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The world is complex and ever-changing. We are bombarded by large 

numbers of stimuli that generate ambiguous patterns in our sensory 

receptors, to which we usually need to give fast and effective responses. To 

face this complexity and ambiguity, among other things humans use the 

capacity to anticipate what is about to happen before it does. Indeed, it is 

widely assumed that preparing for incoming information improves 

performance (Barton et al., 2006). However, some fundamental questions 

arise from this seemingly evident statement. How does preparation improve 

performance? Does it entail the representation of specific incoming 

information? And, crucially, is proactive preparation a unified process, or does 

it recruit dissociable mechanisms in different cognitive contexts? 

To exemplify this last question, we can describe two scenarios. For the first 

one, let us think about someone who has been to a movie theatre. When the 

movie is over and they are ready to leave, they find out that it is heavily 

raining. With no umbrella or solution in sight, they decide to take a taxi to get 

home. It is then logical to think that, before they see a taxi, they will actively 

look for it and that in doing so, the image, idea, or representation of a taxi could 

presumably take place in their brains. This will help them detect a taxi as soon 

as it enters their visual field. Now, in a different situation, this same person 

has taken a plane, and has just landed at the airport. In this case, they do not 

actually need a taxi, since they already booked the bus ticket to get to the city. 

However, when they leave the airport, they see a long line of tractors waiting 

in line to pick up passengers, right where taxis are supposed to be. They would 

undoubtedly be surprised. But why? Although it was not connected to their 

current goals, as they approached the exit of the airport, they had an image, 

idea, or representation of what should be lining up at the door. They were, 

again, prepared to see taxis. But in mechanistic cognitive terms, was the 

representation of the taxi equal when it was relevant for their goals than when 

it was just more likely to appear, but behaviorally irrelevant? This thesis is 

composed of three studies in which we approached this question by applying 

multiple analysis techniques to Electroencephalography (EEG) and functional 
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Magnetic Resonance Imaging (fMRI). To do so, we directly contrasted the 

anticipation of category-specific information in two fundamental cognitive 

contexts: selective attention (information relevance) and perceptual 

expectations (information probability).  

In this thesis preparation is framed as a crucial top-down phenomenon. 

Notably, influential models have proposed diverse mechanisms through 

which anticipatory patterns interact with stimulus inputs to guide perception. 

Our work is structured around two of the most relevant ones: the Biased 

Competition model (Desimone & Duncan, 1995) and the Predictive Processing 

framework (Ficco et al., 2021; Friston, 2005). Nevertheless, these models 

currently do not address the interrelation between different preparatory 

phenomena or whether they share common or distinct underlying top-down 

mechanisms. The following pages contextualize the theoretical and empirical 

background that supports the research presented in this thesis. We begin by 

describing the relevance of endogenous brain processing and several of its 

manifestations, such as working memory and cognitive control. Then, the 

focus shifts to preparation as form of top-down processing, highlighting the 

nature of anticipatory representations. Finally, attention and expectation are 

introduced as two phenomena often conflated, which are crucial to 

understand the nature of proactive anticipation.  

1.1. The proactive brain: control, attention and working memory 

The notion that there are two main forms in which the brain processes 

information is not new. Early notions of this dichotomy distinguished between 

automatic and conscious processing (Posner & Snyder, 1975). The idea was 

that automatic processes are stimulus-driven, and are enacted as a 

consequence of perception, while conscious processes are governed by 

internal goals. However, more frequent accounts do not stablish the 

distinction based on automaticity, since automatic responses can also arise 

from internal states (de Lange et al., 2018). The specific distinction usually 

depends on the field of study. In cognitive control research they are frequently 
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labeled reactive vs. proactive (Braver, 2012), highlighting the agency of 

individuals in that type of tasks. In attention, it is common to find an 

endogenous vs. exogenous distinction (Fernández et al., 2022), which focuses 

on the source of attentional orienting, either the stimulus or internal goals. 

Last, within the predictive processing framework, such distinction is often 

termed bottom-up vs. top-down (Gordon et al., 2019), which highlights the 

hierarchical nature of the cerebral cortex and the direction of information 

processing. All these definitions embrace ground rules about brain function 

that make these dichotomies plausible. First, there are different pathways for 

each form of processing, which originate in different regions. Second, the brain 

is organized hierarchically, such that lower levels of this hierarchy process 

stimulus information with high detail, while higher levels process with higher 

abstraction and integration (Rauss & Pourtois, 2013). And third, the two flows 

of information processing interact and influence each other. Crucially, 

proactive/endogenous processing, as indicated before, can happen in at least 

two manners. Although proactive cognition can be thought of a system that is 

primarily based on goals, internal knowledge of the statistical regularities of 

the world can also influence decision making and preparation, which has been 

extensively explored by predictive coding accounts (Summerfield & Egner, 

2009). In the following paragraphs, we briefly summarize crucial findings in 

proactive processing, focusing on cognitive control, attention and working 

memory, and how they set the bases to study anticipation. We will go back to 

predictive processing at the end of this introduction, and directly contrast it 

with selective attention.  

The conceptualization of cognitive control was one of the first attempts to 

highlight top-down processing as a mechanism that allows the 

implementation of specific cognitive programs guided by internal goals 

(Posner & Snyder, 1975). Currently, the term defines the set of mechanisms 

that guide behavior and thought in accordance to goals (Braver, 2012). 

Specifically, cognitive control, also referred to as executive functions or 

executive control, has been proposed to encompass three main functions: 
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shifting, inhibition and updating (Diamond, 2013; Miyake et al., 2000). Shifting 

refers to the ability to dynamically switch tasks, and was one the main 

functions ascribed to cognitive control in earlier models (Norman & Shallice, 

1986), whereas inhibition is related to avoiding “dominant, automatic, or 

prepotent responses when necessary” (Miyake et al., 2000, p. 57). Finally, 

updating involves two crucial and interrelated functions: working memory 

(WM) and selective attention (Diamond, 2013). A robust finding in cognitive 

control is the existence of a wide network of regions that are recruited in 

contexts when control is needed. It is known as the Multiple Demand Network 

(MD, Duncan, 2010), and has been proposed to be split into two main sub-

networks (Dosenbach et al., 2007; Palenciano et al, 2019). The frontoparietal 

network (FPN) includes the dorsolateral prefrontal cortex (DLPFC) and the 

Intraparietal Sulcus (IPS), and would be related to transient task switching 

and within-trial adjustments, being hence more related to reactive control 

(conflict and error processing), while the other involves the dorsal anterior 

cingulate cortex (dACC), the frontal operculum and rostrolateral prefrontal 

cortex (RLPFC). This last network, known as the cingulo-opercular network, 

has been related to the anticipation and tonic maintenance of different task 

demands and rules in cue-target paradigms in which cues give information 

about changes in task rules (González-García et al., 2016).  

As stated above, attention can be considered a function that serves cognitive 

control, specially tuned to select relevant information in a system with limited 

capacity (Mackie et al., 2013). Although William James famously stated that 

“everyone knows what attention is” (James, 1890), the reality is that there are 

many different interpretations of the actual implications of the term (Hommel 

et al., 2019). Here, we consider attention as “the processes that allow an 

individual to select and focus on particular input for further processing while 

simultaneously suppressing irrelevant or distracting information” (Stevens & 

Bavelier, 2011, p. 30). A well-known theoretical model of attention proposes 

that it is composed of three specific networks: alerting, executive control, and 

orienting (Posner & Petersen, 1990). The alerting network sets (phasic 
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alerting) and maintains (tonic alerting or vigilance) a general state of 

activation of the cognitive system, supported by right lateralized broad 

regions such as the thalamus and frontal and parietal cortices. The executive 

control network deals with interference at the moment of target processing, 

and is theoretically similar to proactive and reactive cognitive control, 

including similar regions to the MD (Braver, 2012; Dosenbach et al., 2008; 

Petersen & Posner, 2012). The orienting network supports the ability to select 

task-relevant information. It is divided into two separate networks: the 

ventral one consists of the temporo-parietal junction (TPJ) and the ventral 

frontal cortex (VFC), and has been linked to exogenous attentional capture. 

The dorsal attention network, on the other hand, consists of the IPS, superior 

parietal lobule (SPL) and the frontal eye fields (FEF), and has consistently 

been linked to endogenous attention. Importantly, endogenous orienting (or 

selection) of attention has been related to top-down connections between the 

FEF and the primary visual cortex (V1) in anticipation of eye movements, thus 

influencing perceptual processing (Pooresmaeili et al., 2014). Moreover, the 

orienting network has been proposed to work by biasing perceptual areas 

towards relevant stimuli while suppressing irrelevant information, after 

target onset (ventral network) and, crucially, before (dorsal network, Mackie 

et al., 2013). Noteworthy, this mechanism is akin to the predictions made by 

the influential Biased Competition model of selective attention (Desimone & 

Duncan, 1995), which we describe with more detail below.  

In all of the crucial functions that can be carried in an endogenous manner, an 

ability to maintain, flexibly organize, and prioritize information, either task 

related rules or relevant features or spatial locations is implicitly assumed. 

This ability is called working memory (WM), and has been consistently related 

to the FPN, particularly to the prefrontal cortex a posterior parietal cortex 

(D’Esposito & Postle, 2015; Nir-Cohen et al., 2020) as well as perceptual 

regions (Ranganath et al., 2004). Areas of the FPN show increased activity 

when the contents of working memory are maintained or updated, regardless 

of the specific object (Roth et al., 2006), and it has been found that its 
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performance can be modulated by cognitive control, as it acts as a gating 

mechanism that allows relevant information to enter WM (Boag et al., 2021). 

Overall, regions of the FPN can represent task rules, goals, or object categories. 

Moreover, early work found that visual regions of the occipitotemporal cortex 

linked to the representation of specific object categories, such as the so-called 

fusiform face area and parahipocampal place area, are active while 

maintaining face and house information in WM (Ranganath et al., 2004). This 

finding has been supported by work using multivariate analyses, that have 

shown that maintained information can be decoded from a range of stimulus-

specific regions (e.g. Lee et al., 2013; Sreenivasan et al., 2014; see D’Esposito 

& Postle, 2015 for a detailed review). Taking all of this into account, other 

perspectives of the bases of WM have proposed that it does not necessarily 

rely on a specific network, but is better described as the result of the 

interaction between control, attention and perceptual regions (Bledowski et 

al., 2010).  

Altogether, these findings suggest that proactive cognition is the result of a set 

of varied but highly interconnected mechanisms. A possible mechanistic 

description of a situation where proactive control is needed could unfold as 

follows: cognitive control represents task rules and allocates resources to the 

attentional networks that will be needed to achieve a specific goal, alertness 

prepares certain systems to give a fast response when a target is shown, while 

the orienting system of attention (or selective attention) represents the 

stimuli that will be relevant by maintaining its features active in perceptual 

regions through WM. These features can flexibly change thanks to adaptative 

gating systems exerted by cognitive control through the FPN. An outstanding 

question, however, is what sort of cognitive and neural architecture can 

support these top-down computations without suffering from a recursive 

homunculus argument, a topic that we will go back to in the discussion. The 

main take out from this general picture is our ability to hold information that 

is relevant to internally generated goals in the absence of direct perceptual 
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stimulation, to give efficient responses. We can prepare, and we do so based 

on our goals or prior knowledge. 

In the following section we will lay the focus on proactive preparation, why is 

it important, what paradigms have been used to measure it, and what models 

have attempted to explain how it affects perception and action.  

1.2. Important considerations in the study of preparation 

Both proactive control and predictive coding contribute to preparatory 

effects, as evidenced by reports of neural preparatory activity that has been 

shown for a plethora of processes, including cognitive control (Baines et al., 

2011; González-García et al., 2016; Hebart & Baker, 2018), attention 

(Battistoni et al., 2017; Kastner et al., 1999; Nobre & Serences, 2018), 

expectation (Aranda et al., 2010; Kok et al., 2017), or WM (Koshino et al., 2015; 

van Driel et al., 2017). This preparatory activity often consists on the finding 

that incoming relevant, probable, or cued information is represented in the 

brain in a delay period that frequently follows a cue (Battistoni et al., 2017). A 

consistent observation in cognitive neuroscience is that anticipation 

preactivates brain regions partially overlapping with those engaged in 

subsequent stimulus processing. This phenomenon transcends various 

cognitive domains. Selective attention cues (Battistoni et al., 2017; Nobre & 

Serences, 2018) preactivate specific shape patterns in visual cortex (Stokes et 

al., 2009), relevant regions of space (Giesbrecht et al., 2006), and object-

selective (Peelen & Kastner, 2011; Soon et al., 2013) and category (Esterman 

& Yantis, 2010; González-García et al., 2018) perceptual regions. Relatedly, 

perceptual expectation cues lead to the preactivation of specific templates of 

oriented gabors (Kok et al., 2017), direction (Ekman et al., 2017), motor 

patterns (de Lange et al., 2013) or abstract shapes (Hindy et al., 2016). 

Although it seems to be a consistent pattern that anticipated information is 

represented in perceptual brain regions, before we go deeper into how 

information is represented in the brain, we will briefly describe our 

operational definition of representation in this thesis. 
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1.2.1. Representations 

In the field of neuroscience, representations, as described by Poldrack (2021), 

can be thought of as the systematic relationship between characteristics of the 

physical internal and external world and the neural activity of the brain. In 

certain cases, the large-scale spatial arrangement of neural reactions aligns 

with the world's structure (isomorphic representations), as seen in the 

retinotopic organization of visual cortex responses (Fishman, 1997) or the 

tonotopic organization in the auditory cortex (Langers & van Dijk, 2012). In 

these, neighboring neurons react to neighboring regions of the corresponding 

stimulus space (e.g. regions that are adjacent in the visual space elicit activity 

in neurons that are also adjacent in V1). However, in other scenarios, like the 

case of place cells in the hippocampus (O’Keefe & Dostrovsky, 1971), the 

overarching spatial arrangement of neuronal responses does not mirror the 

external world. All of this implicitly assumes that every neuron has a 

preference for a certain stimulus or feature in a specific spatial region, the 

receptive field, and that preference evokes increased activity in the neuron, 

which in turn can be measured (e.g. firing rates, increased BOLD signal, etc.). 

In the field of visual perception, preferences can go from simple features such 

as line orientation (Hubel & Wiesel, 1959) to complex stimuli such as faces 

(Kanwisher et al., 1997). However, although a neuron will give the strongest 

response for stimuli in its receptive field, it can fire for stimuli for which it does 

not have a strong preference (Dumoulin & Wandell, 2008). Since popular 

neuroimaging methods such as fMRI or EEG cannot track activity of individual 

neurons, research focuses on “population receptive fields”, which account for 

the features to which a set of neurons (usually, sampled in one or multiple 

voxels, in the case of fMRI) gives the strongest response (Wandell & Winawer, 

2015).  

When studying populations of neurons, some relevant issues come up. Let us 

say we have a set of different stimuli and want to study how they are 
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represented in a certain population. A priori, we have as many explanations 

(dimensions) as neurons are found within that population (Badre et al., 2021). 

However, these dimensions can be reduced to their “representational 

dimensionality”, that is, the smaller number of dimensions necessary to 

account for the variance of such population. There are several methods that 

attempt at finding this minimal dimensionality, by studying the similarity of 

the patterns based on a priori hypotheses. In this regard, multivariate 

methods study the patterns of activity associated with different conditions, 

and allow to stablish different levels of similarity. Hence, if neurons/voxels 

can be grouped based on how similar their patterns of activity towards 

specific conditions are, we can theorize that they “represent” those 

dimensions. One example of these analyses is multi-voxel pattern analysis 

(MVPA, Norman et al., 2006), aimed at decoding different features or objects. 

Within this idea, if two or more conditions can be decoded from a group of 

voxels (that is, the pattern of voxel-wise activity is different in the chosen 

population for each condition), said group might be relevant in representing 

that dimension. Nevertheless, additional considerations and controls need to 

be carefully evaluated, since MVPA is sensitive to small changes in variance 

that may be unrelated to the experimental dimensions to classify (Hebart & 

Baker, 2018). This notion has challenged the aforementioned assumption of 

stimulus specific regions like the fusiform face area, where stimuli other than 

faces can also be decoded (Haxby et al., 2001). Moreover, this method is not 

only restricted to perceptual representations, since it has also been used to 

find different task sets in parietal and frontal regions (e.g. González-García et 

al., 2016; Hebart et al., 2018; Palenciano et al., 2019), highlighting the great 

variability in which representations can take place. Other forms of studying 

this variability go to further lengths and analyze the contribution that several 

representational dimensions can have on the variance of neural activity. This 

is the case of representational similarity analysis (RSA, Kriegeskorte et al., 

2008), which measures how similar stimuli or conditions are to each other, 

and how this similarity reflects specific representational profiles. Crucially, 

representations can happen in the absence of visual stimulation, and are 
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rooted in the same regions as actual perception. This has been shown in the 

context of WM (e.g. Lee et al., 2013), mental imagery (e.g. Cichy et al., 2012; 

Dijkstra et al., 2017) and anticipation (Battistoni et al., 2017), although this 

notion has also been challenged (Pace et al., 2023; Theeuwes, 2013).  

1.2.2. Univariate and multivariate analyses 

Throughout this introduction we mentioned several neuroimaging results 

that support the work presented here. However, these results come from 

different analysis methodologies which result in different theoretical 

implications, namely univariate and multivariate methodologies. Moreover, 

they arguably stem from different analysis philosophies (see Hebart & Baker, 

2018 for a detailed review) 

Univariate analyses have dominated neuroimaging research for decades. 

Their focus is on studying brain activations from an activation-based 

philosophy. That is, the question that a researcher aims to respond with these 

analyses regards whether the brain is more or less active during certain 

conditions, assuming that higher activation implies a greater contribution of 

that region to a specific cognitive process. If a neuron shows a higher fire rate, 

that neuron is interpreted to be more engaged in the condition of study. 

Similarly, more BOLD signal on an fMRI study, larger voltage amplitudes on an 

ERP or more power in a certain frequency in a time-frequency analysis are all 

interpreted as involvement of a brain feature into the research condition 

(Hebart & Baker, 2018). 

Conversely, multivariate analyses gained much popularity in the last two 

decades (Woolgar et al., 2016). They were popularized with the initial multi-

voxel pattern analyses (Haxby et al., 2001), and later representational 

similarity analyses (Kriegeskorte et al., 2008) for fMRI data. Crucially, both of 

these methodologies can be applied to a diverse set of neuroimaging 

methodologies such as M/EEG (Grootswagers, Wardle, et al., 2017; King & 

Dehaene, 2014). Unlike univariate methods, multivariate analyses are usually 

framed within information-based philosophies, in which any difference in the 
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patterns of activity between two variables (e.g. voxel similarity, variance or 

electrode voltage patterns) can be used to argue that two variables are 

different in a certain condition, and consequently, that this condition is being 

represented in the brain. This feature leads to the assumption that 

multivariate analyses are more sensitive to subtle information changes, since 

they combine data from multiple sources of variability (e.g. voxels or 

electrodes; Hebart & Baker, 2018). This has made them fundamental to study 

brain activity in instances where little activity changes are predicted across 

different conditions, such as anticipation of different objects (e.g. González-

García et al., 2016; Peñalver et al., 2023; Stokes et al., 2009). 

1.3. Paradigms and behavioral relevance of preparation 

Among the overwhelming number of psychophysics paradigms than can be 

used in cognitive science only a few are suited to study anticipations. These 

should 1) elicit anticipatory activity, by giving information about incoming 

stimulation, 2) be flexible, so that they can accommodate a number of different 

tasks with minimal change to the design and 3) induce a behavioral response 

that allows testing the effectiveness of being prepared. Cueing (or cue-target) 

paradigms have been used in a large number of experiments with different 

purposes, which makes them ideal to study anticipatory processing 

(Battistoni et al., 2017; Feuerriegel et al., 2021). In these tasks, cues usually 

advance some characteristic of the target that helps with its detection or 

categorization. This characteristic can be the spatial location (e.g. Posner, 

1980; Soto & Blanco, 2004; Theeuwes & Van Der Burg, 2007), orientation of a 

grating (Kok et al., 2012, 2017), or the category to which stimuli belong (Stein 

& Peelen, 2015), among many others. In this section we outline some of the 

behavioral effects that have been found in two contexts using this paradigm, 

depending on the type of information that cues provide: probability or 

relevance. 

Overall, when the cue predicts with a certain probability any characteristic of 

incoming stimulation, the results consistently show faster reaction times and 
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higher accuracies when said prediction is correct, or valid (Stein & Peelen, 

2015; Posner, 1980; Kok et al., 2012; but not always, see Kok et al., 2017). This 

has been interpreted as increased perceptual sensitivity to cued targets 

(Rungratsameetaweemana & Serences, 2019). 

 In selective attention, cues give information about relevant target 

characteristics, such as location, orientation, color, or motion direction 

(Battistoni et al., 2017). Although there is a large body of research that 

attempts at measuring attention by manipulating the probability of certain 

target features, those results might be conflated with expectation effects (see 

below). Here, we only show studies where effects cannot be attributed to 

probability. In these studies, it is complicated to observe effects on behavioral 

performance measures, since uncued (ignored, unselected or unattended) 

trials usually receive different (or no) responses than cued ones. Indeed, 

several studies employ paradigms where cueing is used to elicit a neural 

attentional response, but behavioral performance acts as a correlate of 

attention without cueing instances to compare (Martinez-Trujillo & Treue, 

2004; Treue & Maunsell, 1999). For instance, Stokes et al. (2009) designed a 

task where a cue gave information about a relevant target, either an “X” or an 

“O”, and participants responded whether the following stimulus matched the 

information given by the cue. This was used to elicit neural anticipatory 

patterns for the attended stimulus, and behavioral accuracy was reported as 

evidence that participants were sufficiently engaged in the task. Similarly, 

Scolari et al. (2012) designed a task in which a central cue would indicate to 

respond to the orientation of a grating, its contrast or the identity of a letter. 

All trials where perceptually equated regardless of the attended feature, and 

behavior across the three conditions was only compared to ensure that all 

were equally difficult. Other studies that study attentional selection usually 

focus on what characteristics of the cue better help to select certain stimuli. 

Research suggests that when individuals are cued with prior information 

about a particular stimulus feature (vs. when the cue is not present, or it is 

uninformative), it improves their ability to discriminate and identify that 



 

 31 

feature effectively. For instance, (Yeshurun & Carrasco, 1999) manipulated 

the relative distance of a spatial cue with respect to the target where it was 

most effective. In their experiment the cue could appear in one out of four 

quadrants, and although the target would always appear in the selected 

quadrant, they manipulated the cues’ excentricity, and found that the closer 

the cue was to the real location of the target, the better the response. Liu et al. 

(2007) showed that attention to locations is deployed faster than attention to 

certain features, and that both benefit from longer cue-target intervals. In 

another example, Wolfe et al. (2004) showed that in challenging visual search 

tasks where a target needs to be distinguished from similar distractors, prior 

knowledge of the target's features enhances performance if the cue is identical 

to the target vs. when the cue is a descriptive word.  

Altogether, cue-target paradigms have proven to be effective to elicit 

anticipatory estates, although the behavioral consequences depend greatly on 

the type of information that cues provide.  

1.4. How similar is preparation to perception? 

As presented above, there is a large body of research that suggests that 

anticipatory and sustained representations take place in perceptual regions 

tuned to the prepared stimulus (Lee et al., 2013; Sreenivasan et al., 2014; 

Stokes et al., 2009; Giesbrecht et al., 2006; Peelen & Kastner, 2011; Soon et al., 

2013; Esterman & Yantis, 2010; González-García et al., 2018). However, it is 

not clear whether these representations are similar to perception of the actual 

stimulus. Noteworthy, the study of the representational characteristics of top-

down maintenance and perception has gone hand by hand with multivariate 

analyses. One of particular relevance is the canonical template tracking (CTT) 

procedure (Palenciano et al., 2023) that employs an independent task to 

assess through cross-classification the level of similarity between specific 

cognitive features (e.g. anticipation, motor preparation, imagery) and 

perception.  
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A field that has put significant efforts into solving this question is the study of 

visual imagery. For example, Cichy et al. (2012) demonstrated that imagery 

and perception share representations by training a classifier during an 

imagery task and then testing it during stimulus perception. Significant 

generalization was interpreted as evidence of similar representations. 

Relatedly, Dijkstra et al. (2017) found that the vividness of imagery depended 

on the overlap with perception in visual regions. Moreover, they later showed 

(Dijkstra et al., 2019) that although the regions involved in both domains are 

similar, the functional connectivity measured with dynamic causal modelling 

differed. Particularly, the inferior frontal cortex modulated the fusiform gyrus 

in both perception and imagery, but had a stronger modulatory effect in the 

latter. In addition to these results, other models propose different underlying 

mechanisms for each. Essentially, perception would act mostly through 

bottom-up cortical excitatory mechanisms, while mental imagery would use 

top-down inhibitory connections as a mechanism to construct perception-like 

visual representations (Koenig-Robert & Pearson, 2021; Pace et al., 2023).  

Regardless of specific cognitive process, most models contend that top-down 

signals arise from associative regions (such as FPN in WM) and later induce 

specific representations in downstream sensory cortices. But how is bottom-

up and top-down information represented in the same regions simultaneously 

and still maintain a similar representational structure? An accepted 

explanation is that information travels through different cortical layers (Self 

et al., 2019), which allows two signals with different origins to converge in the 

same brain region. These layers establish two types of connections. On the one 

hand, there are short connections between the layers within the same cortical 

column, which allow them to communicate with each other. On the other hand, 

they have long-range connections, at a greater distance, with neurons of the 

same layer in different regions of the brain. Specifically, bottom-up 

feedforward sensory information moves primarily through the central layers, 

while top-down feedback signals move through the peripheral ones. Studies 

employing laminar fMRI (Lawrence et al., 2019), have shown that perceived 
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information can be decoded from central layers in V1 and V2, while non-

perceived but contextual information (relevant, likely, or remembered) is 

decoded from external cortical layers (Muckli et al., 2015; Ortiz-Tudela et al., 

2023; Petro & Muckli, 2017). Thus, top-down anticipatory feedback 

information could be represented in the same regions as bottom-up 

feedforward signals, but in different cortical layers.  

So far, we have shown that top-down anticipatory representations may take 

place in similar regions as perceived information, they appear in several 

cognitive contexts and seem to be enacted through feedback connections from 

higher order regions. However, an essential question is whether anticipated 

information is represented in a similar manner regardless of the context, or 

whether contextual factors also modulate anticipatory preparation.  

1.5. One or different forms of representing perceptual information? 

Attention vs. Expectation 

Among the several top-down factors that influence perceptual processing, 

from anticipations to early sensory activity, two are of special relevance. On 

the one hand, some stimuli are more relevant to our behavioral goals than 

others. In the example we showed at the beginning of this introduction, we 

may need to find a taxi on a rainy day. On the other, we have prior knowledge 

about the probability of a certain stimulus appearing in a specific context. For 

instance, we expect to find a line of taxis near the airport entrance. The first 

context is related to selective attention, while the second one refers to 

perceptual expectations (Rungratsameetaweemana & Serences, 2019; 

Summerfield & Egner, 2016). Although both phenomena are closely related 

(Summerfield & Egner, 2009), the study of attention has been prominent in 

cognitive science since the early beginnings of the field, such as the well-

known quote by William James “Everyone knows what attention is” (James, 

1890). On the contrary, although the interest on expectations also started at 

the beginnings of experimental psychology, with von Helmholtz in 1867 

coining the term “unconscious inferences” to describe the effect of learned 
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regularities on visual perception, this notion lost momentum, and for decades 

the terms attention and expectation ended up being used more or less 

interchangeably (Summerfield & Egner, 2009). For instance, the classical 

Posner attention cueing paradigm (Posner, 1980) measures attention by 

manipulating the expectations of where a target might appear. However, the 

study of expectations regained interest in the last years (Friston, 2005), and 

recent accounts dissociate the two terms. Attention refers to features that are 

behaviorally relevant, without being more likely, and expectation refers to 

features that are likely to occur, regardless their particular behavioral 

relevance (Summerfield & Egner, 2009). Understanding their influences in 

anticipatory representations is crucial to understand whether preparation is 

a unified or heterogeneous mechanism. Hence, in this last section we 

introduce the two terms, their effects during anticipations and target 

processing, the main theoretical models that have attempted to describe them, 

and previous research that has studied their interactions and differences.  

1.5.1. Selective attention 

The effects of preparatory attention have been studied in a variety of 

modalities, from single cell recordings in monkeys, to M/EEG and fMRI in 

humans. For example, in two single cell studies, Chelazzi et al. (1993, 1998) 

recorded inferotemporal (IT) neurons while monkeys performed memory-

guided visual search tasks with complex stimuli. Neurons exhibited higher 

activity during the delay period following cues indicating behaviorally relevant 

objects that they were tuned to, reflecting the maintenance of specific contents 

in preparation for visual search. Human M/EEG studies have illustrated the 

role of alpha activity in anticipatory attention. Snyder & Foxe, (2010) showed 

alpha increases in color and motion selective cortices when the specific feature 

was unattended. A similar result was found for faces and oriented gratings 

(Jokisch & Jensen, 2007). These results have been interpreted as alpha 

reflecting the top-down suppression of irrelevant or distracting information 

(Battistoni et al., 2017). Research using fMRI expanded on these findings, 
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revealing feature-specific increases in neural activity during preparatory 

phases. For instance, cues directing attention to color or motion led to 

corresponding activity increases in the relevant brain regions (Chawla et al., 

1999). Stokes et al. (2009) found that it was possible to classify to what letter 

(“X” vs. “O”) participants were cued to attend. In addition, (Peelen & Kastner, 

2011) found a similar effect in naturalistic scenes, and crucially, were also able 

to correlate the results of prestimulus classification in object selective cortex 

to subsequent behavioral performance.  

During target processing, evidence often suggests that attended stimuli elicit 

increased activations (Rungratsameetaweemana et al., 2018). EEG research 

has demonstrated larger voltage amplitudes for attended information 

compared to ignored one in parietal and frontal electrodes in early latencies 

(around 200 ms), such as positions (He et al., 2004) or words (Perrone-

Bertolotti et al., 2020). Additionally, various oscillatory patterns have been 

linked to attention: increased Theta (4-8 Hz) power in frontal and medial 

electrodes in situations requiring cognitive control, such as distractor 

inhibition (Cavanagh & Frank, 2014), decreased Alpha (8-12 Hz) power and 

synchrony for selected stimuli in occipital and parietal electrodes (e.g. 

Bagherzadeh et al., 2020; Banerjee et al., 2011; Feng et al., 2017), and 

enhanced Gamma power (Gruber et al., 1999) and synchrony (Doesburg et al., 

2008) also for selected stimuli in occipital electrodes between 200 and 300 

ms. Studies employing fMRI have frequently observed increased cortical 

activity for relevant stimuli in occipitotemporal and parietal regions in both 

non-human (Bichot et al., 2005; Burrows et al., 2014; Chelazzi et al., 1998; 

Cohen & Maunsell, 2011) and human (Kastner et al., 1999; Peelen & Kastner, 

2011; Serences et al., 2004) primates.  

Altogether, these findings support frameworks such as the biased competition 

theory (Beck & Kastner, 2005; Desimone & Duncan, 1995). This model argues 

that, when there are different stimuli in the sensory field, they compete for 

representational resources. Top-down selection increases cortical sensitivity 

to the most relevant stimuli, while suppressing activity of neurons tuned to the 
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ignored ones. These biases happen through cortical templates, which are 

“short-term descriptions” (Desimone & Duncan, 1995, pp. 199-200) of the 

relevant features. These templates would be generated in prefrontal regions 

during the prestimulus period, are held in WM, and induce top-down biases in 

downstream regions, thus increasing sensitivity to relevant stimuli.  

1.5.2. Expectation 

Cues providing probabilistic information also lead to the activation of specific 

templates that later bias further processing. Kok et al. (2014) found stimulus-

specific activity in V1 when a stimulus was expected, but not shown. Moreover, 

they later used EEG (Kok et al., 2017) and found that it was possible to decode 

the most probable orientation of a gabor after it had been predicted by an 

auditory cue. Similar results have been found for direction (Ekman et al., 

2017), motor patterns (de Lange et al., 2013) or abstract shapes (Hindy et al., 

2016).  

However, contrary to attention, it is a common finding that during target 

processing perception of probable stimuli induces activity decreases (or, 

conversely, unexpected information induces increases), a phenomenon often 

labeled “expectation suppression”. EEG correlates evoked by probable 

information, such as the mismatch negativity (Garrido et al., 2009; Pazo-

Alvarez et al., 2003), are thought to reflect its reduced processing compared to 

unexpected one. Similar effects where novel stimuli generate larger EEG 

amplitudes than expected ones have also been found (e.g. Manahova et al., 

2018). Likewise, oscillatory activity appears to reflect coincident effects. Such 

is the case for midfrontal Theta power, associated with inhibition and control 

(Cavanagh & Frank, 2014), which increases in contexts of unexpectedness in 

oddball and reinforcement learning paradigms (Cavanagh et al., 2012). In 

addition, Gamma power has been found to decrease when similar stimuli are 

repeated over time (Brunet et al., 2014). Relatedly, studies using fMRI have 

found reduced activations for probable target stimuli in regions such as V1 and 
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lateral occipital cortex (e.g. Kok et al., 2012; Walsh & McGovern, 2018; see 

Feuerriegel et al., 2021 for a detailed review).  

One of the strongest theoretical frameworks that attempts at explaining how 

prior probabilistic knowledge influences cognitive processing is the predictive 

processing framework (Friston, 2005). This model stems from the 

aforementioned idea of cortical organization, and has a great influence on the 

study of preparation in general and expectations in particular. The model 

proposes that at every moment the brain acts as a Bayesian predictor. Previous 

knowledge about statistical regularities would serve as prior, which travels 

top-down through peripheral cortical layers to downstream areas, facilitating 

perception of probable stimuli. Simultaneously, bottom-up signals would 

travel from sensory organs through central layers, where inter-layer signals 

will be influenced by and influence predictive information. The mismatch 

between predicted signals and bottom-up information would generate 

“prediction errors”, which are theorized to update predictions, generating 

posteriors that can later on act as priors and flexibly adapt top-down learning 

and facilitate responses (de Lange et al., 2018).  

This fits an explanation of the effects of anticipations and expectation 

suppression. Top-down signals would preactivate neurons tuned to probable 

stimuli in sensory regions in the prestimulus interval. Then, if the prior is 

correct, bottom-up signals would carry small prediction errors, which would 

induce little activation. Conversely, false expectations would need more 

activity to update top-down knowledge, and thus lead to increased activations. 

However, the nature of the precise neural mechanisms that generate 

expectation suppression is still debated. There are two main and, in principle, 

mutually exclusive explanations (de Lange et al., 2014; Press et al., 2020). The 

first one proposes that the effect is a consequence of the suppression of neural 

responses that are similar to top-down predictions, and therefore, redundant 

(Murray et al., 2004; Friston, 2005). This results in a “dampening” of neural 

populations tuned to predicted stimuli, and hence poorer representations. The 
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second explanation proposes that the decrease in activation is explained by a 

decrease of activity of neurons tuned away from expected information, and a 

“sharpening” of the representation, thus leading to better representational 

activity (Kok, Jehee, et al., 2012). Both explanations have received support 

from the literature (Gonza lez-Garcí a & He, 2021; Kok, Jehee, et al., 2012; Press 

et al., 2020; Richter et al., 2018; Walsh & McGovern, 2018). Crucially, this latter 

mechanism has been related to findings in selective attention that point to 

sharper representations for selected/relevant stimuli in frontoparietal and 

perceptual regions (Goddard et al., 2022; Woolgar et al., 2015). Hence, 

category-selective neurons would increase their sensitivity to both relevant or 

probable categories.  

1.5.3. Interactions and differences between relevance and probability 

Given their close relation, a growing body of literature has studied how 

attention and expectations interact, and, crucially, how they differ. In this last 

section we briefly review the studies that have attempted at examining the 

effects that attention and expectation have on each other, and finally, what 

evidence accounts for the notion that they are indeed different orthogonal 

processes.  

The studies that have been carried out to examine the interaction between 

relevance and probability often lay under the predictive processing 

framework. It considers two possible theories that account for the effects of 

attention. The first one proposes that attention acts as a filter, sharpening the 

activity of populations tuned to probable features or locations, increasing 

neural gain in such populations. Alternatively, attention might increase the 

strength of predictions, increasing the weight of sensory evidence after target 

perception when probable stimuli match relevant features (Feldman & Friston, 

2010; Summerfield & Egner, 2014). Evidence has mostly supported this last 

view (Kok, Rahnev, Jehee, Lau, & De Lange, 2012; Summerfield & Egner, 2016). 

