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Abstract

This thesis is motivated by the need to comprehend the complex functionalities of the nervous

system, specifically the basal ganglia (BG), due to its significant role in neurological disorders and

behavioral processes. Traditional experimental approaches have fallen short in explaining the

contributions of brain structures to intricate behaviors, thus necessitating alternative approaches like

computational modeling. This thesis aims to bridge this gap by employing biologically-inspired

computational models, with a focus on spiking neural networks (SNNs) due to their ability to emulate

the temporal dynamics of biological neurons, to simulate the basal ganglia. The simulation aims to

understand the basal ganglia's role in action selection and the influence of neuromodulators,

particularly dopamine and acetylcholine, on learning and decision-making. The ultimate objective is to

link and integrate insights from neuroscience to embodied agents, by applying the knowledge of motor

learning processes within the basal ganglia to the development of action selection in control systems.

This thesis presents several contributions to the field of computational neuroscience, focusing on

models of the basal ganglia. First, it introduces a computational model to elucidate the paradoxical

sensorial improvement observed in patients with Huntington's disease, suggesting that both dopamine

levels and the early stage of affliction may independently play significant roles. Secondly, it

undertakes a thorough examination of methods for tuning spiking neural models of striatum plasticity,

highlighting the effectiveness of automatic optimization algorithms in calibrating the models. Third, it

constructs a biologically-inspired network model of the striatum integrating features such as

spike-timing-dependent plasticity, homeostatic mechanisms, and lateral inhibitory connections,

capable of recognizing complex patterns and choosing rewarded actions. Additionally, it develops a

functional striosome model for reward prediction error (RPE) in the basal ganglia. Finally, it refines an

existing striatal reinforcement learning model by incorporating acetylcholine as a local population

feedback, which demonstrates proficiency in pattern recognition and action selection, while offering

insights into the brain's learning mechanisms and the role of neuromodulators.

The research presented in this thesis has explored the neural mechanisms involved in action

selection, learning, and decision-making, with a particular focus on the striatum and the basal ganglia.

Through computational models and novel methodologies, this work has contributed to an enhanced

understanding of how neuronal populations and neuromodulators interact within the basal ganglia,

and potentially with other brain regions. While the insights gained are promising, the study

acknowledges certain limitations, notably the sensitivity of the model's internal dynamics to the form of

input representation. Future research is encouraged to further validate these findings and explore

additional biological factors, such as the basal ganglia-cortex loop and the role of interneurons.

Moreover, the use of high-performance computing platforms and the development of novel

optimization techniques are suggested as avenues for refining the computational models. This could

have practical applications, including advancing knowledge on neurological disorders like

Huntington's disease and fostering the development of bio-inspired reinforcement agents.



Resumen

Esta tesis está motivada por la necesidad de comprender las complejas funcionalidades del sistema

nervioso, específicamente los ganglios basales (GB), debido a su importante papel en trastornos

neurológicos y procesos de comportamiento. Los enfoques experimentales tradicionales no han

logrado explicar satisfactoriamente cómo las estructuras cerebrales contribuyen a comportamientos

complejos, lo cual hace necesaria la adopción de enfoques alternativos como el modelado

computacional. Esta tesis tiene como objetivo llenar este vacío mediante el uso de modelos

computacionales inspirados biológicamente, centrados principalmente en redes neuronales de

impulsos (SNNs), para simular los ganglios basales. La simulación se enfoca en entender el papel de

los ganglios basales en la selección de acciones y la influencia de neuromoduladores,

particularmente la dopamina y la acetilcolina, en el aprendizaje y la toma de decisiones. El objetivo

final es vincular e integrar perspectivas de la neurociencia con agentes corpóreos, aplicando el

conocimiento de los procesos de aprendizaje motor dentro de los ganglios basales al desarrollo de

selección de acciones en sistemas de control.

Esta tesis presenta varias contribuciones al campo de la neurociencia computacional, centrándose en

modelos de los ganglios basales. En primer lugar, introduce un modelo computacional para

esclarecer la paradójica mejora sensorial observada en pacientes con enfermedad de Huntington,

sugiriendo que los niveles de dopamina y las etapas tempranas de la afección pueden desempeñar

un papel significativo. En segundo lugar, realiza un examen exhaustivo de la optimización de modelos

neuronales de spikes del estriado para la plasticidad, destacando la efectividad de los algoritmos de

optimización automática en el ajuste de modelos. En tercer lugar, construye un modelo de red

biológicamente inspirado del estriado, integrando características como la plasticidad dependiente del

tiempo de disparo, mecanismos homeostáticos y conexiones inhibitorias laterales, capaz de

reconocer patrones complejos y elegir acciones recompensadas. Además, desarrolla un modelo

funcional de estriosoma para el error de predicción de recompensa (RPE) en los ganglios basales.

Finalmente, refina un modelo existente de aprendizaje por refuerzo en el estriado incorporando la

acetilcolina como retroalimentación de la población local, lo que demuestra habilidad en el

reconocimiento de patrones y selección de acciones, a la vez que ofrece ideas sobre los mecanismos

de aprendizaje del cerebro y el papel de los neuromoduladores.

La investigación presentada en esta tesis ha explorado los mecanismos neuronales involucrados en

la selección de acciones, el aprendizaje y la toma de decisiones, con un enfoque particular en el

estriado y los ganglios basales. A través de modelos computacionales y metodologías novedosas,

este trabajo ha contribuido a una mejor comprensión de cómo las poblaciones neuronales y los

neuromoduladores interactúan dentro de los ganglios basales. Si bien los conocimientos adquiridos

son prometedores, el estudio reconoce ciertas limitaciones, en particular, la sensibilidad de la

dinámica interna del modelo a la forma de representación de la entrada. Se alienta a investigaciones

futuras a validar y ampliar estos hallazgos, y explorar factores biológicos adicionales, como el bucle

ganglios basales-corteza y el papel de las interneuronas. Además, se sugiere el empleo de



plataformas de computación de alto rendimiento y el desarrollo de nuevas técnicas de optimización

como vías para refinar aún más estos modelos. Esto podría tener aplicaciones prácticas, como

avanzar en el conocimiento sobre trastornos neurológicos como la enfermedad de Huntington y

fomentar el desarrollo de agentes de refuerzo bioinspirados.



Chapter 1: Introduction

1. The Importance of Understanding the Brain and Its Applications

Understanding the workings of the nervous system and its related pathologies is one of the most

important challenges of this century. It is estimated that nearly 300 million people suffer from various

types of neurological disorders each year in Europe, with an annual economic cost of 800,000 million

euros, and 83,000 million just in Spain (Parés-Badell et al. 2014).

Traditional research on the brain has used both in vivo and in vitro experiments to study natural and

artificially induced alterations in brain circuitry. In-vivo experiments involve living organisms, while

in-vitro experiments take place in controlled artificial environments where simpler relationships can be

studied with more clarity. These experiments have provided valuable insights into how specific cells

interact and how diseases and treatments affect the brain's normal operation. However, due to the

complex nature of brain function, understanding its role in various behaviors remains highly elusive.

Computational modeling of neural systems, based on mathematical models and experimental data

obtained from computer simulations (in-silico), provides a promising approach to address the

limitations of traditional experimental techniques in understanding complex brain behaviors. Selecting

the appropriate level of abstraction for simulating brain components is crucial in these models.

Neurons, the fundamental processing units in the nervous system, can be modeled using simplified

integrate-and-fire models, which account for the accumulation of input activity in their membrane

potential. In addition, synapses play a vital role in these models as they facilitate communication

between neurons, regulating the transmission of signals from one cell to another.

The approach employed in this thesis involves simulating networks comprising modeled neurons and

synapses as the basic processing units. By doing so, it is possible to construct more complex systems

(nervous centers) that allow us to experiment and validate working hypotheses by comparing the

simulated results against findings in real biological systems. The use of biologically inspired

computational models that simulate SNNs has been shown to be effective in understanding

experimental recordings from multiple brain areas (Ghosh-Dastidar and Adeli 2007; 2009b) and in

studying different neurological alterations (Geminiani et al. 2018; Antunes, Faria da Silva, and Simoes

de Souza 2018; Antonietti et al. 2018).

Studying the brain not only facilitates understanding biological systems, but it also has practical
applications, such as the improvement of human inspired robotics. While significant progress

has been made in artificial intelligence for image (Krizhevsky, Sutskever, and Hinton 2017), speech

recognition (Dahl et al. 2012), and translation and text generation (Vaswani et al. 2017), robotics has

not yet achieved the same level of flexibility in learning new tasks as biological systems due to

limitations in algorithms and techniques. This limitation has confined robotics primarily to the industrial

sector (highly repetitive tasks in structured environments). By understanding how the brain,

specifically structures like the basal ganglia, solve problems and learn action selection, we can



potentially transfer these principles to develop more efficient and adaptable robotic control systems

(Krichmar 2018). This is particularly relevant as reinforcement learning algorithms, which offer the

most applied approach in this framework, but these algorithms still require large amounts of difficult

and costly data, among other challenges (Dulac-Arnold, Mankowitz, and Hester 2019).

