent components are not
purely harmonic, evidencing some deficiencies in the source separation. This is conceivably explained by the appearance of time-
correlations between the modal displacements, possibly induced by the non-Gaussian traffic excitation. Despite these limitations, in
all cases, the MAC values between the modes estimated by MTL-DNN and Cov-SSI/Data-SSI are very close to 1, demonstrating the
high accuracy of the modal identification by MTL-DNN predictions. Finally, the results in Fig. 16 showcase the ability of the proposed
MTL-DNN to identify complex mode shapes. In particular, mode T3 exhibits a considerably complex nature, with a MPC value of
89.8%. In summary, the study reveals consistent agreement between the modal signatures estimated by the proposed MTL-DNN and
state-of-the-art OMA techniques, with the fundamental advantage of substantially lower computational demands.

4. Concluding remarks

This work has presented the development of a Multitask Deep Learning algorithm (MTL-DNN) for BSS quasi real-time modal
identification structures. The architecture of the developed AI-BSS model is designed to extract both the real and complex parts of the
modal displacements from raw ambient acceleration data as input, so allowing estimating complex-valued mode shapes and offering
a comprehensive system identification. In the proposed approach, the complex mode shapes are extracted from the weights between
the last layers of the network, while the resonant frequencies and damping ratios are extracted from the (complex) independent
components using the SDOF Ibrahim time-domain identification method. Furthermore, an automated spurious/mathematical mode
elimination algorithm based on several hard criteria have been introduced. The effectiveness of the developed approach has been
evaluated through three case studies: (i) a theoretical 5-DOFs dynamic system, (ii) a laboratory steel frame, and (iii) a real-world
in-operation bridge, the Montecastelli Bridge. The theoretical case study has served as a control study to validate effectiveness of the
proposed approach and test its robustness to measurement noise. The laboratory frame has been investigated as a realistic scenario
to test assess the developed spurious/mathematical mode elimination approach. Furthermore, continuous acceleration acquisitions
in the frame from April 26th until June 13th, 2023, have been used to assess the capability of the proposed approach for conducting
long-term OMA and damage identification. Interestingly, even though trained exclusively on data from the healthy condition of the
frame, the proposed AI-BSS model accurately tracked the damage-induced variations in the modal properties of the frame. These
19
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results demonstrate the generalization potential of the proposed approach, making it useful not only for novelty detection but also for
damage identification. Finally, the Montecastelli Bridge has been studied as an instance of a real-world in-operation structure. In this
case study, thorough comparison analyses with state-of-the-art OMA techniques have been reported to demonstrate high accuracy in
the modal estimates by the proposed approach, with the fundamental advantage of minimal computational time demands. Overall,
the presented results and discussion have demonstrated the potential of the proposed approach for performing rapid and automated
modal identification of structures with minimal expert intervention.

Overall, the proposed AI-driven BSS model demonstrates high versatility and applicability to various structural systems, excelling
n conducting fast and automated modal identification with minimal computational demands and human intervention. With further
evelopment and implementation, this innovative approach holds great potential for scalability within infrastructural networks,
ffering an efficient technique for condition-based maintenance and damage identification. Future developments include the
pplication of the proposed architecture to more advanced BSS techniques capable of solving the under-determined mixing problem.
dditionally, to address some of the identified deficiencies in the source separation for of non lightly-damped systems and non-
erfectly Gaussian excitations, more sophisticated (non-Hermitian) diagonalization approaches will be explored. Finally, owing to its
ow computational demands, their implementation into miniaturized micro-controllers may hold great potential for quasi real-time
nline modal identification.
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