For instance, Kok, Rahnev, et al. (2012) factorially manipulated relevance and 

probability, by having blocks in which information was more likely to appear 
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in a specific location, and attentional cues in each trials indicating the relevant 

location to respond. They found that attended probable trials reversed the 

expectation suppression effects, and indeed where the ones where activations 

where largest. In the same line Jiang et al. (2013) sought to examine whether 

attention sharpened sensory representations and how this interacted with 

expectations. They found the classification between expected and unexpected 

stimuli was largest when they where attended. This has been demonstrated 

several times (Alilovic  et al., 2019; Auksztulewicz et al., 2017) although there 

is also conflicting evidence (Ekman et al., 2017; Yon et al., 2018). An example 

of competing evidence comes from Richter & de Lange (2019). Using a 

statistical learning paradigm, they showed that expectation suppression 

effects were increased for attended stimuli. They justified this difference with 

previous literature by stating that attention might influence expectations 

differently when there is a competing stimulus or task that can effectively draw 

attention away, compared to stimuli that although task-irrelevant, they might 

capture some attention and bias possible effects. Altogether, although it is 

clear that relevance and probability interact during perceptual processing, the 

exact relationship is still debated. 

Finally, some studies have sought to directly contrast relevance and 

probability effects (Simon et al., 2018). Wyart et al. (2012) orthogonally 

manipulated attention and expectation in a behavioral task in which two 

colored placeholders located in their left and right visual fields could contain 

or not a grating. A retro-cue indicated the relevant placeholder to respond to. 

Before stimulus presentation, a relevance cue indicated the location that was 

most likely to be probed, while a probability cue indicated in which 

placeholder the grating was more likely to appear. They found that although 

both relevance and probability increased detection sensitivity, attention cues 

where most effective in cases of signal present trials, while probability cues 

were effective for signal absent trials. This was interpreted as attention 

functioning as a noise reduction mechanism by enhancing error signals, while 

expectation could boost inputs by sharpening probable stimuli. In another 
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example Zuanazzi & Noppeney (2019) found activation in the FPN for selected 

visual and auditory targets, but no effect for expected visual targets. 

Meanwhile, Gordon et al. (2019) linked selective attention to lower levels of 

the visual hierarchy, and expectations to more complex instances of visual 

perception. Crucially, all of these studies have focused on the effects that 

attention and expectation have during target processing, but have not 

contrasted how they influence anticipatory representations.  
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Chapter II 

GOALS AND HYPOTHESES 
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In the introductory section of this thesis, we have outlined the nature of 

endogenous brain processing and, in particular, the role of anticipatory 

representations in top-down functioning. Even though foreknowledge has 

been frequently studied, the extent to which the anticipation of specific 

information conforms a whole uniform mechanism or a heterogeneous set of 

neural functions that depend on the informational role of the content 

anticipated and the cognitive context is currently unclear. Hence, 

understanding the spatiotemporal dynamics of preparation across contexts is 

crucial to further understand proactive cognition, which is a key aspect of 

human behavior. Moreover, we have highlighted two well-known processes 

that are known to include anticipatory components: selective attention and 

perceptual expectations. Although there is an ongoing debate not only about 

how they interact, but also about whether they are actually indistinguishable 

from one another, literature has seldom directly compared them. Moreover, in 

the cases where these have been contrasted, it has been at target perception 

and response stages. Thus, knowledge of the commonalities and 

dissimilarities of their preparatory stages, and their link with effects observed 

during target processing, is missing.  

The overall goal of this thesis is to advance the knowledge about the nature 

of neural top-down preparation by studying whether it is a uniform or a 

context-dependent brain function. We first addressed this with two parallel 

neuroimaging studies in which we studied and contrasted preparation in 

relevance and probability contexts, using EEG and fMRI. Then, in a third study 

we analyzed target processing in the same paradigm to investigate how 

proactive mechanisms bias neural populations to efficiently process 

information. Specifically, the three studies aimed to answer the following 

specific global questions:  

1) Study I (Chapter 3). What are the temporal dynamics of anticipation? 

Do preparatory representations of stimulus category adapt to 

contexts of anticipated relevance vs. probability? 
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2) Study II (Chapter 4). What are the key brain structures involved in 

category-specific anticipation? Is this preparatory information 

represented in the same regions as actual target perception? How do 

these change across relevance and probability contexts? Are 

anticipatory neural markers linked to behavioral efficiency? 

3) Study III (Chapter 5). How does top-down anticipation influence 

neural populations tuned to specific categories during stimulus 

processing? Is an unexpected stimulus represented similarly to a goal-

(ir)relevant one? 

2.1. Differences between anticipatory representations across 

selective attention and perceptual expectations. Studies I and II. 

The prerequisite goal (G0) was to design a task to study category-specific 

preparation by directly contrasting attention and expectation. This was 

composed of the following sub-goals. G0.1. To develop a cue-target 

experimental paradigm optimized to orthogonally manipulate selective 

attention (relevance) and expectation (probability). G0.2. To equate the two 

conditions at the perceptual and response levels. G0.3. To design the paradigm 

so that it allows performing univariate and multivariate analyses of the 

representational structure of anticipated contents for top-down preparation. 

G0.4. To adapt this paradigm to EEG and fMRI to maximize the particular 

strengths of each neuroimaging method and to perform joint analyses with the 

results of the two experiments.  

2.1.1. Temporal dynamics of anticipatory representations. Study I 

Our primary objective (G1) was to examine the timeline of the mechanisms 

involved in category anticipation and directly contrast them across contexts of 

relevance and probability. More specifically, we had the following sub-goals: 

G1.1. To analyze the influence of endogenous signals on the behavioral 

performance in two relevant cognitive contexts: selective attention and 

perceptual expectation. G1.2. To examine the temporal development of 
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electrophysiological activity associated with the representation of stimulus 

categories in attention and expectation, by means of symbolic signals 

containing information about the stimulus category to be selected, or the most 

probable one, respectively. G1.3. To contrast and detail how evidence of 

information representation differs during anticipation in the two contexts, by 

applying a cross-classification approach to directly compare the neural activity 

patterns underlying the representation of relevant versus probable stimuli. 

G1.4. To examine the reinstatement of perceptual patterns during 

anticipation, by collecting data from an independent localizer and applying a 

Canonical Template Tracking approach. 

Following these goals and the significant differences in target processing 

observed in previous studies (Jiang et al., 2013; Kok et al., 2012; Summerfield 

& Egner, 2009; Wyart et al., 2012), our main hypothesis (H1) was that the 

neural coding responsible for these divergent outcomes should be 

distinguishable at the preparatory stage. Specifically, we had the following 

hypotheses: H1.1. Probable stimuli would elicit faster and more accurate 

responses than non-probable ones. We did not expect differences between 

cued and uncued trials in attention. H1.2. Both manipulations would lead to 

the preactivation of anticipated contents, evidenced by significant anticipatory 

decoding of the two target categories. H1.3. Attention and expectation would 

not cross-classify from one condition to the other, and if they did so, it would 

be at different latencies measured by a temporal generalization analysis. H1.4. 

The level of perceptual reinstatement would differ between the two 

conditions.  

2.1.2. Brain regions involved in specific anticipatory representations across 
domains. Study II 

Our main goal (G2) was to study neural populations involved in anticipatory 

representations of stimuli in attention and expectation contexts, with the 

following subgoals: G2.1. To replicate the behavioral results of Experiment I. 

G2.2. To explore the regions that are differentially recruited during 
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anticipation in relevance and probability contexts. G2.3. To analyze the 

similarity between anticipated information in attention and expectation, by 

performing a cross-classification analysis. G2.4. To examine the level of 

perceptual reinstatement between anticipation and target perception. G2.5. 

To study the behavioral relevance of anticipatory representations. 

Our overarching hypothesis (H2) was that both manipulations would lead to 

context-specific preactivations. We had the following specific hypotheses: 

H2.1. Behavioral performance would be similar to Experiment I. H2.2. Specific 

anticipatory states would be decoded in various brain regions in both contexts, 

including in category-selective regions of the ventral stream. H2.3. 

Classification would not generalize across attention and expectation, 

indicating partially distinct neural mechanisms. H2.4. Preactivations would 

exhibit similarities with target decoding, with these being more pronounced 

in the attention condition. H2.5. Decoding would be positively correlated with 

behavioral performance. 

2.2. Top-down modulations of target stimulus processing in 
attention and expectation. Study III 

In this final study, we sought (G3) to explore the influence of top-down 

mechanisms on the neural activity elicited by the perception of relevant and 

probable stimuli, and to investigate whether such anticipation is consistent 

with either dampening or sharpening accounts. To that aim, we re-analyzed 

the data from the two previous experiments focusing on target locked activity, 

following parallel analysis rationales for each of them. The specific sub-goals 

were the following: G3.1. To find evidence of expectation suppression for 

predicted targets, and attention enhancement for relevant stimuli, by 

contrasting univariate activations across cued and uncued trials in attention 

and expectation. G3.2. To adjudicate between dampened vs. sharpened neural 

responses in attention and expectation, by comparing the classification 

accuracies to cued and uncued targets in both conditions. G3.3. To study the 

temporal stability of the effects and to examine whether generalization to 
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preparation interval varies across cueing conditions. G3.4. To investigate the 

involvement of frontoparietal regions in potential dampening and sharpening 

effects. G3.5. To explore whether attention and expectation affect target 

perception differently or, conversely, whether attention is automatically 

directed to either probable or surprising stimuli.  

Our general hypothesis (H3) was that dampening and/or sharpening effects 

would be different across selection and probability conditions, with the 

following specific hypotheses: H3.1. Selected targets would elicit larger 

activations, while probable stimuli would show reduced activations compared 

to improbable ones. H3.2. Attended targets would elicit sharper 

representations, evidenced by increased decoding for relevant vs. irrelevant 

stimuli. H3.3. In the EEG experiment, sharpened representations would 

generalize worse across different trials and to the anticipatory window. 

Conversely, dampened representations should show better generalization to 

the cue and different trials. H3.4. Visual areas and frontoparietal regions 

would exhibit evidence of dampening and sharpening effects. H3.5. 

Altogether, attention and expectation would elicit a different pattern of 

dampening and sharpening associated to each condition.  
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Chapter III 
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3.1. Summary 

Proactive cognition brain models are mainstream nowadays. Within these, 

preparation is understood as an endogenous, top-down function that takes 

place prior to the actual perception of a stimulus and improves subsequent 

behavior. Neuroimaging has shown the existence of such preparatory activity 

separately in different cognitive domains, however no research to date has 

sought to uncover their potential similarities and differences. Two of these, 

often confounded in the literature, are selective attention (information 

relevance) and perceptual expectation (information probability). We used EEG 

to characterize the mechanisms that pre-activate specific contents in attention 

and expectation. In different blocks, participants were cued to the relevance or 

to the probability of target categories, faces vs. names, in a gender 

discrimination task. Multivariate Pattern (MVPA) and Representational 

Similarity Analyses (RSA) during the preparation window showed that both 

manipulations led to a significant, ramping-up prediction of the relevant or 

expected target category. However, classifiers trained on data from one 

condition did not generalize to the other, indicating the existence of unique 

anticipatory neural patterns. In addition, a Canonical Template Tracking 

procedure showed that there was stronger anticipatory perceptual 

reinstatement for relevance than for expectation blocks. Overall, results 

indicate that preparation during attention and expectation acts through 

distinguishable neural mechanisms. These findings have important 

implications for current models of brain functioning, as they are a first step 

towards characterizing and dissociating the neural mechanisms involved in 

top-down anticipatory processing. 
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3.2. Introduction 

For decades, research in cognitive psychology has studied behavior while 

manipulating external factors, which led to theoretical models that framed 

cognition mostly from a reactive point of view. Recent years have witnessed a 

renaissance of proactive cognition, where endogenous top-down mechanisms 

play a core role in brain functioning. Within this framework, preparation is 

conceptualized as an endogenous function that takes place in anticipation of 

incoming inputs or demands and improves subsequent behavior (Battistoni et 

al., 2017; Gonza lez-Garcí a et al., 2016). Neural preparatory activity has been 

shown for a plethora of processes, including attention (Battistoni et al., 2017; 

Kastner et al., 1999; Nobre & Serences, 2018), expectation (Aranda et al., 2010; 

Kok et al., 2017), working memory (Koshino et al., 2015; van Driel et al., 2017), 

or cognitive control (Baines et al., 2011; Gonza lez-Garcí a et al., 2016; Hebart & 

Baker, 2018). Similarly, influential models have proposed different ways in 

which anticipatory patterns interact with stimulus inputs to guide perception. 

Examples of this are the Predictive Coding (Auksztulewicz & Friston, 2016) or 

the Biased Competition frameworks (Desimone & Duncan, 1995). However, 

currently these models are silent as to how different preparatory phenomena 

relate to each other, and whether they reflect common or diverging underlying 

top-down mechanisms. 

Selective attention and perceptual expectation are complex functions that 

involve top-down and bottom-up elements. Attention refers to the selection of 

relevant information based on specific goals (Nobre & Serences, 2018), while 

expectation involves predictions based on prior probability (Schro ger et al., 

2015). Studies of selective attention have manipulated the relevance of 

information using cues that indicate the stimulus or dimensions to respond 

while ignoring others (Battistoni et al., 2017; Hong et al., 2017; Nobre & 

Serences, 2018; Stokes et al., 2009). Expectation has primarily (but not only, 

see e.g. Summerfield & De Lange, 2014) been manipulated with cues that 

inform about the most probable stimulus (de Lange et al., 2013; Kok et al., 

2017; Wyart et al., 2011). Previous research focusing on the effect of attention 
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and expectations on target processing has shown diverging (brain activity) 

and overlapping (behavioral) results. Although both lead to behavioral 

improvements (Ho et al., 2012; Stein & Peelen, 2015), several studies reveal 

that they can be, at least partially differentiable (Rungratsameetaweemana & 

Serences, 2019; Summerfield & Egner, 2009). Neuroimaging studies so far 

have found differences in contexts of relevance and probability (see 

Summerfield & Egner, 2016), including activity increases for selected target 

stimuli and decreases for expected ones. Another fruitful field of research has 

focused on how they interact, showing in some cases how selective attention 

can modulate the effect of expectations (Alilovic  et al., 2019; Auksztulewicz et 

al., 2017; Jiang et al., 2013; Kok et al. 2012) and a lack of interactions in others 

(e.g. Ekman et al., 2017; Yon et al., 2018). 

Studies that have tried to overcome frequent confounds between attention and 

expectation (e.g. Posner, 1980; Schro ger, 1996) have shown separate roles of 

relevance and probability during target processing (Auksztulewicz et al., 

2017; Gordon et al., 2019; Simon et al., 2019; Wyart et al., 2011; Zuanazzi & 

Noppeney, 2019). On the other hand, research focused on preparatory activity 

of either attention or expectation has provided seemingly overlapping results. 

Cues indicating relevance in selective attention (Battistoni et al., 2017; Nobre 

& Serences, 2018) preactivate relevant regions of space processing 

(Giesbrecht et al., 2006), specific shape patterns in visual cortex (Stokes et al., 

2009), patterns in category (Esterman & Yantis, 2010; Gonza lez-Garcí a et al., 

2018) and object-selective perceptual regions (Peelen & Kastner, 2011; Soon 

et al., 2013). Similarly, cues providing probabilistic information lead to the 

preactivation of specific templates of oriented gabors (Kok et al., 2017), 

direction (Ekman et al., 2017), motor patterns (de Lange et al., 2013) or 

abstract shapes (Hindy et al., 2016). However, all these previous investigations 

are agnostic regarding the potential similarities or differences in such top-

down preparation across relevance and probability anticipation. Unraveling 

the differences in how anticipatory activity in different contexts reflects the 

upcoming information is a necessary step to understand the differences 
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between attention and expectation, and is also essential for theoretical models 

that explain the neural basis of these two phenomena (Auksztulewicz et al., 

2018; de Lange et al., 2018; Desimone & Duncan, 1995). 

In our study, we employed different multivariate pattern analyses of EEG data 

to directly compare the representational structure of anticipated contents for 

top-down preparation in contexts capitalizing on selective attention 

(relevance) or expectation (probability). That is, we examined whether the 

coding of anticipated stimulus content differs on the basis of the type of 

anticipation. To do so, we embedded a sex/gender discrimination in a cue-

target paradigm. Here, depending on the block, cues provided information 

about the upcoming relevance or probability (Egner et al., 2010; Wyart et al., 

2011) of face or name stimulus categories. In addition, we ran an independent 

localizer to study similarities between preparation and perception across 

contexts. Our first goal was to study the anticipatory mechanisms during 

preparation by means of time-resolved representational similarity analysis 

(RSA, Kriegeskorte, 2008). Then, we used multivariate pattern analysis (MVPA, 

Grootswagers, Wardel, et al., 2017) to examine whether anticipated stimulus 

categories are represented with differential fidelity during selected compared 

to probable targets. Next, we used a cross-classification approach to directly 

contrast the patterns of activity underlying the representation of relevant vs. 

probable stimuli. Taking into consideration the striking differences observed 

during target processing in these contexts (Jiang et al., 2013; Kok, Rahnev, 

Jehee, Lau, & De Lange, 2012; Summerfield & Egner, 2009; Wyart et al., 2012), 

our hypothesis was that the neural coding that leads to such different 

consequences should be dissociable from an early processing stage. To further 

understand the proposed differences, we leveraged a Canonical Template 

Tracking approach (Gonza lez-Garcí a et al., 2021; Palenciano et al., 2022; 

Wimber et al., 2015) to observe the extent to which preparation induces the 

reinstatement of overall perceptual information in each condition. Given the 

dissociations between attention and expectation observed during target 

processing (Gordon et al., 2019; Wyart et al., 2011) and the apparent 
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commonalities reported during their top-down preparatory states (e.g. 

Battistoni et al., 2017), our overall hypothesis was that both manipulations 

would lead to the preactivation of anticipated contents but through at least 

partially different neural mechanisms. 

3.3. Methods 

Methods are reported in accordance with the Committee on Best Practices in 

Data Analysis and Sharing (COBIDAS) for M/EEG (Pernet et al., 2018). 

3.3.1. Data and code availability  

Original code has been deposited at Github and is publicly available as of the 

date of submission. Results have been deposited at OSF website. Raw data are 

available online at OpenNeuro. 

3.3.2. Participants 

Forty-eight participants (mean age = 22.06, range = 18-31; 29 women, 18 men, 

1 non-binary) from the University of Granada were recruited and received 

from 20 to 25 euros, depending on their performance. Two additional 

participants were discarded due to low behavioral accuracy (less than 80%) 

or excessive noise in the EEG (more than 20% discarded trials). They were all 

native Spanish speakers, right-handed with normal or corrected vision, and 

signed informed consent prior to participation. Besides, to comply with 

COVID-19 guidelines, the temperature of participants was measured upon 

arrival (always <37ºC), they confirmed to have had no illness symptoms in the 

days prior to the experiment and wore a face mask during the whole session. 

Sample size was calculated to achieve a statistical power of 80% for an 

estimated small effect size (Cohen’s d = 0.3) and three independent variables 

(block x category x cueing). Using PANGEA (Power ANalysis for GEneral 

ANOVA designs, Westfall, 2016) we obtained a minimum of 32 participants to 

be able to detect the block x cueing interaction in reaction times and 
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behavioral accuracy, our main behavioral prediction. To fit the 

counterbalancing scheme, we tested 48 participants. This sample size 

provides an estimated power of 94% under the described parameters.  

3.3.3. Apparatus, stimuli, and procedure 

Stimulus presentation and behavioral data collection were done with The 

Psychophysics Toolbox 3 (Brainard, 1997) on MATLAB (v.2020) in a Microsoft 

PC. Stimuli were presented on an LCD screen (Benq, 1920x1080 resolution, 60 

Hz refresh rate) over a grey background. We employed 160 male and female 

faces (50% each, with ~6ºx9º visual angle, extracted from The Chicago Face 

Database (Ma et al., 2015) plus 160 unique Spanish male and female names 

(50% each, with ~8ºx2º visual angle). Four different geometrical shapes 

(circle, square, rain-drop and diamond with thin black outlines, unfilled, 

~2ºx2º visual angle) were used as cues in the main task. The sound stimuli 

employed in the localizer blocks consisted of four different tones (250, 300, 

350 and 400 Hz).  

The main task was a cue-target paradigm where, depending on the block, cues 

carried information about either the relevance (attention) or the probability 

(expectation) of upcoming face or word targets. Each trial started with the 

presentation of this visual cue. For each participant, and to avoid perceptual 

confounds, two cue shapes (counterbalanced across participants) were 

associated with faces and two with names. Importantly, cue pairs (the cue 

associated with faces and names) changed through the experiment. This way, 

the first cue for faces (e.g. a circle) appeared in half of the blocks with the first 

cue for names (e.g. a square) and the other half with the second cue for names 

(e.g. diamond). The task was to indicate the sex/gender of this target (male or 

female). Participants pressed one of two keys (“a”, “l”, counterbalanced across 

participants) to respond whether or not the target belonged to the gender 

stated at the beginning of each block. Half of the blocks belonged to the 

attention condition, and the other half to the expectation condition. 

Participants were verbally instructed to use the cues in the two blocks to 
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respond as fast as possible while avoiding mistakes. At the beginning of each 

block (Figure 3.1B), they were informed about the block (attention or 

expectation), the target sex/gender (“Is the target male/female?”), and the 

two cues (one for faces and one for names). Importantly, and since attention 

and expectation are involved in almost any act of visual perception, we aimed 

at manipulating one process while keeping the other constant. In attention 

blocks, the cue indicated the relevant stimulus category to select (either faces 

or names). Only if the stimulus belonged to the relevant category (50% trials, 

cued), the participant had to perform the gender discrimination task on the 

target. Otherwise, participants had to answer ‘no’ regardless of the stimulus 

sex/gender (non-relevant category, uncued). Note that this manipulation of 

relevance, where further processing has to be applied only to selected stimuli, 

is similar to that employed in previous literature (e.g. Baldauf & Desimone, 

2014; Saenz et al., 2002; Summerfield et al., 2006; Womelsdorf et al., 2006). 

Therefore, participants had to give an answer to all attention trials, and had 

to be prepared to perform the gender judgment task. Importantly, both 

relevant and non-relevant targets were matched in expectation, as by design 

they appeared with a 50% probability after each attention cue. On the other 

hand, in expectation blocks the cue indicated the probable category of the 

target, with a 75% likelihood (e.g. de Lange et al., 2013; Kok et al., 2017) for 

similar manipulations). Here, participants had to perform the gender 

discrimination task in all trials, whether or not the target was cued. This way, 

both the expected and unexpected targets were equally relevant.  

In every trial of the main task, the sequence of events was as follows: a 50 ms 

cue was followed by a fixed Cue-Target Interval (CTI) of 1500 ms and then the 

target appeared for 100 ms. Trials were separated by 2500 ms intervals. 

Auditory (tone, 400 Hz, lasting for 300 ms) and simultaneous visual feedback 

(words “attention” or “expectation”, depending on the block presented for 500 

ms) appeared in case of a wrong answer 1.3 seconds after target presentation, 

without altering the trials duration. Each trial lasted 4.15 seconds and each 
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block 1.23 minutes. This main task was composed by 32 blocks of 20 trials 

each, or 640 trials in total. 
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In addition, attention and expectation blocks were interspersed with localizer 

ones, used to measure target perceptual processing without overt motor 

activity (adapted from Egner et al., 2010). In these, the same stimuli as in the 

main task were presented. They were preceded by auditory cues that 

predicted either faces or names with 75% validity. Similar to the main task, 

there were two tones predicting faces, and two tones predicting names. One 

of each type was used per block. This manipulation was not used for the 

analyses reported in this work. Participants had to press a key only if the 

stimulus appeared upside down (rotated 180º, 10% of trials equated in 

stimulus category and sex/gender), regardless of cue validity. At the 

beginning of each block, a screen indicated the type of block and the two tones 

for the block. There were 16 localizer blocks of 40 trials each, 640 trials in 

total. The cue lasted 200 ms, the visual stimuli appeared after an ISI of 1500 

ms and stayed onscreen for 100 ms. Trials were separated by 1500 ms 

Figure 3.1. Behavioral task and design (A) Behavioral task: example trial. Participants 

were cued about an incoming target stimulus (a face or a name) with which they 

performed a sex/gender classification task. (B) Block starting screen. In attention blocks, 

the cue indicated the relevant stimulus. Participants performed the judgment on top of the 

screen only if the stimulus matched the cue. In non-relevant trials, participants responded 

with the “no” key. In attention blocks the cues were not predictive of the probability of the 

target (50% faces vs. names) or the response. In expectation blocks the cue indicated the 

probability of the stimulus category, which appeared 75% of times. Participants had to 

perform the judgment regardless of the cue (thus predicted and unpredicted targets were 

equally task-relevant), which carried no response information either. That is, in both 

blocks participants responded in all trials and perceptual details were fully equated. (C) 

MVPA classification rationale. In cue-locked within-block analyses, the classifier was 

trained to differentiate between anticipated (relevant or probable, depending on the 

block) faces vs. names with one pair of cues and then tested on the other, in either attention 

or expectation conditions. Note that classifiers could not use block information to 

differentiate between faces and words, as these were matched in every contrast. Across-

blocks, the classifier was trained with one pair of cues within one condition (e.g., attention) 

and then tested on the other pair of cues within the other condition (e.g., expectation). 
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intervals. Overall, each localizer trial lasted 3.3 seconds and each localizer 

block lasted 2.12 minutes. 

The three types of blocks (attention, expectation and localizer) appeared in a 

fully counterbalanced order, so that that they preceded and followed each 

other an equal number of times. Cues and target stimuli were also fully 

counterbalanced across participants. In total, the whole experimental session 

lasted approximately 80 minutes, with additional practice and EEG 

preparation time. 

3.3.4. EEG data acquisition and preprocessing 

Acquisition 

High-density EEG was recorded with 64 channels mounted on an elastic cap 

(actiCap Slim, BrainVision) at the Mind, Brain and Behavior Research Center 

(CIMCYC) of the University of Granada. Impedances were kept below 10 kΩ as 

recommended by the amplifiers’ manufacturers. EEG activity was referenced 

online to FCz and recorded at a sampling rate of 1000 Hz.  

Preprocessing 

Data were preprocessed using EEGLAB (Delorme & Makeig, 2004) and custom 

MATLAB scripts (Lo pez-Garcí a et al., 2022). EEG recordings downsampled to 

256Hz, digitally low-pass filtered using FIR filter at 120 Hz and high-pass 

filtered at 0.1 Hz. A notch bandpass was applied at 50 Hz and 100 Hz to remove 

line noise and its harmonics. Channels with excessive noise were identified by 

visual inspection and removed from the data (1.85% of channels on average, 

range 0-5). We used different epochs for cue and target stimuli and in each we 

split the data into 3 seconds epochs (-1 to 2 seconds after the onset of each 

stimulus). Then, Independent Component Analysis (ICA) was carried out to 

remove eye artifacts (i.e. blinks and lateral eye movements) using the runica 

algorithm from EEGLAB. Component rejection was guided by visual inspection 
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of scalp maps, raw activity and power spectrum. ICLabel was used for further 

confirmation. In average 1.85 components were removed per participant 

(range 2-4). Next, we performed automatic trial rejection to prune the data 

from non-stereotypical artifacts. It was based on three factors: 1) abnormal 

spectra: trials in which the spectrum deviated from baseline by ±50 dB in the 

0–2 Hz frequency window (sensitive to remaining eye artifacts) or deviated by 

−100 dB or +25 dB in 20–40Hz (sensitive to muscle activity); 2) improbable 

data: the probability of occurrence of each trial was computed by determining 

the probability distribution of values across trials, with a rejection threshold 

established at ±6 SD; (3) extreme values: all trials with amplitudes in any 

electrode out of a ±150μV range were automatically rejected (see Keil et al., 

2014; Lo pez-Garcí a et al., 2020, 2022 for similar preprocessing routines). The 

three methods in sum yielded an average of 8% of rejected trials per 

participant (range 1.8%-19%). Afterwards, the removed channels were 

repaired by spherical interpolation. We then applied common average to re-

reference the data, given its widespread use and its optimal adaptation to high-

density recordings (Pernet et al., 2018). Finally, trials were baseline corrected 

in the -200 to 0 ms prior to stimulus onset.  

3.3.5. Analyses 

Behavioral  

The main task design had three within-subject factors: Block type (attention 

vs. expectation), Cueing (cued vs. uncued) and Stimulus category (faces vs. 

names). We calculated three-way repeated measures ANOVA separately for 

behavioral accuracy and reaction times (RTs) employing JASP (Love et al., 

2019). For each participant, trials with longer or shorter RTs than the average 

± 2 SDs were discarded (11.54% on average). Behavioral results in the 

localizer were not relevant and were just considered as exclusion criteria in 

case of poor performance.  

 



 

 62 

Representational Similarity Analysis 

Representational Similarity Analysis (RSA) allows relating empirical 

multivariate measures of brain activity to theoretical models (Kriegeskorte et 

al., 2008). We performed RSA using voltage values on a subject-by-subject 

basis. Prior to the analyses data were normalized by z-scoring the values 

across all trials, regardless of the condition. We then constructed empirical 

Representational Dissimilarity Matrices (RDMs) every three time points, 

which measure the geometrical distances between all experimental conditions 

(see MVPA section) and, finally, estimated the relationship between empirical 

RDMs and theoretical models. 

RDMs were built with data from eight conditions, yielding 8x8 symmetrical 

matrices. These conditions were all the possible combinations between the 

design variables: cue prediction (faces and names); cue shape (shapes 1 and 2 

for faces, shapes 3 and 4 for names) and block (attention and expectation). We 

employed a Linear Discriminant Contrast (LDC, also known as Crossvalidated 

Mahalanobis Distance, see Walther et al., 2016) as measure of distance 

between conditions, for the following reasons: it is a continuous measure, so 

it is highly reliable, informative, and lacks a ceiling effect; it includes a 

crossvalidation loop, which makes it less prone to biases; and it is centered 

around 0 when the true distance is 0 and therefore it is easier to interpret and 

more generalizable (Nili et al., 2014). We calculated LDC as described in 

(Bueno & Cravo, 2021). For every time point and each pair of conditions, we 

calculated the mean of each channel. This was done in two different datasets 

(train and test), to perform two-fold crossvalidation. We used two-fold 

crossvalidation to minimize computational costs, while avoiding biases due to 

random noise (Walther et al., 2016). The distance between the two conditions 

in the two folds was multiplied by the pseudo inverse covariance matrix 

between the residuals of the first and the second conditions in the training set, 

and the distance values were then averaged across the two folds. 
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Theoretical RDMs (Figure 3.3A) were built based on the expected distances 

(assigning values of 0 or 1) between conditions, according to different 

hypotheses. We built three such model RDMs based on: (1) cue shape 

(increased similarity between cues with same shape, regardless of the block 

and predicted target); (2) category (increased similarity between cues that 

predict the same stimulus category); and (3) block (increased similarity 

between cues belonging to the same block). The next step was to estimate the 

share of variance that each of these three model RDMs explained. To do so, at 

each time point we fitted a linear regression with the model RDMs as 

regressors and the empirical matrix as dependent variable. As a result, we 

obtained a t-value for each model, time point and participant that explained a 

significant unique portion of the variance, above that explained by the other 

regressors.  

We used a non-parametric cluster-based permutation method to infer 

statistical significance at the group level, against empirical chance levels. First, 

at the single-subject level we randomly permuted the labels of the theoretical 

matrices. These permuted matrices were used as independent variables on a 

linear regression, which was repeated 100 times per participant. This gave 

100 chance level t-values per participant and model. Then, one t-value for each 

model was randomly drawn per subject and the selected values were 

averaged. This was repeated 105 times to obtain 105 permuted group t-values. 

For each time point, the empirical chance distribution was estimated. As 

expected, this yielded a t-value distribution centered around 0. The above and 

below thresholds were estimated so that they included the 99% of the 

distribution. Groups of consecutive time points with values outside the 

previously calculated thresholds were measured generating the null 

distribution of cluster sizes. Finally, to further ensure correction for multiple 

comparisons, we used a False Discovery Rate (FDR) approach to determine the 

smallest cluster size deemed significant for α = 0.01 (Lo pez-Garcí a et al., 2022; 

Stelzer et al., 2013).  
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Besides, to estimate the topography of each model we repeated the analyses 

for each channel separately, estimating the empirical matrix using all time 

points. That is, at each channel we fitted a linear regression with the 

theoretical models as regressors.  

Time resolved Multivariate Pattern Analysis (MVPA) 

We used time-resolved MVPA (Grootswagers, Wardel, et al., 2017) to study 

stimulus category-specific preparation by classifying faces vs. names. Note 

that we did not intend to directly classify attention vs. expectation, as this 

approach would be biased by existing block differences between these 

conditions. Instead, classifiers were trained and tested to differentiate 

between faces and names within blocks, and comparisons between attention 

and expectation were always performed with this base contrast. Also, 

classifications were done before stimulus presentation with cue-locked EEG, 

where faces and names were anticipated as relevant or probable by the cue 

(targets were not relevant for this work and thus not analyzed). The steps of 

the classification were equal for all analyses unless otherwise specified and 

were performed with voltage values. Classification was performed using 

MVPAlab (Lo pez-Garcí a et al., 2022) running on MATLAB. To maximize 

observations while reducing computational costs, we performed an MVPA 

classification every three time points. This way features used for classification 

were trials by channels matrices of raw voltage in single time points tn.  

We applied two strategies to increase signal-to-noise ratio. First, the trials 

used were the result of averaging sets of three trials (randomly selected) in 

each condition (Grootswagers, Wardel, et al., 2017). Then, we employed a 

smoothing method, based on a moving average filter with a length of 3 time 

points. For every tn the features of the previous and the following data points 

were averaged, so that tn = (tn-1+ tn+tn+1)/3. Then, classes were balanced by 

subsampling the class with more trials so that the number of trials from the 

two conditions fed to the algorithm stayed the same (Grootswagers, Wardel, et 

al., 2017). A five-fold stratified cross-validation loop was implemented (King 
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et al., 2013), which ensures that the proportion of each class stays balanced 

across folds, thus increasing the classification applicability to unknown data. 

Data were divided into five parts, which are enough to obtain unbiased results 

with a relatively small computational cost (Grootswagers, Wardel, et al., 2017; 

Varoquaux, 2018). The classification algorithm was trained with the first four 

divisions (training set) and tested on the remaining one (test set). This was 

repeated five times with the different sets. To improve the performance of the 

classifiers and the generalizability of multivariate analyses results (Singh & 

Singh, 2020), we normalized the data. Normalization was carried out within 

the cross-validation loop (King & Dehaene, 2014). Within each fold, we 

calculated the mean and standard deviation of each electrode across the 

training trials. The train set (Xtrain) and testing set (Xtest) were normalized as 

follows:  

 

Where μtrain and σtrain are the mean and standard deviation of the training set.  

We used Linear Discriminant Analysis as classification algorithm, given its 

good fit to typical EEG variability and higher sensitivity than similar methods 

(e.g. Support Vector Machines, see Grootswagers, Wardel, et al., 2017; Kerre n 

et al., 2018). Time ranges were from -100 ms to 1550 ms. Classification results 

were estimated with an empirical receiver operative curve (ROC) analysis and 

reported as the area under the curve (AUC). This method works as an estimate 

of the true positive rate as a function of the false positive rate. The AUC is a 

non-parametric criterion-free method, so it does not involve assumptions 

about the true distribution of the data (King & Dehaene, 2014). Besides, it is 

less susceptible to systematic biases and it is especially sensitive to two-class 

differences. AUC results can be interpreted similarly to classification accuracy, 

with 0.5 indicating equal probability of true positives and false positives and 1 

accounting for perfect discriminability between classes (King et al., 2013).  
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To estimate statistical significance, we again used cluster-based permutation 

analyses. In this case, the labels of each trial were randomly permuted. This 

was repeated 100 times per participant, generating chance level results. After 

following the same process as in the RSA section (using AUC instead of t-

values) we ended up with a distribution centered around chance levels (0.5).  

Temporal Generalization Analyses 

To characterize the changes of the signal throughout the temporal window, we 

employed a temporal generalization approach (King & Dehaene, 2017). On 

each time point we trained a classifier following the process described above. 

Then, we tested it on all time points of the preparation time window. This 

rendered a Temporal Generalization Matrix (TGM) representing the AUC 

values for each train-test pair. Statistical significance was then calculated for 

each TGM following the same rationale as with time-resolved analyses. The 

only difference was setting the minimum statistically significant threshold for 

cluster sizes to p<0.001, to avoid small clusters.  