2. Motivation

In computational neuroscience, we build models to evaluate and answer specific questions related to

the brain's functioning. As stated by the Human Brain Project Work Package 3, in which this work has

been partially framed: “The central ambition of the Work Package consists in achieving a measurable

step forward in our understanding of human cognition; specifically, how biological learning networks

enable human visuo-motor and cognitive functions”. A key challenge is understanding how the basal

ganglia can solve reinforcement learning problems via networks with segregated action requests,

complex dynamics, and multiple neuromodulator interactions. It is also essential to explore how

Huntington’s disease affects the information processing capabilities of this structure. Therefore, we

aim to create basal ganglia models that offer insights into these aspects.

Additionally, this Work Package encourages specific approaches, primarily focusing on numerical

simulations, embodiment, and real-world systems. In this thesis, we develop and simulate network

models that incorporate functionally relevant features and simulate abstract tasks that resemble real

tasks. Future work includes studying these models within physically realistic tasks and examining the

impact of different related brain areas (such as the cerebellum) on motor learning and overall basal

ganglia functioning. By employing network models capable of solving reinforcement learning tasks, we

explore the functional implications of the neuronal system. This thesis serves as a first step towards

better understanding the brain's fundamentals and mechanisms of neurological diseases.

3. Objectives

This thesis is focused on developing biologically plausible computational models of the basal ganglia,

with the intention of furthering our understanding of motor learning processes (specifically action

selection) and enabling their application to embodied systems. In order to accomplish this primary

objective, several specific objectives were identified and addressed through the work detailed in this

thesis:

1. Investigating basal ganglia-related brain pathologies, such as Huntington's disease, using

computational models. We aim to study the effects of changes in dopamine levels and the

influence of Huntington's disease (in which dopamine levels increase with respect to the

general standard population), the goal is to better understand information processing and

basal ganglia dynamics.

2. Simulating Basal Ganglia models in action selection and reinforcement learning tasks. The

thesis seeks to create a computational model of the striatum in Basal Ganglia that

incorporates multiple biologically-inspired mechanisms in order to understand their



interactions during normal functioning within a reinforcement learning task.

3. Examining the interaction between the Basal Ganglia model and other brain areas, as well as

their impact on motor learning in decision-making tasks. This aspect of the research aims to

improve our understanding of how various brain structures interact and influence

decision-making processes.

In summary, these objectives aim to contribute to the advancement of knowledge regarding basal

ganglia function, the role of neuromodulators, and the relationships between these factors and

neurological disorders. It is expected that these insights will ultimately help elucidate the neural basis

of decision-making and learning processes. This, in turn, may lead to two potential outcomes: on the

one hand, the development of novel approaches for understanding brain pathologies related to the

basal ganglia, and on the other hand, the creation of bioinspired control systems for embodied agents.

4. Thesis Overview and Chapter Organization

This thesis primarily aims to explore the brain's neural mechanisms and processes that are involved

in making decisions, choosing actions, learning, and also how they are affected in disorders like

Huntington's disease. This is done by creating computational models that focus on the basal ganglia

(BG) and its internal structures, including the striatum. The models combine several biology-based

mechanisms and important neuromodulators to give a clearer picture of the complex functions of the

brain.

The thesis is structured into the following chapters:

Chapter 1: Explains the motivation, objectives, and general contributions of the thesis.

Chapter 2: Introduces the field, explaining basic concepts and reviewing existing research.

Chapter 3: Presents the results of the works carried out during the thesis, including both published

(added in the annex) and unpublished works, and delves into more detailed aspects of the

unpublished works.

● First, we presented a work that looks into the unexpected improvement in some tasks

observed in patients with Huntington's disease (González-Redondo et al. 2020). The

computational model developed offers insights into how changes in dopamine levels and the

effects of Huntington's disease can impact the processing of information in the BG. This helps

in understanding why these patients show better performance in certain discrimination tasks

and provides information on the fast-acting functions of the basal ganglia.

● Next, optimization algorithms in automatically fine-tuning spiking neural models (Cruz et al.

2022) are also considered.

● In the last included publication, the role of the striatum in reinforcement learning and action

selection (González-Redondo et al. 2023) is discussed. The computational model

incorporates spike-timing-dependent plasticity (STDP), homeostatic mechanisms, and



asymmetric lateral inhibitory connections. This model successfully learns and selects actions

that are most rewarding. This research also highlights how different neural and network

features contribute to making effective decisions, emphasizing the significance of the striatum

structure and its internal dynamics in this function.

● The unpublished work titled “Striosome Model for Reward Prediction Error” (section 2.1.)

introduces a model focusing on reward prediction error (RPE) within the basal ganglia’s

striosomes, offering insights into how these structures are involved in processing rewards and

motivating behavior.

● The work titled “Dopamine and Acetylcholine Modulation in a Reinforcement Learning Striatal

Model” (section 2.2.), attention is given to the role of neuromodulators dopamine (DA) and

acetylcholine (ACh) function in the striatum. The study uses a reinforcement learning

computational model to show the relationship between stimulus and action. Including DA and

ACh, along with lateral connections and homeostatic mechanisms, the model illustrates how

these neuromodulators and network components facilitate efficient pattern recognition and

adaptation to changes. Furthermore, it highlights the specific contribution of incorporating

ACh feedback in speeding up the learning process and facilitating scalability to more complex

decisions.

Chapter 4: Summarizes the significance of the results obtained, enumerates the main contributions in

detail, and discusses future work.

Annex: Includes journal articles that compose the primary outcomes of this thesis.

To sum up, this thesis is an in-depth study of the basal ganglia's role, structures and processes. It

focuses on integrating biology-based mechanisms, reinforcement learning, and neuromodulators to

better understand how actions are selected and how learning takes place. Furthermore, it helps

understanding how the performance of certain tasks can be improved, especially when disorders like

Huntington's disease are present. The research in this thesis contributes to the ongoing efforts to

understand specific aspects of the brain's functions, particularly within the basal ganglia. By focusing

on particular neural mechanisms and their roles in behavior, learning, and the effects of certain

disorders, this thesis adds to the growing body of knowledge in this specialized area.

5. Research Projects and Funding Framework

The work presented has been conducted within the scope of the national project INTSENSO

(Integración Sensorimotora para control adaptativo mediante aprendizaje en cerebelo y centros

nerviosos relacionados. Aplicación en robótica.) (MICINN-FEDER-PID2019-109991GB-I00), as well

as the European Human Brain Project (HBP) (SGA3) (H2020 SGA3. 945539), primarily focusing on

the development of functional models in Work Package 3. The research was specifically supported by

the FPU grant (FPU17/04432).

The international framework of the HBP facilitated collaborations with other European research teams



that have extensive expertise in this field, as evidenced by the co-authorship of some publications.

Additionally, the HBP enabled a 3-month research stay at KTH Royal Institute of Technology with the

research group led by Jeanette Hellgren Kotaleski and Sten Grillner in Stockholm, Sweden. This

enables the "International Mention" of the PhD.



Chapter 2: Thesis contextualization

While numerous questions about the functioning of the basal ganglia remain unanswered, years of

research have yielded certain structural and functional principles. Our models build upon these

principles, and as such, it will be beneficial for the reader to be familiar with these general concepts. In

this chapter, we provide a concise overview of the relevant principles and their relation to previous

research.

1. Basal Ganglia

1.1. Roles of the Basal Ganglia

Choosing the right action among many available choices represents a primary but also challenging

behavior for animal species. Multiple stimuli spanning different sensory modalities continuously

converge to the brain, and adequate responses (taking into account these inputs) need to be decided,

often as fast as possible. For example, a rat could spot a hidden piece of food, and at the same time

smell the scent of a nearby predator, feel the tiredness in its limbs, and stomach pangs of hunger.

This decision process usually requires the animals to ignore most of the information available and

focus on what is relevant now. To be successful, many actions must be performed serially, which

requires prioritization and temporal organization of the behavior; the rat cannot simultaneously run

towards the food, catch it, find a safe place, and eat it – they have to be done one after the other.

Finally, the consequences (good or bad) of all these decisions need to be remembered, in order to

make better decisions in the future and to be able to avoid fatal mistakes.

The basal ganglia (BG) is the part of the brain more implicated in these roles. They are a collection

of highly interconnected nuclei located in the deepest part of the brain. For a long time the role of the

BG was not clear as they seemed to cover many different behaviors. It has long been known its

implication in diseases such as Parkinson's or Huntington's or behavioral disorders like Tourette

syndrome or obsessive compulsive disorder (Obeso, Olanow, and Nutt 2000; Chesselet and Delfs

1996; Wolf et al. 1996; Maia, Cooney, and Peterson 2008). Clinical and theoretical studies have

pointed to a variety of functions like the initiation of voluntary movements, the learning of habitual

movements or to temporally organize the behavior (Jankovic 2008; Peter Redgrave et al. 2010;

Harrington, Haaland, and Hermanowitz 1998). More general roles that could explain all the previous

ones have been proposed, like “chunking” or grouping common motor sequences into unconsciously

manageable entities (Graybiel 1998), or to minimize prediction errors, both in learning and planning

(Bogacz 2020). Biological studies (Grillner et al. 2005; Graybiel 1998; Hikosaka, Takikawa, and

Kawagoe 2000) and relevant computational models (K. Gurney, Prescott, and Redgrave 2001) also

have proposed the association between the BG and the action-selection and reinforcement learning.