Category-specific anticipation within attention and expectation 

contexts 

The process described was applied to the cue-locked EEG separately for 

attention and expectation blocks, training classifiers to tell apart data from 

trials in which the cue anticipated faces vs. names. In a first approximation, we 

used trials of all cue shapes in each category (Figure 3.1C). Next, to ensure that 

classification results were not biased by perceptual differences between the 

geometrical shapes used as cues, we implemented a classification approach 

across cues. We first trained the classifier with data from only one pair of cues 

(e.g., classifying between squares predicting faces and diamonds anticipating 

names) and then tested it on the other pair (e.g., testing with circles that 

predicted faces and drops that predicted names). Because of the design, the 

selected training and testing pairs of cues only appeared together in half of the 

blocks. This cross-classification ensures that only the common differences 
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between the two classified pairs will be decoded from the results (Kaplan et 

al., 2015), thus removing perceptual confounds. We averaged the results of 

both directions and their permutation maps to obtain a greater signal-to-noise 

ratio and to reduce biases due to the classification of specific perceptual 

features. The averaged results were then fed to the same statistical algorithm 

used previously to obtain cluster-based thresholds of statistical significance.  

Once the results of these classifications were obtained, we compared the 

scores in attention vs. expectation blocks. To do so, we subtracted the 

empirical results of the two conditions (attention – expectation). Similarly, we 

subtracted the results of one of the 100 permutated chance level accuracy 

scores obtained during the cluster analysis in one condition from one from the 

other. We used the same cluster-based permutation implementation described 

above to evaluate differences in the two directions (attention > or < 

expectation). In this analysis the permuted distribution is centered around 

zero. Since we (arbitrarily) subtracted attention - expectation, positive values 

indicated greater results for attention, while negative values indicated greater 

results for expectation.  

Cross-classification between attention and expectation 

To estimate the degree to which patterns of brain activity are shared for 

preparation across attention and expectation, we employed a cross-

classification approach. We trained a classifier with data from one condition 

and then tested it on the other. We first did this using data from all trials in 

each condition, incorporating all four types of cues. Again, to rule out 

perceptual confounds we repeated the analyses following the same rationale 

described in the previous section (see Figure 3.1C for a summary of the 

condition selection strategies). In addition, we performed a control analysis to 

ascertain that cross-classification between attention and expectation blocks 

was feasible. Here we trained and tested using cues with the same physical 

form (e.g. train circle vs. square in attention, test circle vs. square in 
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expectation) to observe whether the classifiers could extract the physical 

patterns of the cues even across overall changes in block demands.  

Canonical Template Tracking 

Finally, we compared the sustained patterns that arose during the preparatory 

interval with the actual perception of face and name stimuli. To do so, we 

obtained Canonical Template Patterns (CTP, Gonza lez-Garcí a et al., 2021; 

Palenciano et al., 2022; Wimber et al., 2015) of brain activity generated by 

faces and names in the independent localizer blocks. First, we performed an 

MVPA analysis in localizer trials following the same process as in previous 

analysis. Then, we selected the time window where the classifiers locked to 

the localizer target stimuli in the localizer had the highest AUC (i.e., when 

activity patterns were more dissimilar) across participants (Supplementary 

Figure 3.1), which was 100 – 300 ms after stimulus onset. Then, and separately 

for face and name localizer trials, we averaged the raw information of every 

time-point and trial in the selected window for each channel and category. This 

resulted in a vector of 64 channel activity values for faces and another one for 

names in each participant. Next, these CTP of faces and names were used as 

regressors in a linear regression where the dependent variable was the raw 

channel activity for each channel and condition during every time-point in the 

preparation or target window of the main experimental task. This rendered 

two t-values per time-point that accounted for the variance explained for each 

CTP (faces and names). We did this analysis separately in attention and 

expectation, for cues predicting faces and names and for face and name targets. 

To estimate statistical significance, we used the same cluster-based 

permutation analysis described above. Briefly, before averaging localizer data 

to create the templates for faces and names, we randomly permuted the trials 

of both conditions. This was repeated 100 times for each stimulus. Then, the 

randomly permuted CTPs were used as regressors, which gave 100 t-values for 

each participant and template. Then, the process was identical to the one we 

used in the RSA analysis. To estimate significance when comparing the results 
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for attention and expectation, we employed the same method used to compare 

MVPA results for both conditions.  

Importantly, we used localizer data only from the targets, even though 

probabilistic cues were also included in these blocks. The localizer only 

included probabilistic (not relevance) cues, so it would not give equal insight 

into both relevance and probability contexts in the main task. Also, we 

considered that overall task demands between the localizer and the main 

experiment were too large to interpret unambiguously a potential lack of 

generalization of anticipation between these two contexts. Furthermore, the 

localizer was not designed to elicit reliable preparatory neural activity, which 

was hence not tested. 

3.4. Results 

3.4.1. Behavioral  

Forty-eight participants completed a cue-target paradigm where, depending 

on the block, cues carried information about either the relevance (attention) 

or the probability (expectation) of upcoming face or word targets (Figure 

3.1A). Analysis of participants’ behavioral results showed that preparation for 

the incoming target stimuli affected performance. A three-way repeated 

measures ANOVA on reaction times (RTs) showed main effects of Block 

(F47,1=56.45, p<0.001, ηp2 = 0.54), Cueing (F47,1=5.59, p=0.022, ηp2 = 0.11) 

and Category (F47,1=50.52, p<0.001, ηp2 = 0.52). Overall, responses were faster 

in attention (M = 569 ms, SD = 0.01) than expectation (M = 598 ms, SD = 0.01) 

blocks. Cueing affected RTs differently depending on the block (Block*Cueing, 
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F47,1=9.07, p=0.004, ηp2 = 0.16; Figure 3.2A). Post-hoc tests showed no effect 

of Cueing for attention (t<1) whereas there was an effect for expectation 

(t47,1=3.6, p<0.001, Cohen’s d = 0.52). Expected (cued) targets elicited faster 

responses on average (M = 592 ms, SD = 0.06) than unexpected (uncued) 

targets (M = 603 ms, SD = 0.07). Category also induced significant differences. 

Post-hoc tests showed faster responses for faces (M = 576 ms, SD = 0.7) than 

for names (M = 591 ms, SD = 0.75), t47,1=7.51, p<0.001, Cohen’s d = 1.08; Figure 

3.2C. 

The ANOVA on behavioral accuracy showed results in the same direction albeit 

less prominent. Both Cueing (F47,1=4.33, p=0.043, ηp2 = 0.01) and Category 

Figure 3.2. Behavioral results. Participants responded with a yes/no key press to the 

question asked at the beginning of each block. Note that in attention blocks, uncued trials 

were always responded with a “no” response. (A) Reaction times (in seconds) in attention 

and expectation blocks, for cued and uncued trials. (B) Accuracy in attention and expectation 

blocks, for cued and uncued trials. (C) RTs and accuracy for face and name targets, averaged 

across conditions. Dots represent individual subject (n=48) scores per experimental 

condition. Grey lines connect each participant’s score in the two conditions of each block. The 

horizontal black line inside boxes represents the median, the horizontal red line represents 

the mean, while the limits of the box indicate the first and third quartile. Note that due to the 

high SD, the mean and the median may differ slightly. Whiskers indicate the 1.5 inter quartile 

range for the upper and lower quartiles.  
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(F47,1=7.04, p=0.011, ηp2 = 0.011) were significant, and there was no main 

effect of Block (p>0.05), with both conditions presenting high accuracy overall 

(attention: M = 0.92, SD = 0.07; expectation: M = 0.93, SD = 0.07). Again, we 

found that cueing affected each block differently (Block*Validity, F47,1=9.67, 

p=0.003, ηp2 = 0.15; Figure 3.2B). Although there were no differences in 

attention (t<1), there was an effect of expectations (t47,1=3.59, p=0.003, 

Cohen’s d = 0.52), with cued trials eliciting more accurate responses (M = 

0.947, SD = 0.026) than uncued ones (0.929, SD = 0.035). Post-hoc tests 

showed less accurate responses to faces (M = 0.93, SD = 0.4) than to names (M 

= 0.94, SD = 0.37; Figure 3.2C), t47,1=2.65, p=0.011, Cohen’s d = 0.38. Overall, 

these results indicate that, as instructed, cues were used effectively and also 

differently across blocks.  

3.4.2. Time-resolved profile of preparation 

Our first aim was to assess the emergence of specific coding patterns linked to 

different information content during preparation in attention vs. expectation 

contexts. The perceptual features of the cue should be processed, and their 

contextual meaning extracted to anticipate general target-category 

information. This anticipated target category should be activated and 

maintained in working memory to later provide an efficient response. To 

assess the contribution of each of these sources of information to preparatory 

activity we employed model-based RSA (Kriegeskorte, 2008). 

Results of the multiple regression for the three RSA models built (Cue shape, 

Category and Block, see Methods section and Figure 3.3A) revealed the unique 

variance explained by each of the factors entered in the analysis. A peak of the 

Cue shape model appeared first, at 160 ms after cue presentation, and decayed 

fast afterwards (Figure 3.3B, red line). In contrast, the coding of the specific 

incoming target category increased progressively along the interval, reaching 

its peak right before the presentation of the actual target (Figure 3B, green 

line). In addition, the variance explained by the blocks reached its peak around 
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500 ms after cue onset, slowly decayed along the interval, and fell below 

significance levels 100 ms before target onset (Figure 3.3B, blue line). 

  

Figure 3.3. RSA theoretical matrices and results. In (A), black squares represent high 

similarity between conditions and grey squares represent low similarity. In (B), each line 

depicts t-values from a linear multiple regression fit for the three theoretical dissimilarity 

models, showing the unique share of variance explained for each of the factors. The colored 

straight lines above indicate significance clusters after a cluster-based permutation analysis. 

Grey shading indicates cue presence onscreen. The cue model (red) indicates dissimilarity 

between cue shapes, regardless of the block or prediction; the category model (green) 

indicates similarity between cues predicting faces or names; the Block model (blue) shows 

overall preparatory differences between attention and expectation. (C) Topographies of each 

model after using time points as features and repeating the analysis on each EEG channel.  
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3.4.3. Time-resolved classification shows increasing AUC throughout the 

preparation interval. 

We then studied the coding of the anticipated specific information during the 

preparation interval, separately for attention and expectation. Importantly, we 

did not compare cued vs. uncued targets, but cues that predicted (relevant or 

probable, depending on the block) face vs. word stimuli within the same block. 

Using the two cues of each category together for training and testing returned 

a classification weighted on the perceptual features of the cues (see 

Supplementary Figure 3.2 for a detailed description of the result), similar to 

the Cue model in Figure 3.3 (red line). Afterwards, we employed a cross-

classification analysis between different cues to avoid cue perceptual 

confounds in the classification (Figure 3.4). Since two differently shaped cues 

coded for each type of category, we trained the classifier in one pair and tested 

it on the other, repeated the process in the opposite direction and averaged 

both. Similar to the Category model in Figure 3.3, time resolved cross-

classification showed that the accuracy in the decoding of the anticipated 

category increased as the target onset approached. We employed the 
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subtraction approach described in the Methods section, but we found no 

differences in classification between attention and expectation (all ps>0.05). 

We repeated a regression analysis to predict the cross-classification result of 

each participant based on the average time-resolved result (t-values) of each 

RSA model. As expected, the category model (Figure 3.3, M = 0.35, SD = 2.37) 

explained the results better than any other. T-values were nominally higher 

than the cue model (M = 1.04, SD = 1.42) and significantly higher than the block 

model (p<0.01).  

3.4.4. Relevance- and probability-driven preactivations are stable  

While the previous results provide an initial characterization of neural coding 

of specific category information during the preparation interval, they do not 

allow to explore the extent to which relevant representations are stable during 

this time window, since significant decoding on different time points could be 

driven in principle by different mechanisms. To investigate this, we employed 

a cross-time decoding approach (King & Dehaene, 2014) to compare different 

patterns of brain activity across the preparation interval. For this, we trained 

a classifier in one time point and then tested it on all the points of the interval 

(Figure 3.5A, B). Results showed clear signs of generalization during the 

preparation interval in both attention and expectation conditions (black 

outlines). The clusters of activity grew increasingly larger up until the target’s 

onset, indicating that the underlying patterns remain relatively stable during 

the preparation period. We then compared the results of both analyses 

following the same rationale as above: we subtracted the result matrices for 

both conditions and performed a one-side t-test against 0. This analysis did 

Figure 3.2. Raw voltage time-resolved cue decoding results. Result of the time-resolved 

classification of the category (faces vs. names) to be selected (blue) vs. expected (orange). 

Horizontal colored lines indicate statistical significance against chance within each block. 

Grey shading indicates cue presence onscreen. Figure shows the result of training and 

testing as described in Figure 3.1C (dotted line). For the results using all the cues together 

for training and testing see Supplementary Figure 3.2.  
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 not yield any significant results, indicating that the accuracy of anticipatory 

category decoding was not different between conditions. Altogether, these 

results suggest that preparation in both attention and expectation leads to a 

similar level of discriminability of the anticipated (relevant or probable) 

category. However, this analysis is agnostic regarding potential similarities in 

how anticipated relevant vs. probable information is coded, as different 

underlying mechanisms could lead to similar accuracy results.  
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3.4.5. Attention and expectation induce distinct patterns of preparatory 

activity 

To examine the mechanisms supporting the classification results, we used 

multivariate cross-classification by training the classifier in one condition and 

then testing it on the other. Similar patterns of brain activity should generalize 

between conditions, while differences should provide chance-level 

classification. The number of observations employed for this, as well as the 

inter-block temporal distance, were also matched. The averaged results 

Figure 3.3. Raw voltage temporal generalization results. (A-B) Temporal generalization 

results using the cross-cue decoding scheme, within (A) attention and (B) expectation 

conditions. Black outlines indicate statistical significance against chance. Black boxes 

indicate cue presence on screen. (C-D) Cross-condition classification results. Classification 

using the scheme described in Fig 1C, depicting the average of the two train and test 

directions. (C) Time-resolved classification of anticipatory information coding after training 

and testing the classifier in different conditions yielded no significant decoding. (D) 

Temporal generalization matrix. For visualization purposes, we averaged training and 

testing in the two directions (train attention and train expectation). The horizontal axis 

shows the times for training and testing in expectation, and the vertical axis that of training 

and testing in attention. That is, we inverted the axis of one of the directions before 

averaging. We chose this rationale because activity that is better represented in only one of 

the conditions should appear only on one side of the diagonal (e.g., above) when training 

and the opposite when testing (e.g., below). Averaging this way, we can show information 

that would not be visible doing a standard average. The non-averaged results for both 

directions can be found in the Supplementary Section (Supplementary Figure1). (E) A 

control cross-classification between attention and expectation (Orange: Train attention – 

Test expectation. Purple: Train expectation – Test attention) employing the same pairs of 

cues to train and test the classifier (e.g. train with circles in attention, test with circles in 

expectation) shows that classification across blocks is feasible. However, whereas the 

perceptual features of the cues generalize across attention and expectation (significance is 

marked with colored bars), the specific preactivation of contents before target onset does 

not.  
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(training in attention and training in expectation) for raw voltage cross-

classification are shown in Figures 3.5C, D (see Supplementary Figure 3.3 for 

the results split by train and test direction). Common coding between 

anticipating relevance vs. probability of stimulus categories was scarce. Small 

significant clusters appear scattered through the temporal generalization 

interval. This result complements the previous analysis by suggesting that 

different neural mechanisms support the classification results. In addition, the 

control analyses performed using the same physical cues to cross-classify 

between attention and expectation (see Figure 3.5E) show that generalization 

across blocks is feasible, given that the classifier shows significant above-

chance performance to predict the perceptual shape of cues across attention 

and expectation conditions. 

3.4.6. Tracking perceptual patterns of brain activity 

We have shown that although attention and expectation lead to similar 

degrees of anticipatory classification, their underlying neural patterns are 

partially different. We hypothesized that such differences could arise due to 

the extent to which anticipatory representations function as perceptual 

reinstatements of the prepared target categories. In this case, the preparatory 

patterns that allow to classify anticipated faces and names should be similar 

to those triggered during actual stimulus perception. To assess such 

reinstatement of target representations during preparation, we obtained CTPs 

(Palenciano et al., 2023) of brain activity associated with faces and names (as 

described in the Methods section). We then fit a linear regression with the two 

CTPs as regressors to measure the extent to which these explained variance in 

preparatory activity across conditions, in each time point (see Figure 3.6).  

First, to complement the behavioral results regarding face and name 

processing, we applied the CTP to EEG activity locked to target onset in 

attention and expectation (Supplementary Figure 3.4). The face CTP explained 

better the perception of target faces, while same was true for the name pattern 



 

 78 

on name perception. Moreover, face processing was more pronounced, but 

decreased more rapidly. Name processing, on the other hand, reached a lower 

peak but it decreased more slowly over time. As expected, these results further 

suggest that faces and names are processed differently.  

Then, we compared how these canonical templates overlapped with 

preparatory activity in attention vs. expectation contexts. Since both CTPs 

similarly explained face and name predicting cues, here we show the average 

result of the two types of cues separately in attention and expectation blocks. 

Note that whereas such averaging prevents drawing any conclusion regarding 

selective preparation, it allows contrasting the extent of overall perceptual 

reinstatement across relevance vs. probability anticipation. Crucially, both 

perceptual templates were better predictors of category anticipation in the 

attention compared to the expectation condition (see Figure 3.6). Overall, 

Figure 3.6. Canonical Template Tracking results. Grey shading represents cue on screen. 

(A-B) CTP results for separate cues for attention and expectation. Average of face and name 

cues (A) Name CTP model for cues. (B) Face CTP for cues. Horizontal lines depict 

significance. Black horizontal lines indicate points where the results for attention were 

significantly higher than for expectation. There were no clusters were expectation showed 

higher reinstatement.  



 

 79 

these results indicate that regardless of the intrinsic differences in face and 

name processing, there is an overall stronger perceptual reinstatement for 

attention than for expectation. Note, importantly, that this stronger coding 

cannot be explained by overall increased difficulty, as responses were faster in 

attention compared to expectation blocks (see Behavioral Results section).  

3.5. Discussion 

In the present work we studied and contrasted, for the first time, the top-down 

neural mechanisms engaged during category-specific preparation in two 

major information-processing contexts: selective attention and perceptual 

expectations. Our results reveal that the anticipated stimulus category is active 

during preparation, regardless of the specific demands. Crucially, we 

demonstrate that relevance and probability influence the preparatory 

patterns of brain activity in a unique manner, potentially via differences in the 

perceptual reinstatement of anticipated information. Overall, these results 

have important implications for theoretical models that explain how the brain 

anticipates relevant vs. probable forthcoming information.  

Our behavioral results show that the paradigm manipulated attention 

(relevance) and expectation (probability) in an effective manner as expected 

(Baldauf & Desimone, 2014; Kok et al., 2017). Cued trials in attention required 

further processing than those uncued, as participants were required to 

evaluate the sex/gender of the cued stimulus category and skip this judgment 

in uncued ones (Baldauf & Desimone, 2014; Saenz et al., 2002; Summerfield et 

al., 2006; Womelsdorf et al., 2006). Importantly, for attention the probability 

of either category was equal (50%), keeping expectation constant for relevant 

and irrelevant trials. The high accuracy in attention blocks indicates that the 

cues were used effectively to select when needed and to respond. On the other 

hand, both expected and unexpected trials required selecting the forthcoming 

target, and thus equated relevance while leading to predicted and unpredicted 

stimulus categories. In line with validity effects repeatedly reported in the 

literature in expectation contexts, the efficiency of behavior increased in cued 
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trials (de Lange et al., 2018; Sy et al., 2014). It may be important to note that 

our results are at odds with the notion that expected stimuli gain higher task-

relevance and thus receive more attention that unexpected ones (see 

Rungratsameetaweemana & Serences, 2019), as this interpretation would lead 

to expect similar underlying anticipatory patterns for our attention and 

expectation manipulations.  

We employed RSA (Carlson et al., 2019; Kriegeskorte, 2008) combined with 

multiple regression to study the temporal profile of information coding 

throughout the preparatory interval. This showed that anticipatory cues 

triggered several time-overlapping, yet distinguishable, effects in time (Figure 

3.3B) and spatial arrangement (Figure 3.3C). The perceptual characteristics of 

the cue were coded early in the time interval. Immediately after, and during 

the majority of the interval and until around 100 ms before target onset, 

mechanisms pertaining to contexts capitalizing on either selective attention or 

expectations were deployed, as revealed by the Block model temporal profile. 

Evidence of anticipatory coding of different task sets has been found before 

(Gonza lez-Garcí a et al., 2021; Hebart et al., 2018; Palenciano et al., 2018). 

Interestingly, this result cannot be explained by motor preparation, since cues 

did not predict motor responses; instead, it is most likely due to the control 

context in each scenario. Finally, the variance explained uniquely by the 

Category model on anticipatory activity increased steadily and peaked before 

target onset. This pattern of emerging, ramping-up category representations 

could reflect two non-exclusive anticipatory mechanisms. Once the meaning 

of the cue is extracted and stored in working memory, the actual anticipation 

of a stimulus could be facilitated by top-down preactivation of perceptual 

regions (Auksztulewicz & Friston, 2016; Trapp et al., 2016). Simultaneously, 

the effect of temporal expectations (as the preparatory interval was fixed) 

could induce an increasing preactivation of perceptual regions as the stimulus 

onset approaches (Jin et al., 2020; Rohenkohl et al., 2012). In either case, these 

results suggest that preparation engages a series of mechanisms that act both 

sequentially and in parallel, including the processing of bottom-up signals that 
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are transformed into top-down category anticipation in a context of relevance 

or probability. 

The block model in the RSA suggested that attention and expectation led to 

distinguishable coding patterns. One mechanistic explanation for this result is 

that the patterns for the anticipated category are more robustly coded in one 

condition over the other. Hence, we employed an MVPA approach 

(Grootswagers, Wardel, et al., 2017; Haxby et al., 2014) to classify the prepared 

category. Crucially, classifiers did not directly compare attention vs. 

expectation blocks (a discrimination that would be biased by differential block 

characteristics) nor cued vs. uncued targets (which would mix reactions to 

matched vs. mismatched predictions). Instead, classifiers were trained and 

tested to differentiate between cues that predicted (relevant or probable) 

faces vs. names, within each block. Results matched the RSA model, pointing 

to a robust effect of category anticipation. Furthermore, this prediction 

increased towards the end of the interval. Again, this resonates with literature 

on temporal anticipation (Barbosa et al., 2020; Jin et al., 2020; Ruz & Nobre, 

2008). Moreover, prominent theories of attention (Mongillo et al., 2008; 

Tru butschek et al., 2017) pose that information can be held in WM by 

strengthening the synaptic weights between neurons, allowing for shifts (in 

this case, steady increases) in decoding results during the delay period 

without losing information about the maintained stimulus. The results 

revealed no significant differences in AUC between the conditions in either 

time-resolved or temporal generalization matrices, and suggest that 

anticipated targets are coded with similar fidelity during expectation and 

attention. Importantly, these results were obtained cross-classifying different 

pairs of cues, thus avoiding perceptual confounds. However, a similar degree 

of accuracy classification does not warrant identical underlying mechanisms. 

To test this, we performed multivariate cross-classification between attention 

and expectation. Surprisingly, despite well above-chance decoding within each 

type of block, there was little cross-classification between conditions. 

Importantly, classification scores were similar when training and testing in 
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different blocks of the same condition (see Supplementary Figure 3.5). In 

addition, a control analysis using the same cues showed that generalization 

across blocks was possible and not prevented by the differential block context. 

Classifiers trained and tested in different blocks were able to discriminate the 

perceptual nature of the cues, whereas the anticipated category cross-

classification was absent (see Figure 3.5). Overall, this set of results suggests 

that whereas attention and expectation both lead to anticipatory category 

representations, their top-down mechanisms are partially different, providing 

further support to the dissociation of relevance and probability, reported by 

previous studies, during target processing (Summerfield & Egner, 2009; Wyart 

et al., 2012).  

One possible explanation for the differences found is the degree of preparatory 

perceptual reinstatement (Kerre n et al., 2018; Kilner et al., 2007; Muckli et al., 

2015; Rose et al., 2016; Smith & Muckli, 2010; Vetter et al., 2014) in attention 

and expectation. We employed a Canonical Template Tracking procedure 

(Gonza lez-Garcí a et al., 2021; Wimber et al., 2015) to compare perceptual 

reinstatement in attention and expectation. We obtained canonical 

representations of the two target categories (faces and names) from an 

independent localizer, and then estimated the variance explained by these 

perceptual patterns during the anticipatory window. First, we applied the 

extracted canonical templates to the actual target processing, with results 

supporting that faces are processed differently from words. Importantly, when 

applied to anticipatory activity, we found that the canonical templates 

explained preparatory variance equally well for both predicted categories, but 

the reinstatement was significantly higher in attention than in expectation. 

Note that this cannot be due to a higher difficulty of the attention blocks, as RT 

showed the opposite pattern (faster responses in attention). Instead, this 

higher reinstatement may be due to attention directing more resources to 

activate perceptual codes in anticipation. It is unclear, however, why this 

analysis did not provide evidence of category-specific reinstatement, although 

it could be related to the mixture of perceptual activity caused by the cues 
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themselves. It is possible that the physical shape of faces and words has 

differential overlap with the overall shape of the cues employed in the main 

task, which could have added additional variance to the overall analysis. This 

could have mixed with the anticipated category information and generated the 

lack of specificity. Relatedly, the patterns captured by our CTP may be different 

from those involved in categorical specific anticipation, which may have 

happened at a different abstraction level. Note that the large overall task 

differences between the localizer and the main task prevent the use of localizer 

cues to predict preparation during the main task. Further research employing 

different approaches to measure reinstatement should be conducted to clarify 

this matter.  

How attention and expectation affect perception is an ongoing debate. Several 

studies have used paradigms that combine both processes to study how they 

interact. Attention has been suggested to sharpen the differences between 

expected and unexpected stimuli (Jiang et al., 2013), possibly changing the 

oscillatory profile of relevant categories (Auksztulewicz et al., 2017) while 

reversing repetition suppression (Kok, Rahnev, Jehee, Lau, & De Lange, 2012). 

Although it has been suggested that attention acts from early processing 

stages, results so far are not conclusive (Alilovic  et al., 2019). Relatedly, 

attention boosts signal-to-noise processing by suppressing noise, while 

expectation increases baseline activity in perceptual regions (Wyart et al., 

2011) see also (Gordon et al., 2019; Rungratsameetaweemana & Serences, 

2019). Predictive coding accounts propose that attention increases prediction 

error of selected stimuli by suppressing noise of unattended categories, while 

expectation increases global sensitivity through prediction signals. Crucially, 

our results extend this literature by showing anticipatory differences between 

conditions, which cannot be accounted for by prediction error differences as 

targets have not been processed yet. Speculatively, attention could bias 

anticipatory neuronal sensitivity by increasing perceptual differences 

between relevant categories, coding these changes at least partially in the 

gamma band perhaps through anticipatory biasing of error processing units. 
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Expectation could increase sensitivity to probable categories by increasing 

excitability of, perhaps, perceptual units. 

Although overall our results are a crucial first step to characterize mechanisms 

across relevance and probability anticipation, they should be complemented 

by further studies. Although the results are statistically significant after robust 

cluster-based correction, accuracy values are lower than those obtained, for 

example, using target-locked data (e.g., Supplementary Figure 3.1). 

Importantly, decoding accuracies do not equal effect sizes (Hebart & Baker, 

2018). The values we obtained are within typical classification ranges when 

studying subtle neural patterns (Christophel et al., 2015; Hebart & Baker, 

2018; Rose et al., 2016) employing non-invasive human neuroimaging. Future 

studies may obtain higher accuracies by increasing stimulus repetition and 

thus reinforcing specific neural traces of the information anticipated.  

Moreover, it could be argued that the diverging results between the two 

conditions shown here are not due to differences in stimulus representation 

for relevance vs. probability, but to different task demands of the two blocks. 

However, as the goal of the study was not to fully differentiate the neural 

mechanisms of attention and expectation but to understand how anticipatory 

information is coded differently in contexts of relevance vs. probability, we did 

not merely contrast the two blocks directly. Instead, the analyses contrasted 

anticipated faces vs. words in conditions matched within blocks. In the same 

line, the arguably potential higher relevance of probable contents could not 

drive results, as such increased relevance would be equal for predicted 

probable faces vs. names, and thus the classifier cannot rely on this 

information. Moreover, and to further show how processes that are similar do 

generalize across both blocks, we trained the classifier in a pair of cues in one 

block, and tested it in the same pair for the opposite block (see Figure 3.5E). 

As expected, significant classification appeared for the cue identity, showing 

that cross-classification across blocks is feasible. If differential task demands 

had an overall effect changing the format of coding during anticipation, this 
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should have arguably also altered cue patterns, preventing cross-classification. 

The fact that classifiers were able to extrapolate, though, adds to the idea that 

block differences do not account for lack of cross-classification of anticipated 

relevant vs. probable information content. Admittedly, classifiers can be 

conceived as black boxes where disentangling which factors are driving the 

results can be hard. However, the results obtained when employing RSA 

provide concurring evidence. Here, theoretical matrices (Cue, Category and 

Block) were used to study how these factors explain unique variance during 

the preparation window. Results (see Figure 3.3) suggest that Block (task 

demands) explains most of the variance during an earlier time window than 

Category, which in turn incrementally explains variance (and with a different 

topography from that of Block) as target onset approaches. Of note, the timing 

of this effect is quite similar to the window where classifiers show specific 

preparation for relevance and probability that does not cross-classify across 

these contexts. In any case, studies employing improved paradigms should be 

tested to replicate and validate these results.   

Our scope was limited to the temporal domain, and questions arise regarding 

potential differences between brain regions. Internal predictions have been 

generally associated with the hippocampus (Aitken & Kok, 2022; de Lange et 

al., 2018; Hindy et al., 2016; Stachenfeld et al., 2017), which has a location that 

challenges EEG sensitivity. Further studies should employ more spatially 

sensitive techniques. Additionally, we focused on category-based preparation 

of faces and words, to facilitate having the same task across categories 

(sex/gender judgments). These two types of stimuli, although frequently 

combined in the literature (Alm et al., 2016; Amado et al., 2018; Dumas, 2015; 

Rose et al., 2016; Sperling et al., 2003) have a different spatial layout, which 

may have generated the anticipation of different spatial templates. Although 

this is not a confound in our task, as such difference is constant, it may have 

added a spatial component to the preparation. Finally, we focused our design 

on visual perception. Studies that have compared the effects of attention and 

expectation have used auditory and visual stimuli showing promising results 
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(Jiang et al., 2003). It is likely that the mechanisms found here can be extended 

to other sensory modalities, but more research is needed to assess this idea.  

Altogether, our results show that anticipatory representations are category-

specific and also task dependent, and highlight the role of proactive processes 

that precede stimulus perception. These findings have important implications 

for current models of brain functioning. We show that instead of single, unitary 

top-down phenomena, the brain implements distinct modes of content-

specific anticipation, which are tailored to task context and involve different 

levels of overall perceptual reinstatement. Predictive coding and attention 

models that differentiate these processes during target processing should be 

extended to the preparatory interval, acknowledging the specificity and 

complexity of these top-down anticipatory phenomena.  
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3.6. Supplementary Materials 

  

 

 

 

 

Supplementary Figure 3.1. Localizer’s result after classifying faces and names. Grey 

shading indicates stimuli presentation. Blue shading shows the selected time window to 

create the two template patterns for faces and names.  
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Supplementary Figure 3.2. Classification result using all cues to train and test the 

classifier. Result of the time-resolved classification of the category (faces vs. names) to be 

selected (blue) vs. expected (orange). Horizontal colored lines indicate statistical 

significance against chance within each block. Grey shading indicates cue presence 

onscreen. Training a linear classifier with the two cues of each condition together to 

decode stimulus category separately for attention and expectation showed early peaks in 

classification that quickly vanished. We compared both AUC results by subtracting them 

and performing a cluster-based permutation analysis, which yielded no significant 

differences (all ps>0.05). To directly compare MVPA and RSA results, we performed a 

regression analysis using the RSA results as predictors of each participant’s decoding 

accuracy. We then compared the variance explained by each regressor (i.e. RSA model) in 

a one-way ANOVA. Post-hoc comparisons revealed that, as expected, the Cue model 

explained the decoding results depicted in this figure better than any other RSA model (all 

ps<0.001).  



 

 89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 3.3. Cross-classification results by training and testing 

direction. (A) Train attention-Test expectation. (B) Train expectation-Test attention. Black 

outline depicts significant clusters.  

Supplementary Figure 3.4. Canonical Template Tracking results for targets. Since 

there were no statistical differences between attention and expectation, the results are 

averaged. The green line shows the results for how much the face CTP explains face 

perception. Purple shows the result for the name CTP on name stimuli.  
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Supplementary Figure 3.5. Classification results only using trials from different blocks 

(A-B). Note that the patterns of generalization are stable in both conditions. However, the AUC 

results appear reduced, likely due the loss of power after using less trials to train and test.  
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Chapter IV 
Study II 

 

 

 

 

 

 

 

 

 

 

 

 

The content of this chapter is in preparation as Pen alver, J.M.G.; Gonza lez- 

Garcí a, C.; Palenciano, A.F.; Ruz, M. Anticipating relevant vs. probable content 

involves dissociable neural mechanisms. 
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4.1. Summary 

Preparation is a top-down phenomenon known to improve performance 

across different situations. In light of recent electrophysiological findings that 

suggest that anticipatory neural preactivations linked to preparation are 

context-specific and not generalize across domains, in the current 

investigation we sought to extend these findings to spatial grounds by using 

fMRI. We applied multivariate decoding to data obtained in a paradigm where, 

in different blocks, cues provided information about the relevance or 

probability of incoming target stimuli. Results showed that the anticipated 

stimulus category was pre-activated in both conditions, mostly in different 

brain regions within the ventral visual cortex and with differential overlap 

with actual target perception. Crucially, there was little cross-classification 

across attention and expectation contexts, indicating lack of common neural 

coding across relevance and probability contexts. Overall, our results stress 

the specificity of anticipatory neural processing depending on its informative 

role.  
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4.2. Introduction 

For several decades, investigations in cognitive psychology have primarily 

focused on the study of behavior while manipulating external variables. These 

have led to theoretical frameworks that conceptualize cognition 

predominantly from a reactive standpoint. In recent times, there has been a 

resurgence of interest in proactive cognition, highlighting the central role of 

endogenous top-down brain processes. Within this framework, preparation 

can be conceptualized as an endogenous neural function that takes place prior 

to perception of the target stimulus and that improves subsequent behavior 

(Battistoni et al., 2017; Gonza lez-Garcí a et al., 2016). It has been shown in 

several contexts, including those of selective attention (the ability to select 

information relevant for behavior; e.g. Nobre & Serences, 2018) and 

perceptual expectations (the generation of probabilistic predictions based on 

previous experiences, e.g. Schro ger et al., 2015).  

A large part of the investigation on attention and expectation has focused on 

their consequences on target processing (reviewed in Summerfield & Egner, 

2009, 2016), which seem to lead to opposing effects on activation levels. For 

example, studies that use selective cues to highlight the target features of 

stimuli in non-human primates have found increased firing rates in neurons 

tuned to relevant features in regions of the ventral visual stream, such as V4 

(e.g. Bichot et al., 2005; Burrows et al., 2014; Chelazzi et al., 1998) and the 

inferior (Chelazzi et al., 1998) and superior (Cohen & Maunsell, 2011) 

temporal cortex. Studies employing non-invasive neuroimaging in humans 

show matching results (Kastner et al., 1999; Peelen & Kastner, 2011; Serences 

et al., 2004). On the other hand, studies of expectation classically show effects 

of activity decrease (also known as expectation suppression) in visual regions 

such as V1 and lateral occipital cortex (e.g. Kok et al., 2012; Walsh & McGovern, 

2018; see Feuerriegel et al., 2021 for a detailed review). Other relevant line of 

research has explored the interplay between attention and expectation during 

target processing, with mixed results. Whereas some studies suggest that 
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selective attention modulates the effects of expectations (Alilovic  et al., 2019; 

Auksztulewicz et al., 2017; Jiang et al., 2013; Kok et al., 2012), others do not 

find such interactions (e.g., Ekman et al., 2017; Yon et al., 2018). Zuanazzi & 

Noppeney (2019) found activation in the frontoparietal network for selected 

visual and auditory targets, but no effect for expected visual targets. 

Meanwhile, (Gordon et al., 2019) linked selective attention to lower levels of 

the visual hierarchy, and expectations to more complex instances of visual 

perception. Similar results have been found in other studies (Auksztulewicz et 

al., 2017; Simon et al., 2018; Wyart et al., 2012). Overall, results suggest 

separate roles of relevance and probability during target processing 

(Auksztulewicz & Friston, 2016; Gordon et al., 2019; Simon et al., 2018; Wyart 

et al., 2012).  

At the anticipatory level, separate studies of attention and expectation have 

shown the preactivation of similar brain regions. Selective attention cues 

(Battistoni et al., 2017; Nobre & Serences, 2018) preactivate specific shape 

patterns in visual cortex (Stokes et al., 2009), relevant regions of space 

(Giesbrecht et al., 2006), and object-selective (M. V. Peelen & Kastner, 2011; 

Soon et al., 2013) and category (Esterman & Yantis, 2010; Gonza lez-Garcí a et 

al., 2018) perceptual regions. Relatedly, probabilistic cues lead to the 

preactivation of specific perceptual templates of oriented gabors (Kok et al., 

2017), direction (Ekman et al., 2017), motor patterns (de Lange et al., 2013) 

or abstract shapes (Hindy et al., 2016). Moreover, in both contexts it has been 

suggested a particular involvement of the frontoparietal network in the 

generation of specific anticipatory templates (e.g. Gonza lez-Garcí a et al., 2018; 

Summerfield et al., 2006; Woolgar et al., 2015), although whether the role of 

this regions differs between contexts of relevance and probability is not clear.  

Altogether, results seem to suggest that attention and expectation involve the 

preactivation of relevant perceptual mechanisms, but nevertheless generate 

different consequences on target processing. In turn, this poses the question 

of the specificity of the computations involved in anticipatory brain activity: is 
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preparation a unified phenomenon or, conversely, does it reflect a plethora of 

different mechanisms? On this regard, a recent EEG study applying 

multivariate analyses successfully contrasted selective attention and 

perceptual expectations, crucially, during the preparatory interval (Pen alver 

et al., 2023). Researchers employed a paradigm in which, in different blocks, 

cues provided information about the relevance or probability of face and name 

stimulus targets. Anticipatory coding of incoming categories was found in both 

contexts, but the underlying neural codes did not generalize across them. 

Global condition differences between attention and expectation, as well as 

ramping-up target decoding were found with temporal precision during the 

cascade of events that unfold during anticipation. However, 

electrophysiological results are agnostic regarding the brain regions involved 

in these processes. Differences between relevance and probability anticipation 

could be due to separable anticipatory neural codes in the same regions, or 

(potentially similar) activity in different brain areas. Previous research has 

found the involvement of both perceptual and frontoparietal (e.g., Stokes et al., 

2009, Gonza lez-Garcí a et al., 2017) regions during target anticipation.  

Here, we aim to further understand the bases of top-down preparation by 

using fMRI to study whether the anticipation of specific stimulus categories 

engages similar or context-dependent brain areas. We adapted the task used 

in Pen alver et al. (2023) to fMRI, which allows to replicate and consolidate the 

findings that suggested that attention and expectation elicited different kinds 

of preparation. Given that anticipatory processing is likely to elicit small 

changes in average brain activity, we performed a series of decoding and cross-

decoding analyses, better suited to study the representational characteristics 

of preparation and to disentangle different patterns of activity that may be 

taking place in similar regions. Specifically, first we studied the brain regions 

that, overall, coded information differently depending on whether preparation 

was performed in a context of selective attention or of perceptual expectations, 

by classifying attention and expectation trials during the anticipatory window, 

which were equated in perceptual terms. Next, we studied if and how 
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anticipation of specific stimulus categories is coded in the brain, in attention 

and expectation, by classifying the two anticipated categories (faces and 

names). Crucially, we then evaluated whether the underlying neural patterns 

were similar or distinct across these two preparation conditions. For this, we 

performed a cross-decoding analysis across both blocks, both between 

anticipated category decoding, and between cue and target generalization; 

and then as confirmatory evidence, a cross-validated representation similarity 

analysis (RSA). We also tested whether prepared categories engaged 

perceptual-like features similar to target perception, or more abstract 

constructs such as the encoded category (Wimber et al., 2015), by training the 

classifier during the anticipatory window, separately in each context, and 

testing during target perception. Finally, we investigated the behavioral 

consequences of neural anticipation by correlating decoding results to 

behavioral performance estimates (accuracy and reaction times).  

Based on the differences between attention and expectation observed during 

anticipation (Pen alver et al., 2023) and target processing (e.g. Gordon et al., 

2019; Zuanazzi & Noppeney, 2019) our overall hypothesis was that relevance 

and probabilistic preparation would lead to context-specific preactivations. At 

the neural level, we expected to be able to decode the different contexts 

(attention and expectation) in several regions. Next, we hypothesized that 

attention and expectation would show the preactivation of anticipated 

contents in visual regions, most likely in the ventral stream, but engaging at 

least partially separable neural patterns. These preactivations would likely 

show similarities to target decoding, and these similarities would be higher in 

the attention condition (Pen alver et al., 2023). Finally, we expected both block 

and category decoding to be related to behavioral performance.  

4.3. Methods 

Methods are reported in accordance with the COBIDAS protocol (Nichols et al., 

2016). 
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4.3.1. Participants 

Forty-six participants (mean age = 21.98, range = 18-30; 23 women, 23 men) 

from the University of Granada were recruited and received 20-25 euros as 

compensation, depending on their performance. They were all native Spanish 

speakers, right-handed, with normal or corrected vision. The study was 

approved by the Ethics Committee for Research with Humans from the 

University of Granada, and all participants signed informed consent prior to 

participation. Besides, to comply with COVID-19 safety guidelines, they wore 

a face mask during the whole session, including the behavioral practice 

outside the scanner. Six additional participants completed the task but were 

discarded, two due to poor behavioral performance (<80% in any of the main 

conditions, attention or expectation), two due to excessive head movement 

(either over 2.5 mm outside the voxel size or over 0.1º of rotation in 2 runs or 

more) and other two due to technical issues during data collection. Sample size 

was calculated in advance to achieve a statistical power of 80% for an 

estimated small effect size (Cohen’s d = 0.3) and three independent variables 

(Block x Category x Cueing), and to match the one used in a previous 

experiment with a similar paradigm (Pen alver et al., 2023). Using PANGEA we 

obtained a minimum of 32 participants to detect the Block x Cueing interaction 

in reaction times and behavioral accuracy, our main behavioral prediction. Our 

final sample size (46 participants) provided an estimated power of 94% under 

the described parameters. Due to an incomplete orthogonalization of the cue-

shape pairing in cases of movement in only one run, 2 participants were left 

out of some specific decoding analyses (n = 44). 

4.3.2. Apparatus, stimuli, and procedure 

Stimulus presentation and behavioral data collection were done with The 

Psychophysics Toolbox 3 (Brainard, 1997) on MATLAB (r2020) in a Microsoft 

PC. Stimuli were presented on an LCD screen (Benq, 1920x1080 resolution, 60 

Hz refresh rate) over a grey background. The task, stimuli and parameters 
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followed those used in our previous study (Pen alver et al., 2023) except that 

to adapt the task to the neuroimaging modality we employed longer inter-

event intervals, which reduced the total trial count. We employed 160 male 

and female faces (50% each, extracted from The Chicago Face Database (Ma et 

al., 2015) plus 160 unique Spanish male and female names (50% each). Four 

different geometrical shapes (circle, square, teardrop and diamond with thin 

black outlines, unfilled) were used as cues in the main task.  

The task involved a cue-target paradigm in which cues provided information 

about the relevance (attention) or probability (expectation) of upcoming face 

or word targets (Figure 4.1). Half of the blocks belonged to the attention 

condition and the other half to the expectation condition. To control for 

perceptual confounds, two cue shapes were associated with faces and two 

with names (counterbalanced across participants), For each participant, cue 

pairs changed across the experiment although their predicted category 

remained; the first cue for faces (e.g. a circle) appeared in half of the blocks 

with the first cue for names (e.g. a square) and the other half with the second 

cue for names (e.g. diamond). The task of participants was to indicate the 

sex/gender of the stimulus, responding whether or not the target belonged to 

the gender stated at the beginning of each block. Each block started with a 

screen in which they were informed about the block (attention or 

expectation), the target sex/gender (“Is the target male/female?”), and the two 

cues (one for faces and one for names). Given that attention and expectation 

are involved in almost any act of visual perception, we aimed at manipulating 

one process while keeping the other constant. In attention blocks, the cue 

indicated the relevant stimulus category to select (faces or names). Only if the 

stimulus belonged to the relevant category (50% trials, cued; e.g. is the target 

a female face?), the participant had to perform the gender discrimination task 

on the target. Otherwise, participants had to answer ‘no’ regardless of the 

stimulus sex/gender (non-relevant category, uncued). This manipulation of 

relevance, where further processing has to be applied only to selected stimuli, 

is similar to that employed in previous literature (e.g. Baldauf & Desimone, 
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2014; Saenz et al., 2002; Summerfield et al., 2006; Womelsdorf et al., 2006). 

Both relevant and non-relevant targets were matched in expectation, as by 

design they appeared with a 50% probability after each attention cue. In 

expectation blocks, the cue indicated the probable category of the target with 

a 75% likelihood (e.g. de Lange et al., 2013; Kok et al., 2017 for similar 

manipulations). Here, participants had to perform the gender discrimination 

task for both categories of stimuli, whether or not the target was cued (e.g. is 

the target a female stimulus?). This way, both the expected and unexpected 

targets were equally relevant. Participants were verbally instructed to use the 

cues in the two blocks to respond as fast as possible while avoiding mistakes. 

In every trial of the main task, the sequence of events was as follows: a 500 

ms cue was followed by a jittered CTI and then the target appeared for 500 

ms. Both the CTI and the inter-trial duration was jittered between 2500-6000 

ms intervals, spaced in 700 ms steps (average 4250). Each trial lasted on 

average 9.5 seconds and each run 7.6 minutes. The experiment was composed 

by 8 blocks of 48 trials each, or 384 trials in total. Attention and expectation 

blocks appeared in separate runs in a fully alternated order, and the condition 

of the first block was counterbalanced across participants. Cues and target 

stimuli were also fully counterbalanced across participants. In total, the whole 

experimental session lasted 60 minutes approximately, plus additional 

practice outside the scanner. 

4.3.3. Data acquisition and preprocessing 

A single session of imaging was carried out using a 3T Siemens Prisma MRI 

scanner, equipped with a 64-channel head coil. T1-weighted anatomical 

images were obtained using a rapid acquisition gradient echo (MPRAGE) 

sequence (TR = 2250 ms, TE = 4.18 ms, TI = 900 ms, flip angle=9°, voxel size = 

1 × 1 × 1 mm). In addition, two field map images (phase and magnitude) were 

collected to correct for magnetic field inhomogeneities (TR = 520 ms, TE1 = 

4.92 ms, TE2 = 7.38 ms, flip angle=60°, voxel size = 2.5 × 2.5 × 2.5 mm). Whole-

brain functional images were acquired using an echo planar imaging (EPI) 
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sequence (TR = 1730 ms, TE = 30 ms, flip angle=66°, slice thickness = 2.5 mm, 

voxel size = 2.5 × 2.5 × 2.5 mm, distance factor=0%). Slices were oriented along 

the AC-PC line for each participant.  

The experiment consisted of 8 runs, each corresponding to a block of the 

behavioral task. For each run, 275 volumes were acquired, with the first 4 

volumes discarded from all runs. Anatomical images were defaced to ensure 

anonymization. MATLAB R2020 was used for preprocessing, which involved 

converting the raw DICOM images from the scanner into NIfTI files with BIDS 

format (Gorgolewski et al., 2017). For functional images, preprocessing (with 

SPM12 v7771) involved the following: (1) realignment and unwarping to 

correct for movement artifacts (using the first scan as the reference slice) and 

magnetic field inhomogeneities (using previously estimated fieldmaps); (2) 

slice timing correction; (3) coregistration with T1 using a rigid-body 

transformation and normalized mutual information cost function with 4th 

degree B-spline interpolation; (4) registration to MNI space using forward 

deformation fields from segmentation with 4th degree B-spline interpolation 

and MNI 2mm template space; (5) smoothing using an 8mm FWHM kernel. 

Multivariate analyses were performed with the unsmoothed, individual 

subject’s functional data space. Resulting images were later re-registered to 

the MNI space, smoothed and masked before second-level analyses.  

4.3.4. Analyses 

Behavioral 

The main task design had three within-subject factors: block type (attention 

vs. expectation), cueing (cued vs. uncued) and stimulus category (faces vs. 

names). We calculated three-way repeated measures ANOVA for behavioral 

accuracy and reaction times (RTs) employing JASP (Love et al., 2019). For each 

participant and condition, trials with longer or shorter RTs than the average ± 

2 SDs were discarded (11.5% on average).  
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General Linear Model (GLM) 

A GLM was implemented to obtain activity changes across conditions, and to 

obtain the betas to be used in subsequent multivariate analyses. We included 

cue and target regressors in the model. Cue regressors were modeled using 

presentation time (500 ms) plus the subsequent jitter for each trial. They were 

divided by Block (attention and expectation), Category prediction (Faces and 

Names) and Cue shape (Shape 1 and Shape 2). Importantly, although there was 

a total of 8 different cue regressors, these were distributed across the different 

runs. That is, in one run/block, cues could only be of a particular condition (e.g. 

Expectation), and the cues predicting a certain category had the same shape 

during the run (e.g. Face-shape 1 and Name-shape 2). Hence, each run 

included only 2 cue regressors. Target information was modeled the 

presentation time of the stimulus on screen (500 ms), and consisted on 

regressors for the conditions of Block (attention and expectation), Category 

Figure 4.1. Behavioral paradigm. We employed a gender judgment task embedded in a 

cue-target paradigm. Participants had to respond with an index finger to indicate whether 

or not the target belonged to the gender indicated at the beginning of the block.  
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(faces and names) and Cueing (cued vs. uncued). Again, although there were 8 

different regressors, they belonged to particular runs, which resulted in runs 

having 4 target regressors each. The model also included movement 

information of each participant, obtained during realignment. The regressors 

were convolved using the canonical hemodynamic response function (HRF).  

Mass Univariate 

Our only contrast of interest was oriented to examine the different activations 

in attention and expectation during the preparatory interval. For that, we 

locked the events to onset of the cue, and directly contrasted both conditions. 

We performed this contrast for each participant, limited to grey-matter voxels 

with a mask, and then obtained statistical values from a second-level analysis, 

where they were compared using a t-test. Significance was stablished by first 

selecting voxels that passed a threshold of p<0.001, and the cluster size to a 

number of voxels corresponding with p<0.05, FWE-corrected (Eklund et al., 

2016). 

Decoding 

Decoding was performed using beta images from the GLM with The Decoding 

Toolbox (v 3.999F). In all cases, we employed a two-class decoding approach 

with a searchlight (sphere of 4 radii, 251 voxels). We trained a classifier 

(Support Vector Machine, SVM) on a subset of the data, and then tested it on a 

different subset. Specifically, we employed leave-one-run-out cross-validation, 

training the classifier in all but one run, and then tested it on the remaining 

one. This was repeated with all runs, and the results averaged. To ensure an 

unbiased classification we report balanced accuracies, which accounts for 

over-representation of one category over the other. Group statistics applied a 

one-sample t-test against zero. To correct for multiple comparisons, we 

identified individual voxels that passed a threshold of p < 0.001, and then the 

minimum cluster size was set to the number of voxels corresponding to p < 

0.05, FWE-corrected. 
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With this approach, we performed two analyses. First, we classified attention 

and expectation. Since there is evidence that points to the involvement of 

frontoparietal regions in both attention (Dodds et al., 2011; Greenberg et al., 

2010) and expectation (Gonza lez-Garcí a & He, 2021), we intended to examine 

whether information in these regions is distinguishable between both 

conditions even if both are similarly activated. We used all cues (identical in 

shape and amount across blocks) from both categories (faces and names) to 

train a classifier to contrast across both conditions. Since attention and 

expectation manipulations appeared in different runs, for this analysis we 

grouped them in pairs of continuous blocks, obtaining four pseudo-runs that 

included one of each condition, and were subjectable to leave-one-run-out 

classification. Importantly, this analysis does not reveal where the anticipated 

category is decoded differently (since all cues are used), but in what regions 

the general process of anticipation takes place differently depending on the 

relevance vs. probability manipulation. Next, we queried the regions that 

carried specific anticipated content by performing the classification of 

predicted categories (faces vs. names) separately for attention and 

expectation. Specifically, for each condition, we classified all the cues (two 

shapes) that predicted faces versus all the cues (two shapes) that predicted 

names. As in the previous section, the analysis was locked on cue regressors, 

modeled to include the entire anticipation jitter. Note that we did not compare 

cued vs. uncued targets, but cues that predicted (relevant or probable, 

depending on the block) face vs. word stimuli within the same block. 

Importantly, although diminished by the use of two cues per condition and 

participant, fully crossed across blocks, this classification approach is not 

completely free from perceptual confounds due to the shape of the cues. This 

was controlled using a cross-decoding approach (see below). 

Cross-decoding 

Cross-decoding was performed to assess the extent to which different 

conditions shared coding patterns. That is, we trained the classifier in a 

particular condition, and then tested it on a different one. Significant above-
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chance classification suggests the existence of similar patterns of brain activity 

in the two conditions. The crossvalidation approach was adapted to each 

analysis to avoid confounds, which are detailed in the following paragraphs. 

Searchlight and second-level analyses were applied identically as in two-class 

decoding.  

Our primary goal was to estimate the degree to which patterns of brain activity 

are shared for preparation for relevant vs. probable contents. We reasoned 

that if anticipatory attention and expectation recruit differential patterns of 

brain activity, category cross-classification should not yield any significant 

results. We trained the classifier with cues predicting faces vs. names in one 

category, and then tested it on the other one. This analysis was performed 

without applying cross-validation. Note that this, although not identical to the 

original analysis, should not mean any statistical limitation, since the datasets 

used for training and testing are independent.  

The second goal was to examine the pattern similarity between preparation 

and actual target perception. Thus, we trained the classifier on cue 

information, and then tested it on target data, separately for each condition. 

We applied a leave-one-run-out cross-validation approach, by training with 

three cue runs, and then testing on the target of the remaining one. We did this 

separately for the cues in attention and expectation.  

Next, to examine whether cue-target parallelism is dependent on specific 

block context, we cross-classified between cues and targets across blocks. We 

did this by training the classifier in the preparatory window in one block, and 

then testing in the other one, again following a leave one run out approach. We 

performed the analysis in both directions (cue attention- target expectation; 

cue expectation – target attention) and then averaged the results.  

Regions of Interest (ROI) extraction 

To study the relationship between neural anticipation and behavior, we used 

specific decoding accuracy values per subject and region of interest (ROI). We 
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considered ROIs to be the regions to return significant decoding results during 

the previous analyses.  

We chose specific ROIs for different analyses. To study the effect of 

distinguishable context depending anticipatory states, we extracted the two 

clusters that resulted from the attention vs. expectation decoding, 

frontoparietal and occipital. Then, to study the consequences of better 

anticipated stimulus discriminability (and consequently, representation), we 

focused on the regions resulting from category decoding separately for 

attention and expectation during the preparatory window.  

ROI parcellation proceeded as follows. To avoid double dipping, we performed 

a leave-one-subject-out procedure (LOSO, Esterman et al., 2010). For each 

person, we repeated the second-level analysis while leaving that participant 

out of the sample, so that the particular ROI was not based on their own data. 

Then, the resulting clusters went through the same statistical correction 

described above. All participants returned the same two separate clusters. 

Finally, we registered the two ROIs back to each participant native space using 

the inverse deformation fields obtained during segmentation.  

To obtain accuracy values and perform correlations with behavior, we applied 

ROI based decoding. First, we extracted regions of interest from previous 

analyses. Then, classification was performed using the same rationale 

explained before. Only one decoding analysis was performed on each ROI, 

using all voxels. Again, we chose balanced accuracy to account for possible 

biases due to the number of observations on each condition.  

Voxel selectivity ranking 

We applied a voxel selectivity ranking analysis (Gonza lez-Garcí a & He, 2021; 

Richter et al., 2018) to unveil whether neural tuning to different stimuli 

(instead of multivariate activity patterns) generalized from anticipation to 

stimulus perception.  
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First, for each block we obtained 8 different conditions to rank per each voxel. 

These images were obtained from crossing category (faces and names) with 

runs (4 runs per block type). Then, for each ROI, participant and voxel, we 

obtained the betas associated with each condition as a measure of voxel 

activity during the cue, and ordered them from least to most activity inducing. 

Next, for each voxel, we applied the same order obtained during anticipation 

to target perception. We reasoned that if voxel selectivity during the cue 

continues to the target window, the order of the eight conditions for each voxel 

when applied to the target should maintain a positive slope. Note that the 

order of the eight conditions depended on each voxel, and was not relevant by 

itself, but was rather a means to order target betas and study the 

corresponding slope. Next, we averaged all voxels, obtaining a vector of the 

eight ranked values, and evaluated the slope of this vector by fitting a linear 

regression to the ranked parameter estimates. We obtained a slope value per 

participant, ROI and condition. Finally, we determined whether the slope was 

positive (and therefore evidence of generalization from cue to target 

perception) by performing a right tailed one-sample t-test against 0, and then 

used False Discovery Rate (FDR) to correct for multiple comparisons. Then, if 

there was a positive slope in at least one of the two conditions (attention and 

expectation) we compared them using a two-tailed paired t-test, again 

corrected for multiple comparisons using FDR.  

Brain-behavior correlation 

Correlations were performed as follows. For each ROI and participant, we 

obtained individual accuracy results. Then, we correlated these with decoding 

accuracies of other ROIs’ results, mean behavioral accuracies or reaction 

times, depending on the analyses and theoretical question. We used JASP to 

obtain a Pearson’s r coefficient for each pairwise correlation, and used FDR to 

correct for multiple comparisons.  

First, we studied the relationship between specific condition representations 

during anticipatory states and target perception. The correlation was 
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performed between the results of the classification between attention and 

expectation locked to the cue in two separate clusters (Frontoparietal and 

Occipital), and two other measures. On the one hand, to study the stability of 

these sets between anticipation and target perception, we performed another 

classification between attention and expectation, but locked to the target. On 

the other, to obtain evidence that better performance is related to better 

context discriminability, we used each participant’s global behavioral 

performance (acc and RTs), separately for attention and expectation.  

Subsequently, we aimed to explore the relevance of anticipatory category 

representations. The main measure was category classification during the cue 

window, separately for attention and expectation, for the specific region of 

interest (ROI), which was correlated to two other measures: category 

decoding accuracy during target perception, to obtain additional evidence of 

the relationship between anticipatory and perceptual pattern similarity; and 

behavioral results (acc and RTs) to determine whether clearer representations 

and preparation result in improved performance. In this case, we divided the 

data by cueing (cued vs. uncued trials), hypothesizing that uncued trials in 

both contexts would show worse behavioral performance when 

discriminability was better. 

RSA 

Although preparation in attention and expectation showed different neural 

patterns, category anticipation could be a common process that recruits 

similar regions in both conditions. To examine the overlap across both 

manipulations regarding category anticipation, we applied a cross-validated 

Representational Similarity Analysis (RSA, Kriegeskorte et al., 2008) with a 

searchlight procedure. We designed 2 models accounting for category (faces 

vs. names) and cue shape (see Pen alver et al., 2023, for a similar strategy). The 

first one was defined as increased similarity (higher correlation) between cues 

predicting faces, regardless of the actual shape. The second predicted higher 

similarity between the identical cues regardless of what they predicted. We 
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designed 4 by 4 matrices (one column and row per cue shape) separately for 

each block. Then, for each searchlight sphere, we obtained an empirical matrix 

separately for attention and expectation. Then, we cross-correlated each pair 

of matrices, obtaining one matrix per sphere. Finally, for each matrix (which 

accounted for the correlation between attention and expectation) and sphere, 

we performed a multiple regression using the two theoretical matrices as 

factors. This returned one t-value per model. The t-values obtained in the 

searchlight were entered in a second-level analysis to perform a one-sample t-

test against zero. Correction for multiple comparisons is identical to the one 

used during decoding analyses.  

4.4. Results 

4.4.1. Behavioral results 

Participants’ overall performance showed high accuracies (M = 0.93, SD = 

0.05). To assess behavioral effects, we used a three-way repeated measures 

ANOVA (Figure 4.2) on behavioral accuracy (Supplementary Table 4.1) and 

reaction times (Supplementary Table 4.2).  

Behavioral accuracy only showed a main effect of Category (F45,1 = 13.02, p < 

0.001, 𝜂p2 = 0.22), with less accurate responses to faces than to names (M = 

0.92, SD = 0.06 vs. M= 0.94, SD = 0.07). Crucially, there was no main effect of 

Block (F45,1 =0.31), indicating that attention and expectation conditions were 

equated in difficulty. Although the interaction between Block and Cueing was 

not significant (F45,1 = 1.98, p>0.05, see supplementary Table 4.1 for the 

complete result), given our hypothesis of better performance in cued that 

uncued trials in the expectation condition, we performed the planned 

comparisons and observed better accuracies for expected vs. unexpected 

targets (t45,1=2.75, p = 0.004, Cohen’s d = 0.41, M = 0.94 vs. 0.91), which was 

not observed in the attention condition (t45,1=0.08, p = 0.93). 
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Only the main effect of Cueing showed a significant main effect in reaction 

times (RT; F45,1 = 9.45, p = 0.004, 𝜂p2 = 0.17), as responses were generally 

faster in cued trials compared to uncued trials (M = 0.701 ms, SD = 0.17 vs. M 

= 0.732, SD =0.18). Again, although there was no block*cueing interaction 

(F45,1 = 1.29, p=0.26), we studied the effect of expectations guided by our a 

priori hypotheses. Both conditions showed faster responses for cued than for 

uncued trials, but the result was only significant for expectation (t45,1=3.14, p 

= 0.014, Cohen’s d = 0.14, M = 703 vs. 728 ms) and a not for attention 

(t45,1=1.78, p = 0.3, M = 720 vs. 731 ms).  
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4.4.2. Global differences between attention and expectation  

Our first goal was to outline the regions that are involved in general 

anticipatory states during attention and expectation, either in global 

activations or in different patterns of activity. To do so, in the first place we 

performed a univariate contrast for attention > expectation and vice versa, 

always locked to the cue and for the duration of the anticipatory window 

(Table 4.1, Figure 4.3A). We found small univariate differences between them. 

Preparation in expectation induced increased activation in the posterior 

cingulate cortex (pCC), while V2 showed increased activations for attention.  

Since previous literature has linked frontoparietal regions to anticipation in 

both conditions, we reasoned that even with similar activation values, the 

patterns of voxel-wise activations should be different if attention and 

expectation lead to different effects. We studied this by performing a 

searchlight decoding of expectation and attention locked to the cue. Our 

results showed significant classification in two different clusters (Table 4.1, 

Figure 4.3B). The first one includes several frontoparietal regions associated 

with the multiple demand network (MD), including the intraparietal sulcus 

(IS), the Supramarginal gyrus (SMG), Superior Parietal Cortex (SPC), the left 

Insula and the DLPFC, with the peak voxel being in the Supplementary Motor 

Area (SMA). The second one includes broad visual regions, including the 

Figure 4.2. Behavioral results. (Top row) Reaction times (in seconds) in attention and 

expectation blocks, for cued and uncued trials. (Bottom row) Accuracy in attention and 

expectation blocks, for cued and uncued trials. Green sections of the plots represent cued 

trials, and orange sections uncued trials. Dots represent individual subjects scores per 

experimental condition. Grey lines connect each participant’s score in the two conditions 

of each block. The horizontal black line inside boxes represents the median, while the 

limits of the box indicate the first and third quartile. Whiskers indicate the 1.5 inter 

quartile range for the upper and lower quartiles. Lateral plots show the kernel 

distribution of each data value.  
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occipital gyri (OcG), with the peak voxel being at the left lingual gyrus (LiG). 

Note that both blocks were perceptually identical and were also equated in 

speed and accuracy.  

 

Table 4.1. Univariate contrast results 

 

Contrast Region Coordinates 
Cluster 

size (k) 
Z p T(peak) 

Cue Att.> 

Cue Exp. 

V2 8, -80, -12 216 3.62 0.04 3.94 

Cue Exp.> 

Cue Att. 

rpCC 2, -16, 40 367 3.9 0.004 4.3 

 lpCC -4, -42, -28 210 3.84 0.044 4.22 

Notes: Region labeling based on the Julich-Brain atlas (Amunts, 2020).P- 

values are cluster values corrected for multiple comparisons. V2 = Secondary 

visual area, rpCC = right posterior Cingulate Cortex, lpCC = left posterior 

Cingulate Cortex. Att. = attention, Exp. = expectation. 
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4.4.3. How do block differences relate to target processing and behavioral 

performance? 

We hypothesized that better discriminability of task related activity (block 

differences) during preparation should 1) extend to the target period and 2) 

lead to better behavioral performance.  

Figure 4.3. General attention vs. expectation results. (A) Contrast GLM results 

for cue-locked attention vs. expectation trials. Scales reflect t-values. Yellow areas 

highlight significant clusters for attention>expectation trials, while Blue shows 

results for expectation>attention. (B) attention and expectation decoding during 

the anticipatory interval.  
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To examine the stability of condition decoding between preparation and 

target perception, we performed a cross-decoding analysis, by training the 

classifier in the preparation interval, and testing it during target perception. 

However, to our surprise, there was no evidence of generalization. 

Nevertheless, although patterns of activity did not generalize, anticipatory 

condition differences could be related to the level of classification accuracy 

during target processing. We performed a decoding analysis locked to the cue, 

and then the target, in the extracted significant ROIs from the searchlight 

preparation analyses. Specifically, we used the occipital and the frontoparietal 

ROIs for each participant after applying a leave-one-subject-out procedure to 

avoid issues with the independence of the data (i.e., double dipping). First, we 

found that condition decoding during the cue was highly correlated with 

discriminability during target processing for both ROIs, (Occ: r = 0.378, 

p=0.011; FP: r = 0.44, p = 0.003), suggesting that, although subserved by 

different patterns of activity, the level of block discriminability is constant 

during the whole trial (Figure 4.4, top row). Note that these results were 

unlikely due to cueing effects drifting into the target window, since cross-

classification was not significant.  

Block decoding during the cue was also correlated with behavioral 

performance. Specifically, the frontoparietal ROI was positively correlated 

with behavioral accuracy in both attention (r = 0.396, p = 0.008) and 

expectation trials (r = 0.315, p = 0.037). On the other hand, although all 

correlations with RT had a negative sign (suggesting faster responses as 

decoding improved), they did not reach statistical significance (all p>0.29). 

The Occipital ROI showed the same pattern numerically, being positively 

correlated to behavioral accuracy and negatively to reaction times in both 

blocks, but no contrast reached significance (all p>0.11).  
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Figure 4.4. Anticipatory block differences and behavioral performance correlations. First row 

shows the correlation between block decoding in cue period (x axis) and the target (y axis). Second 

and third rows depict the correlation between block classification in the cue and behavioral results. 

Shaded areas show the confidence interval.  
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4.4.4. Differences in anticipatory category representations in attention and 

expectation 

After studying general differences associated with the two conditions, our 

main interest resided in finding out the profile of visual anticipation separately 

for attention and expectation. Results show (see Figure 4.5A and Table 4.2) 

significant coding of the anticipated relevant (attention, orange) target 

category in two bilateral clusters in the Visual Ventral stream, with peaks at 

the left Inferior Temporal Gyrus (lITG) and the right ITG (rITG). In contrast, 

probable (expectation, blue) category anticipations showed decoding mostly 

restricted to the early ventral visual cortex, including the Fusiform gyrus and 

peaking in the Lingual gyrus.  

It is important to clarify that these results are unlikely due to perceptual 

confounds, given that decoding was performed including two different cues for 

each category, which were differentially paired with the two cues of the other 

condition across blocks. 

 

 

Figure 4.5. Cue-locked face vs. name MVPA. (A) Results in different blocks. Attention 

results are shown in orange, and expectation in blue. (B) Cross-classification results 

between attention and expectation.  
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Table 4.2. Decoding accuracy results. 

 

Contrast Region Coordinates Cluster 

size (k) 

Z p Decoding 

(peak) 

Cue attention 

vs. expectation 

SMA -6, -20, 50 27841 5.46 <0.001 60.34% 

 LiG -6, -76, -6 2302 3.86 <0.001 57,69% 

Target 

attention vs. 

expectation 

PRG 34, -18, 52 54668 6.40 <0.001 62.21% 

 STC -48, -40, 2 1595 4.93 0.002 56,44% 

Cue category 

decoding - 

attention 

 lITG -42, -58, -6 1564 5.73 0.001 59.91% 

  rITG 42, -58, -

10 

1439 4.84 0.001 57.31% 

Cue category 

decoding - 

expectation 

LiG -20, -84, -8 2761 4.4 <0.001 57.46% 

Note: Decoding accuracy (balanced accuracy) shows the accuracy value in the 

peak voxel. SMA = Supplementary motor area, LiG = lingual gyrus; PRC = 

Precentral Gyrus, STC = Superior Temporal Cortex, ITG = inferior temporal 

cortex, l and r = left and right.  
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4.4.5. Category anticipation shows little generalization between attention 

and expectation 

The results in the previous section show that the anticipation of categories 

recruits dissociable regions across attention and expectation, with overlap 

restricted to the right fusiform gyrus. To test whether the underlying codes are 

shared across relevance and probability contexts, we performed a cross-

classification analysis between these conditions. One cluster (k = 756, Figure 

4.5B and Table 4.3) in the left FG was significant. No other region returned 

significant anticipatory cross-decoding.  

Importantly, even though attention and expectation showed little 

generalizable anticipatory decoding, within-condition analyses revealed the 

involvement of partially similar regions. Hence, we designed a cross-validated 

Representational similarity analysis (RSA) to examine the degree of overlap 

across both manipulations regarding category anticipation. The results are 

shown in Figure 4.6 and Table 4.4. A total of three clusters were found to 

represent category across attention and expectation. The first one was in the 

occipital cortex, peaking at the occipital pole (OCP), the second at the 

Supplementary Motor Area (SMA) and a third one at the right SMG. This result 

extends the findings of category decoding, and support the idea that although 

Figure 4.6. RSA Category model cross-validated across blocks. The 

model predicted differences across anticipated face and name stimuli. The 

results show the regions that were correlated across attention and 

expectation.  



 

 119 

both conditions represent category in partially overlapping regions, the 

subserving patterns of activity are mostly unique to each context. 

4.4.6. How is category anticipation related to target perception in each 

condition? 

Results in the previous sections show that category anticipation in attention 

and expectation similar but not completely overlapping regions, with mostly 

different coding patterns. To explore whether this is due to whether 

anticipatory representations in both conditions differ in their level of 

similarity with target perception, we investigated the potential pattern 

overlap between preparation and the actual perception of face and name 

stimuli, separately for attention and expectation. We trained the classifier 

during cue processing and tested it during target processing (Figure 4.7 and 

Table 3). In attention (orange clusters in Figure 4.7), the lITG and the left 

Supplementary Motor Area (lSMA) showed common patterns for both 

processing stages. For expectation (blue clusters), results were limited to 

bilateral Occipital Gyri (OcG), peaking at the left Inferior Occipital Gyrus 

(lIOG). We performed a conjunction analysis, which only returned a cluster in 

the left FG, matching the coordinates of the significant regions of the cross-

classification analysis (see Figure 4.4B).  

However, even when most regions showed more similar representations 

between anticipation and target perception in only one specific condition, 

these differences might be explained by different levels of involvement, but not 

necessarily completely different representations. We investigated this by 

performing a cross-classification between cue and target across attention and 

expectation. That is, we trained with the cue in one condition, and then tested 

in the target of the other condition, and vice versa. We then averaged both 

directions. The results are shown in Figure 4.8 and illustrate the involvement 

of several regions of ventral visual cortex, as well as left SMA. Noteworthy, the 

resulting bilateral cluster included all the areas that where significant 
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separately for attention and expectation (compare Figure 4.8 with Figure 

4.7A).  

 

 

Figure 4.7. Cue-Target Cross-decoding results. (A) Attention results are shown in 

orange, and expectation in blue. (B) Common significant voxels across conditions 

(binarized conjunction).  

 

Figure 4.8. Cue–Target cross-decoding between blocks. Only one cluster was significant, 

but it included a big part of the regions that were significant in both attention and expectation 

cue-target cross-decoding.  
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Table 4.3. Cross-decoding results 

IFG = Inferior Frontal Gyrus, lITG = left Inferior Temporal Gyrus, lSMA = left 

Supplementary Motor Area, lIOG = left inferior occipital gyrus, lFG = left 

Fusiform Gyrus. Att. = attention, Exp. = expectation. 