Specifically, the cortex and other brain structures send action proposals to the basal ganglia, which

select the appropriate ones to be executed in the current context. Past experiences weigh the

selection favoring the ones that resulted better in similar contexts.



1.2. Functioning of the Basal Ganglia

Structure is related to function in the brain [although this relationship is not simple (Suárez et al.

2020)], so it is useful to study its anatomy to better understand how it works. The BG network

presents complex anatomical and functional subdivisions, but it is usually structured in five main

neuron populations (Shipp 2017) which can be organized into the following three sections:

● The inputs of the BG are mainly received through the corpus striatum (STR), with its main cell

type being the medium spiny neurons (MSNs), and the subthalamic nucleus (STN) neurons.

● The intermediate layers are composed by the external segment of the globus pallidus (GPe)

and the substantia nigra pars compacta (SNc).

● The output projection to the thalamus is finally carried by the substantia nigra pars reticulata

(SNr).

Figure 1: Basal ganglia structures and connectivity with different channels (blue and orange, see
Channel Structure section) showing the direct, indirect and hyper direct pathways.

The connectivity of these populations is mainly drawn according to three main routes from the cortex

to the thalamus as follows (Fig. 1):

● The direct pathway, where the cerebral cortex makes excitatory glutamatergic synapses into

the MSN D1, which inhibits the SNr.



● The indirect pathway, where the cerebral cortex excites the MSN D2, which inhibits the

GPe, and finally, the GPe which also inhibits the SNr.

● The hyper direct pathway, where the cortex makes glutamatergic connections into the STN,

which diffusely excites the SNr.

The direct and indirect pathways are traditionally considered to promote and inhibit behavior,
respectively. This works by selective disinhibition or inhibition, respectively, of targets in motor

thalamus: as SNr is tonically active, its target (the thalamus) is normally inhibited. The activation of the

direct pathway inhibits SNr, which results in disinhibition of the thalamus, allowing it to carry out

actions. The indirect pathway instead inhibits the GPe which is also tonically active inhibiting the SNr,

so it has the net effect of reinforcing the inhibition of the thalamus, reducing the behavior. Recent

genetic and optical studies on striatal circuits have facilitated the testing of classical ideas about the

functioning of this system. However, new models are necessary for a better understanding of the

striatum's role in learning and decision-making (Cox and Witten 2019). Our research in this regard is

presented in González-Redondo et al. (2020), which is included as an annex in this thesis.

In addition to these broad pathways, there are important neuromodulators like Dopamine (DA) and
acetylcholine (ACh) influencing different parts of the circuitry. For example, there are dopaminergic

projections from the SNc to the MSN, the STN and the GPe with modulatory effects (shaded box in

Fig. 1). Also, thalamic projections innervate cholinergic interneurons in the STR, influencing the

amount of ACh in this nucleus (Xiao and Roberts 2021). Phasic DA is generally thought to carry

reinforcement-related signals to the STR (Hart et al. 2014) (although its full role is still debated (Berke

2018)), while ACh pauses seem to define the time window for phasic dopamine to induce plasticity

(Reynolds et al. 2022). However, it remains under discussion how these mechanisms combine to

make the striatum able to solve action-selection problems. Our investigation on this topic is presented

in Chapter 3, Section 2.2. Dopamine and Acetylcholine Modulation in an Reinforcement Learning

Striatal Model of this thesis.

1.3. Learning in the Basal Ganglia

Learning is an important feature in the BG functioning. Animals are born with a set of genetically

defined behaviors but most of them require refinement through learning (Brainard and Doupe 2002).

Additionally, higher mammals and certain birds, such as primates and crows, are known to exhibit the

capacity to acquire new behaviors through experience. Nevertheless, the specific role of the basal

ganglia in such complex learning is still an area of research.

A fundamental form of learning involves responding to rewards and punishments: if an animal in a

given situation takes an action that is shortly followed by a reward, that action is likely to be taken

more often in similar situations. This ability to adapt behavior based on the rewards and punishments

received is known as reinforcement learning (Sutton and Barto 2018). The BG is well situated for

reinforcement learning as it serves as a neural interface between reinforcement signals, primarily

through DA, and action representations via cortical input pathways (Mogenson, Jones, and Yim



1980). The STR and its main population of MSNs constitute this interface, where cortical inputs

establish plastic synapses modulated by DA. The adjustment of the weights of these cortico-striatal

synapses in response to reward signals influences which actions are prioritized in the future

(Reynolds and Wickens 2002; K. N. Gurney, Humphries, and Redgrave 2015). Building upon these

concepts, we conducted research that is presented in González-Redondo et al. (2023), and included

as an annex.

2. Computational Models of the Basal Ganglia

2.1. Channel Structure

Several computational models of the BG have been created in the past years. One of the most

influential models (K. Gurney, Prescott, and Redgrave 2001) tries to explain why the information flows

segregated through the BG circuits (DeLong, Crutcher, and Georgopoulos 1985; Parent and Hazrati

1995). This is an important working principle of the BG, as it suggests how it processes the inputs it

receives, and what its output means. It has been proposed that the BG processes a large number of

cognitive streams or channels in parallel (K. Gurney, Prescott, and Redgrave 2001), each of them

representing a feasible action to be performed (Suryanarayana et al. 2019). The BG are thought to act

as an action selection machinery by inhibiting every nonselected action in the thalamus with the SNr,

based on their corresponding activity level or salience (P. Redgrave, Prescott, and Gurney 1999).

According to recent research, this segregation through the entire cortical-BG-thalamic loop shows a

very high specificity to almost neuron-to-neuron level (Hunnicutt et al. 2016; Foster et al. 2021), which

could mean that it seems feasible to impact behavior at different levels of detail.

2.2. Action Selection

Earlier models of BG tend to be population models, where each node represents a population of

neurons instead of single neurons. The activity of these nodes does not describe individual spikes but

rather the average activity of populations of neurons. There are more detailed models known as

Spiking Neural Networks (SNNs) that model individual neurons that use spikes to compute and

transmit information (Ghosh-Dastidar and Adeli 2009a). As the specific timing of spikes carry relevant

information in many biological contexts (Maass 1997), these models are useful to understand how the

brain computes at the neuronal description level. This is relevant for example to better understand

how these channels interact between them during the action-selection process. Burke et al. (Burke,

Rotstein, and Alvarez 2017) proposed a model of asymmetric lateral connectivity in the STR that

tries to explain how different clusters of striatal neurons interact and which role they play in

information processing [Fig. 5E in (Burke, Rotstein, and Alvarez 2017), and adapted here in Fig. 2].

This model offers an explanation for the in-vivo phenomenon of coactivation of subpopulations of D1

or D2 MSNs, which seems paradoxical as each subpopulation projects to behaviorally opposite

pathways (direct and indirect, respectively). This structured connectivity pattern is determined by

lateral inhibition between neurons that belong to the same channel and between neurons within



different channels but accounting for the same receptor type (D1 or D2). The authors also include

asymmetrical connections with more intensive intra-channel inhibition from D2 to D1 neurons than in

the opposite direction. This pattern resulted in synchronized phase-dependent activation between

MSN D1 and D2 neuron groups that belong to different channels. This behavior has to be taken into

account if we want to design models capable of action-selection.

Figure 2: A. Connectivity pattern used in this thesis for modeling the channels in STR. Each
column represents an action channel composed of D1 and D2 MSN subpopulations (in parenthesis
the equivalent name given in Burke et al. (2017) work). There is inhibition within every
subpopulation, and from D2 to D1 subpopulation within the same channel. Between different
channels, only subpopulations of the same type have lateral inhibition. Inhibitory synapses are
weak in all cases except in the case of D2 to D1 inhibition within the same channel. B-E. Figures
adapted from Burke et al. (2017) where the resulting activity of different connectivity patterns are
shown. The connectivity pattern used in this thesis corresponds to the structural asymmetrical
pattern (E), where the lateral inhibition from the active channels limits activity of the other silent
channels.

2.3. Learning

It is assumed that learning in the brain is a consequence of changes in the synapses between

neurons. These changes can happen in many different ways: the amount or type of neurotransmitter

and receptors available, the surface area that connect both neurons, etc. By changing the way some

neurons affect others it is possible to change the behavior of the network as a whole, adding,

removing or modifying activity patterns in response to external or internal signals. Biologically

plausible computational models composed of SNNs able to learn a target function have demonstrated

being increasingly successful. Combining SNNs with the use of local learning rules, these models can

be implemented in highly efficient, low-power, neuromorphic hardware (Rajendran et al., 2019). In

computational models of neural networks a synapse has a quantifiable influence over the target



neuron (a weight). Learning in these models is implemented as the change over time of the network

weights to make the system more capable to do some task.