 

 

 

Contrast Region Coordinates Cluster 

size (k) 

Z p Decoding 

(peak) 

Cue category 

between 

blocks  

 lFG -42, -50, -22 756 4.01 0.026 54.13% 

Cue-Target 

category – 

Att. 

lITG -48, -52, -8 1246 5.29 0.002 57.13% 

  lSMA -52, 6, 20 594 4.17 0.03 54.17% 

Cue-Target 

category – 

Exp. 

 lIOG -38, -62, -2 8235 6.64 <0.001 57.12% 

 

Cue-Target 

between 

blocks 

lFG -40, -50, -6 11993 6.71 <0.001 57.07% 
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Table 4.4. RSA result 

LiG = Lingual Gyrus, SMA = Supplementary Motor Area, rSMG= right 

Supramarignal Gyrus 

 

A mechanistical explanation for the similarities found between preparatory 

and perceptual representations might be accounted for by neurons in both 

epochs of the trial being tuned to similar stimuli. We studied the stability of 

this neural tunning from cue to target stimuli in a univariate manner, which 

also allowed direct comparisons between attention and expectation. We 

established a voxel selectivity ranking during anticipation, and regressed it 

onto image preference during the target (see Methods, and Richter et al., 2018 

for a similar approach). The rationale is that a positive slope of the ranked 

image preference during the cue, applied to target activity should act as an 

indicator of similar selectivity during cue and target. Conversely, a negative or 

flat slope would imply no univariate generalization from cue to target. We 

performed this analysis in the four ROIs obtained from category decoding 

during the cue, and cue-target cross-decoding (Figure 4.9). We separately 

analyzed the slope of each condition. The slope was only significantly positive 

Contrast Region Coordinates 
Cluster 

size (k) 
Z p 

T 

(peak) 

Cue 

Category  

LiG -26, -96, 8 4810 4.92 <0.001 5.74 

 SMA -14, 2, 60 4447 4.18 <0.001 4.32 

 rSMG 58, -46, 38 903 3.92 0.028 4.32 
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for expectation, in the ventral visual ROI associated with cue-target cross-

decoding for expectation, which included several areas of the VVC (t43,1=3.27, 

p = 0.001), which was also significantly more positive than attention 

(t43,1=2.86, p = 0.004). This result suggests that voxels within the VVC are 

tuned in a similar way during cue and target epochs, but only during 

expectation trials. 

 

Figure 4.9. Voxel selectivity results. Each plot depicts the results for one ROI, titled as 

the analysis it comes from. Y axis show average beta values across all voxels and 

participants. X axis show selectivity preference from least (one) to most (eight) of the 

eight conditions during anticipation, which was then applied to target activity (see 

methods). Dots show mean voxel and participant beta values, and vertical lines the SD. 

Continuous lines indicate the slope obtained after fitting a linear regression to each 

condition. Asterisk indicate statistical significance.  
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4.4.7. Anticipatory category decoding does not correlate with target 

perception or behavioral results.  

Finally, we sought to explore whether better anticipated category differences 

(classification between faces and names in the preparation interval) had an 

effect in 1) target category decoding and 2) behavioral performance. Overall, 

there was no measure that was significantly correlated to the anticipated 

category decoding for either attention or expectation. The complete results 

can be found in Supplementary Table 4.3.  

4.5. Discussion 

In this work we studied the specificity of top-down preparatory processes, 

focusing on the anticipation of relevant (selective attention) and probable 

(perceptual expectations) information content. We fulfilled our aim of 

characterizing the basis of anticipation separately for two relevant cognitive 

contexts, and replicated and extended the findings of previous results. 

Crucially, our findings show that top-down preparation is highly specific, 

evidenced by relevance and probability contexts leading to distinguishable 

brain states that extend from cue to target processing. Moreover, although 

anticipated stimulus categories could be decoded before target presentation 

in both contexts, their preparatory patterns were mostly unique for attention 

and expectation. Overall, these results indicate that the preactivation of 

information is dependent on the context, and challenge the idea that templates 

in selective attention and perceptual expectation are equivalent in brain 

functional terms.  

Our task successfully manipulated relevance and probability of informational 

content. The task generated an overall high accuracy, indicating that cues were 

used in an effective manner. Importantly, expectation results showed typical 

cueing effects (de Lange et al., 2018; Pen alver et al., 2023; Sy et al., 2014), with 

improved responses for expected trials. Even though the behavioral task was 

adapted to match the requirements of an fMRI experiment having a reduced 

number of trials, it produced similar results to previous instantiations 



 

 125 

(Pen alver et al., 2023), accounting for the robustness of expectation effects on 

behavior.  

Our first goal was to study whether attention and expectation contexts lead to 

different anticipatory states. We found univariate evidence of differential 

anticipatory cue-generated coding of different task sets, in line with previous 

results (Gonza lez-Garcí a et al., 2018; Hebart et al., 2018; Pen alver et al., 2023). 

Crucially, this could not be due to differences in perceptual factors, as blocks 

were fully equated on this respect, or to task difficulty differences between 

attention and expectation, since behavioral results were not better in any 

condition. Multivariate results extended these findings, showing that although 

activation levels where similar in attention and expectation in frontoparietal 

regions (Greenberg et al., 2010; Summerfield et al., 2006), the patterns that 

subserved each condition differed. We found two clusters, one comprising a 

wide range of left occipital areas, and another one in frontoparietal sites. The 

occipital cluster extended from earlier visual regions to areas of the left ventral 

cortex, while the frontoparietal part included several regions typically 

associated with the Multiple Demand network (MD), such as the insula, SMA, 

SPC and MFC (Dosenbach et al., 2007; Wen et al., 2018). This network has been 

related to several factors key to attention and cognitive control, including 

different memory load (Manoach et al., 1997) or task switching (Wager et al., 

2004), although these factors were equal across our blocks. Overall differences 

are more likely related to the specific links between the stimulus content 

anticipated and the function of that content (relevance vs. probability) for the 

selection of the appropriate response (e.g. Woolgar et al., 2015).  

Another source of useful information for understanding the anticipatory 

coding of relevance vs. probability is the overlap of these processes with target 

processing. To investigate this, we analyzed the coding stability from 

anticipation to perception and the behavioral consequences of these 

differences. For this, we performed whole-brain block decoding during target 

included broad frontoparietal regions. This returned larger frontoparietal 

regions, but, unlike during anticipation, attention and expectation could not be 
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decoded in occipital voxels. This partial overlap could be due to similar regions 

being involved in both periods, but through different underlying mechanisms. 

To clarify this, we performed a cross-decoding analysis between cue- and 

target-locked activity. Contrary to our hypothesis, this did not return any 

significant cluster, indicating that anticipatory mechanisms that are distinctly 

involved in attention and expectation change throughout the trial. This, 

however, does not imply that anticipation is not affecting brain activity in later 

stages. The correlation between the average decoding in the regions during 

anticipation with decoding during perception was significant, despite the 

absence of cross-classification. Thus, it seems that the mechanisms associated 

with attention and expectation are deployed in similar regions, but in a 

different manner. Interestingly, even when patterns differ between 

preparatory and implementation stages, their function is related throughout 

the whole trial. In addition, pairwise correlations between decoding in the two 

clusters and behavioral performance revealed that only classification 

accuracies in the frontoparietal regions correlated significantly with accuracy 

in both attention and expectation. Altogether, results suggest that higher 

pattern discriminability between attention and expectation could be linked to 

a better representation of task demands, which would translate to improved 

performance (Pelzer et al., 2022).  

Anticipatory representations of incoming stimuli are a widespread 

phenomenon found in several contexts (e.g. Hebart et al., 2018; Nobre & 

Serences, 2018). After learning that attention and expectation lead to 

distinguishable anticipatory states, our goal was to investigate whether the 

representational nature of relevant or probable category information about 

incoming stimuli was also different. We approached this inquiry by decoding 

anticipated stimulus category (faces vs. names) separately in each context. If 

the subserving mechanisms of category anticipation differs, we could expect 

two types of results: 1) the anticipated category is decoded in different regions 

depending on the context; 2) the patterns that allow to classify the anticipated 

category do not generalize across contexts. Regarding the first set of results, 
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we found that it was possible to decode the anticipated category in both 

contexts, but the regions associated with this effect differed for the most part. 

Stimulus category in attention was decoded in regions of the ventral visual 

cortex, mostly the bilateral ITG. This region has been associated extensively 

with object recognition, including faces (Verhoef et al., 2015) and words 

(Willems et al., 2016). Importantly, there is also evidence of anticipatory 

processing in this region (Willems et al., 2016). The expectation manipulation, 

in contrast, led to category decoding in earlier regions of the ventral stream 

including the lingual gyrus, associated with text visual processing (Mechelli et 

al., 2000). Interestingly, attention and expectation differed in the anterior-to-

posterior location of the anticipatory representations, with the former being 

in higher regions of the hierarchy, while the latter engaging earlier perceptual 

sites. This is similar to what was found by Kok et al. (2016), where a spatial 

attention manipulation had larger effects on higher order visual areas (V2, V3) 

while expectation was detected in V1. The reasons for this are unknown and 

could be partially due to the characteristics of the paradigm used, although it 

is suggestive of attention codes being implemented with more category-based 

representations, while expectation being limited to more basic perceptual 

coding of anticipated stimuli. Crucially, we did not decode target stimulus for 

cued or uncued trials separately, since this would mix reactions to matched or 

unmatched predictions. Additionally, by using two different cues to anticipate 

each category, which were fully crossed across blocks for each participant, 

makes it highly unlikely that the significant decoding was due to the perceptual 

features of the cues.  

In addition, to query the similarity of the patterns, we implemented a cross-

classification analysis between the attention and expectation. There was 

scarce evidence of cross-decoding, which was limited to a small cluster in the 

left Fusiform Gyrus. This adds support to the idea that the anticipation of 

specific relevant vs. probable stimulus categories is mostly based upon 

different mechanisms, replicating and extending previous results (Pen alver et 

al., 2023). Finally, we run an RSA (Kriegeskorte et al., 2008) to find the regions 
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that coded for category across conditions, regardless of the specific patterns 

that may be driving the dissociation found in the previous decoding. This 

analysis showed a combination of the regions that had appeared during 

decoding analyses performed separately in attention and expectation, 

including LiG and ITG together with premotor and inferior parietal areas. 

Moreover, other regions such as SMA also showed evidence of anticipatory 

category coding, although they were not significant in the decoding of either 

condition. This adds support to the notion that some frontoparietal regions 

also represent anticipated information, although more trials of each condition 

might be needed to find evidence separately in each condition. Altogether, this 

result provides further evidence in favor of anticipatory representations 

sharing representational characteristics in attention and expectation, while, at 

the same time, being subserved by distinct patterns of brain activity.  

A potential source for differences between attention and expectation could be 

that they engaged different levels of similarity between anticipated and 

perceived target information, similarly to what has been suggested for visual 

imagery (e.g. Cichy et al., 2012). Both cross-classification between cue and 

target was evident in both conditions, however these differences appeared in 

mostly different areas. Attention showed cross-decoding on the left ITG, plus 

in the IFG. On the other hand, this analysis engaged more anterior occipital and 

temporal ventral regions for expectation. Surprisingly, significant regions did 

not fully match the ones found during anticipated category decoding, which 

suggests that anticipatory coding was taking place also in these areas but did 

not reach statistical significance. Interestingly, there was a small region in the 

fusiform gyrus that appeared in both attention and expectation (see Figure 

4.7B), which matches the only significant cluster obtained during cue cross-

decoding, and also part of the RSA analyses. Altogether, this suggest that at 

least the left FG might uniformly act in different preparation contexts.  

Importantly, our results suggested that anticipatory templates in both 

conditions share some similarity with stimulus perception, regardless of the 

condition. This was evidenced by a cross-classification analysis in which we 
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trained the classifier with cues with one condition, and then tested it in targets 

of the other. The result closely matched regions that combined the ones that 

appeared when studying each condition separately. Since stimulus perception 

arguably leads to strong perceptual patterns, they could generalize to different 

forms of anticipatory processing. In this regard, Cichy et al. (2012) proposed 

that perception involves a larger set of effects than, in their study, imagery. In 

our case, the processes involved in perception in either attention and 

expectation might actually include activity similar to anticipation decoding in 

both conditions, while anticipation in each condition might be more specific.  

A voxel selectivity ranking analysis provided further evidence regarding the 

degree of generalization of neural patterns from cue to target stimuli. We did 

this in the regions that so far were found to be related to category anticipation: 

cue decoding and cue-target cross-decoding for attention and expectation. Out 

of the four regions, we only found evidence of generalization in the cue-target 

region for expectation, in broad ventral stream sites. There, only expectation 

showed evidence of generalization, and it was also significantly larger than for 

attention. Altogether, this set of results highlights that preparation for 

different categories occurs in a representational manner that is akin to 

stimulus perception. Although the phenomenon is increased in different 

regions depending on the context, it appears to be at least partially common 

in the different contexts. Crucially, univariate evidence only supported this 

generalization for expectations, suggesting that cue-target similarities in 

probability contexts might be due to voxel tuning to the anticipated category, 

while selection might achieve these representations by different mechanisms.  

As a last step, we investigated whether category anticipation could be related 

to the efficiency of behavior. In contexts of expectations, classification 

accuracies have been previously reported to correlate with behavioral 

performance (Kok et al., 2017; Van Ede et al., 2012). However, and contrary to 

our hypothesis, we did not find such relationship in either attention or 

expectation. The reasons for this are unclear. Notably, in a previous analysis, 

we found that global condition discrimination did correlate with behavioral 
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accuracy. Hence, whilst it could be the case that general condition preparation 

has a more direct connection with motor responses, the specific mechanisms 

that allow for content maintenance in visual regions could be related to other 

processes that are less influential on behavioral performance. Moreover, since 

RSA showed evidence of category anticipation for both regions in SMA that 

was not included in this correlation analysis, future studies that specifically 

target object representations in frontoparietal regions might find a closer 

relationship with behavior.  

Our results add to the evidence that attention and expectation engage neural 

anticipation, although how this happens is still not fully understood. The 

current evidence could align with predictive processing accounts of the 

anticipatory effects of both contexts (Auksztulewicz & Friston, 2016; Feldman 

& Friston, 2010; Kok et al., 2017). Attention consistently showed anticipatory 

coding in regions of the ventral visual cortex that are related to precise 

stimulus perception, while expectation was often related to earlier visual 

areas. In this scenario, selection would act as a closer representation of the 

relevant stimulus categories, perhaps more closely related to brain imagery 

(Christophel et al., 2015; Lawrence et al., 2019). This could happen by 

preparatory increases of gain in neurons tuned to relevant categories in order 

to enhance information sensory weights when the target appear (Feldman & 

Friston, 2010). On the other hand, expectation would induce an excitability 

increases in less complex regions tuned to basic stimulus features, allowing for 

a more flexible representation and induction of prediction errors to reduce 

noise during visual processing and in case of unfulfilled expectations. 

Importantly, this is further supported by the results showing how voxel 

tunning remained constant only in expectation, adding to the concept of neural 

excitability and responsiveness to probable stimuli.  

Although overall our results account for differences found in related processes 

such as attention and expectation, they should be complemented by future 

research. Importantly, our scope was limited to the anticipatory interval and 

its similarities with perception. We chose to study the similarities between 
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anticipation and stimulus perception by using targets from the same blocks as 

the cues. This could lead to partial overlaps between cue and target perception 

due to the slow changes in BOLD signal, that may partially account for the 

similarities between the two parts of the trial. Although these results replicate 

and complement the ones previously found using EEG, which is temporally 

precise, an unbiased spatiotemporal profile might be obtained by applying 

multimodal fusion methods (Cichy & Oliva, 2020), which allow to combine the 

information supported by both techniques. Moreover, to make an unbiased 

comparison, the best strategy is to obtain data from an independent localizer 

block without task demands or response noise that would allow to implement 

a canonical template tracking procedure. This would give more clear evidence 

of whether anticipatory information was akin to target perception (Gonza lez-

Garcí a et al., 2018; Palenciano et al., 2023; Wimber et al., 2015). However, it is 

important to note that, when cross-classifying cues and targets from different 

conditions, classification was still possible. This makes it an unlikely 

explanation that mechanisms involved in preparation-perception similarity 

are completely biased by block effects. Finally, it is still debated whether 

attention varies regarding the probability of incoming stimuli (Alink & Blank, 

2021; Gordon et al., 2019), which makes it difficult to completely eliminate a 

component of attention in the expectation condition. However, our 

manipulation was not designed to study that attentional component, and 

hence our results speak regarding how they differ, but not how they influence 

each other. Previous research studying how attention influences expectation 

effects has focused on target processing, and has yielded mixed effects (Kok, 

Rahnev, Jehee, Lau, & de Lange, 2012; Richter & de Lange, 2019). Future 

studies that orthogonally manipulate both conditions might study anticipatory 

processing to respond to whether probable stimuli increase or decrease 

attention.  

Altogether, with a paradigm that manipulated the anticipation of relevant or 

probable contents in tasks equated perceptually and in difficulty levels, our 

neuroimaging results show the preactivation of specific patterns is mostly 
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different for attention and expectation. In both conditions cues pre-activated 

patterns similar to those reinstated during subsequent target perception. 

However, this overlap happened in mostly different regions, and only in 

expectation it was possibly due to specific neural tuning to probable stimuli. 

Our findings suggest that selection acts through complex stimulus 

representations, while expectation increases excitability in earlier, more basic 

perceptual regions. Crucially, we have shown that preparation is a complex 

phenomenon, where different cognitive processes share representational 

structures, although implementing advantageous effects via different 

mechanisms that are mostly specific to certain contexts, complemented by 

activity constant through different forms of preparation. Overall, our results 

replicate and extend previous findings, thus stressing the specificity of 

anticipatory processing depending on the informative role it plays for further 

target processing.  
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4.6. Supplementary Materials 

 
Supplementary Table 4.1. Behavioral accuracy results. 

 

Conditions F p η²p  

Block  0.311  0.580  0.007  

Cueing  2.231  0.142  0.047  

Category  13.024  < .001  0.224  

Block ✻ Cueing  1.977  0.167  0.042  

Block ✻ Category  24.112  < .001  0.349  

Cueing ✻ Category  6.766  0.013  0.131  

Block ✻ Cueing ✻ Category  6.717  0.013  0.130  

 

Supplementary Table 4.2. Reaction Time results. 

 

Conditions F p η²p  

Block  1.475  0.231   0.032  

Cueing  9.451  0.004   0.174  

Category  1.679  0.202   0.036  

Block ✻ Cueing  1.291  0.262   0.028  

Block ✻ Category  1.417  0.240   0.031  

Cueing ✻ Category  0.679  0.414   0.015  

Block ✻ Cueing ✻ Category  5.384  0.025   0.107  
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Supplementary Table 4.3. Cue category decoding correlations, separately for 

attention and expectation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Note: Table shows the correlation values between the classification accuracies 

obtained during category (predicted faces vs. names) decoding locked on cue, 

separately for attention and expectation. The ROIs are the ones that were 

significant in the cue category whole brain decoding analysis. Attention ROI = 

ITG, expectation ROI = Early visual cortex. Target cued and target uncued refer 

to the category decoding result locked to the target, in the same ROIs as the 

cue depending on the condition. Acc and RT refer to behavioral results, 

separately for condition and cueing.  

  

Attention 

  Pearson's r    p 

 Target cued  -0.163  0.290 

 Target uncued  -0.089  0.566 

 Acc. cued  0.160  0.299 

 Acc. uncued  0.009  0.955 

 RT cued  -0.287  0.058 

 RT uncued  -0.242  0.114 

      

Expectation 

  Pearson's r    p 

 Target cued  0.013  0.935 

 Target uncued  2.896×10-4   0.999 

 Acc cued  -0.122  0.430 

 Acc uncued  -0.271  0.075 

 RT cued  -0.020  0.897 

 RT uncued  -0.061  0.693 
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Chapter V 
Study III 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The content of this chapter is in preparation as Pen alver, J.M.G.; Gonza lez- 

Garcí a, C.; Ruz, M. Different prior induced category representations in 

expectation and attention. An EEG and fMRI study.  
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5.1. Summary 

Top-down preparation is a key tool that allows efficient behavior in a complex 

environment. Indeed, it is generally believed that prior-induced anticipation 

has an effect on target processing. The effects are usually associated to 

enhanced activations for attended information (vs ignored), and decreased 

activations for probable stimuli (vs unlike). However, the mechanisms behind 

these phenomena are not well understood. Specifically, it is debated whether 

probable stimuli dampen or sharpen sensory processing. Moreover, it is not 

clear whether improbable stimuli automatically receive more attention, 

making attention and expectation tightly connected processes. Here, we re-

analyzed two previous experiments (Pen alver et al. 2023 and Pen alver et al. in 

prep) which independently manipulated selective attention and perceptual 

expectations in a similar cue target paradigm, using EEG and fMRI respectively. 

In different blocks, participants were cued to the relevance or the probability 

of face and name stimuli. Using MVPA to decode target categories (faces vs. 

names), we sought to add evidence to the debate on whether attended stimuli 

receive sharpened processing (indicated by larger decoding accuracies) and if 

probable targets elicit dampened (poorer classification) or sharpened 

representations. In the EEG experiment, we aimed to specify the temporal 

profile of these effects, both their onset and the temporal stability. In fMRI, we 

studied how frontoparietal and visual regions are involved in 

dampening/sharpening effects. Both experiments showed a pattern that is 

consistent with dampened representations for probable stimuli, and 

unconclusive evidence supporting a sharpening of representations for 

attended stimuli. Moreover, we showed that these effects have early onsets, 

that are temporally stable and are extended after target perception, and are 

implemented mostly in ventral visual regions. 
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5.2. Introduction 

In a complex and ever-changing environment, the ability to anticipate 

incoming stimuli is crucial for flexible and well-adjusted behavior. Theoretical 

frameworks of proactive cognition view preparation as an endogenous brain 

function that occurs before stimulus presentation, improves behavior (Stein & 

Peelen, 2015), and induces neural representations of incoming information 

(e.g. Gonza lez-Garcí a et al., 2018; Kok et al., 2017). While it is widely accepted 

that preparation is a beneficial process, there is limited understanding of 

whether it is a unified or heterogeneous phenomenon. Research has found 

differences in preparation for different behavioral demands, such as 

attentional and motor preparation (Brunia, 1999); different task sets (Hebart 

et al., 2018); or levels of contextual demands (Kim et al., 2020). Crucially, 

recent research showed how the anticipation of specific stimulus categories 

differed in contexts of selective attention and perceptual expectations 

(Pen alver et al., 2023).  

However, how does preparation in different contexts influence target 

processing? Research has widely studied such effects of anticipated 

probability and relevance contexts. A common finding in literature is that 

perception of probable stimuli decreases neural activity (or, conversely, 

unexpected information increases activity), a phenomenon labeled 

“expectation suppression”. Electroencephalography (EEG) correlates such as 

the mismatch negativity (Garrido et al., 2009; Pazo-Alvarez et al., 2003) are 

thought to reflect a reduced processing demand by probable information 

compared to unexpected stimuli. Similar effects where novel stimuli generate 

larger EEG amplitudes than expected ones have also been extensively found 

(e.g. Manahova et al., 2018). Likewise, oscillatory activity appears to reflect 

converging findings. Such is the case for midfrontal Theta (4-8 Hz) power, 

associated with control (Cavanagh & Frank, 2014), which increases in contexts 

of target unexpectedness (Cavanagh et al., 2012). In addition, Gamma (>30 Hz) 

power has been shown to decrease with stimulus repetition in monkey V4 
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cortex (Brunet et al., 2014). Similarly, BOLD signal for expected information is 

reduced in regions such as V1 and lateral occipital cortex (e.g. Kok et al., 2012; 

Walsh & McGovern, 2018; see Feuerriegel et al., 2021 for a detailed review). 

These findings are usually explained under the predictive processing 

framework (Kok & de Lange, 2015), reflecting efficient priors which in turn 

reduce prediction errors.  

Importantly, the nature of the neural mechanisms that generate expectation 

suppression is still debated. There are two main and, in principle, mutually 

exclusive explanations (de Lange et al., 2014; Press et al., 2020). The first one 

proposes a suppression of the neural responses tuned to predicted 

information, and therefore, redundant (Murray et al., 2004; Friston, 2005). 

This results in a “dampening” of neural populations tuned to predicted 

features, which results in a rapid updating of knowledge in case something 

unexpected occurs (Press et al., 2020). The second explanation proposes a 

decrease of activity of neural populations tuned away from expected 

information, inducing a “sharpening” of the representation from selective 

neural populations. Since these accounts cannot be immediately compared 

with mean population changes, multivariate analyses have been used to study 

such patterns of brain activity (de Lange et al., 2018). The rationale is that if 

expectation dampens selective neurons, the fidelity of representations in these 

regions should be reduced, and decoding accuracies should in turn decrease. 

Conversely, if expected information sharpens neural activity, the fidelity of 

representations would improve and thus classification accuracies should 

increase (Kok, Jehee, et al., 2012). 

Previous research has reported supporting evidence for both the sharpening 

and dampening accounts (Gonza lez-Garcí a & He, 2021; Han et al., 2019; Kok, 

Jehee, et al., 2012; Richter et al., 2018; Walsh & McGovern, 2018; Yon et al., 

2018, 2023). Importantly, expectation suppression effects, although robust, 

have been found more consistently in tasks that utilize a small number of 

stimuli and generate strong associations through frequent repetitions, such as 
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statistical learning (Richter et al., 2018). However, cueing paradigms have 

yielded mixed effects (Feuerriegel et al., 2021). Nonetheless, since dampening 

and sharpening effects refer to changes in specific neural populations, voxel-

wise modulations could be studied in the absence of overall activity changes 

(Gonza lez-Garcí a & He, 2021).  

In contexts of attentional selection, EEG research has shown larger voltage 

amplitudes for attended vs. ignored information, for example colors (Sto rmer 

& Alvarez, 2014), positions (He et al., 2004), or words (Perrone-Bertolotti et 

al., 2020). Moreover, different oscillatory correlates have been associated with 

selection. Fronto-medial Theta power increases in contexts where cognitive 

control is needed, such as distractor inhibition (Cavanagh & Frank, 2014). In 

addition, Alpha (8-12 Hz) power and synchrony have been shown to decrease 

for selected stimuli (e.g. Bagherzadeh et al., 2020; Banerjee et al., 2011; Feng 

et al., 2017). Also, Gamma power (Gruber et al., 1999) and synchrony 

(Doesburg et al., 2008) are higher for task relevant vs. task irrelevant stimuli. 

Relatedly, studies using fMRI have often found increases in cortical activity for 

cued stimuli in occipitotemporal regions in non-human (Bichot et al., 2005; 

Burrows et al., 2014; Chelazzi et al., 1998; Cohen & Maunsell, 2011) and 

human (Kastner et al., 1999; M. V. Peelen & Kastner, 2011; Serences et al., 

2004) primates. Altogether, these findings support classic theoretical 

frameworks such as the biased competition theory (Beck & Kastner, 2005; 

Desimone & Duncan, 1995), which usually is tested with tasks that 

simultaneously present several competing stimuli, and therefore may involve 

suppression to highlight the attended stimulus. This model contends that all 

stimuli in the visual field compete for representation, which is evidenced by 

the finding that neural responses to individual stimuli are larger than 

responses in the presence of several images (e.g. Kastner et al., 1998). This 

competition can be biased by selection, which increases cortical sensitivity to 

relevant stimuli, while suppressing activity of neurons tuned to ignored 

stimuli. Crucially, this effect is modulated by top-down attention. 
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The notion of suppression for distracting or irrelevant information resonates 

with the predictions made by sharpening models of expectation: sensory 

representations are increased for attended information, since neurons tuned 

to unattended information are suppressed. This is supported by several 

findings. For example, Martinez-Trujillo & Treue, (2004) observed that the 

response of monkey MT neurons was increased if an attended feature was 

close to the receptive field of the neuron, and decreased if it was unattended. 

Moreover, evidence of this effect has also resulted from multivariate analyses, 

which showed better decoding for attended vs. unattended stimuli (Goddard 

et al., 2022; Vaziri-Pashkam & Xu, 2017; Woolgar et al., 2015). 

In the current study we investigated whether selection and probability 

anticipations provide results consistent with dampening vs. sharpening of 

neural activity to target stimuli. We analyzed data from two neuroimaging 

experiments designed to contrast face and word anticipation in these two 

conditions. The task employed a cue-target paradigm in which, in different 

blocks, cues gave information about relevant or probable stimuli. In the first 

experiment, we recorded EEG data and included an independent localizer of 

target stimuli. In the second, the task was adapter to collect fMRI  data. 

In both experiments we followed a similar analysis rationale. First, we 

estimated univariate effects to cued targets matching expectation suppression 

and attention enhancement. In the EEG experiment we contrasted the 

amplitude of the Event Related Potentials (ERP) of cued and uncued stimuli, 

and also, we performed a time-frequency decomposition. In the fMRI 

experiment we studied the regions that have previously been reported to show 

effects of expectation suppression or attention enhancement, and are related 

to either sharpened or dampened sensory representations; namely, visual 

regions such as V1, visual ventral cortex (VVC), fusiform gyrus (FG) and lateral 

occipital cortex (LOC); and multiple demand (MD) regions like frontoparietal 

cortex in the inferior frontal sulcus (IFS), anterior insular/frontal operculum 

(AI/FO), anterior cingulate cortex/pre-supplementary motor area (ACC/pre-

SMA), and the intraparietal sulcus (IPS) (Duncan, 2010; Gonza lez-Garcí a & He, 
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2021; Richter et al., 2018; Sto rmer & Alvarez, 2014; Woolgar et al., 2015). 

Next, in an exploratory analysis we performed a whole-brain contrast to find 

other regions that might be involved in dampening or sharpening effects.  

To adjudicate between dampening vs. sharpening for attention and 

expectation, we applied multivariate pattern analyses (MVPA) to decode the 

target-locked categories (faces vs. names) separately for expectation and 

attention conditions, in both EEG and fMRI. If expected stimuli induce a 

dampening effect, decoding should be worse for cued than uncued trials 

(Blank & Davis, 2016; Kumar et al., 2017; Walsh & McGovern, 2018). However, 

if neural responses tuned to specific categories are sharpened, the 

multivariate representations should be enhanced (Bell et al., 2016; Kok, Jehee, 

et al., 2012; Yon et al., 2018). In attention, we expected to find evidence of 

sharpened neural representations, as it has been shown using a similar 

methodology (Goddard et al., 2022; Woolgar et al., 2015). Crucially, in the EEG 

dataset, we performed temporal generalization analyses (Grootswagers, 

Wardle, et al., 2017; King & Dehaene, 2014) to study whether 

dampening/sharpening markers are stable through time or reflect specific 

modulations of activity at different time-points after target processing. 

Relatedly, we also had hypotheses regarding the relationship between 

dampening and sharpening effects with preparatory activity, based upon two 

sets of findings. On the one hand, a dampening effect is supposed to attenuate 

sensory processing of probable or unattended perceptual representations 

(Press et al., 2020). On the other, preparatory brain activity has been shown to 

be characterized by displaying attenuated versions of target processing 

(Dijkstra et al., 2022; Koenig-Robert & Pearson, 2021). We reasoned that the 

attenuation associated with dampening would be similar to the reduced 

effects that arise during anticipation compared to target perception. Hence, 

dampened representations should show more evidence of cross-classification 

between cue-locked and target locked activity. Thus, in the EEG experiment we 

studied the relationship between these effects and pre-stimulus 
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representations, for which we applied temporal generalization in extended 

epochs that included both cue and target data.  

In the fMRI experiment we also performed classifications between different 

targets, compared decoding accuracies across the ROIs described above, and 

then performed an exploratory whole brain analysis to find potentially 

relevant evidence in different regions.  

5.3. Experiment 1 

5.3.1. Methods 

The complete sample, task and data acquisition steps are described in Chapter 

3 of the present thesis (and also in Pen alver et al., 2023).  

Acquisition and Preprocessing 

Acquisition and preprocessing steps are described at length in the Experiment 

I of the present thesis. For the analyses presented in this chapter, some 

changes were implemented during preprocessing. Specifically, instead of using 

different epochs for cue and target stimuli, we split all the EEG data into 7-

second epochs that covered from cue to target stimuli. After automatic trial 

rejection with the new epochs (see Chapter 3 for the detailed procedure), an 

average of 8% trials were rejected per participant (range 1.8%-19%). All other 

details remained the same. 

Analyses 

Whole brain ERP analyses 

To find evidence during target processing of cueing effects either of expectation 

suppression or attention enhancement, we first contrasted the event related 

amplitudes associated with cued and uncued targets. ERPs were analyzed at 

each electrode in discrete time bins using mass univariate dependent samples 

t-test, implemented in Fieldtrip (Oostenveld et al., 2011). This measure 

provides information regarding possible widespread effects that are not 
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necessarily linked to specific channels. Statistical comparisons were 

performed between cued and uncued targets, separately for attention and 

expectation. Importantly, we analyzed the two categories (faces and names) 

independently, since they are known to generate different EEG correlates 

(Molinaro et al., 2013; Rousselet et al., 2004) and behavioral consequences 

(Pen alver et al., 2023). Time-wise, we averaged voltage values of discrete 

windows in the following manner: P1, 50-150 ms (Novitskiy et al., 2011); N1, 

150-190 ms; P2, 190-250 ms (Tenssay & Wang, 2019), and N2, 250-450 ms 

(Pazo-Alvarez et al., 2003). Furthermore, to reduce computational costs and to 

increase power, all samples within each ERP window were averaged. 

Moreover, average referencing can result in biases in reporting whole-brain 

ERP effects, since dipole formation might induce a significant effect in a part 

of the scalp and opposite effects in the opposite part, in addition to a bias to 

artificially reduced effects in central electrodes (Jungho fer et al., 1999). Hence, 

we only queried electrodes that have previously been linked to the specific 

ERPs selected for each window. For visual potentials we kept all occipital, 

parietooccipital and temporoparietal electrodes from the 64-channel net. To 

explore effects of cueing outside of visual regions, we analyzed the P3 

potential, given its involvement in conflict in selective attention and 

unmatched expectations (Feuerriegel, Vogels, et al., 2021; Mueller et al., 2008). 

We focused on central and frontal electrodes, and analyzed the window 

between 300 and 650 ms (Luck & Kappenman, 2011).  

For each ERP window, we did as follow. First, for each participant, we averaged 

all the trials from each condition. Then, for each electrode we calculated the t 

statistic between the two conditions of interest. All electrodes with p<0.05 

values were clustered with neighboring electrodes with akin results. 

Neighbors were defined using the ft_selectneighbors function from Fieldtrip, 

based on each electrode’s coordinates. The cluster statistic reported is the sum 

of all the t-values of the electrodes included in a cluster (t), which is used to 

compute statistics. Correction for multiple comparisons was performed using 

a cluster-based Monte Carlo permutation test. We repeated the analyses 
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10000 times by extracting data from random participants and conditions per 

contrast. This yielded a random distribution of cluster sizes. Clusters from the 

original sample that were outside the 95% of the distribution were deemed 

significant.  

Time-frequency analysis 

To explore univariate effects not captured by ERPs, we analyzed time-

frequency data. We performed frequency extraction separately for each 

participant, electrode and condition. The data were convolved with complex 

Morlet wavelets (logarithmically spaced in 48 frequencies from 2 to 50 Hz) 

and the wavelet’s width was defined for each frequency by logarithmically 

spacing from 4 to 10 in the same number of steps. The power spectrum was 

estimated with a fast Fourier transform, and then multiplied by the power 

spectrum of the frequency specific Morlet wavelet. Then, with an inverse Fast 

Fourier Transform we obtained the time-resolved analytic signal. The squared 

absolute value of this signal returned the power values for each channel and 

trial. We performed the decomposition for the whole trial interval, in windows 

of 50 ms, to avoid limitations in slower frequencies. Statistical comparisons 

were performed only from -0.1 to 0.65 seconds locked to the target, as effects 

of suppression and enhancement are usually found in that window (Henson et 

al., 2003; Summerfield et al., 2011).  

We again applied cluster correction for multiple comparisons. This time we 

kept individual time points and averaged power results across whole 

frequency bands (theta: 4-7 Hz, alpha: 8-12 Hz, gamma: 31-49 Hz), since our 

hypotheses were whole band-related and we did not have hypotheses 

regarding the onset of the effects. The procedure was akin to the one described 

in the previous section, only this time adjacent time points were also 

considered for clustering, along with spatial neighbors.  

Decoding 

We studied whether cueing improved or impaired stimulus category coding by 

performing a classification analysis on target data. We used all 64 electrodes 
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and voltage as decoding features, applied a Linear Discriminant Analysis 

algorithm for classification to obtain the AUC. Statistical significance was 

estimated by a cluster-based permutation analysis (please see Chapter 3 for 

details).  

We performed two sets of decoding analyses. In the first one, we classified face 

and name targets, separately for cued and uncued trials, in attention and 

expectation, thus creating four decoding conditions. We used windows from -

100 to 1500 ms locked on the target. In the second analysis, we used whole-

trial windows, ranging from cue to target processing, from -100 to 4150 ms. 

To avoid perceptual confounds due to the identity of visual cues, we applied 

the same cross-classification scheme described in Chapter 3. In short, we 

trained with trials starting with one pair of cues (one predicting faces and the 

other names), and then tested on different trials with a different pair of cues. 

In the two analysis we also applied a temporal generalization approach (King 

et al., 2014), by training and testing in every time-point. Note that the temporal 

generalization matrices (TGMs) resulting from the last analysis contain four 

sections: Only cue (train and test in the cue interval, from 0 to 1550 ms); only 

target (train and test in the target, from 1550 to 4150 ms); train cue - test 

target, from 0 to 1550 ms in the x axis, and from 1550 to 4150 ms in the y axis; 

and train target - test cue, with the reversed window (see Figure 5.5A). All 

analyses were performed using MVPAlab (Lo pez-Garcí a et al., 2021) running 

on MATLAB. Statistical significance was obtained by applying cluster-based 

permutation analyses as described in Chapter 3. 

Statistical comparisons across decoding results 

Statistical comparisons across decoding results were performed using cluster-

based permutations, with a slightly different rationale than the ones described 

in Chapter 3. We used time-resolved ANOVAs and t-test analyses to compare 

cued vs. uncued decoding in attention and expectation. For each time-point we 

used custom code and built in MATLAB functions to perform the analyses. We 

first performed a 2 by 2 ANOVA (block*cueing) on every time point. This 

resulted on a vector with three F-values (two main factors and the interaction) 
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per time point. Then, we generated permutations by randomly multiplying one 

of the conditions by -1 in each subject. We did this 5000 times. Next, we 

extracted cluster information in the true data by looking for sets of temporally 

adjacent points with p<0.05. For each cluster, the sum of F values was stored 

as the size of the cluster. We repeated this with the 5000 permutations, 

obtaining a distribution of cluster sizes, and used the 95th percentile to mark 

the minimum cluster size considered significant. Then, to perform post-hoc 

comparisons, we used a t-test between cued and uncued trials and followed 

the same approach (see Dalski et al., 2022; Dijkstra et al., 2018 for similar 

approaches). For temporal generalization analyses we did the same, but 

instead of using only a vector of results, we used the complete temporal 

generalization matrices, obtaining 3 F-values or one t-test result per each 

timepoint-by-timepoint comparison.  

5.3.2. Results 

5.3.2.1. Univariate results  

The analyses performed to dissociate the univariate effects of cueing during 

target perception for attention and expectation revealed several amplitude 

differences between cued and uncued attention targets. Overall, uncued 

targets induced larger voltage values in anterior sites, while cued targets 

induced larger values in medial and frontal electrodes (Figure 5.1, 

Supplementary Table 5.1). Specifically, for names there was a cluster of larger 

amplitudes for uncued targets in the P1 window and the P3 left central sites, 

and similar results for both names and faces in the P2 and the N2 window. On 

the other hand, the P3 showed higher amplitudes for selected targets for both 

names and faces. Surprisingly, there were no significant univariate differences 

between expected and unexpected targets (all p>0.05).  

Next, we contrasted whether and how cueing differently influenced oscillatory 

activity in contexts of selection and probability. Results are depicted in Figure 
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5.2 and Supplementary Table 5.2.  In attention we found power differences in 

several bands. In Theta there were large differences between selected and 

non-selected stimuli, with uncued targets leading to a cluster of increased 

Theta that started on midfrontal sites at 50ms after target onset, and extended 

over the whole scalp, from 200 ms to the end of the window. The alpha band 

(8-12) was significant for uncued targets in a cluster that started on frontal 

sites at 140 ms, moved to central electrodes at 200 ms, and finally stayed on 

parietal and occipital channels from 450 to 650 ms, but only for faces. Names 

returned similar results, but clusters were more temporally separated and 

some parietal and occipital electrodes survived multiple comparison 

correction between 400 and 650. Finally, we found significant differences in 

the gamma band (31-45 Hz) for selected names in frontocentral electrodes 

from 300 ms. Again, the effect for faces did not survive cluster correction. 

Figure 5.1. Event-related differences across conditions. Full table can be found in the 

Supplementary materials. Cueing effects for selected vs. ignored stimuli in attention. 

Yellow = cued > uncued, blue = uncued > cued. Asterisks (*) represent significant clusters 

for p<0.01 and exes (x) for p<0.05, after cluster-based permutation analyses performed for 

averaged frequency bins. Only significant electrodes are shown. (A) Names (B) Faces.  
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On the other hand, differences in expectation were more subtle. Uncued faces 

and names showed increased activity in the Theta band between 200 and 500 

Figure 5.2. Oscillatory differences across conditions. Results show mass-univariate t-

test comparisons between cued and uncued trials of attention and expectation, split by 

category (face or name). Topo-plots show the average of the significant window (indicated 

over the nose of each head). Time-frequency plots show t-values for all time-points, but only 

for one example channel. Red shows positive t-values (cued>uncued) while blue shows 

negative t-values (uncued>cued). Only significant electrodes are shown. Asterisks (*) 

represent significant clusters for p<0.01 and (x) for p<0.05, after cluster-based permutation 

analyses.  
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ms from target onset, the former in frontal, frontocentral and occipital 

electrodes (t(sum) = -666.43, p<0.001), and the latter in 4 fronto-central 

electrodes (t(sum) = -8.55, p = 0.047). Similar to attention, cued names 

induced larger gamma band activity from 300 ms to 600 ms in central 

electrodes (t(sum) = 48.57, p<0.001).  

5.3.2.2. Probable stimuli reduce target decoding 

To analyze prior based perception of targets, we classified faces and names in 

attention and expectation in both cued and uncued trials. All conditions were 

significant during at least one second after stimulus onset (Figure 5.3). The 

time resolved ANOVA with factors Block and Cueing showed several 

differences across decoding conditions. Main effects of block and cueing were 

significant for ~100 ms at the peak decoding accuracies. Although there were 

no significant interaction clusters, planned, within-block comparisons 

revealed that expected targets showed decreased decoding, in accordance 

with the dampening hypothesis. Note that this cannot be explained by 
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different number of observations, since all conditions were subsampled to the 

less populated (trial-wise) condition. Attention showed no significant 

differences. 

TGMs are depicted in Figure 5.4. We performed the decoding in each of the 

four conditions (block x cueing), plus an ANOVA with factors block and cueing, 

and planned t-tests in a similar fashion to the previous analysis (see Methods). 

This renders 9 different matrices shown in Figure 5.4 (4 conditions + 3 ANOVA 

factors + 2 planned t-tests). To help the reader, when we mention a specific 

matrix in text, we will specify line and column coordinates in the figure (e.g. 

ANOVA block effect is in line 3, column 1). Decoding analyses showed that the 

underlying patterns generalized across most of the analysis window in the 

four conditions (lines 1 and 2, columns 1 and 2). The main effect of block (3, 

1) was present in a small cluster that matched the peak of classification 

decoding in the diagonal at 150 ms. The interaction effect between block and 

cueing (3, 3) did survive off the diagonal, again near peak latencies. Post-hoc 

t-tests explained this result by showing better decoding of cued targets in 

attention at 500 ms (1, 3), and a larger effect for uncued expectation targets 

Figure 5.3. Time-resolved target decoding results. Faces vs. names target 

classification split by block and cueing conditions. Attention is represented in orange, 

and expectation in blue. Lighter tones indicate cued trials (light blue and orange) and 

darker tones indicate uncued (dark blue and brown). Horizontal colored lines below the 

chance line indicate statistical significance against chance within each block. Horizontal 

lines over the accuracy results indicate the results of the ANOVA (red = block, green = 

cueing). The dark blue horizontal in the top of the figure show the intervals where 

planned t-tests showed better decoding for uncued vs. cued trials of expectation. Gray 

shading indicates target presence onscreen.  
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(2, 3), that were better decoded during most of the interval, inside and outside 

the diagonal. 

Figure 5.4. Temporal generalization results of target-locked analyses. Matrices show 

the result of training in every time-point (X axis) and testing in every other time-point 

(Y axis). Note that the diagonal of this plot matches the results in Figure 3. Dashed boxes in 

both axes show the window of the target onscreen. Significant positive clusters are outlined 

in black. The nine matrices are specified as line (1 to 3) and column (1 to 3), as in (row, 

column). Temporal generalization matrices for the four main conditions are: attention cued 

(1,1), attention uncued (1,2), expectation cued (2,1) and expectation uncued (2,2). The F 

values of the three ANOVA factors are in row 3: Block (3,1), Cueing (3,2) and Interaction 

(3,3). T-values of the planned t-test between cueing conditions of the same block are in 

column 3: attention (1,3) and expectation (2,3). Blue outline depicts significant negative 

clusters. Red indicates positive t-values (cued>uncued) while white shows negative t-values 

(uncued>cued).  
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5.3.2.3. Probable stimuli generalize from target to cue, relevant stimuli do 

not 

To explore whether the reduced accuracies found in cued expectation trials 

reflected an attenuated and less stimulus specific form of processing, we 

performed a face vs. word classification using the complete window of 

analysis, locking trials to the cue onset (see Chapter 3 Methods for the cross-

classification design). Since we were interested in how activity generalized 

from cue to target, we directly performed temporal generalization analyses 

(Figure 5.5). This resulted in four sections of generalization (only cue, only 

target, train cue and train target), described in the Methods and outlined in 

Figure 5.5A. As in the previous section, references to the results figure specify 

the TGMs with (line, column). 

The only-cue section (see Figure 5.5A) was studied to evaluate whether results 

replicated the findings of Pen alver et al. (2023) even with the reduced power 

associated with splitting each condition in cued and uncued trials and 

subsampling. The four conditions (1:2, 1;2) showed evidence of anticipated 

decoding, although the results were reduced compared to previous reports. 

The two-way ANOVA did not reveal an effect of block (3,1) or an interaction 

(3,3) between block and cueing. A main effect of cueing was found in a small 

cluster at 500 ms (3,2), although since conditions were equated in the number 

of trials and there should not be any differences in cueing before target 

presentation, this result is likely spurious. 

In the only-target section we sought to study the specificity of representations. 

This is, by training and testing in different trials split in two parts (remember 

the cross-classification design, see Methods), we expected to find more 

generalization if representations are less trial-specific (dampening) and worse 

accuracies if they are more trial-specific (sharpening). The results showed 

clear evidence of generalization in all four conditions, although there were 

differences across the different conditions. The ANOVA revealed a main effect 

of block (1,3), that was sustained during the first second after target onset, 

mostly outside the diagonal. This effect reflected an overall better 
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generalization in expectation trials compared to attention. Cueing (3,2) and 

the interaction (3,3) effects were not significant. Crucially, planned 

comparisons showed several clusters where uncued attention trials 

generalized better than cued ones (1,3). On the other hand, generalization in 

expectation was similar between cued and uncued trials (2,3).  

 



 

 155 

 

The train cue and train target sections of the matrices were studied to examine 

the similarity between cue and target representations, as a correlate of the 

specificity of representations. We trained in different points of the cue interval 

(anticipate faces vs. names), and tested in different points of the target (see 

faces vs. names), and vice versa. If stimulus processing is less specific 

(dampening), it should be more similar to the cue and hence show larger 

cross-decoding accuracies. Conversely, if representations are sharpened, they 

should be more trial specific and hence show worse generalization between 

cue and target. Since we did not have separate specific hypotheses regarding 

the direction of the classification (train cue, or train target), and results were 

similar, we describe these two sections together. Uncued attention (1,2) trials 

showed significant decoding only between 1200-1500 ms after cue onset and 

2000 ms after target onset, but cued trials (1,1) did not show any evidence of 

cue-target cross-decoding. On the other hand, cued expectation (2,1) trials 

showed large evidence of generalization between cue and target during the 

whole window. Finally, uncued expectation trials (2,2) only showed evidence 

of generalization target to cue, but scarce results in the opposite direction. The 

ANOVA indicated a large effect of block (3,1), with expectation showing larger 

evidence of generalization. Cueing (3,2) was only significant 1200 ms after cue 

onset, while the interaction (3,3) showed a cluster at the end of the target 

presentation window. Planned comparisons showed significantly lower cross-

decoding for selected targets (1,3). In the expectation condition, despite the 

Figure 5.5. Temporal generalization results of target-locked analyses. A) 

Schematic description of the TGMs subdivisions. B) Matrices showing the result of 

training in every time-point (X axis) and testing in every other time-point (Y axis). 

Dashed boxes in both axes show the window of the cue (right by the axes, 50 ms 

windows) and target (from 1550 in both axes) onscreen. Significant clusters are 

outlined in black. In post-hoc t-test plots, black outlines mean significant cued>uncued, 

and blue outlines indicate significant uncued<cued. Figures are ordered in the same 

way as Figure 5.4. 
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striking difference in significant over-chance decoding, differences across 

conditions did not survive cluster correction (2,3).  

5.3.4. Discussion 

In this first experiment, time-resolved analyses of prior based anticipation 

during visual perception in contexts of selective attention and perceptual 

expectations provided evidence in favor of the dampening hypothesis in 

expectation, alongside evidence that suggested sharpened representations for 

attention.  

Univariate analyses returned a puzzling set of findings. The ERPs that tracked 

the effects of expectation suppression and attentional enhancement of 

perceptual processing, showed mixed results. Contrary to our hypotheses, we 

did not find increased amplitudes for perceptual ERPs for both cued attention 

and uncued expectation stimuli. Visual potentials (P1, P2, N2) showed larger 

amplitudes for uncued than cued attention targets, which goes in opposite 

direction than previous literature (e.g. He et al., 2004; Sto rmer & Alvarez, 

2014). The reasons for this inversion are unclear, being perhaps related to the 

nature of the paradigm used. This will be discussed in detail in the general 

discussion. Modulation of the P3 did agree with previous results, as selected 

targets generated increased amplitudes in this potential, in line with previous 

results that link the P3 with selection of relevant targets (Potts, 2004).  

Time-frequency decompositions results were closer to previous literature. 

Uncued attention trials consistently displayed higher theta power, which may 

be related to the change in response demands associated with this condition, 

and proposed as potential explanation for the early ERP results. Theta 

increases have been related to increased control demands (Cavanagh & Frank, 

2014). On the other hand, alpha power was also larger for uncued trials, in line 

with research that proposes that alpha oscillatory activity reflects reduced 

attention in occipital and central positions (Bagherzadeh et al., 2020; Feng et 

al., 2017). Crucially, gamma was larger in occipital electrodes for cued trials, 
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possibly reflecting the increased neural firing rate associated with increased 

activity for attended stimuli (Doesburg et al., 2008; Gruber et al., 1999).  

To investigate potential effects of dampening or sharpening across conditions, 

we employed MVPA under the assumption that sharpening would be 

associated with increased fidelity (accuracy) of the neural codes, while 

dampening should result in lower decoding accuracy (de Lange et al., 2018; 

Kok, Jehee, et al., 2012). As expected, decoding of faces vs. words was 

significant in all block x cueing conditions. Although there were no differences 

between cued vs. uncued trials in attention, there was a clear effect in 

expectation, where unexpected trials were better decoded from 150 to 700 ms. 

Importantly, this result in expectation generalized outside the diagonal in 

several clusters between 500 and 1500 ms, suggestive of a "dampening" effect 

that was stable and lasted throughout most of the trial, indicating that the 

suppression of redundant neural activity is maintained from target 

perception.  

Dampening accounts argue that the effect leads to reduced representations 

that are less specific (Press et al., 2020), which resonates with proposals of 

neural anticipations that understand preparation as a reduced form of 

perception (Battistoni et al., 2017; Koenig-Robert & Pearson, 2021). Hence, 

dampened representations during target processing should cross-generalize 

better to different stimuli of the same category, and to the cue interval. To test 

this, we studied the generalization between cue-locked and target-locked 

representations by performing a cross-decoding analysis, training and testing 

in different trials. Importantly, in this analysis we implemented a cross-

classification that avoided perceptual confounds during the anticipation 

window, which trained and tested in different halves of the dataset. In cued 

attention trials we found little cross-classification compared with uncued 

trials, which showed larger clusters near the end of the cue interval. This result 

is compatible with sharpened target processing, since activity could be more 

specific to each trial and hence less similar to anticipation. Attentional 

selection has been shown to sharpen sensory representations repeatedly 
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(Goddard et al., 2022; Vaziri-Pashkam & Xu, 2017; Woolgar et al., 2015). 

Conversely, expected trials were the only ones to generalize to the cue window, 

in line with the dampening hypothesis (Blank & Davis, 2016; Kumar et al., 

2017; Walsh & McGovern, 2018). However, expected and unexpected trials 

were not significantly different between them, so the conclusions of this 

analysis must be taken with caution.  

Notably, during the “only target” window, there were significant off-diagonal 

clusters where unattended trials were better decoded than attended ones, as 

well as an important effect of block and (less pronounced) interaction. If 

attention sharpens neural coding, representations could become more 

stimulus specific and would show worse cross-decoding across different 

stimuli of the same category, supporting the cue-target cross-decoding 

findings. However, we did not have a priori hypotheses regarding this effect, 

so our interpretation of this interesting result is speculative, and needs further 

support.  

Altogether, the novel use of EEG and temporal generalization to study these 

effects provides evidence that both sharpening of attended stimuli and 

dampening of unattended is temporally stable. However, since this technique 

is agnostic regarding the brain regions that can be involved in the effects, we 

studied the involvement of frontoparietal and visual regions using fMRI in 

Experiment 2.  

5.4. Experiment 2 

5.4.1. Methods 

Participants, procedure and data acquisition 

The dataset used in this section is the same as the one used in Chapter 4 of the 

present manuscript. Subjects, apparatus, stimuli, procedure, data acquisition 

and preprocessing steps are described at length in that section.  

 



 

 159 

ROI definition 

Regions of Interest (ROIs) were selected based on a priori hypotheses guided 

by previous studies of dampening and sharpening effects (Kok & de Lange, 

2015; Richter et al., 2018). Specifically, we focused on visual and MD regions, 

bilaterally (8 in total, 4 of each). Visual regions were V1, VVC, FG, and LOC. MD 

regions included IPS, AI/FO, IFS and ACC/pre-SMA. All ROIs were obtained 

from the Human Connectome Project multimodal parcellation map (HCP-

MMP1.0, Glasser et al., 2016), were extracted using Matlab code 

(https://github.com/davidwisniewski/fmri-extract-HCP-mask) and were 

registered back to each participant’s native space using the inverse 

deformation fields obtained during segmentation. 

Analyses 

General Linear Model (GLM)  

A GLM was performed to estimate activity changes across conditions, and to 

obtain the beta images to be used in subsequent multivariate analyses. We 

included cue and target regressors in the model, although here we only 

focused on target activity. Cue regressors were modeled using presentation 

time (500 ms) plus the subsequent jittered cue-target interval for each trial. 

They were divided by Block (attention and expectation), Category prediction 

(Faces and Names) and Cue shape (Shape 1 and Shape 2). Importantly, 

although there was a total of 8 different cue regressors, they were distributed 

across different runs. That is, in one run/block, cues could only be of a 

particular condition (e.g. Expectation), and the cues predicting a certain 

category had the same shape during the run (e.g. Face-shape 1 and Name-

shape 2). Hence, each run included only 2 cue regressors. Target information 

was modeled using the presentation time of the stimulus on screen (500 ms), 

and consisted on regressors for the conditions of Block type (attention and 

expectation), Category (faces and names) and Cueing (cued vs. uncued). Again, 

although there were 8 different target regressors, they belonged to particular 
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runs, which resulted in runs having 4 target regressors each. Crucially, 

conditions are by design unbalanced in number of trials, since cued trials in 

expectation were three times more common than uncued trials. This means 

that betas of this condition are likely to have a higher signal-to-noise ratio, 

which in turn would likely bias decoding results. To avoid this issue, before 

implementing the GLM, all conditions (attention and expectation, Cued and 

Uncued) were subsampled to the number of trials of the less populated 

condition (uncued expectation). Specifically, for each run, we identified the 

smaller number of trials of all conditions, and then randomly chose the same 

number of trials in the remaining ones. Despite the loss of power, this 

approach made possible to directly compare decoding results across 

conditions. Finally, the model also included as regressors movement 

information of each participant, obtained during realignment. All regressors 

were convolved using the canonical hemodynamic response function (HRF).  

Univariate 

Univariate comparisons in individual ROIs were performed on the beta images 

of the GLM. There were two main contrasts of interest: attention Cued vs. 

Attention Uncued, and expectation Cued vs. expectation Uncued. For ROI 

analyses we obtained the beta values of each voxel and condition and then 

averaged across all voxels, leaving one mean beta value per ROI, condition and 

participant. These were entered in a two-way repeated measures ANOVA with 

factors Block (attention vs. expectation) and Cueing (Cued vs. Uncued). 

Moreover, specific a priori hypotheses regarding effects of expectations and 

selection led to planned comparisons between cued and uncued trials 

separately for attention and expectation, using a repeated measures t-test. We 

used FDR to correct for multiple comparisons across ROIs.  

For whole brain univariate analyses the whole brain image of each participant 

and contrast was entered in a second-level analysis, where they were 

compared using a t-test. Significance was stablished by first selecting voxels 

that passed a threshold of p<0.001, and a subsequent cluster size 
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corresponding with p<0.05, FWE-corrected. This method has been shown to 

appropriately correct for multiple comparisons (Eklund et al., 2016). 

Multivariate  

Decoding was based on a two-class classification approach, using beta images 

from the GLM with The Decoding Toolbox (v 3.999F). We trained a classifier 

(Support Vector Machine, SVM) with a leave-one-run-out cross-validation, 

training in all but one run, and then testing on the remaining one. This was 

repeated across all runs, and the results averaged. To ensure an unbiased 

classification we report balanced accuracies. With this approach, we 

performed four decoding analyses in which we classified faces vs. names, for 

the conditions: attention cued, attention uncued, expectation cued, and 

expectation uncued. This returned one accuracy value per subject, ROI and 

condition. Next, to investigate whether decoding accuracies were higher in 

either condition we entered the four condition results into a two-way repeated 

measures ANOVA with factors Block and Cueing. We used FDR to correct for 

multiple comparisons across ROIs.  

We performed an exploratory whole-brain analysis to reveal additional 

regions that might have reflected dampening or sharpening effects. We used a 

searchlight procedure to assess classification values between the two classes 

(spheres of 4 radii, 251 voxels). Afterwards, the resulting images were 

registered to the MNI space and smoothed. Group statistics applied a one-

sample t-test against zero. We used the same method described in univariate 

analyses to correct for multiple comparisons. To investigate whether decoding 

accuracies were higher in either condition of the Cued-Uncued pairs, 

separately for each block, we calculated the difference between decoding 

results for each voxel. With the resulting images of all participants, we 

performed one-sample t-tests, and established significance with the same 

procedure described above.  
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5.4.2. Results 

5.4.2.1. Univariate cueing differences 

ROI 

To reveal univariate differences in activation associated with cueing in the MD, 

we analyzed four regions that have been shown to exhibit differences in 

previous literature. All frontoparietal regions showed significant activations 

compared to the baseline (all p<0.001), as evidence by a one sample t-test (see 

Supplementary Table 5.3). However, two-way ANOVAs in each ROI showed no 

overall differences in any regions for any factor (all p>0.05, see Figure 5.6, 

Table 5.1 and Supplementary Table 5.5).  

All visual regions showed significant activations compared to the baseline (see 

Supplementary Table 5.4). The ANOVA revealed that there was no main 

difference between attention and expectation (see Figure 5.7 and Table 5.2). 

There was, however, a main effect of cueing in VVC, FG and LOC. Post-hoc 

comparisons revealed that in these ROIs cued trials showed higher beta values 

in both attention and expectation. Although the interaction was not significant 

(all p>0.09), we performed a-priori planned comparisons to explore the 

specific effects in each block (Supplementary Table 5.6). We found significant 

differences only in attention, where cued trials showed significantly higher 

beta values in the VVC, while the others did not survive FDR correction.  
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Table 5.1. Univariate ROI ANOVA, MD regions. 

 

 

Table 5.2. Univariate ROI ANOVA, visual regions. 

 

 

 

 

 

 

ROI Factor F p 𝜂p2 

 Block 0.102 0.751 0.002 

ACC/pre-SMA Cueing 0.136 0.714 0.003 

 Interaction 2.031 0.161 0.045 

 Block 0.059 0.809 0.001 

AI/FO Cueing 2.142 0.151 0.047 

 Interaction 1.141 0.291 0.026 

 Block 0.135 0.715 0.003 

IFS Cueing 0.121 0.729 0.003 

 Interaction 0.011 0.916 0.001 

 Block 0.969 0.331 0.022 

IPC Cueing 0.894 0.350 0.020 

 Interaction 2.910 0.095 0.063 

ROI Factor F p 𝜂p2 

 Block 2.232 0.143 0.049 

V1 Cueing 4.383 0.435 0.014 

 Interaction 1.299 0.924 0.001 

 Block 1.061 0.309 0.024 

FG Cueing 9.367 0.004* 0.179 

 Interaction 1.030 0.316 0.023 

 Block 1.739 0.194 0.039 

VVC Cueing 10.616 0.002* 0.198 

 Interaction 2.886 0.097 0.063 

 Block 1.508 0.226 0.034 

LOC Cueing 6.893 0.012* 0.138 

 Interaction 0.102 0.750 0.002 

Note: The term interaction refers to the interaction between block and 
cueing.  

Note: The term interaction refers to the interaction between block and 
cueing.  
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Figure 5.6. Univariate analyses results for MD ROIs. Boxplots show the differences in 

beta values between the different conditions. The horizontal black line inside boxes 

represents the median, while the limits of the box indicate the first and third quartile. 

Whiskers indicate the 1.5 inter quartile range for the upper and lower quartiles. ROIs are 

highlighted below each boxplot.  
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Figure 5.7. Univariate analyses results for visual ROIs. Boxplots show the differences in 

beta values between the different conditions. The horizontal black line inside boxes 

represents the median, while the limits of the box indicate the first and third quartile. 

Whiskers indicate the 1.5 inter quartile range for the upper and lower quartiles. Asterisks 

above two boxes depict significant differences between cueing. Black bars below the cued-

uncued legend indicate a main effect of cueing. ROIs are highlighted below each boxplot. 
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Whole-brain 

The whole-brain univariate comparisons across cueing instances of attention 

and expectation were performed to evaluate expectation suppression and 

attentional enhancement in regions outside the ones chosen a priori (Figure 

5.8, Table 5.3). Cued attention trials led to increased activity in the Fusiform 

Gyrus (FG), the ACC and part of the Hippocampus, whereas uncued trials led 

to increases in regions often associated to the frontoparietal control network 

(FPN), such as the middle frontal gyrus and the inferior parietal sulcus (IPS). 

On the other hand, cued trials in expectation led to increases in perceptual 

regions such as the inferior temporal gyrus (ITG). Surprisingly, the reverse 

contrast did not show significant results in any region. 

Table 5.3. Whole-brain Univariate Analyses Results. 

Contrast Region Coordinates 

Cluster 

size 

(k) 

Z p T(peak) 

Att.       Cued > 

Uncued 

FG Left -40, -44, -14 791 5.39 <0.001 5.39 

 HC Left -30, -8, -32 711 4.97 <0.001 711 

 ACC Right 2, 40, -18 456 4.37 0.002 456 

 ACC Right 6, 10, 28 286 4.21 0.018 286 

Att.     Uncued 

> Cued 

PMd -30, 0, 58 1080 4.92 <0.001 5.76 

 FP -42, 50, -4 391 4.15 0.005 4.63 

 IPS -42, -56, 38 586 4.04 <0.001 4.48 

 MFG 40, 28, 38 243 3.8 0.034 4.17 

Exp.       Cued 

> Uncued 

ITG Right 46, -58, -10 238 4.31 0.032 4.85 

 STG Right 60, -12, 4 222 3.88 0.40 4.27 

 FG = Fusiform gyrus, HC = Hippocampus, ACC = Anterior Cingulate Cortex, PMd = 
dorsal Premotor Cortex, FP = Frontal Pole, IPS = Intraparietal Sulcus, MFG = Middle 
Frontal Gyrus, ITG = Inferior Temporal Gyrus, STG = Superior Temporal Gyrus 
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Figure 5.8. Mass univariate results. Contrast GLM results for cued vs. uncued trials in 

attention and expectation. Scales reflect t-values. Top shows results for attention. Golden 

areas highlight significant clusters for cued trials, while red indicates uncued trials. 

Bottom shows results for expectation. Only clusters of larger activity for cued trials are 

shown, since there were no significant uncued clusters.  



 

 168 

5.4.2.2. Multivariate analyses 

ROI 

To study the extent to which relevant information could be decoded, and hence 

whether our results favor a model of dampening or sharpening in attention 

and expectation, we classified faces and names during target processing in MD 

and visual regions.  

In MD ROIs, a one-sample t-test against zero of the decoding result minus 

chance (see Supplementary Table 5.7) for t-values and mean decoding 

accuracies) revealed that decoding was significant in IFS, in all conditions 

except uncued attention trials, and IPC, for uncued expectation and cued 

attention trials. All other regions and conditions did not show evidence of 

significant classification after FDR correction (p>0.012). We compared the 

decoding of the four conditions using a two-way repeated measures ANOVA 

did not reveal any significant differences in any of the ROIs and factors (Figure 

5.9 and Table 5.4). Noteworthy, all regions exhibited the same trend of better 

decoding for cued than uncued attention trials, and worse decoding for cued 

than uncued expectation targets (see Supplementary Table 5.9).  
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Table 5.4. Decoding ROI ANOVA, MD ROIs. 

ROI Factor F p 𝜂p2 

 Block 1.151 0.289 0.026 

ACC/pre-SMA Cueing 0.339 0.563 0.008 

 Interaction 1.523 0.224 0.034 

 Block 3.639 0.063 0.078 

AI/FO Cueing 0.410 0.525 0.009 

 Interaction 0.896 0.349 0.020 

 Block 0.969 0.331 0.022 

IFS Cueing 0.894 0.350 0.020 

 Interaction 2.910 0.095 0.063 

     

 Block 3.371 0.073 0.073 

IPC Cueing 0.022 0.884 0.001 

 Interaction 4.031 0.051 0.086 

Note: p FDR corrected for multiple comparisons = 0.025.       

 

Table 5.5. Decoding ROI ANOVA, visual ROIs. 

ROI Factor F p 𝜂p2 

V1 Block 0.376 0.543 0.009 

 Cueing 7.170 0.010* 0.143 

 Interaction 16.319 < .001* 0.275 

FG Block 2.579 0.116 0.057 

 Cueing 14.962 < .001* 0.258 

 Interaction 26.282 < .001* 0.379 

VVC Block 7.668 0.008* 0.151 

 Cueing 10.542 0.002* 0.197 

 Interaction 14.237 < .001* 0.249 

LOC Block 0.582 0.450 0.013 

 Cueing 5.365 0.025* 0.111 

 Interaction 10.779 0.002* 0.200 

 Note: p FDR corrected for multiple comparisons = 0.025 
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Figure 5.9. Decoding accuracies for each MD ROI and condition. The horizontal 

black line inside boxes represents the median, while the limits of the box indicate the 

first and third quartile. Whiskers indicate the 1.5 inter quartile range for the upper and 

lower quartiles. Asterisk above boxes indicate significant decoding of faces and names 

in that ROI and condition.  
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Figure 5.10. Decoding accuracies for each visual ROI and condition. The horizontal 

black line inside boxes represents the median, while the limits of the box indicate the first 

and third quartile. Whiskers indicate the 1.5 inter quartile range for the upper and lower 

quartiles. Asterisks above the cueing legend indicate a main effect of Cueing, asterisks 

over two pairs of boxes show a significant main effect of Block and asterisks over two 

boxes specify significance between two conditions. 
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We repeated the same procedure for visual ROIs. First, as expected, we found 

that all regions and conditions showed significant decoding of the target 

categories (Supplementary Table 5.8). When we compared the decoding 

results of the four conditions, the ANOVA (Table 5.5 and Figure 5.10) revealed 

a main effect of block on the VVC, as attention trials were overall better 

decoded than expectation ones. The main effect of Cueing was significant in all 

regions (all p<0.025), and in all of them it significantly favored uncued over 

cued trials. Crucially, the interaction was also significant in all regions (all 

p<0.002), with a stable pattern of better decoding for uncued vs. cued trials in 

expectation, and the opposite trend (albeit non-significant) in attention 

(Supplementary Table 5.10). 

Whole brain 

To further explore effects in regions other than the selected ROIs, we 

performed a target-locked classification of faces vs. names at the whole-brain 

level (Figure 5.11). Within-condition decoding revealed classification of the 

perceived target in all conditions, peaking at the FG in all conditions except 

uncued attention, which peaked at V1 (see Table 5.6). Besides, cued 

expectation trials had another cluster in the IFG, and uncued expectation trials 

showed a significant cluster in the retro-splenial cortex (RSC).  

Crucially, uncued expectation trials were better decoded than expected ones 

in the same FG clusters and broadly the VVC (Table 5.7). There was also a 

cluster in the intraparietal sulcus. In contrast, there were no significant 

differences between cued and uncued trials in attention in either condition. 
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Table 5.6. Target-locked decoding results for cued and uncued trials in attention and 

expectation. 

Contrast Region Coordinates k Z p Acc(peak) 

Att. Cued FG 38, -76, -8 26362 >8 <0.001 75,18% 

Att. Uncued V1 22, -96, 6 15397 >8 <0.001 75,24% 

Exp. Cued FG Right 40, -52, -14 3893 7.09 <0.001 71.27% 

 IFG Left -50, 10, 12 4002 6.08 <0.001 64,94% 

Exp.Uncued FG Left -40, -56, -14 26618 >8 <0.001 83,77% 

 IFG Left -50, 2, 22 1246 4.56 0.005 60,86% 

 RSC 0, -54, 24 853 4.41 0.019 60,46% 

Note: p FWE corrected for multiple comparisons. k = cluster size. FG = 

Fusiform Gyrus, V1 = Primary visual cortex, IFG = Inferior frontal gyrus, RSC = 

Retro-splenial cortex. 

 

Table 5.7. Difference between Cued and Uncued conditions. Only significant clusters are 

shown. 

Contrast Region Coordinates k Z p Acc(peak) 

Exp.  

Uncued-

Cued 

FG Left -42, -62, -10 14215 6.65 <0.001 18,92% 

 S1 

Right 

10, -44, 62 2105 4.92 <0.001 14,07% 

S1 = Primary Somatosensory Cortex. Acc(peak) column shows the peak 

difference in accuracy percentage between uncued and cued trials.  
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5.4.3. Discussion  

In this second part of the study, we investigated how attention and expectation 

cueing affect processing on frontoparietal and visual regions, and whether 

results suggest sharpening or dampening effects, with the same rationale 

followed for the EEG data. Employing the same paradigm, adapted to fMRI, the 

main findings indicate that overall cued expectation trials were decoded 

worse, supporting the dampening account, although here we did not find 

evidence for sharpened representations in cued attention targets.  

Figure 5.11. Target-locked decoding results. Top four rows show regions with 

significant over-chance decoding for Faces vs. Names targets in the four 

conditions.  
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To examine potential effects of attention enhancement (Kastner et al., 1999; 

Serences et al., 2004) and expectation suppression (e.g. Kok et al., 2012; Walsh 

& McGovern, 2018; Feuerriegel et al., 2021) we performed contrasts of 

univariate changes associated to each condition. We studied the effects in 

frontoparietal regions, such as those of the MD, since they have been shown to 

be involved in stimulus representation (Woolgar et al., 2015) and are involved 

in both attention and expectation contexts (Eger et al., 2007; Esterman & 

Yantis, 2010). Although all ROIs showed significant activations vs. the baseline 

during target processing, the ANOVA did not reveal any univariate differences 

between the four conditions. Other studies attempting to disentangle 

dampening and sharpening effects have reported similar results (Gonza lez-

Garcí a & He, 2021), while others that have attempted to decode information 

from these ROIs only report univariate differences in visual regions (Woolgar 

et al., 2015). Our results, however, imply that these regions are engaged during 

target processing in both attention and expectation.  

In contrast, visual ROIs showed both significant activations vs. baseline during 

target processing as well as a cueing effect in all ROIs but V1. Overall, cued 

targets elicited increased activations, regardless of the relevance/probability 

manipulation. Although this is a frequent finding in the context of selective 

attention (e.g. Goddard et al., 2022; Grill-Spector et al., 2001; Kastner et al., 

1998; Woolgar et al., 2015), we expected to find opposite results for 

expectation (Feuerriegel, Vogels, et al., 2021; Richter et al., 2018). Importantly, 

post-hoc tests were only signficant for attention enhancement, particularly in 

the VVC, which highlights the object-selective nature of the neural activations 

linked to selective attention in our task.  