In SNNs models a widely used learning rule is the spike-timing-dependent plasticity (STDP), a

synaptic model with weight adaptation demonstrated in biological systems (Levy and Steward 1983)

and more particularly in the BG (Fino and Venance 2010). In this rule, the weight of the synapse

changes depending on the relative timing of presynaptic and postsynaptic spikes. If the spikes are far

in time, there is no weight change, but the closer the spikes get in time (around tens of milliseconds or

less), the stronger the weight change. The direction of the weight change might depend on the order

of the spikes. Typically, if the presynaptic spike precedes (or follows) the postsynaptic spike then the

weight increases (or decreases), as portrayed in Fig 3. (left). This does not always have to be the

case though, and different timing relationships can occur.

Figure 3: Different kernels used in spike-timing-dependent plasticity-like rules. (Left) Typical STDP
kernel shape, showing the relationship between the relative spike timing and the weight change.
(Right) An example of kernel used in STDE learning rule, where the weight change depends not
only on the post-pre time difference but also on the available amount of dopamine.

A postsynaptic neuron equipped with STDP can detect and recognize the presence of repetitive

patterns (Masquelier et al. 2009). This can be useful in unsupervised learning tasks, where data given

without explicit target needs to be clustered. The STDP uses statistical correlations to strengthen

synaptic connections, so what is learnt is biased to the most frequent patterns (Garrido et al. 2016).

We instead want to bias the learning by the reward or punishment obtained, which in biological

systems is signaled by the presence of extracellular DA. The STDP rule can be modified by adding

the amount of DA as a factor of the weight change. This way is known as R-STDP and drives the

learning of patterns that statistically correlate with a reward signal (Izhikevich 2007; Legenstein,

Pecevski, and Maass 2008). As rewards tend to happen some time after the stimuli that caused the

reward in the first place, it is needed to make somehow explicit this relationship between stimuli that

are separated in time. This can be solved by the use of the so-called eligibility traces: variables that

temporarily store the potential synaptic change until some amount of DA is received. The value stored

decays exponentially over a span of seconds. In case a reward happens during this interval, a DA



signal is received in this synapse and the potential weight change stored in the eligibility trace is then

applied. This way, rewards do not need to happen instantly after the relevant stimulus to be learnt,

they can be delayed.

Neurons with synapses using R-STDP can learn to represent stimuli correlated with rewards, but

learning in the striatum is a bit more complex. A more flexible synaptic model is proposed called

Spike-Timing-Dependent Eligibility (STDE) based on physiological data that captures many features

found in the biological MSN of the basal ganglia (K. N. Gurney, Humphries, and Redgrave 2015). This

model is more flexible than the previous STDP-like rules as different learning kernels can be used

depending on the amount and type (reward or punishment) of reinforcement received (Fig. 3, right).

Although the authors did not include some important BG features like the GPe nucleus or a

cortico-striatal loop, their model successfully learned to select an action channel driven by stronger

cortical input, based only on the timing of the input and the reward signal.

DA is not the only neuromodulator influencing the striatum. ACh seems to have an important role

regulating learning in MSNs of the STR, as ACh pauses define the time window for phasic dopamine

to induce plasticity (Reynolds et al. 2022). However, it remains under discussion how these two

mechanisms combine to make the striatum able to solve action-selection problems. An original

proposal of this thesis is a computational model of the striatum that uses both DA and ACh to learn to

map from stimulus to action, by using DA as a global reward signal that modulates the kernel of the

STDP-like learning rule, and ACh as a local population feedback that signals the responsibility of the

recent actions. With the ACh feedback the model can learn faster, even if the task to learn is more

complex. In real brains, ACh is modulated at STR by thalamic inputs. Our model tests how this input

can possibly play a role in facilitating learning by constraining the synaptic adaptation to specific

subpopulations within STR.



Chapter 3: Results

1. Contributions to Specific Journals

Article #1: A Basal Ganglia Computational Model to Explain the Paradoxical
Sensorial Improvement in the Presence of Huntington's Disease

González-Redondo Á, Naveros F, Ros E, Garrido JA. Int J Neural Syst. 2020 Oct;30(10):2050057.

doi: 10.1142/S0129065720500574. Epub 2020 Aug 24. PMID: 32840409.

Relevance:

● Impact Factor (JCR 2020): 5.866

● Subject Category:

● Computer Science, Artificial Intelligence. Ranking 28/139 (Q1)

Contribution summary:

The article introduces a computational model of the basal ganglia (BG) to investigate the apparent

paradox of sensory improvement observed in patients with Huntington's disease (HD). This model

encompasses the primary nuclei of the BG and examines the impact of altered dopamine levels and

the influence of HD on information processing within the BG. The results indicate that the early and

intermediate stages of HD may intensify transient activity in both the striatum and the substantia nigra

pars reticulata (SNr), offering a potential explanation for the seemingly paradoxical enhancement in

discrimination task performance. Moreover, the study delves into dopamine's role within the BG and

its effect on the BG's performance as a selection mechanism. The findings propose that moderate

levels of dopamine could enhance performance in selection tasks, while exceedingly high or low

levels may prove detrimental. Overall, this study sheds light on the neural mechanisms responsible for

the paradoxical sensory improvement in HD and promotes an improved understanding of the rapid

dynamics present in the BG network.

Article #2: Black-box and surrogate optimization for tuning spiking neural
models of striatum plasticity

Cruz NC, González-Redondo Á, Redondo JL, Garrido JA, Ortigosa EM and Ortigosa PM (2022).

Front. Neuroinform. 16:1017222. doi: 10.3389/fninf.2022.1017222

Relevance:

● Impact Factor (JCR 2022): 3.5

● Subject Category:

● Mathematical & Computational Biology. Ranking 15/55 (Q2)

● Neurosciences. Ranking 126/272 (Q2)



Contribution summary:

The aim of this scientific article is to examine the challenge of adjusting spiking neural models of

striatum plasticity through numerical optimization. The authors concentrate on a biologically inspired

network model of the striatum, which captures significant experimental features and can recognize

intricate input patterns. However, manual tuning of this model proves to be both difficult and

time-consuming. The article explores the application of optimization algorithms to automate the tuning

process and enhance the model's performance.

Four optimization methods are compared in this study: SurrogateOpt, RBFOpt, DIRECT-GL, and

random search. These methods are tailored for black-box optimization and have minimal

requirements for solution evaluations, rendering them suitable for computationally demanding models.

The findings demonstrate that SurrogateOpt is the optimal choice for adjusting the spiking neural

model, and the performance of the other methods is also discussed.

In conclusion, this study effectively showcases the use of optimization algorithms to automate the

tuning of spiking neural models. It offers a suggestion for the most efficient approach to save time and

improve the performance of these models. The implications of these findings extend to the

development of computational models of the brain and the understanding of learning mechanisms.

Article #3: Reinforcement learning in a spiking neural model of striatum
plasticity

González-Redondo, Á., Garrido, J., Arrabal, F. N., Kotaleski, J. H., Grillner, S., & Ros, E. (2023).

Neurocomputing, 126377. doi: 10.1016/j.neucom.2023.126377

Relevance:

● Impact Factor (JCR 2022): 6.0

● Subject Category:

● Computer Science, Artificial Intelligence. Ranking 41/145 (Q2)

Contribution summary:

The article introduces a computational model of the striatum, a part of the basal ganglia thought to be

involved in action-selection based on reinforcement learning. The model incorporates several

biologically inspired mechanisms, such as spike-timing-dependent plasticity (STDP), homeostatic

mechanisms, and asymmetric lateral inhibitory connections. The authors show that their model can

learn to choose the most rewarding actions in response to intricate input patterns.

Additionally, they explore the role of various neuronal and network features, including homeostatic

mechanisms and lateral inhibitory connections, in action-selection. The findings indicate that

homeostatic mechanisms render learning more robust and facilitate recovery following rewarding

policy swaps, while lateral inhibitory connections play a significant role when multiple input patterns



are associated with the same rewarded action. The authors also discover that the optimal delay

between the action and dopaminergic feedback is approximately 300ms, consistent with prior studies.

In summary, the model offers insights into the neural basis of decision-making, providing a biologically

plausible explanation for the striatum's role in reinforcement learning.

2. Other Preliminary Results

The published works represent only a portion of the comprehensive research conducted and planned

for the future. In particular, investigations have been conducted on models of Reward Prediction Error

(RPE) and models that combine dopamine (DA) and acetylcholine (ACh) systems. It is worth noting

that the ultimate goal is to integrate these findings into a cohesive, unified framework, which will be

elaborated upon in the conclusions and future work sections of this research. In the following sections,

we will provide a detailed explanation of the unpublished works that contribute to this broader

research endeavor.

2.1. Striosome Model for Reward Prediction Error

Introduction

The basal ganglia are involved in various functions including motor control, emotions, and learning.