Univariate exploratory whole-brain searchlight analyses between cued and 

uncued trials, separately for each block, revealed several regions that were 

differentially affected by cueing in attention and expectation. In attention, cued 

trials showed increased BOLD in the hippocampus, the cingulate cortex, pre-

SMA and VVC the ventral cortex (in line with the ROI results). The fact that the 

cingulate cortex appeared here but was not significant in ROI analyses could 
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mean that the area we chose was too large and included voxels not particularly 

involved in stimulus representation. Notably, the hippocampus has been 

shown to be more active during encoding and retrieval of attended stimuli 

(Uncapher & Rugg, 2009), although by itself it does not appear to modulate 

selective attention (Rungratsameetaweemana et al., 2019). Uncued attention 

trials led to increased activity in IPS and some midle regions of the frontal 

cortex, mapping to the frontoparietal control network, which has been related 

to cognitive control and might reflect the change in response mappings 

associated with uncued attention trials. On the other hand, in expectation, in 

line with ROI results, cued trials showed higher activation levels in the inferior 

and superior temporal gyri, linked to processing of complex stimuli (Kumar et 

al., 2017; Mechelli et al., 2000).  

To compare how cueing affected the fidelity of neural representations and 

compare between dampening and sharpening in contexts of relevance and 

probability, we used multivariate decoding analyses (e.g. Goddard et al., 2022; 

Kok et al., 2012; Walsh & McGovern, 2018; Woolgar et al., 2015). We did this 

by training a classifier to decode faces and names, separately for each cueing 

and block condition. ROI analyses showed that the target’s category could be 

decoded in specific conditions in two frontoparietal regions, IFS and IPC. This 

was only the case for cued attention trials, a result that is is similar to the one 

obtained by Woolgar et al. (2015), with significant decoding for attended 

trials, but not unnatended. However, we did not replicate it for ACC/pre-SMA 

and AI/FO cortices, which, as in their experiment, might need higher stimulus 

complexity to become directly involved. Moreover, both predictive coding 

models and attention literature that manipulates probability have proposed 

FPN to be involved in contexts of expectation, which would be supported by 

significant decoding in both cued and uncued trials of expectation in the IFS. 

However, neither the ANOVA or the post-hoc tests revealed significant 

differences due to cueing in any of the conditions or between blocks, although 

there was a consistent trend in all frontoparietal ROIs for better decoding in 

cued vs. uncued attention trials, and the opposite effect in expectation. 
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However, decoding perceptual categories in these ROIs gave small accuracies 

compared to visual ROIs, which might make it difficult to find signficant 

results.  

Visual ROIs showed very clear differences in expectation, but not in attention. 

This result was further confirmed by the searchlight analysis. Probable trials 

showed decreased classification accuracy in all visual regions, which gives 

support for the dampening hypothesis, replicating similar findings (Blank & 

Davis, 2016; Kumar et al., 2017; Walsh & McGovern, 2018). Although this 

interaction was significant in all ROIs, cued attention trials were not 

significantly better decoded than uncued ones.  

5.5. General Discussion 

Overall, the results employing two different neuroimaging techniques 

consistently show decreased decoding accuracies for cued expectation trials, 

providing strong support for the dampening hypothesis in expectation, and a 

lack of generalization between cued attention targets and preparatory cues, 

which provide tentative evidence of sharpened representations for selected 

stimuli.  

One main solid finding across EEG and fMRI results is the lack of expectation 

suppression effects, as univariate activations for cued trials were not reduced. 

Although the study of dampening vs. sharpening originated to account for such 

univariate effect within the predictive coding framework (Friston, 2005; Kok, 

Jehee, et al., 2012), the effects have also be studied in the absence of univariate 

changes (Gonza lez-Garcí a & He, 2021). It has been suggested that not all 

paradigms involving probability manipulations are equally able to capture 

expectation suppression, and this effect also depends on imaging 

methodologies (Feuerriegel, Vogels, et al., 2021). For instance, some the 

paradigms that report larger voltages for attended stimuli, manipulate 

attention by cueing the probability of incoming stimuli (e.g. He et al.), which 

might create confounds between attended and probable stimuli. In addition, 

our targets were not surrounded by other stimuli, in contrast with previous 



 

 178 

reports (e.g. Sto rmer & Alvarez, 2014). Specifically, cue-target paradigms in 

human electrophysiology frequently report an absence of this effect 

(Feuerriegel et al., 2018; Hall et al., 2018; Summerfield et al., 2011). Moreover, 

conditions with less trials tend to be associated with artificially inflated 

amplitudes (Thomas et al., 2004), which could be the case for the unexpected 

condition in some EEG studies reporting increased amplitudes in the 

unexpected condition (e.g. Tang et al., 2018). Importantly also, experiments 

that report effects of expectation suppression usually rely on a small set of 

images (e.g. Richter et al., 2018; Walsh & McGovern, 2018), which allows for 

stronger cue-target pairings and thus stronger learning of predictability. The 

current experiment used different images on each trial and thus induced 

expectations at a more abstract categorical level, which is different from an 

item-level prediction. This prevents precise stimulus expectation effects, since 

expected trials are linked to categories rather than specific, repetitive stimuli.  

Another puzzling set of results is the difference between univariate EEG and 

fMRI results. While EEG data showed overall larger amplitudes for the uncued 

conditions, the effects were reversed in fMRI. Although some instances of 

previous research have successfully linked ERPs and fMRI activations 

(Corrigan et al., 2009; Natale et al., 2006), our data did not return converging 

results. However, since we used a similar paradigm in two methodologies with 

big differences in temporal precision, results might have been affected. While 

EEG trials lasted barely 4 seconds each and we could obtain measures during 

stimulus perception, easily separated from the preparation window and 

response times, the BOLD signal is slow, which was accounted for by using 

trials of up to 20 seconds, which might have changed stimulus processing to 

one experiment to the other. On the other hand, oscillatory effects and fMRI 

activations were potentially a more consistent match, specifically for attention. 

One set of mechanisms could explain this compatibility. The specific 

perceptual characteristics linked to gender may have been ignored in uncued 

trials, reflected by Alpha, and the switch to a different response set, could be 

indicated by increased Theta power. This effects on slower oscillations could 



 

 179 

be overlooked by fMRI contrasts, which are less sensitive to slow oscillations 

(Scheeringa et al., 2011). Conversely, cued trials would receive increased 

perceptual processing, marked by Gamma power. This agrees with the 

increased activations found for cued attention trials in perceptual regions, 

since the BOLD signal is particularly sensitive to gamma power (Magri et al., 

2012).  

In expectation we found converging evidence of dampened representations 

for probable stimuli, similarly to previous reports in fMRI (Blank & Davis, 

2016), and monkey multi-unit recordings (Kumar et al., 2017). Moreover, fMRI 

results showed this effect for visual regions and, accordingly, EEG showed 

early temporal latencies. Predicted information, anticipated by cues, could be 

partially represented in perceptual regions once the target arrives (Pen alver 

et al., 2023), so redundant data could be filtered out to speed sensory 

processing, thus increasing behavioral accuracy. The potential alternative 

explanation of increased attention to unexpected trials (Alink & Blank, 2021), 

which could imply sharpened coding for uncued expectation trials is not 

supported by our data. First, this explanation would predict that probable 

stimuli should be decoded similarly than unattended ones. However, out of the 

four conditions, expected trials were specifically poorly decoded compared to 

all other conditions in the two experiments, suggesting that dampened 

representations are an effect which is specific for probability contexts. Second, 

cued trials in both attention and expectation showed increased univariate 

activations in visual regions, as well as increased gamma power. Hence, while 

increased activations for cued in expectation trials were associated with 

poorer classification accuracy in expectation, the same activations in attention 

were not linked to different decoding accuracies. Moreover, cue-target 

temporal generalization in EEG, and a non-significant trend in fMRI suggested 

the opposite effect. In the future, more powered studies can find stronger 

support for this diverging result.  

In attention, we expected to find evidence of sharpened representations for 

selected stimuli, both in visual and frontoparietal regions (Woolgar et al., 
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2015). EEG data showed direct evidence for this effect in a small cluster during 

the temporal generalization analysis, while with fMRI comparisons across 

different ROIs or a whole-brain contrast did not return differences that passed 

significance levels. Moreover, EEG revealed that cued attention trials 

generalized worse to the preparatory period, in line with the assumptions of 

sharpening models (Desimone & Duncan, 1995). This implies that attended 

trials induce more detailed and specific representations, which might be 

associated to more appropriate and efficient responses. This effect could also 

be behind accounts that propose that selective attention increases the 

processing weights of attended stimuli, inducing more detailed 

representations (Feldman & Friston, 2010; Summerfield & Egner, 2014). 

The current study is not without limitations. Clearly discriminating whether 

responses were dampened for expected stimuli, or sharpened for all other 

conditions is not possible without including a neutral control condition 

(Feuerriegel, Vogels, et al., 2021). Moreover, here we did not make a direct 

connection between the two experiments, but rather perform parallel 

analyses. Performing joint analysis could provide better insight into the 

spatiotemporal profile of dampening and sharpening effects. For instance, our 

design could be well suited to perform multimodal fusion (Cichy & Oliva, 

2020), since the two experiments share the same paradigm adapted to exploit 

the advantages of each methodology. 

Althogether, across two different imaging methodologies we provided 

evidence that probable stimuli undergo a “dampening” effect, while selected 

targets tend to elicit a sharpened, trial-specific representation of visual 

stimuli. This result was evident in visual regions, and extended over time. 

Moreover, we found that the relationship between univariate and multivariate 

activity is different in contexts of attention and probability. While attended 

stimuli elicit larger univariate activations, better decoding and worse cross-

classification, expected stimuli showed similar larger univariate changes that 

were conversely related to poorer representations and increased across-trial 

and preparatory similarity. Overall, our results add to previous literature by 
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showing the consequences of object-based anticipation in two similar, 

although distinguishable contexts.  
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5.6. Supplementary materials 

Supplementary Table 1. ERP results. 

Note: Only attention is shown, since expectation returned no significant 

differences. Results are reported for cued-uncued. Positive t values indicate 

larger amplitudes for cued stimuli, and negative indicate larger amplitudes for 

uncued stimuli. ATT = attention.  

 

 

 

 

 

 

 

Condition ERP t(sum) p D Z Electrodes 

ATT NAME P1 -46.98 <0.001 -0.54 14 P3' 'P7' 'O1' 'Oz' 'O2' 'P4' 

'TP7' 'P1' 'P5' 'PO7' 'PO3' 

'POz' 'PO4' 'PO8' 

  P2 7.15 0.04   5 TP9' 'Oz' 'O2' 'TP10' 'PO8'  

    -15.08 0.013   5 Pz' 'P3' 'P1' 'P5' 'P2'  

  N2 -37.67 <0.001 -0.43 11 Pz' 'P3' 'P7' 'O1' 'P4' 'TP7' 

'P1' 'P5' 'PO7' 'PO3' 'POz' 

  P3 56.33 <0.001 0.51 18 Fp1' 'Fz' 'F3' 'F7' 'FT10' 'F4' 

'F8' 'Fp2' 'AF7' 'AF3' 'AFz' 

'F1' 'F5' 'FT7' 'FC4' 'F6' 'AF4' 

'F2' 

    -11.54 0.04   4 C3' 'CP1' 'C5' 'CP3'  

ATT FACE P2 -46.44 <0.001 -0.51 13 Pz' 'P3' 'P7' 'P4' 'P1' 'P5' 

'PO7' 'PO3' 'POz' 'PO4' 'PO8' 

'P6' 'P2' 

  N2 -35.72 0.002 -0.42 13 P3' 'P7' 'P4' 'P8' 'P1' 'P5' 

'PO7' 'PO3' 'POz' 'PO4' 'PO8' 

'P6' 'P2' 

  P3 16.9 0.017 0.43  8 C4' 'FC6' 'FC2' 'F4' 'FC4' 'FT8' 

'F6' 'FCz' 
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Supplementary Table 5.2. Time-frequency results 

Note: only significant clusters are shown. Reports of t-values and Cohen’s d are 

calculated for the time windows that where significant in a whole-brain time-

frequency analysis 

 

 

.  

Condition Freq. Latency 
(ms) 

t(sum) p D Electrodes 

Att_Face Theta 200-500 -255.99 <0.001 -0.87 All 

 Alpha 200-350 -54.75 <0.001 -0.59 'Fp1' 'Fz' 'F3' 'F7' 'FC6' 'F4' 
'F8' 'Fp2' 'AF7' 'AF3' 'AFz' 
'F1' 'F5' 'FT8' 'F6' 'AF8' 
'AF4' 'F2' 
 

  200-350 -32.17 0.003 -0.61 'CP1' 'Pz' 'P3' 'CP2' 'CP3' 
‘P1' 'P2' 'CPz' 
 

  400-650 -36.03 0.003 -0.65 'Pz' 'P3' 'P7' ‘O1' 'Oz' 'P1' 
'P5' 'PO7' 'PO3' 'POz' 
 

  400-650 -12.96 0.036 -0.4 'FC6' 'F8' 'FT8' 'F6' 'AF8' 

Att Name Theta 200-500 -197.01 <0.001 -0.702 'Fp1' 'Fz' 'F3' 'F7' 'FC1' 'T7' 
'CP5' 'CP1' 'Pz' 'P3' 'P7' 'O1' 
'Oz' 'O2' 'P4' 'P8' 'CP6' 
'CP2' 'Cz' 'C4' 'T8' 'FC2' 'F4' 
'Fp2' 'AF7' 'AF3' 'AFz' 'F1' 
'F5' 'FT7' 'FC3' 'C1' 'C5' 
'TP7' 'CP3' 'P1' 'P5' 'PO7' 
'PO3' 'POz' 'PO4' 'PO8' 'P6' 
'P2' ‘CPz' 'CP4' 'TP8' 'C6' 
'C2' 'FC4' 'F6' 'AF8' 'AF4' 
'F2' 'FCz' 
 

 Alpha 400-650 -15.09 0.024 -0.44 'CP5' 'P3' 'CP3' 'P5' 'PO7' 
'PO3' 

 Gamma 300-650 60.05 <0.001 -0.45 'Fz' 'FC1' 'CP1' 'Pz' 'P3' 'P7' 
'O1' 'Oz' ‘O2' 'P4' 'Cz' 'F1' 
'C1' 'P5' 'PO7' 'PO3' 'POz' 
'PO4' 'PO8' 'P2' 'CPz' 'FCz' 

Exp Face Theta 100-500 -125.43 <0.001 -0.58 'Fp1' 'Fz' 'F3' 'FC5' 'FC1' 
'CP5' 'Pz' 'P3' 'P7' 'O1' 'Oz' 
'O2' 'P4' 'P8' 'CP6' 'T8' 
'FC6' 'FC2' 'F4' 'F8' 'AF7' 
'AF3' 'AFz' 'F1' 'F5' ‘FC3' 
'TP7' 'CP3' 'P1' 'P5' 'PO7' 
'PO3' 'POz' 'PO4' 'PO8' 'P6' 
'P2' 'TP8' 'FC4' 'FT8' 'F6' 
'AF4' 'F2' 'FCz' 

Exp Name Theta 200-500 -8.55 0.047 -0.33 'Fz' 'FC1' 'F1' 'FCz' 

 Gamma 300-650 23.89 <0.001 0.54 'Fz' 'F3' 'FC1' 'Cz' 'F1' 'FC3' 
'C1' 'FCz' 
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Supplementary Table 5.3. One sample t-test MD ROIs Univariate + 

Descriptives 

Note: p-corrected for multiple comparisons = 0.025. 

 

  

ROI Condition Beta SD t p 

ACC Cued_Exp 1.144 1.056 7.182 < .001* 

 Uncued_Exp 1.281 1.357 6.260 < .001* 

 Cued_Att 1.290 1.176 7.280 < .001* 

 Uncued_Att 1.048 1.123 6.188 < .001* 

AIFO Cued_Exp 2.023 1.309 10.255 < .001* 

 Uncued_Exp 1.971 1.688 7.746 < .001* 

 Cued_Att 2.141 1.586 8.958 < .001* 

 Uncued_Att 1.772 1.055 11.147 < .001* 

IFS Cued_Exp 1.369 1.387 6.547 < .001* 

 Uncued_Exp 1.400 1.531 6.067 < .001* 

 Cued_Att 1.305 1.340 6.463 < .001* 

 Uncued_Att 1.365 1.012 8.943 < .001* 

IPC Cued_Exp 0.446 1.245 2.378 0.022* 

 Uncued_Exp 0.593 1.424 2.760 0.008* 

 Cued_Att 0.702 1.079 4.315 < .001* 

 Uncued_Att 0.720 1.162 4.108 < .001* 
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Supplementary Table 5.4. One sample t-test visual ROIs Univariate + 

Descriptives 

 

 

 

  

ROI Condition Beta  SD t p 

V1 Cued_Exp 3.771 2.111 11.848 <.001* 

 Uncued_Exp 3.618 2.730 8.791 < .001* 

 Cued_Att 3.318 1.860 11.834 < .001* 

 Uncued_Att 3.127 1.987 10.439 < .001* 

FG Cued_Exp 3.536 1.488 15.759 < .001* 

 Uncued_Exp 3.237 1.654 12.986 < .001* 

 Cued_Att 3.467 1.494 15.394 < .001* 

 Uncued_Att 2.867 1.302 14.604 < .001* 

VVC Cued_Exp 3.341 1.283 17.272 < .001* 

 Uncued_Exp 3.126 1.649 12.575 < .001* 

 Cued_Att 3.314 1.429 15.386 < .001* 

 Uncued_Att 2.610 1.380 12.545 < .001* 

LOC Cued_Exp 2.401 1.595 9.984 < .001* 

 Uncued_Exp 2.008 1.794 7.424 < .001* 

 Cued_Att 2.080 1.581 8.727 < .001* 

 Uncued_Att 1.781 1.499 7.880 < .001* 
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Supplementary Table 5.5. Post-hoc MD ROIs Univariate 

 

 

 

 

 

 

 

 

 

 

 

Note: t values are shown for cued – uncued comparisons in each 

ROI and condition. 

 

 

Supplementary Table 5.6. Post-hoc visual ROIs Univariate 

 

ROI Block 
T (cued-

uncued) 
Pholm 

V1 expectation 0.497 1.000 

 attention 0.663 1.000 

FG expectation 1.428 0.676 

 attention 2.875 0.031 

VVC expectation 1.098 0.867 

 attention 3.401 0.005* 

LOC expectation 1.962 0.253 

 attention 1.520 0.545 

Note: t values are shown for cued – uncued comparisons in each 

ROI and condition. 

 

 

ROI Block 
T (cued-

uncued) 
Pholm 

ACC expectation -1.13 1.000 

 attention 0.24 1.000 

AI/FO expectation 0.253 1.000 

 attention 1.786 0.466 

IFS expectation -0.174 1.000 

 attention -0.323 1.000 

IPC expectation -0.730 1.000 

 attention -0.087 1.000 
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Supplementary Table 5.7. One sample t-test for decoding accuracies in MD 

regions + Descriptives 

 

ROI Condition 
Decoding 

accuracy 
SD t p 

ACC Cued_Exp -4.261 24.403 -1.158 0.873 

 Uncued_Exp -1.705 19.363 -0.584 0.719 

 Cued_Att 3.409 19.132 1.182 0.122 

 Uncued_Att -2.557 19.916 -0.852 0.800 

AIFO Cued_Exp 3.125 18.109 1.145 0.129 

 Uncued_Exp 4.545 17.281 1.745 0.044 

 Cued_Att 0.568 20.874 0.181 0.429 

 Uncued_Att -3.977 16.786 -1.572 0.938 

IFS Cued_Exp 8.807 20.278 2.881 0.003* 

 Uncued_Exp 14.773 20.579 4.762 < .001* 

 Cued_Att 8.807 22.648 2.579 0.007* 

 Uncued_Att 1.989 21.557 0.612 0.272 

IPC Cued_Exp 4.261 20.521 1.377 0.175 

 Uncued_Exp 13.068 20.345 4.261 < .001* 

 Cued_Att 7.386 17.329 2.827 0.007* 

 Uncued_Att 3.977 23.155 1.139 0.261 

Note: p corrected for multiple comparisons = 0.012. Asterisks denote statistical 

significance. Decoding is reported as accuracy minus chance.  
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Supplementary Table 5.8. One sample t-test for decoding accuracies in 

visual regions + Descriptives 

 

ROI Condition 
Decoding 

accuracy  
SD t p 

V1 Cued_Exp 7.955 20.009 2.637 0.012* 

 Uncued_Exp 25.000 19.626 8.450 < .001* 

 Cued_Att 19.318 19.710 6.501 < .001* 

 Uncued_Att 17.045 20.369 5.551 < .001* 

FG Cued_Exp 24.148 20.424 7.843 < .001* 

 Uncued_Exp 42.045 12.083 23.081 < .001* 

 Cued_Att 37.500 14.517 17.134 < .001* 

 Uncued_Att 34.091 17.127 13.203 < .001* 

VVC Cued_Exp 11.932 20.523 3.857 < .001* 

 Uncued_Exp 29.261 20.521 9.459 < .001* 

 Cued_Att 28.125 14.297 13.049 < .001* 

 Uncued_Att 26.705 19.363 9.148 < .001* 

LOC Cued_Exp 11.364 17.433 4.324 < .001* 

 Uncued_Exp 24.148 19.699 8.131 < .001* 

 Cued_Att 21.307 17.796 7.942 < .001* 

 Uncued_Att 18.466 16.060 7.627 < .001* 

Note: p corrected for multiple comparisons = 0.012. Asterisks denote statistical 

significance. Decoding is reported as accuracy minus chance.  
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Supplementary Table 5.9. Post-hoc MD ROIs Decoding 

 

 

 

 

 

 

 

 

 

 

 

Note: t values are shown for cued – uncued comparisons in each 

ROI and condition. 

 

 

Supplementary Table 5.10. Post-hoc visual ROIs Decoding 

 

ROI Block 
T (cued-

uncued) 
Pholm 

V1 expectation -4.669 0.013* 

 attention 0.623 0.535 

FG expectation -6.398 <0.001* 

 attention 1.219 0.226 

VVC expectation -4.966 <0.001* 

 attention 0.407 1.000 

LOC expectation -3.989 <0.001* 

 attention 0.887 0.756 

Note: t values are shown for cued – uncued comparisons in each 

ROI and condition. 

  

ROI Block 
T (cued-

uncued) 
Pholm 

ACC expectation -0.565 1.000 

 attention 1.318 0.955 

AI/FO expectation -0.356 1.000 

 attention 1.141 1.000 

IFS expectation -1.378 0.583 

 attention 1.585 0.584 

IPC expectation -1.923 0.336 

 attention 0.744 1.000 
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Chapter VI 
GENERAL DISCUSSION 
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The General Discussion is organized into several sections. First, we summarize 

the results obtained in the three studies of this thesis, and relate them to the 

goals and hypotheses described in Chapter 2. Then we consider alternative 

explanations for the results, followed by an integration of the results of the 

studies with the implications that they have for predictive coding and 

attention frameworks. Next, we present a general evaluation of the state of the 

art and the importance of reaching common terminology in cognitive 

psychology. We end with remaining questions and future directions.  

6.1. General results summary 

The aim of this thesis was to advance the knowledge of the nature of neural 

top-down preparation, by studying whether anticipatory and early perceptual 

representations are coded similarly in contexts of relevance and probability. 

We addressed this goal in three neuroimaging studies in which we collected 

EEG and fMRI data during pre- and post-stimulus intervals and used 

multivariate pattern analyses to evaluate the nature of represented 

information.  

Our prerequisite goal (G0) was to design a task that allowed to study category 

anticipation in contexts of selection and probability. The task adequately 

fulfilled our objectives. It was able to elicit contexts of attention and 

expectation, as evidenced by the behavioral results. These (H1.1 and H2.1) 

were in line with previous paradigms that have measured neural activity 

during both attention and expectation, showing overall high accuracies (e.g. 

Scolari et al., 2012; Stokes et al., 2009) and improved performance for 

probable vs. improbable stimuli (e.g. Kok et al., 2012; Stein & Peelen, 2015). 

The two conditions were equated at perceptual, response and crucially, 

difficulty levels, evidenced by similar accuracies and reaction times across 

conditions. The task also allowed to apply multivariate analyses to study 

category representations during the anticipated period. The two stimulus 

categories, faces and names, elicited clear anticipatory and target-locked 

patterns of activity. Since all targets were different, these results were 
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probably due to the representation of general categories, instead of specific 

stimuli. In addition, the use of different cues during the anticipation window 

allowed to control for perceptual confounds. Finally, this paradigm was robust 

across different neuroimaging methodologies and presentation times, as 

evidenced by the similar behavioral results obtained in the two studies.  

In Chapter 3 we described the first study of this thesis, aimed (G1) at studying 

the time-resolved nature of brain anticipation by contrasting how information 

is represented in contexts of relevance and probability. In sum, our hypothesis 

(H1) that the neural codes in different conditions would be distinguishable 

was supported. Specifically (H1.2), an RSA analysis revealed that during 

preparation several events take place. First, the cues’ perceptual features are 

processed. Then, during most of the trial, global differences associated with 

the mechanisms deployed during attention and expectation take place. Finally, 

the anticipated category is preactivated with increasing sensitivity throughout 

the trial, in a ramping-up fashion. These results were replicated by time-

resolved decoding, as both categories could be decoded during the 

anticipatory interval. Furthermore, when we controlled for perceptual biases 

by training and testing the classifier with different cues, we found results that 

were akin to those found for category in the RSA. Crucially, although both 

conditions exhibited similar decoding accuracies and ramping up effects, as 

well as large temporal generalization windows, (H1.3) cross-classification 

between them was not possible, a result that was not explained by the block 

design of the task. This indicates that although anticipated information is 

represented in the two conditions, the nature of such codes differs. Finally, 

(G1.4) we sought to explore the level of perceptual reinstatement. As expected 

(H1.4), the two conditions differed in the pattern similarity between the cue 

and target, as evidenced by a CTT. The results showed that preparation during 

attention was more similar to target activity elicited by an independent 

localizer.  

This first study left an important open question: what are the neural substrates 

underlying the representations found during anticipation? We approached 
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this question in Chapter 4, where we describe a second study in which we 

adapted the behavioral paradigm to fMRI. Similar to Chapter 3, we first sought 

evidence of anticipatory representations. As we anticipated (H2.2), we 

observed anticipated coding that was different for attention and expectation. 

Univariate results revealed increased activations for attention in early visual 

regions, while the posterior cingulate cortex was more active for expectation. 

Moreover, decoding of the two blocks showed large differences in the 

recruitment of different visual and frontoparietal regions during anticipation, 

suggesting that different networks exhibit distinguishable mechanisms in 

these two contexts. Furthermore, in accordance to our prediction (H2.3), the 

anticipated categories were represented in object-selective regions of the 

ventral visual cortex, partially replicating the results from the EEG study. We 

found that relevant and probable categories were represented in close, yet 

mostly different, brain regions. While the attended category was decoded 

mostly from ITG, probable categories were decoded in earlier regions, such as 

V1 or the lingual gyrus. Crucially, cross-classification between attention and 

expectation was again not possible, implicating that the coding nature of 

preparation across the two conditions is different (H2.4). To explore the 

nature of these differences, we compared the level of similarity between 

anticipatory templates and targets. The cross-classification approach yielded 

results that partially matched H2.5. Although, as predicted, both attention and 

expectation generalized from preparation to target perception, they did so in 

different regions. Hence, we could not directly compare whether results were 

more pronounced for one of them. Moreover, a voxel selectivity ranking 

analysis yielded univariate evidence of the similarity of neural tuning during 

preparation and target perception. Contrary to our hypothesis, only 

expectation showed evidence of generalization from cue to target, and it did 

so in the VVC. Finally, we explored the behavioral relevance of neural 

representations during preparation. Contrary to our prediction (H2.6), the 

distinctiveness of the prepared stimuli did not correlate with behavior in 

either condition. However, block decoding in frontoparietal regions showed a 

positive correlation with behavior, which might suggest that clear distinctions 
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between expectation and attentional demands are associated with 

performance.  

Finally, after studying the nature of top-down preparation, we aimed to study 

whether cueing sharpens or dampens sensory representations (G3). We re-

analyzed the data from the experiments in Chapters 3 and 4 to extract joint 

conclusions. The univariate cueing differences separately for attention and 

expectation yielded mixed evidence, whereas time-frequency analyses from 

EEG and GLM contrasts from fMRI showed converging evidence of increased 

activations for both probable and relevant stimuli. This, although in 

accordance with H3.1 regarding attention, was opposed to the effects we 

expected to find for probable targets. Moreover, ERPs went in the opposite 

direction in attention, and were non-significant in expectation. To adjudicate 

between sharpening and dampening effects (G3.2), we compared the 

decoding accuracies for cued and uncued trials in attention and expectation 

using an ANOVA for both temporal generalization in EEG and specific ROIs in 

fMRI. Although evidence mostly supported a sharpening effect for attention 

(H3.2), results did not reach significance in several contrasts. Crucially, 

probable targets were specially poorly decoded, compared to all other stimuli 

in both datasets, suggesting dampened representations for probable stimuli, 

even with larger activations. Additionally, we examined whether dampened 

representations would generalize better to the preparatory interval, since 

representations should be poorer in both cases. Our hypothesis (H3.3) was 

met, as expectation targets generalized to the cue, while relevant targets did 

not, again suggesting sharpening for attended and dampening for probable 

stimuli. In the fMRI study (G3.4) we studied the involvement of frontoparietal 

regions in sharpening and dampening. Although we could successfully decode 

target categories from IFS and IPC, these regions did not show any evidence of 

sharpening or dampening for either condition, contrary to H3.4. Finally, we 

examined the relationship between univariate and multivariate effects, and 

concluded that the results were not compatible with equivalent effects of 

similar effects for attention and expectation, suggesting that not only during 
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anticipation, but also during target processing relevance and probability act 

through different mechanisms.  

6.2. Top-down or bottom-up? Alternative explanations 

Throughout this dissertation we have framed preparation as a top-down 

function: internal states induce preactivations that have consequences on 

perception and action (Brunia, 1999; Kveraga et al., 2007). In fact, we have 

shown that anticipatory representations can be decoded from temporal and 

occipital regions before target presentation (Study II). Moreover, these 

representations appear delayed in time, and increase towards the anticipated 

presentation time when it is previously fixed (Study I). However, could our 

results be a consequence of bottom-up, perceptually driven confounds and not 

top-down biasing? 

Arguably, the possibility exists that these preactivations could be a 

consequence of bottom-up priming (Theeuwes, 2013). This alternative is 

based on studies that show that cueing a relevant location or object feature 

improves detection (Eger et al., 2007; Fernández et al., 2022; Theeuwes & Van 

Der Burg, 2007) by increasing cortical sensitivity. Following this proposal, 

results could be generated by the bottom-up perception of the visual cues, 

which would elicit neuronal firing in relevant perceptual regions. This 

activation would remain until the presentation of targets and would aid on its 

detection. However, automatic priming is particularly relevant in facilitatory 

effects of studies utilizing exact image cues representing the target object, in 

situations where the relevant or probable target dimension is consistently 

blocked, leading to its repetition across trials, or in exogenous spatial 

attention experiments (Battistoni et al., 2017). None of these features was 

present in our experiments. Our cues were symbolic shapes, different from 

anticipated targets. The predicted target category was randomized within 

each block, avoiding repetition effects that could last and be decoded from 

visual cortices. Moreover, cues predicted general categories (faces or names) 

but never individual stimuli, as the pool of target stimuli employed was quite 
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large in numbers. Nevertheless, a priming account cannot be conclusively 

dismissed even when dealing with studies employing symbolic cues, such as 

words indicating the target object or previously learned associations between 

different stimuli in the same or different perceptual modalities (Feng et al., 

2017). In such cases, processing the symbolic cue might activate the object’s 

semantic representation, potentially resulting in an enhancement of 

perceptual processing for the primed object. However, automatic priming 

should lead to preactivations that are independent of specific task demands or 

top-down control. This is not compatible with research that shows sustained 

preparatory activity within the visual cortex is observable in working memory 

tasks with fixed delay periods, where information can be decoded with MVPA 

in a ramping-up manner, with increased accuracies as the target approaches 

(Serences et al., 2009; Stokes, 2015), a phenomenon labeled “activity silent 

working memory”. Crucially, these findings appear only when information is 

actively maintained in WM, and decodable representations arise through top-

down mechanisms, which fundamentally challenges the applicability of 

automatic priming accounts. This evidence resonates with our findings in 

Study I that decoding only emerges as the target approaches, which is difficult 

to explain with mere automatic priming without relying on top-down 

mechanisms.  

Decoding evidence of sustained representations in the absence of perceptual 

stimulation has also been challenged. Specifically, it has been suggested that 

systematic eye movements, or micro-saccades, during the delay period could 

contaminate the decoding results (Mostert et al., 2018; Quax et al., 2019; 

Thielen et al., 2019). Arguments in favor of this explanation come from data 

that shows that decoding results based on neural information are similar to 

the results based on eye-tracker data, which is a prominent concern in M/EEG 

studies. There are three main mechanistic explanations as to how eye 

movements could bias decoding results (Mostert et al., 2018). First, the 

rotation of the eyeball is picked by EEG sensors, due to its positively charged 

cornea and negatively charged retina, which together act as a dipole. This 
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artifact is only a concern in electrophysiology studies, since it cannot be 

detected by fMRI. Its effects can be reduced by removing that part of the signal 

by performing independent component analysis (ICA), or regressing out 

activity explained by an electrooculogram (EOG) or, better, eye-tracker data 

(Thielen et al., 2019). In Study I, we used ICA to remove eye-movement 

components. Moreover, an electrophysiological bias would drive classification 

weights to frontal electrodes, which is not our case (Figure 3.3, evidence of the 

topographical distribution of RSA category and cue shape results). Second, 

saccades biased to a specific part of the screen imply that the perceived image 

could change. For instance, if there is a fixation point, which is the norm in 

psychophysics experiments, classifiers could be decoding the relative position 

of the fixation point in the visual field. This confound would also affect fMRI 

data, and would lead to decoding in visual regions or weights in occipital sites, 

closer to our results. However, tasks where eye movements are unlikely 

greatly reduce this effect (Mostert et al., 2018). This includes presenting all 

stimuli in the same position, manipulating features that are less directional 

(such as grating orientations), or showing targets in a random position that 

cannot be predicted by the cue. Again, our results can hardly be explained by 

this effect, since all targets were presented at center of the screen. Still, it could 

be argued that faces and names can elicit different types of eye movements. 

Faces could drive saccades to the approximate position where the eyes will 

appear (above the fixation) while names could elicit lateralized movements. 

Although future revisions of the task where eye tracker data are collected are 

needed, this phenomenon alone still cannot explain our results. First, fMRI 

showed decoding in object-selective rather than early visual regions. Second, 

perceptually driven bottom-up effects should be similar across different 

cognitive contexts, which does not agree with cross-decoding results. And 

third, several analyses showed pattern similarity between anticipation and 

perception in both EEG and fMRI, which reveal that anticipation generated 

partially similar templates to the anticipated category in visual regions. 

Finally, eye-movements would also elicit activity changes in regions related to 

eye position, such as the FEF. In fMRI experiments, significant decoding in this 
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region should rise concerns and prompt other control analyses. However, we 

did not find significant coding in that region during whole brain analyses. 

Altogether, although research aiming at studying top-down anticipations 

should make efforts to control for these possible effects and account for 

systematic biases, our evidence speaks strongly against the presence of these 

biases in our results.  

6.3. Preparation as a heterogenous state 

In Studies I and II we consistently showed that although anticipated 

information is coded in the brain, the exact nature of said coding differs. This 

adds to the literature that has studied a plethora of mechanisms taking place 

in the absence of perceptual stimulation, such as imagery (Cichy et al., 2012; 

Dijkstra et al., 2019), working memory (Nir-Cohen et al., 2020; Stokes, 2015), 

cognitive control (González-García et al., 2021; Palenciano, González-García, 

Arco, Pessoa, et al., 2019), selective attention (Battistoni et al., 2017; Woolgar 

et al., 2015) or probabilistic expectations (de Lange et al., 2018; Kok et al., 

2017). 

All these processes share two characteristics: they are instantiated through 

top-down endogenous mechanisms, and they induce the representation in 

perceptual brain regions of stimuli that are not present. The extent to which 

they consist of, in fact, a single unitary function or different manifestations of 

several mechanisms is debated. Interestingly, the research trend with 

attention and WM, which have been extensively compared (see Gazzaley & 

Nobre, 2012 for a review), is somewhat the opposite to our attention-

expectation comparison. In that case, attention and WM have been usually 

regarded and studied as different phenomena and, only relatively recently, 

research has started to show that their neural bases are similar, and actually 

selection can account for a large part of the typical WM effects during the delay 

period, such as capacity, cortical representations and FPN involvement (Chun, 

2011; Postle, 2006). In fact, it has been proposed that working memory is 

better understood as the result of the interaction between cognitive control, 
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attention and perceptual representations (Bledowski et al., 2010). Working 

memory would not be a process, but a consequence: cognitive control displays 

attention, which in turn induces the representation of relevant stimuli in 

visual regions, thus “creating” working memory.  

Following this rationale, it could be argued that preparatory attention and 

expectation would be similar manifestations of top-down regulations 

(Gazzaley & Nobre, 2012). In fact, their neural bases have been shown to be 

partially overlapping: both processes rely on FPN or MDN regions (Esterman 

& Yantis, 2010; Rahnev et al., 2011). In attention, they would be the sources of 

top-down templates (Desimone & Duncan, 1995), that are represented in 

sensory regions. In expectation, they would be an intermediate region, while 

anticipatory templates would be generated in memory sources such as the 

hippocampus (Barron et al., 2020; Hindy et al., 2016; Kok & Turk-Browne, 

2018). Our data similarly showed that category anticipation accuracies were 

similar (see Figure 3.4) in both conditions, although we did not find evidence 

of frontoparietal involvement. However, in Study I we showed that 

preparation is a complex phenomenon that entails several mechanisms, from 

cue processing to category anticipation. Moreover, the patterns that support 

anticipatory representations are different across contexts.  

Furthermore, the anticipatory relevance vs. probability showed different 

similarity between preparatory representations and target perception, 

although the results across different methodologies where not consistent: 

whereas the CTP in EEG showed more reinstatement for attention; the slope 

analysis in fMRI revealed more similar tuning for expectation in VVC; and 

cross-classification showed more involvement for expectation on EEG, and 

different, barely overlapping regions in fMRI. Although the CTP was the only 

analysis that showed larger reinstatement for attention, it was also the only 

one that was carried out using an independent localizer. In all other analyses, 

perceptual data came from target epochs. That is, it is possible that anticipated 

information during expectation is better represented, as it is during target 

perception, or conversely, as shown in Chapter 5, it could be that 
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representations during probabilistic contexts in target perception are 

attenuated and thus more similar to anticipation. So, taking only CTP results 

from EEG as the most reliable source of information, the conclusion is still that 

anticipatory templates are different across attention and expectation, and that 

differences could not be explained by perceptual or difficulty differences 

across the two conditions.  

Akin to what has been suggested for WM and attention, our results collectively 

indicate that preparation is not a specific function, but rather a temporal 

window where several neural mechanisms unfold. This includes a 

fundamental tool: top-down templates lead to preactivations in sensory 

cortices. However, the nature of these preactivations depends on the context. 

If anticipation happens in a context of perceptual expectations, mechanisms 

pertaining to expectations are deployed. If it happens in a context of relevance, 

attentional resources can bias sensory cortices towards attended stimuli. 

Moreover, it would be logical to think that both attention and expectation can 

interact in that anticipatory space, as it has been repeatedly been suggested 

by studies that have examined their combined effects during target processing 

(e.g. Jiang et al., 2013; Richter & de Lange, 2019). Research that examines their 

interaction during the preparatory interval is still lacking.  

6.4. General categories vs. specific stimuli 

In all three experimental chapters we attempted to examine the relationship 

between anticipation and target perception. Our first focus was to examine 

whether anticipatory templates were similar to perceived images. Crucially, 

our manipulation was oriented to induce anticipations for broad categories, 

not individual stimuli. Participants were unaware of the gender or identity of 

the faces and words before they were perceived. Previous studies of category 

anticipation or imagery have employed a much narrower number of images. 

For instance, Esterman & Yantis, (2010) compared category expectations to 

faces and houses, but only used 12 different stimuli of each. Cichy et al. (2012) 

in an imagery task with four different categories used three individual images 
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per condition. Lee et al. (2013) also compared the representation of different 

categories in a WM task, but used two stimuli per category. In our task, 

participants saw a different target on every trial, so it was not possible for 

them to anticipate the exact features of the incoming stimulus. Thus, here we 

show that templates associated with whole perceptual categories can also be 

represented in the brain. This might also contribute to our overall low 

decoding accuracies, since anticipatory templates where probably more 

abstract than those in similar previous experiments with more repetitions of 

each stimulus (e.g. Cichy et al., 2012; Esterman & Yantis, 2010). Crucially, 

these general representations took place in category-selective cortices, and 

shared activity patterns with the more detailed visual targets. Nevertheless, 

this manipulation had another consequence: in all trials there was a possible 

component of surprise, as the exact stimulus could not be predicted. Even so, 

in Chapter 5 we showed how dampening effects in expectation are robust and 

take place even when the prior pertains to general categories. It has been 

proposed that for an effect of surprise that could deploy attentional resources 

and possibly reverse the dampened representations we found here, the level 

of unexpectedness needs to be large enough to cross a perceptual salience 

threshold (Press et al., 2020), which was hardly the case in our task. 

Altogether, our results suggest that anticipatory templates induce changes in 

neural tuning depending on the cognitive context. Crucially, this template is 

not necessarily equal to individual concrete stimuli. It induces changes in 

visual processing even when the exact nature of the stimulus is not known.  

6.5. How does preparation relate to perception? 

Although we showed that information is at least similarly represented during 

anticipation and target perception, our results do not allow for a 

straightforward interpretation of the spatiotemporal dynamics and changes 

that take place between the two stages. In Chapter 4, we could not link 

category anticipations with behavioral performance, unlike previous reports 

(Auksztulewicz et al., 2017; González-García et al., 2017; Jin et al., 2020). 
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Moreover, although sensory templates generalized from cue to target, 

decoding of context (attention vs. expectation) did not. Hence, we cannot 

conclude that the patterns of brain activity that support mechanisms for 

anticipatory attention and expectation other than stimulus representations 

are similar to the ones that arise during target perception and interpretation. 

Similar results where anticipatory and processing activity are not fully 

equivalent have been found by Panichello & Buschman, (2021), which found 

that preparatory attention and visual attention generalized (cross-classified) 

in PFC, but not in V4, parietal cortex or FEF. This highlights the complexity of 

visual processing, and how different mechanisms are involved from 

anticipation to action depending on several events. Although more research is 

needed, below we speculate about what processes may unfold differently in 

attention and expectation during a complete trial.  

As revealed by RSA in Chapter 3, when the cue is presented, its perceptual 

features are processed, and then mechanisms pertaining to either condition 

are deployed. In attention trials, cognitive control would then guide attention 

to relevant features (Diamond, 2013). The connection between the cue and 

cognitive control mechanisms could be exerted through associative learning 

after several repetitions of cue-target-feedback pairs during the practice 

blocks. The role of associative learning in cognitive control is possibly to 

induce the activation of several mechanisms which allow flexible behavior, 

including attention orienting (Abrahamse et al., 2016; Braem & Egner, 2018). 

The orienting of attention to different stimulus categories (Aranda et al. 2010) 

is then implemented via top-down templates which would be generated in 

FPN regions, such as IFS, IPS, or PFC (Battistoni et al., 2017; Kim & Kastner, 

2019; Panichello & Buschman, 2021) and are represented afterwards in 

category selective areas (Peñalver et al., 2023; Chapter 4). If it is known when 

visual stimulation will happen, the representations could be maintained in 

FPN areas, and be intensified in downstream regions as target approaches and 

a template to compare is more necessary. According to predictive coding and 

biased competition models, (Feldman & Friston, 2010; Kok, Rahnev, Jehee, 
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Lau, & de Lange, 2012), attention would deploy these representations in 

superficial cortical layers (Muckli et al., 2015), by increasing neural 

excitability and through, perhaps, top-down inhibition of neurons tuned away 

from the relevant category. This might explain the increased activity found for 

attention in visual regions (Figure 4.5). Once the target appears, if it matches 

the anticipated category, neural precision (tuning to the relevant category) is 

increased (Feldman & Friston, 2010), thus increasing the weight of relevant 

sensory information, inducing sharpened representations (Woolgar et al., 

2015). However, we could not find convincing evidence on this last direction. 

This may be due to all targets capturing at least some attention due to their 

novelty and the absence of a distractor stimulus to drive selection away.  

In expectation, rather than goal directed cognitive control, cues could trigger 

automatic associations, learned through experience (practice) about the 

probable characteristics of incoming stimuli (Kok et al., 2017). This 

probabilistic knowledge could be stored in the hippocampus (Aitken & Kok, 

2021; de Lange et al., 2018), which could then generate perceptual templates 

in visual regions. Again, these templates would be active in superficial layers 

of the cortex. Expectation would be more automatic, not requiring specific 

control. Moreover, preactivations would be maintained in earlier (Chapter 4), 

less stimulus specific regions, and without a pre-inhibition of neurons tuned 

to other stimulus categories. When the target is presented, if it matches the 

preactivated template, similar characteristics would be filtered out, and 

representations would be dampened to reduce computational costs (Chapter 

5), which could help to give faster and more accurate responses. This filter 

would make probable stimuli less specific, and hence more similar to category 

anticipation in earlier sensory regions. Importantly, the ability of unexpected 

stimuli to elicit an attention-like response and induce a sharpened 

representation would depend on the level of surprise and learning value 

(Press et al., 2020), which in our task was possibly not enough, making the 

representations similar between unexpected and both attended and 

unattended stimuli.  
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6.6. Who knows what attention is? 

This dissertation results from our effort to expand and detail the definitions 

of key concepts in cognitive science: preparation, attention, and expectation. 

In this last section, we would like to divert a bit from specific theoretical 

models and results and make a very brief, more general evaluation of the state 

of the art in relation with our work.  

As stated at the introduction, the quote “Everyone knows what attention is” 

(James, 1890) may not have aged too well. Perhaps this is because in 130 years 

of cognitive research there are still not enough different and consistent labels 

that describe the diverse set of empirical results that are stored under the 

umbrella of “attention”. As discussed by Hommel (2019), who counterargued 

that “no one knows what attention is”, attention has been fractioned to include 

a plethora of processes related to a cognitive system with limited capacity that 

needs to focus resources on relevant information. This includes the selection 

of external events to be processed, inhibition of distractors, focus on salient 

information, increased representations of locations or features, among many 

others. It is, as claimed by the authors, very unlikely that all these phenomena 

share the same functional mechanisms. Moreover, research is grounded on 

concepts that may not be systematically or properly defined. Such could be the 

case of “relevance”. When experimenters manipulate probability to measure 

attention (e.g. Posner, 1980), they are assuming that something probable is 

also relevant: knowing where a stimulus can appear drives attention to that 

location. But one could logically argue in the opposite direction: something 

unlikely is more relevant, which is why, for instance, oddball paradigms can 

be used to capture attention (Alink & Blank, 2021; Feuerriegel, Yook, et al., 

2021). Both definitions can be logically and arguably correct, which has made 

the joint interpretation of both types of results difficult (Press et al., 2020).  

Moreover, this lack of a systematic definition of the effects associated with 

attention has potentially led to split lines of research that grow increasingly 

harder to re-join as literature expands. Going back to the topic of this thesis, 

the idea that selection and probability may be different cognitive processes 
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gained prominence when Summerfield & Egner (2009) highlighted that both 

concepts had been studied as one unitary process, when they were not 

necessarily equivalent. Although there is an extensive body of research that 

has compared how attention and expectation interact and differ (e.g. 

Auksztulewicz et al., 2017; Jiang et al., 2013; Wyart et al., 2012), and additional 

new evidence suggestive of a different set of mechanisms (Peñalver et al., 

2023), there is still an active line of research that continues manipulating 

probability to measure attention (e.g. Battistoni et al., 2017). Both lines keep 

advancing mostly in parallel, studying two potentially different processes and 

labeling them in the same manner. Thus, when designing new tasks and 

discussing new sets of results, the inferences can be not only biased in 

opposite directions depending on the literature review, but are possibly 

weakened by conflicting results, which complicate the integration of 

information.  

This issue has been discussed several times and can be applied to other 

cognitive domains such as memory or consciousness (Hommel et al., 2019). 

However, there could be another characteristic of cognitive science that 

underlies this circumstance: the terms that we use to describe brain/cognitive 

function have not really changed, or not as much as in other scientific 

disciplines, since William James (1890). The work of Poldrack (2016) has 

shown that the terminology that we use today matches around 20% of the one 

that appeared in James’ Principles of Psychology. Comparatively, only 0.09% 

of the terms used in Biology matched the ones used in similarly influential 

textbooks of the same period. Other reports have found that in specific 

contexts the share of prominent concepts in today’s literature with James can 

be to up to 47% (Ortiz-Tudela & González-García, 2023). Hence, if terminology 

is not updated, more confusion is bound to happen, which inevitably hinders 

scientifical advances. These authors propose, as a tentative explanation, that 

in psychology there has not been any major breakthrough that could justify 

the opening of new lines of research and the use of updated terminologies.  
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Interestingly, possibly one of the most similar things to a major change in 

cognitive neuroscience has been the importance of predictive processing 

(Feldman & Friston, 2010; Friston, 2005). Indeed, this thesis is conceptualized 

within this integrative framework, given its flexibility and compatibility with 

attentional theories such as the biased competition (Desimone & Duncan, 

1995). This has allowed us to integrate both attention and expectation within 

the same framework and attribute similar mechanistic explanations to two 

different sets of results. However, there is some fair criticism (Litwin & 

Miłkowski, 2020) to the speed to which neuroscience has attempted to fit 

much of the effects we observe within a framework that is still in development. 

Examples of this are common (or not so common) effects such as expectation 

suppression, which may not be understood enough to guide such a wide and 

still conflicting (e.g. dampening vs. sharpening interpretations) set of results 

(Feuerriegel et al., 2021; Press et al., 2020).  

Rather than claiming that psychological science, predictive processing 

theories, or the term attention are not crucial anymore, we argue that a more 

systematic way to define terms (including concepts, effects or tasks; Poldrack 

et al., 2011) would likely help the advance of research. This is, a more data-

driven approach that clearly associates tasks (not necessarily concepts) with 

results could eventually lead to an easier understanding of behavior and brain 

function, and the definition of more precise integrative theories. 

6.7. Remaining questions and future work 

Despite the contributions of this thesis, there are still several questions that 

remain unanswered. First, although we systematically compared the patterns 

that support category representation in attention and expectation, and argue 

that its perceptual nature might explain the different patterns of activity that 

we found, the exact mechanisms supporting these differences is still unknown. 

Our evidence was conflicting regarding the similarity between preparation 

and target processing. The inclusion of a localizer block in the fMRI 

experiment could help painting a more precise picture in this direction. 
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Different oscillatory patterns could be supporting each type of representation. 

It has been suggested that top-down influences are implemented in external 

cortical layers through slower oscillations, while gamma might support 

bottom-up representations (Fries, 2005; Fries et al., 2001). This could be 

examined via MVPA analyses which, instead of voltage, use power of different 

oscillatory bands as features to train the classifier (see Jafarpour et al., 2013 

for a similar approach). Conversely, specific frequencies could be filtered out 

from the EEG signal and the analyses repeated to examine which oscillations 

contribute most to decoding results (López-García et al., 2020, 2021).  

Moreover, the contribution of top-down regions to the effects showed here is 

unclear. In the fMRI study, the MD ROIs included in Chapter 5 (IFS, ACC, IPC, 

AI/FO) could be defined a priori, plus the hippocampus, given its suggested 

relevance in expectation contexts (Aitken & Kok, 2022; de Lange et al., 2018; 

Kok et al., 2017). Furthermore, approaches such as Dynamic Causal Modelling 

(Auksztulewicz & Friston, 2015) have been employed within predictive 

coding to study the influence of higher-order regions on neural activity in 

downstream areas, and vice-versa. Particularly, we could study the specific 

dynamics that allow for the implementation of specific anticipatory templates 

in sensory regions, and the probable neural mechanisms that support them.  

The experiments of this thesis manipulated attention and expectation in the 

same way, using the same stimuli but exploiting the capabilities of each 

neuroimaging technique. Although we compared the results of both in Chapter 

5, it is possible to go one step forward. Fusion RSA (Cichy & Oliva, 2020; Hebart 

et al., 2018) allows to directly examine the representational similarity of two 

different measures, such as EEG and fMRI. This would allow us to obtain a 

more detailed spatial and temporal pattern of brain activity during the 

preparatory and perceptual interval. At the moment of writing of this 

dissertation, this analysis is still in preliminary stages, but shows promising 

results that could complement the studies already presented (Figure 6.1). 

Further developments could even apply the same rationale of using the power 
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of specific frequency bands described for MVPA, but for fusion analyses, laying 

out how oscillations are related to anticipatory processing in different regions.  

Finally, we have shown and discussed that several of the effects found are 

highly dependent of the specific task that is used to measure them 

(Feuerriegel, Vogels, et al., 2021; Richter & de Lange, 2019). Future designs 

could change characteristics of the task to explore the robustness of these 

findings. For instance, reducing the number of stimuli could increase the 

effects of the anticipatory representations found here. Moreover, to examine 

how we can flexibly move from a selection to a probability context, both 

Figure 6.1. Preliminary Fusion-RSA results for the preparation window. Each line 

corresponds with a ROI. Shading indicates the standard deviation. Grey column shows the 

cue’s onscreen time. Horizontal colored lines show statistical significance after a cluster-

based permutation analysis. The regions shown in this figure are: aCC = anterior cingulate 

cortex, IPS = inferior parietal sulcus, V1 = primary visual cortex, FG = fusiform gyrus. 
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conditions could be manipulated within the same blocks. This would help 

understanding what are the mechanisms that allow, not only for different 

representations in attention and expectation, but also the change from one 

context to the other.  

In summary, with this thesis, we have provided new evidence and insight into 

the complex phenomenon that is top-down preparation. We have shown that 

it entails a plethora of diverse mechanisms, including the representation of 

anticipated perceptual categories in specific regions. Crucially, we have 

evidenced how the nature of these representations can change when the 

cognitive contexts are different, such as those involving selective attention 

and expectation. Future research will face the challenges of further advancing 

our knowledge of the mechanisms that support neural anticipation and 

understanding how they contribute to adaptive and efficient behavior. 
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Resumen 
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El mundo es complejo y esta  en constante cambio. Somos bombardeados por 

un gran nu mero de estí mulos que generan patrones ambiguos en nuestros 

receptores sensoriales, a los que normalmente necesitamos dar respuestas 

ra pidas y eficaces. Para hacer frente a esta complejidad y ambigu edad, entre 

otras cosas los humanos utilizamos la capacidad de anticipar lo que va a 

ocurrir antes de que ocurra. De hecho, esta  muy extendida la idea de que 

prepararse para percibir informacio n inminente mejora el rendimiento 

(Barton et al., 2006). Sin embargo, de estas afirmaciones aparentemente 

evidentes surgen algunas preguntas fundamentales. ¿Co mo mejora la 

preparacio n el rendimiento? ¿Implica la representacio n de informacio n 

especí fica? Y, sobre todo, ¿es la preparacio n proactiva un proceso unificado o 

emplea mecanismos disociables en diferentes contextos cognitivos? 

Esta tesis enmarca la preparacio n como un proceso cerebral de origen interno 

o endo geno, de arriba a abajo (en adelante, top-down), en referencia al origen 

de la informacio n en regiones superiores de la corteza, que descenderí an a reas 

perceptivas. Esta definicio n contrasta con otra rama de mecanismos de abajo 

a arriba (bottom-up), en los que el desencadenante de la actividad esta  en los 

estí mulos del entorno. Hay al menos dos posibles fuentes de informacio n que 

pueden llevar a esta anticipacio n endo gena: nuestras metas y objetivos, y el 

conocimiento que tenemos de las regularidades del entorno.  

La actividad asociada a metas se relaciona el control interno de recursos 

especí ficos que nos permiten un desempen o eficaz de diferentes tareas. Este 

control cognitivo proactivo (Braver, 2012) se asocia a regiones cerebrales 

como la red frontoparietal o la red de mu ltiple demanda (Dosenbach et al., 

2007). Entre sus principales capacidades encontramos la orientacio n de la 

atencio n hacia informacio n relevante. Esta atencio n selectiva actu a como un 

filtro que nos permite procesar mejor la informacio n necesaria mientras 

ignoramos aquella que nos distrae. Crucialmente, se ha comprobado en 

numerosas ocasiones que mientras seleccionamos informacio n relevante, 

dicha informacio n se representa en la corteza visual, a trave s de patrones de 

actividad asociados a los estí mulos a los que estamos atendiendo (Peelen & 
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Kastner, 2011; Stokes et al., 2009). Ma s au n, cuando se presentan estí mulos 

que se corresponden con lo seleccionado, se suelen encontrar tanto aumentos 

de actividad en regiones perceptivas (Kastner et al., 1999) como mayor 

precisio n en el procesamiento de dichos estí mulos (Woolgar et al., 2015). 

Por otra parte, los modelos que explican los efectos del conocimiento previo 

sobre las regularidades estadí sticas del entorno, o expectativas, han ganado 

mucha relevancia en los u ltimos an os. Estos modelos de procesamiento 

predictivo (Feldman & Friston, 2010; Friston, 2005) destacan co mo en todo 

momento el cerebro actu a como una ma quina que anticipa lo que es ma s 

probable. Estas predicciones top-down se contrastarí an con la informacio n de 

los receptores sensoriales, bottom-up. Del contraste de ambas surgen errores 

de prediccio n, que se utilizan para actualizar las siguientes predicciones y así  

dar al cerebro un mecanismo flexible y capaz de adaptarse en diferentes 

circunstancias. Estos modelos tambie n describen co mo la informacio n 

probable puede representarse en la corteza visual antes de que se de 

estimulacio n bottom-up (de Lange et al., 2018; Kok et al., 2017). Sin embargo, 

al contrario que en atencio n selectiva, aquí  cuando se percibe un estí mulo 

probable se suelen encontrar menores activaciones (Feuerriegel, Vogels, et al., 

2021). Con respecto a la precisio n de estas representaciones, la evidencia es 

au n conflictiva, y se han encontrado datos que apuntan tanto a una mayor 

precisio n (Kok et al., 2012) como a un empobrecimiento de dichas 

representaciones (Richter et al., 2018). 

Aunque estos dos feno menos, atencio n selectiva y expectativa, se asocian a 

efectos diferentes durante el procesamiento de estí mulos, en ambos se dan 

representaciones anticipatorias en la corteza visual. Sin embargo, no se ha 

investigado si estas representaciones comparten los mismos mecanismos de 

procesamiento, o si por el contrario la preparacio n es un feno meno complejo 

y heteroge neo que depende del contexto cognitivo en el que se produzca.  

Por ello, el objetivo principal de esta tesis es examinar la naturaleza de la 

preparacio n, y evaluar co mo cambia a trave s de diferentes contextos. Para ello 

disen amos una tarea en la que diferentes sen ales daban informacio n sobre 
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estí mulos objetivo. Dichas sen ales podí an indicar la relevancia (atencio n) o 

probabilidad (expectativa) de los estí mulos. Esta tarea se implemento  en dos 

experimentos en los que se recogieron datos de distintas herramientas de 

neuroimagen. Los ana lisis se centraron fundamentalmente en te cnicas 

multivariadas (Hebart & Baker, 2018), particularmente sensibles y eficaces en 

el estudio de patrones de actividad cerebral que informan sobre co mo se 

representa la informacio n.  

En los dos primeros estudios, investigamos la preparacio n proactiva, 

explorando co mo se representa en el cerebro la informacio n anticipada, y si 

cambia, y co mo, a trave s de contextos de relevancia y probabilidad. El primer 

estudio se centro  en la dina mica temporal de la actividad preparatoria. Para 

ello la actividad cerebral se registro  mediante Electroencefalografí a (EEG). Los 

resultados mostraron que durante la ventana preparatoria tienen lugar varios 

acontecimientos. En primer lugar, se procesan las caracterí sticas perceptivas 

de la sen al. Despue s, durante la mayor parte del ensayo se encontraron 

diferencias globales asociadas a los mecanismos desplegados durante la 

atencio n y la expectativa. Por u ltimo, la categorí a anticipada se represento  a lo 

largo del ensayo, especialmente al final. De forma crucial, aunque tanto 

atencio n como expectativa mostraron precisiones de decodificacio n y efectos 

de aumento similares, los resultados de una no generalizaron a los de la otra. 

Esto sugiere que, aunque la informacio n anticipada se representa en las dos 

condiciones, la naturaleza de tales representaciones difiere. Por u ltimo, 

tratamos de explorar el nivel de similitud entre las representaciones 

preparatorias y la percepcio n de los estí mulos. Las dos condiciones diferí an en 

la similitud de patrones entre la sen al y el objetivo, concretamente, la 

preparacio n durante atencio n era ma s similar a la actividad del objetivo.  

Este primer experimento dejo  una importante cuestio n abierta: ¿cua les son 

los sustratos neurales que subyacen a las representaciones encontradas 

durante la anticipacio n? Abordamos esta cuestio n en el segundo experimento, 

en el que adaptamos el paradigma conductual a la resonancia magne tica 

funcional (RMf). De nuevo, encontramos pruebas de codificacio n anticipada 
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que eran diferentes para atencio n y expectativa. Los resultados revelaron un 

aumento de las activaciones para atencio n en las regiones visuales tempranas, 

mientras que el co rtex cingulado posterior estuvo ma s activo para la 

expectativa en esta ventana. Adema s, la informacio n anticipada mostro  

grandes diferencias en la implicacio n de diferentes regiones visuales y 

frontoparietales durante la anticipacio n, lo que sugiere que diferentes redes 

exhiben mecanismos distinguibles en la atencio n y la expectativa. Adema s, 

encontramos datos indicativos de la representacio n en la corteza visual 

ventral, replicando en parte los resultados del experimento EEG. Descubrimos 

que la categorí a atendida y la probable estaban representadas en regiones 

cercanas, aunque en su mayorí a diferentes. De nuevo, la clasificacio n cruzada 

no fue posible entre atencio n y expectativa, lo que implica que la naturaleza 

representacional de la preparacio n en las dos condiciones era diferente. Al 

comparar la similitud entre las representaciones anticipatorias y la percepcio n 

de los estí mulos, encontramos que estas similitudes se dieron en regiones 

diferentes segu n la condicio n. Adema s, un ana lisis de selectividad de vo xeles, 

similar al de Richter et al. (2018), revelo  que solo expectativa mostraba alguna 

evidencia de generalizacio n de cue a target, y lo hací a en el la corteza visual 

ventral. Por u ltimo, la representacio n de los estí mulos anticipados no se 

correlaciono  con el comportamiento en ninguna de las condiciones.  

Por u ltimo, tras estudiar la naturaleza de la preparacio n top-down, 

investigamos co mo esta cambiaba la precisio n de las representaciones 

inducidas previamente a trave s de la atencio n y la expectativa. 

Especí ficamente, nos propusimos estudiar si las sen ales agudizan o 

amortiguan las representaciones sensoriales. Para ello, volvimos a analizar los 

datos de los dos experimentos para extraer conclusiones conjuntas. Como 

paso preliminar, nos propusimos encontrar pruebas de diferencias de 

activacio n por separado para la atencio n y la expectativa. Estos ana lisis 

mostraron pruebas convergentes de un aumento de las activaciones tanto para 

los estí mulos probables como para los relevantes. Respecto a los efectos de 

agudizacio n y amortiguacio n, los resultados apoyaron mayoritariamente un 
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efecto de agudizacio n de la atencio n, y una marcada amortiguacio n en 

expectativa. Adema s, examinamos si las representaciones amortiguadas se 

generalizarí an mejor al intervalo preparatorio, ya que las representaciones 

deberí an ser ma s pobres en ambos casos. Nuestra hipo tesis se cumplio , ya que 

los ensayos de expectativas generalizaron a la sen al, mientras que los objetivos 

relevantes no lo hicieron. Esto sugiere de nuevo una agudizacio n para los 

estí mulos atendidos y una amortiguacio n para los probables. En el 

experimento fMRI estudiamos la implicacio n de las regiones frontoparietales 

en los efectos de agudizacio n y amortiguacio n. Aunque pudimos decodificar 

con e xito las categorí as objetivo en algunas zonas frontoparietales, estas 

regiones no mostraron ninguna evidencia de agudizacio n o amortiguacio n 

para ninguna de las dos condiciones. Por u ltimo, concluimos que los 

resultados no eran compatibles con efectos equivalentes para la atencio n y la 

expectativa, lo que sugiere que no so lo durante la anticipacio n, sino tambie n 

durante el procesamiento del objetivo la relevancia y la probabilidad parecen 

actuar a trave s de mecanismos diferentes. 

En conjunto, nuestros resultados muestran que la preparacio n es un evento 

complejo, en el que la representacio n de diferentes estí mulos depende en gran 

medida del contexto en el que se den. Esta preparacio n, adema s, afecta a la 

fidelidad con la que se representan los estí mulos percibidos, lo que tambie n 

depende del contexto. Finalmente, esta tesis resalta las diferencias en la 

atencio n selectiva y la expectativa, dos procesos que, aunque comparten 

similitudes, conllevan mecanismos y representaciones diferentes. 
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Abstract 
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The world is complex and constantly changing. We are bombarded by a large 

number of stimuli that generate ambiguous patterns in our sensory receptors, 

to which we usually need to give quick and effective responses. To cope with 

this complexity and ambiguity, among other things, humans use the ability to 

anticipate what is going to happen before it happens. Indeed, it is widely 

believed that preparing to perceive impending information improves 

performance (Barton et al., 2006). However, some fundamental questions 

arise from these seemingly self-evident claims. How does preparation improve 

performance? Does it involve the representation of specific information? And, 

most importantly, is proactive preparation a unified process or does it employ 

dissociable mechanisms in different cognitive contexts? 

This thesis frames preparation as a brain process of internal or endogenous 

origin, top-down, referring to the origin of information in higher regions of the 

cortex, which would descend perceptual areas. This definition contrasts with 

another branch of bottom-up mechanisms, in which the trigger of the activity 

is in the stimuli of the environment. There are at least two possible sources of 

information that can lead to this endogenous anticipation: our goals and 

objectives, and the knowledge we have of the regularities of the environment.  

The activity associated with goals is related to the internal control of specific 

resources that allow us to effectively perform different tasks. This proactive 

cognitive control (Braver, 2012) is associated with brain regions such as the 

frontoparietal network or the multiple demand network (Dosenbach et al., 

2007). Among its main capabilities we find the orientation of attention 

towards relevant information. This selective attention acts as a filter that 

allows us to better process necessary information while ignoring distracting 

information. Crucially, it has been shown on numerous occasions that while 

we select relevant information, this information is represented in the visual 

cortex, through patterns of activity associated with the stimuli we are 

attending to (Peelen & Kastner, 2011; Stokes et al., 2009). Moreover, when 

presented with stimuli that match what is selected, both increases in activity 
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in perceptual regions (Kastner et al., 1999) and greater accuracy in processing 

those stimuli are often found (Woolgar et al., 2015). 

On the other hand, models that explain the effects of prior knowledge on the 

statistical regularities of the environment, or expectations, have gained much 

relevance in recent years. These predictive processing models (Feldman & 

Friston, 2010; Friston, 2005) highlight how at all times the brain acts as a 

machine that anticipates what is most likely. These top-down predictions 

would be contrasted with bottom-up information from sensory receptors. 

From the contrast of the two, prediction errors emerge, which are then used 

to update the following predictions and thus give the brain a flexible 

mechanism capable of adapting in different circumstances. These models also 

describe how probable information can be represented in the visual cortex 

before bottom-up stimulation (de Lange et al., 2018; Kok et al., 2017). 

However, in contrast to selective attention, here when a probable stimulus is 

perceived, smaller activations are usually found (Feuerriegel et al., 2021). With 

respect to the precision of these representations, the evidence is still 

conflicting, and data have been found pointing to both sharpened accuracy 

(Kok et al., 2012) and a dampening of these representations (Richter et al., 

2018). 

Although these two phenomena, selective attention and expectation, are 

associated with different effects during stimulus processing, both involve 

anticipatory representations in visual cortex. However, it has not been 

investigated whether these representations share the same processing 

mechanisms, or whether, on the contrary, preparation is a complex and 

heterogeneous phenomenon that depends on the cognitive context in which it 

occurs. 

Therefore, the main goal of this thesis is to examine the nature of preparation, 

and to evaluate how it changes across different contexts. To this end, we 

designed a task in which different cues provided information about target 

stimuli. These cues could indicate the relevance (attention) or probability 

(expectation) of the stimuli. This task was implemented in two experiments in 
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which data were collected from different neuroimaging tools. The analyses 

focused primarily on multivariate techniques (Hebart & Baker, 2018), which 

are particularly sensitive and effective in studying patterns of brain activity 

that inform how information is represented.  

In the first two studies, we investigated proactive preparation, exploring how 

anticipated information is represented in the brain, and whether and how it 

changes across relevance and probability contexts. The first study focused on 

the temporal dynamics of preparatory activity. For this purpose, brain activity 

was recorded with Electroencephalography (EEG). The results showed that 

several events take place during the preparatory window. First, the perceptual 

characteristics of the signal are processed. Then, during most of the trial, 

global differences associated with the mechanisms deployed during attention 

and expectation were found. Finally, the anticipatory category was 

represented throughout the trial, especially towards the end. Crucially, 

although both attention and expectation showed similar decoding accuracies 

and magnification effects, the results of one did not generalize to those of the 

other. This suggests that although anticipatory information is represented in 

the two conditions, the nature of such representations differs. Finally, we 

sought to explore the level of similarity between preparatory representations 

and stimulus perception. The two conditions differed in the similarity of 

patterns between the cue and the target; specifically, the preparation during 

attention was more similar to the target activity.  

This first experiment left an important question open: what are the neural 

substrates underlying the representations encountered during anticipation? 

We addressed this question in the second experiment, in which we adapted 

the behavioral paradigm to functional magnetic resonance imaging (fMRI). 

Again, we found evidence of anticipatory encoding that was different for 

attention and expectation. The results revealed increased activations for 

attention in early visual regions, whereas the posterior cingulate cortex was 

more active for expectation in this window. In addition, anticipatory 

information showed large differences in the involvement of different visual 
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and frontoparietal regions during anticipation, suggesting that different 

networks exhibit distinguishable mechanisms in attention and expectation. In 

addition, we found data indicative of category representation in the ventral 

visual cortex, partially replicating the results of the EEG experiment. We found 

that the attended and probable categories were represented in nearby, though 

mostly different, regions. Again, cross-classification was not possible between 

attended and expectation, implying that the representational nature of 

preparation in the two conditions was different. When comparing the 

similarity between anticipatory representations and stimulus perception, we 

found that these similarities occurred in different regions depending on the 

condition. In addition, a voxel selectivity analysis revealed that only 

expectation showed some evidence of cue-to-target generalization, and it did 

so in the ventral visual cortex. Finally, the representation of anticipated stimuli 

did not correlate with behavior in either condition. 

Finally, after studying the nature of top-down preparation, we investigated 

how the accuracy of prior induced representations changed through attention 

and expectation. Specifically, we set out to study whether cues sharpen or 

dampen sensory representations. To do so, we re-analyzed the data from the 

two experiments to draw joint conclusions. As a preliminary step, we set out 

to find evidence of separate activation differences for attention and 

expectation. These analyses showed converging evidence of increased 

activations for both likely and relevant stimuli. Regarding sharpening and 

dampening effects, the results mostly supported a sharpening effect for 

attention, and a marked dampening in expectation. In addition, we examined 

whether the dampened representations would generalize better to the 

preparatory interval, as they should be poorer in both cases. Our hypothesis 

held true, as expectation trials generalized to the signal, whereas relevant 

targets did not. This again suggests sharpening for attended stimuli and 

damping for probable stimuli. In the fMRI experiment we studied the 

involvement of frontoparietal regions in the sharpening and damping effects. 

Although we were able to successfully decode target categories in some 
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frontoparietal areas, these regions showed no evidence of sharpening or 

damping for either condition. Finally, we concluded that the results were not 

consistent with equivalent effects for attention and expectation, suggesting 

that not only during anticipation but also during target processing relevance 

and probability appear to act through different mechanisms. 

Taken together, our results show that preparation is a complex event, in which 

the representation of different stimuli is highly dependent on the context in 

which they occur. This preparation, moreover, affects the fidelity with which 

perceived stimuli are represented, which is also context-dependent. Finally, 

this thesis highlights the differences between selective attention and 

expectation, two processes that, although sharing similarities, involve 

different mechanisms and manners of representing information.  
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