The role of the basal ganglia in reinforcement learning is especially well-established, with

dopaminergic neurons playing a key role in signaling reward prediction errors (Schultz, Dayan, and

Montague 1997; Sutton and Barto 2018). The striatum, a primary component of the basal ganglia, is

subdivided into two distinct compartments known as the striosomes (or patches) and the matrix (or

matrisomes). Striosomes are small, densely packed clusters of neurons embedded within the matrix,

and they are thought to play a significant role in reward processing and motivational aspects of

behavior (Crittenden and Graybiel 2011; Fujiyama et al. 2011). They receive input from limbic areas

and project to dopamine-producing regions such as the substantia nigra pars compacta (SNc) and

ventral tegmental area (VTA), which are crucial in the computation of reward prediction errors and

novelty detection (Horvitz 2000). Although there is a growing body of literature on basal ganglia

models, computational models specifically targeting the striosomal compartments are relatively scarce

[but see (Berthet et al. 2016; Amemori, Gibb, and Graybiel 2011; Shivkumar, Muralidharan, and

Chakravarthy 2017)]. Understanding striosomal function is critical for advancing our knowledge of the

neural substrates underlying reward-based learning and behavior.

In light of this, our study aims to contribute to the relatively unexplored field of striosomal

computational models. Acknowledging the exploratory nature of this study, our primary focus was to

develop a functional model that captures the essential aspects of striosomal operations in computing

RPE. Specifically, we aim for the model to differentiate between predictable rewards/punishments and

unexpected stimuli. Our hypothesis is that our computational model of striosomes will be capable of

computing RPE by showing differentiated responses to expected rewards/punishments and



unexpected situations. While we endeavored to select biologically plausible parameters, achieving

high biological realism was not the main objective at this stage. Future work may delve deeper into

refining the model to better reflect the biological intricacies of striosomal function in reward

processing.

Methods

Network Design

There are two major types of medium spiny neurons in the striatum: those expressing dopamine D1

receptors (D1-MSNs), which are generally thought to facilitate behavior ("Go" pathway), and those

expressing D2 receptors (D2-MSNs), which are thought to inhibit behavior ("No-Go" pathway) (Gerfen

1992). Striosomes have been observed to have a relatively high concentration of D1-MSNs, and

these D1-MSNs in striosomes project directly to the SNc, modulating dopaminergic signaling (Gerfen

1992). Our simulated network was designed based on these principles. The network topology

consisted of an input layer with 2,000 neurons, a striosome layer with 80 neurons, and a

dopaminergic neuron layer (SNc) with 1 neuron. The connections included input layer to striosome

layer with spike-timing-dependent (STDE) synapses, striosome layer to SNc layer with STDE

synapses and to itself with inhibitory synapses, and SNc layer to striosome layer and to itself with

dopamine (DA) synapses, modulating both input to striosome and striosome to SNc connections (see

Fig. 4 for a schematic representation of the network topology).

Figure 4: Striosomal network model for reward prediction error.

Models and Parameters

Leaky Integrate-and-Fire (LIF) model with time-driven dynamics was employed for input and

striosome neurons, as in González-Redondo (2023). For the dopaminergic neurons in the SNc layer,

the Izhikevich model was used, which offers a bit more flexibility in terms of capturing different neural



behaviors. This was done to keep options open for future experiments, where we might want to

explore more complex dynamics without changing the neuron model. The used parameters are shown

in the tables 1 and 2. All neurons began the simulation with a membrane potential equal to their

leakage reversal potential or reset value. The synapse models included STDE for input to striosome

synapses and striosome to SNc synapses. Static excitatory and inhibitory synapses were used for

other connections. The learning rules were based on dopamine-based Spike-Timing-Dependent

Plasticity (STDE) for input to striosome synapses (STDED1) and striosome to SNc synapses

(STDESNC), as defined in González-Redondo (2023). Different kernel parameters were used for

STDED1 and STDESNC learning rules, as shown in table 3.

Parameter Value Description
`c_m` 50 Membrane capacitance (in pF)
`e_exc` 0 Excitatory reversal potential (in mV)
`e_inh` -85 Inhibitory reversal potential (in mV)
`e_leak` -65 Leakage reversal potential (in mV)
`g_leak` 10 Leakage conductance (in nS)
`tau_exc` 5 Time constant for excitatory synapses (in ms)
`tau_inh` 125 Time constant for inhibitory synapses (in ms)
`tau_nmda` 20 NMDA time constant (in ms)
`tau_ref` 1 Refractory time constant (in ms)
`v_thr` -50 Threshold voltage for spike initiation (in mV)
`tau_thr` 50 Threshold time constant (in ms)
`tar_fir_rat` 0,4 Target firing rate

Table 1: LIF parameters used.

Parameter Value Description
`a` 0,1 Recovery variable time scale

`b` 0,2 Sensitivity of the recovery variable to subthreshold fluctuations
`c` -65 After-spike reset value of the membrane potential (in mV)
`c_m` 10 Membrane capacitance (in pF)
`d` 2 After-spike reset of the recovery variable
`e_exc` 0 Excitatory reversal potential (in mV)
`e_inh` -80 Inhibitory reversal potential (in mV)
`tau_exc` 1 Time constant for excitatory synapses (in ms)
`tau_inh` 62,5 Time constant for inhibitory synapses (in ms)
`tau_nmda` 20 NMDA time constant (in ms)

Table 2: Izhikevich parameters used.

Value

Parameter Description Input to STR STR to SNc
`tau_plu` Time constant for potentiation (s) 0,032 0,032
`tau_min` Time constant for depression (s) 0,032 0,032
`tau_eli` Eligibility trace time constant (s) 0,2 0,375
`tau_dop` Dopamine time constant (s) 0,125 0,125
`inc_dop` Increment factor for dopamine 8 8



`dop_max` Maximum dopamine level 250 250
`dop_min` Minimum dopamine level 50 50
`syn_pre_inc` Synaptic increment factor 1,00E-04 0
`k_plu_hig` High threshold potentiation factor 0,2 3,00E-03
`k_plu_low` Low threshold potentiation factor -1,00E-01 -3,00E-03
`k_min_hig` High threshold depression factor -0,2 3,00E-03
`k_min_low` Low threshold depression factor -1,00E-01 -3,00E-03

Table 3: Connectivity parameters used.

The simulation parameters included a time step of 1e-4 seconds and the Euler method for integration.

All simulations were conducted using the EDLUT neural simulation engine (Carrillo et al. 2018)

(version 2021) on a personal computer.

Experimental procedure

The experimental procedure simulated a total length of 200 seconds, divided into blocks of 1/8

seconds each, where each stimulus was presented. Each input pattern was randomly generated, with

each component taken randomly from an uniform interval from 0 to maximum intensity (which

generates at most 4 spikes per cycle). The input layer received sinusoidal current and the input

patterns as currents. The SNc layer received a current input that varied based on reinforcement, plus

the inhibitory input from the striosome layer.

To be able to test our hypothesis, the experimental procedure involved simulating the network's

response to various input patterns and reinforcement values over time. The input patterns were fed

into the input layer sequentially, while the reinforcement values modulated the input current to the SNc

neuron. The simulation tracked the spiking activity of the neurons and the changes in synaptic weights

throughout the experiment, allowing for the investigation of the network's learning dynamics and the

interaction between the striosome and SNc layers in response to different input patterns and

reinforcement values.

To evaluate the efficacy of our striosome model in computing RPE and to test our hypothesis that the

model can differentiate between expected rewards/punishments and unexpected situations, we

subjected the network to two distinct experimental conditions at the conclusion of the simulation. The

first was the 'expected reward omission condition' (occurring in simulation blocks between 194 and

196 seconds), where rewards that the network had been conditioned to expect were omitted. This

condition tested the model's ability to compute RPE by recognizing the deviation from expected

rewards. The second was the 'new inputs condition' (occurring in simulation blocks between 198.25

and 198.75 seconds), where the network was exposed to novel input patterns it had not encountered

before. This condition tested the model's responsiveness to unexpected situations by introducing

novel stimuli. By observing how the network responds under these conditions, we can assess whether

our striosome model demonstrates the essential aspects of striosomal operations in computing RPE

as stated in our hypothesis.



Results

Fig. 5 depicts the spiking activity and evolution of synaptic weights in the network across different

phases: the warming up phase (first 50 seconds), the learning phase (up to approximately 150

seconds), the learned phase (150-200 seconds), and the testing phase (final 10 seconds).

Figure 5: Network Activity (B) and Synaptic Weights Evolution (C). The insets (A) show in detail the

activity during the beginning of the training phase (left) and at the testing phase (right, the last 10

seconds of simulation).

During the initial warming up phase, both striosomal (STR) and substantia nigra pars compacta (SNc)

neurons exhibited elevated levels of activity. However, as the weights of the synapses from the STR

to SNc increased, a rapid decay in the activity was observed. After approximately 25 seconds, the

activity of the network stabilized, with the SNc neurons maintaining an activity level around 160 Hz

and the STR neurons at approximately 1 Hz.



The learning phase started at the 50-second mark, with rewards being consistently delivered for the

last two input patterns in the repeating sequence. During this period, the SNc neurons' activity

showed peaks in response to the unexpected rewards, which were introduced at the beginning of the

learning phase. Over the course of approximately 100 seconds, these peaks gradually reduced as the

synapses from the input to STR and STR to SNc adapted, demonstrating the model’s capability to

learn and predict these rewards.

During the learning phase, the network's response to rewards stabilized. To test the hypothesis that

the model can detect unexpected situations, the simulation was then subjected to the expected

reward omission condition starting at around 195 seconds. This led to a pronounced decrease in SNc

activity, indicating the network's ability to detect the unexpected absence of rewards, in line with our

hypothesis regarding the model's capacity for computing RPE in varying reward conditions.

In the final testing phase, novel input patterns that had never been encountered by the network were

introduced at approximately 198 seconds under the new inputs condition. This was done to test the

hypothesis regarding the model's ability to detect unexpected situations and compute RPE. This

produced two cascading effects: initially, there was a decrease in the activity of STR neurons,

followed by a surge in activity within the SNc neurons. The increase in SNc activity in response to

novel input patterns demonstrates the model's capacity to react to novelty, supporting our hypothesis

that it can effectively compute RPE in response to unexpected situations.

Discussion

The testing phase illustrates the network’s capability to adapt and respond to new circumstances. The

initial dip in STR activity upon the introduction of novel input patterns suggests an inherent processing

latency or processing adjustment within the striosomes. In contrast, the subsequent rise in SNc

activity can be interpreted as the network's signal of a mismatch between predicted and actual

outcomes, indicating its capacity to detect deviations from learned patterns.

The deep dip in SNc activity observed in response to the unexpected omission of rewards during the

learned phase is consistent with the behavior expected from a model that computes reward prediction

errors. This illustrates the network’s ability to generate RPE signals that correspond to the absence of

anticipated rewards.

In conclusion, the results demonstrate that our striosome model is capable of learning from reward

signals and effectively computing reward prediction errors, as evidenced by its responses to novel

stimuli and the omission of expected rewards.

2.2. Dopamine and Acetylcholine Modulation in a Reinforcement Learning
Striatal Model

Introduction



This study explores the role of DA and ACh in action-selection problem-solving within the striatum, a

key component of the basal ganglia. We developed a reinforcement learning computational model of

the striatum that leverages DA as a global reward signal and ACh as a local population feedback,

leading to the mapping from stimulus to action. The model was enriched with lateral connectivity and

homeostatic mechanisms, increasing its robustness to parametric changes. The model demonstrated

proficiency in recognizing relevant patterns and consistently selecting rewarded actions, while its

homeostatic mechanisms facilitated robust learning and recovery from policy changes. Notably,

incorporating ACh feedback expedited the learning process as the number of potential actions

increased. This study's findings provide a promising basis for future exploration into the intricate

learning mechanisms of the brain and the role of neuromodulators therein.

The Role of Dopamine and Acetylcholine in the Striatal Model

DA and ACh are key neuromodulators in the basal ganglia's learning process. Phasic DA carries

reinforcement signals to the STR, while ACh regulates learning in the MSNs of the STR by defining

the window for phasic dopamine to induce plasticity (Reynolds et al. 2022). Despite their significant

roles, it is still unclear how these two mechanisms work together to facilitate action-selection

problem-solving in the striatum.

We hypothesize that ACh delineates a learning window, within which the global signal of DA can

effectuate localized synaptic changes. This interplay between ACh and DA not only is instrumental in

adapting action-selection based on reinforcement signals but also facilitates faster and more scalable

learning by concentrating the learning process on the pertinent segments of the network.

To investigate this hypothesis, we constructed a reinforcement learning (RL) computational model of

the striatum that is capable of learning the mapping from stimulus to action. The model integrates the

following features:

● Dopamine functions as a global reward signal, modulating the kernel of the STDP learning

rule.

● Acetylcholine serves as a local population feedback, signaling the relevance of recent actions.

● Additionally, we further enhanced our model by incorporating lateral connectivity and

homeostatic mechanisms, thus enhancing the network's robustness to variations in

parameters.

Methods

Network Model Structure

The network, modeled after (González-Redondo et al. 2023) and shown in Fig. 6, consists of Leaky

Integrate-and-Fire (LIF) neurons organized into channels, with each representing a potential action.

Each channel encompasses two MSN populations (D1 and D2 neurons), with lateral inhibition

incorporated. Action neurons, which simplify other basal ganglia nuclei by integrating excitatory



activity from D1 neurons and inhibitory activity from D2 neurons, select an action if the activity balance

between its D1 and D2 neurons leans toward D1, causing the corresponding action neuron to spike.

Role of the Environment and Feedback Mechanisms

The environment generates a 200-ms-delayed reinforcement signal based on the last action taken

and the expected action. A dopaminergic neuron sends a global reward signal to all MSNs.

Figure 6: Structure of the cortico-striatal network solving a RL task.

Importantly, for this work, we added that action neurons also transmit information about the decision

made back to the MSNs, and if the action was taken, ACh levels momentarily dip.

Learning rule

We use Spike-Timing Dependent Eligibility (STDE, (K. N. Gurney, Humphries, and Redgrave 2015))

learning rule similar to STDP, but with DA-dependent kernel constants (low, medium and high DA

level kernels shown in Fig. 7). We extended this learning rule by adding ACh modulation, making

learning only possible when the ACh level is low in a channel.

This rule uses eligibility traces that decay exponentially with a time constant of 400 ms to store the

potential weight changes and apply them according to current DA level, similarly to (K. N. Gurney,

Humphries, and Redgrave 2015; Izhikevich 2007). All plastic synapses share a global DA level that

decays exponentially with a temporal constant of 20 ms.



Figure 7: Different STDE learning kernels used by neuron type (D1 or D2) and by DA level (low or
high).

Adaptive Threshold

To prevent neurons from becoming permanently silent during learning, we incorporated an adaptive

threshold to the MSNs based on (Galindo et al. 2020). This modification makes neuron firing more

sparse, balancing activity within the network. It also enhanced parameter suitability and its ability to

recover swiftly after changes in rewarding policy, as already studied in González-Redondo et al.

(2023) and shown in the next section.

Pattern Detection Task and Model Validation

Finally, to evaluate the robustness of our combined synaptic and homeostatic rules, we trained a

single-neuron model to identify a specific pattern within a noisy input stream, as shown in Fig. 8. Two

repeating patterns are presented 20% of the time each. If the striatal neuron fires in response to the

rewarded pattern, reward is given. Conversely, if the striatal neuron fires in response to another

pattern or noise, punishment is issued. In this simplified setting, ACh level remains consistently low.



Figure 8: Pattern Detection Task Using a Single Neuron. Every 200 seconds, a distinct pattern (1
or 2) is associated with rewards when the neuron fires, facilitating learning (top row). The middle
row displays the neuron's adaptive threshold (in red) and the firing rate (in green). The bottom row
illustrates the firing rate of the dopaminergic neuron, which indicates the number of rewards the
agent is receiving.

Results

The model's effectiveness was further tested through an action-selection experiment. In this scenario,

the simulated network was presented with multiple possible actions to choose from. There are as

many input patterns as possible actions, and these patterns were randomly shown during the

simulation 80% of the time, with noise representing the remaining 20%. Each input pattern

corresponded to a specific action that, if chosen, would yield a reward. Any other action would result

in a punishment. If no action was taken, neither punishment nor reward was given.

This task was tested under various conditions, such as differing numbers of possible actions and with

or without the presence of ACh. As the number of potential actions increased, the task's difficulty

naturally escalated. This can be seen in Fig. 9, where the difficulty of the task increases with the

number of possible actions, as it takes longer to achieve high accuracy. The graph also shows that

with ACh the model learns much faster with a higher number of actions than the model without ACh.

The only situation with no difference is where only 2 actions are used.



Figure 9: Comparison of the accuracy evolution achieved by a network with ACh (top) and without
(bottom) when solving tasks of different difficulties (defined by the number of possible actions).

Discussion

The findings of this study suggest that the developed network model can effectively recognize

relevant input patterns and make consistent, rewarding action choices in response to sensory inputs.

An interesting observation was that the inclusion of ACh feedback expedited the learning process,

particularly as the number of actions increased. In actual brains, ACh is modulated at STR by

thalamic inputs. Our model suggests a potential role for this input in facilitating learning by confining it

to specific subpopulations within the STR. This finding, along with others, offers an exciting path for

further exploration in our understanding of the brain's complex learning mechanisms.



Chapter 4: Conclusions and Future Work

In this chapter we review the original objectives of the thesis to give context to the main scientific

contributions done. Finally, we extract conclusions from the work done and propose future work based

on our contributions.

1. Revisiting the Thesis Objectives

The primary objective of the thesis on computational neuroscience is to investigate the complex

neural mechanisms and operations underlying decision-making, learning, and action selection, with a

focus on the basal ganglia and its essential components. To fulfill this main objective, the following

specific objectives were established and addressed in the thesis:

1. Investigate basal ganglia-associated neurological disorders, including Huntington's

disease, using computational models. The published work (González-Redondo et al. 2020)

presents a computational model that explores the unusual sensory improvements in patients

with Huntington's disease. The study provides insights into the impact of dopamine level

changes and disease-related factors on information processing and basal ganglia dynamics.

2. Study action selection and reinforcement learning tasks using basal ganglia models. This

objective is addressed first in (González-Redondo et al. 2023), and then in the unpublished

work explained in Chapter 2, section 2.2. DA and ACh Modulation in a RL Striatal Model. In

(González-Redondo et al. 2023) a computational striatum model is developed. It integrates

biologically inspired mechanisms, such as STDP, homeostatic mechanisms, and lateral

inhibitory connections, and demonstrates a capability for learning and selecting rewarding

actions. The section 2.2. DA and ACh Modulation in a RL Striatal Model examines the roles of

neuromodulators DA and ACh in action selection, using a reinforcement learning

computational model, thus improving our understanding of stimulus-to-action mapping.

3. Examine the interaction between the basal ganglia model and other brain areas, as well

as their influence on motor learning during decision-making tasks. Work done in (Cruz et al.

2022) and in Chapter 2, section 2.1. Striosome Model for Reward Prediction Error contributes

to this objective. The article (Cruz et al. 2022) investigates the use of optimization algorithms

in automating the tuning of spiking neural models to enhance computational models of the

brain and facilitate interactions with other brain areas. Section 2.1. Striosome Model for

Reward Prediction Error examines the role of striosomes in reward processing, shedding light

on the interactions between various brain structures and their impact on decision-making.

In conclusion, the specific objectives outlined for the thesis remain closely aligned with its overall

purpose. This research contributes to a comprehensive understanding of basal ganglia functionality,

the influence of neuromodulators, and the relationships between these elements and the functioning

of the brain in normal and pathological conditions. While acknowledging potential limitations, the

findings of this thesis have meaningful implications. On one hand, they can aid the development of



new approaches for understanding and treating basal ganglia-related neurological disorders. On the

other hand, they can help in the creation of bioinspired control systems for embodied agents.

2. Main Contributions

1. A computational model of the basal ganglia to explain the paradoxical sensorial improvement

observed in patients with Huntington's disease (González-Redondo et al. 2020):

○ The model included the main nuclei of the BG and simulated the effect of altered

levels of dopamine and HD affectation on information processing in the BG.

○ The results showed that early and medium stages of HD affectation may enhance

transient activity in the striatum and the substantia nigra pars reticulata (SNr),

providing a possible explanation for the paradoxical improvement observed in

discrimination task performance.

○ The findings suggested that medium levels of dopamine can improve performance in

selection tasks, while high or low levels of dopamine may have detrimental effects.

2. An in-depth study of tuning spiking neural models of striatum plasticity (Cruz et al. 2022):

○ The study compared four optimization methods: SurrogateOpt, RBFOpt, DIRECT-GL,

and random search.

i. SurrogateOpt was found to be the most effective option for tuning the spiking

neural model.

ii. RBFOpt and random search yielded reasonable results, but were less

effective than SurrogateOpt.

iii. DIRECT-GL was the least effective among the methods tested.

○ The findings provide insights for the development of computational models of the

brain and understanding learning mechanisms. Moreover, the study illustrates the

utility of automatic optimization algorithms for facilitating more objective comparisons

between models with different computational features, which can contribute to the

robustness of the results and reduce reliance on manual tuning expertise.

3. Development of a functional and biologically inspired network model of the striatum

(González-Redondo et al. 2023):

○ The model successfully integrated multiple features and mechanisms, and

demonstration that the proposed model can learn to recognize complex input patterns

and consistently choose rewarded actions in response to those patterns.

○ Analysis of the role of homeostatic mechanisms in making learning more robust and

facilitating recovery after rewarding policy swapping.

○ Investigation of the importance of lateral inhibitory connections when multiple input

patterns are associated with the same rewarded action.

○ Use of a spiking neural network with spike-time pattern representation that scales

well with different pattern complexities, making the model suitable for a wide range of

reinforcement learning tasks.

○ Finding that the optimal delay between the action and the dopaminergic feedback is



around 300ms, consistent with previous studies.

4. Developed a functional striosome model for reward prediction error (RPE) in the basal ganglia

(Chapter 3, Section 2.1. Striosome Model for Reward Prediction Error).

○ Designed a network topology consisting of an input layer, a striosome layer, and a

dopaminergic neuron layer (SNc).

○ Demonstrated the model's capability to learn from reward signals and effectively

compute RPE.

○ Showed the network's adaptability and capacity to detect deviations from learned

patterns in response to novel stimuli and the omission of expected rewards.

5. Refinement of the previous striatum RL model by incorporating acetylcholine (ACh) as a local

population feedback (Chapter 3, Section 2.2. Dopamine and Acetylcholine Modulation in a

Reinforcement Learning Striatal Model).

○ Developed a reinforcement learning computational model of the striatum that

leverages dopamine (DA) as a global reward signal and acetylcholine (ACh) as a

local population feedback.

○ Demonstrated model's proficiency in recognizing relevant patterns and consistently

selecting rewarded actions.

○ Found that incorporating ACh feedback expedited the learning process as the

number of potential actions increased.

3. Conclusions and Future Work

Our work has focused on the investigation and modeling of the neural mechanisms underlying

action-selection, learning, and decision-making processes, with emphasis on the striatum and the role

of dopamine, acetylcholine, and plasticity within the basal ganglia. Through computational modeling

and innovative methodologies, the research shown collectively enhances our understanding of the

complex interactions between neuronal populations and neuromodulators in the basal ganglia. These

findings provide a promising foundation for future research into the brain's intricate learning

mechanisms. As we stated, this can have practical applications for both improving the understanding

and treating neurological disorders such as Huntington's disease, and also the development of

bioinspired reinforcement agents. However, we acknowledge limitations and call for further research

to validate and expand upon our results, incorporating additional biological factors and exploring the

potential of optimization techniques and high-performance computing platforms in refining neural

models.

More specifically, our findings demonstrate the potential for computational modeling and innovative

methodologies to uncover the intricate workings of the brain's reinforcement learning systems. For

instance, we present biologically inspired network models that incorporate striatal

spike-timing-dependent plasticity, lateral connectivity, and homeostatic mechanisms. The

incorporation of ACh as a second modulator for accountability signaling is, as far as we know, an

original proposal with biological and computational support. These models have been shown to



significantly enhance the learning and re-learning of rewarded patterns, emphasizing the potential of

these mechanisms to improve reinforcement learning models, and ultimately, our understanding of the

brain's complex decision-making processes.

Moreover, our research has elucidated ways in which neural models can be optimized, such as

through the use of SurrogateOpt, an optimization-based technique for tuning spiking neural models of

striatum plasticity. The application of these techniques has been shown to yield more reliable and

accurate learning capabilities when compared to manually tuned results. As such, these findings

underscore the potential of optimization techniques in advancing our comprehension of brain

reinforcement learning mechanisms, which are critical for motor control and decision-making tasks.

In addition to providing valuable insights into the normal functioning of neural networks within the

brain, our research offers potential implications for understanding and treating neurological disorders

such as Huntington's disease. For example, our first study presents a computational model of the

basal ganglia that explains the paradoxical improvement in sensorial discrimination observed in

Huntington's disease patients. Insights gained from these models may prove instrumental in guiding

future research and developing novel therapeutic interventions for such conditions.

However, it is essential to acknowledge the limitations present within our studies and the need for

further research to validate and expand upon these findings. One significant limitation is that the

internal dynamics of the models are sensitive to the form of input representation; specifically, we used

a phase-of-firing encoding scheme where input neurons encode the intensity of their input as a

specific phase within a sinusoidal wave. This encoding scheme is critical to the performance of the

model, and variations in input encoding could affect results. Additionally, incorporating biological

factors such as the recurrent loop between the basal ganglia and the cortex, phasic dopamine signals,

and the role of interneurons in the striatum, will be important for a more comprehensive understanding

of the involved neural mechanisms. Furthermore, the exploration of high-performance computing

platforms and the development of novel optimization techniques will be essential in refining these

neural models, contributing to more accurate representations of the brain's complex learning and

decision-making processes.
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Department of Computer Architecture and Technology
University of Granada, Granada, Spain

https:// doi.org/ 10.1142/ s0129065720500574

The basal ganglia (BG) represent a critical center of the nervous system for sensorial discrimination.
Although it is known that Huntington’s disease (HD) affects this brain area, it still remains unclear how
HD patients achieve paradoxical improvement in sensorial discrimination tasks. This article presents
a computational model of the BG including the main nuclei and the typical firing properties of their
neurons. The BG model has been embedded within an auditory signal detection task. We have emulated
the effect that the altered levels of dopamine and the degree of HD affectation have in information
processing at different layers of the BG, and how these aspects shape transient and steady states
differently throughout the selection task. By extracting the independent components of the BG activity
at different populations it is evidenced that early and medium stages of HD affectation may enhance
transient activity in the striatum and the substantia nigra pars reticulata. These results represent a
possible explanation for the paradoxical improvement that HD patients present in discrimination task
performance. Thus, this paper provides a novel understanding on how the fast dynamics of the BG
network at different layers interact and enable transient states to emerge throughout the successive
neuron populations.

Keywords: basal ganglia; spiking neural networks; computational model; Huntington’s disease; dopamine.

1. Introduction

Choosing the right action among many available op-

tions represents a primary but also challenging be-

havior for animal species. The BG have long been

thought to play a pivotal role in the action selec-

tion process in the mammal brain.1 A well-accepted

hypothesis is that these nuclei choose between multi-

ple motor commands coming from cortical areas.2,3

However, it is still unclear how the BG filter incom-

ing cortical commands in order to produce an accu-

rate and fast output. This article aims to explore the

signal processing in the BG by embedding a compu-

tational model of this brain area in a behaviorally

relevant experimental setting involving action selec-

tion.

The BG network presents complex anatomical

and functional sub-divisions, but it is usually struc-

tured in five main neuron populations4 which can be

organized into three sections (Fig. 1):

• The inputs of the BG are mainly received through

the corpus striatum, with its main cell type being

the medium spiny neurons (MSN), and the sub-

thalamic nucleus (STN) neurons.

• The intermediate layers are composed by the ex-

ternal segment of the globus pallidus (GPe) and

the substantia nigra pars compacta (SNc).

∗Research Centre for Information and Communications Technologies (CITIC-UGR). Calle Periodista Rafael Gómez Mon-
tero 2, E18071 Granada, Spain. E-mail: jesusgarrido@ugr.es

1
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• The output projection to the thalamus is finally

carried by the substantia nigra pars reticulate

(SNr).

The connectivity of these populations is mainly

drawn according to three main routes from the cor-

tex to the thalamus as follows (Fig. 1):

• The direct pathway, where the cerebral cortex

makes excitatory glutamatergic synapses into the

MSND1, which inhibits the SNr.

• The indirect pathway, where the cerebral cortex

excites the MSND2, which inhibit the GPe, and

finally, the GPe which also inhibits the SNr.

• The hyper direct pathway, where the cortex makes

glutamatergic connections into the STN, which

diffusely excites the SNr.

In addition to these broad pathways, there

are dopaminergic projections from the SNc to the

MSN, the STN and the GPe with modulatory effects

(shaded box in Fig. 1).1,5 Finally, the GPe forms re-

current loops with the STN.

Figure 1. Computational model of the basal ganglia.
Basal ganglia representation structured in channels (blue
and orange) showing the direct, indirect and hyper direct
pathways.

It has been hypothesized that the BG process

a large number of cognitive streams or channels in

parallel,6,7 each of them representing a feasible ac-

tion to be performed.8 The BG is thought to act

as an action selection machinery by inhibiting ev-

ery non-selected action in the thalamus with the

SNr, based on their corresponding activity level or

salience.3 A possible explanation for this mechanism

was suggested by Ref. 1. They identified two steady-

state and transient selection components, generated

both in the striatum due to the cortex activity. Ac-

cording to this theory, the transient component in

the striatum temporarily enhances the difference be-

tween several competing cortical inputs.

In order to shed some light on this action selec-

tion process, previous research in the literature has

addressed both the natural and artificial alterations

of the BG circuitry. For instance, the use of levodopa,

a dopamine (DA) neurotransmitter precursor, mod-

ifies the levels of DA in the BG and systematically

produces reduced reaction times and increased ac-

curacy in simple auditory discrimination tasks in

healthy subjects.9 Additionally, several diseases can

naturally affect the normal operation of the BG. This

is the case of HD, which produces an enhanced acti-

vation of the N-methyl-D-aspartate (NMDA) gluta-

matergic receptors of the MSN in the striatum,10 cul-

minating in excitotoxicity (i.e. cell death).11 More-

over, it is known that MSN expressing D2 dopamin-

ergic receptors are more affected than those express-

ing D1 dopaminergic receptors in the early stages

of HD,12 disrupting the indirect pathway (MSND2-

GPe-SNr). Finally, levodopa can potentiate the HD

symptoms by exacerbating choreiform movements.13

Despite these mainly negative effects of HD, some re-

searchers have found a paradoxical improvement in

auditory decision tasks (in both reaction time and

accuracy) during early stages of the disease, presum-

ably caused by the enhanced efficacy of NMDA re-

ceptors.14 This improvement can help us to better

understand both HD and the action selection pro-

cess in the BG.1

Although different non-invasive experimental

techniques and statistical analyses, such as elec-

troencephalogram and information metrics, allow

the identification of important brain areas related

to specific tasks,15,16 the way in which they con-

tribute to complex behaviours remains highly elu-

sive. In recent decades, the use of biologically in-

spired computational models emulating spiking neu-
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ral networks17 has been demonstrated as being useful

for understanding experimental recordings from mul-

tiple brain areas18,19 and for studying different neu-

rological alterations.20–22 Thus, computational mod-

els represent a promising approach to explore not

only the normal operation of the BG, but also how

different artificial alterations (e.g. levodopa) or dis-

eases (e.g. HD1 or Parkinson’s disease (PD)23,24) can

affect this nucleus. Although many computational

models of the BG have been proposed to explain the

overall operation of this brain area,6,25–29 it remains

unclear how the transient phenomena generated by

the MSN1 in the striatum on HD patients propagates

to the SNr (BG output nucleus), how this transient

phenomena facilitates action selection, and how DA

affects this process.

In this paper we present a computational model

of the BG integrating all its main neuron types. This

model facilitates the exploration of the emergence of

both steady and transient phenomena in the MSN

and the interplay between the three BG pathways in

the propagation of these phenomena. In this frame-

work we have been able to quantify the selectivity

between competing actions transmitted to the thala-

mus from the SNr output. In addition to this, we have

explored how altered conditions, such as increased

DA levels or the alterations produced by HD, affect

the performance of the BG as selection machinery

using a stimulus discrimination task as a test-bench.

Section 2 provides details on the implementation

of the computational model. Section 3 describes the

results emerging from the simulation of the compu-

tational model in the framework of the stimulus dis-

crimination task. In section 4 we discuss these results

regarding previous computational models and exper-

imental evidence in the literature. Finally section 5

summarizes the main contributions of this article.

2. Computational modeling of BG and
HD

A computational model of the BG, including all its

main nuclei and connections, has been implemented

(Fig. 1). The network structure and the neuron mod-

els used in this manuscript are based on recent work

by Fountas and Shanahan.30 The model includes five

neuronal populations and nine neuronal types (all

of them implemented as Izhikevich neuron models,

but with different parameters in order to capture

their particular cell dynamics). The total number

of simulated neurons is 5,494 divided as follows: the

MSN layer contains 2,292 neurons, with half of them

(1,146) expressing D1 receptor and the other half D2

receptor. The STN layer contains 47 neurons, the

GPe 155 neurons, and the SNr 3,000 neurons.

The neuron populations in our BG model have

been connected following a channel structure. As a

general norm, the neurons in every channel are only

allowed to synapse neurons in the same channel. The

exceptions are the STN efferents, which are diffuse

and connect to all the channels (Fig. 1), and the lat-

eral inhibition within and between the MSN channels

and SNr channels. The modulatory connections from

the SNc are considered implicitly as the global level

of tonic DA in the model. The average level of ac-

tivation (i.e. the firing rate) in each channel at the

MSN represents the salience or urgency of the action

represented at that particular channel.31

For the proposed selection task, we have imple-

mented three different channels in our BG model fol-

lowing Ref. 1: one for the selected option (with 40%

of the neurons), one for the non-selected option (with

40% of the neurons), and the third not competing in

the selection task (with 20% of the neurons). The

third channel represents background neuronal activ-

ity able to influence the other channels through the

diffuse connectivity from STN and the lateral com-

petition in MSN and SNr. For the sake of simplicity,

only the selected (blue) and non-selected (orange)

channels have been represented in the figures.

The following sub-sections describe the behav-

ior of the neuron models used, and the appendices

go deeper into the modeling details. The source code

of the model implementation for NEST 2.12,32 as

well as the scripts allowing the reproduction of the

results shown in this article, have been made avail-

able at the following address https://github.com/

EduardoRosLab/BG selectivity.

2.1. Neuron and synapse models

The Izhikevich neuron model33 has been chosen to

reproduce the experimental firing modes recorded

in the different neuron types of the BG. The pa-

rameters for each neuron type have been optimized

following the adjustment procedure described in

Ref. 34. This method aims to approximate elec-

trophysiological properties (e.g. the action poten-

tial amplitude and width, the resting and thresh-

old potentials and the rheobase current) and their
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steady-state frequency-current (F-I) relations. Fig-

ure 2 shows the reference and resulting F-I curves for

each neuron type. We selected the parameters of our

MSN (see https://github.com/EduardoRosLab/BG

selectivity/raw/master/parameters tables.pdf in the

repository) from different sources in order to obtain

a good match between experimental data and simu-

lated behavior, namely transient selectivity (see be-

low). When the rest of the BG nuclei were added,

their neuron model parameters were calculated fol-

lowing the previously described parameter estima-

tion procedures34 or by local search/manual tuning.

Figure 2. Frequency-current (F-I) curves. Solid lines
represent our computational results, while triangles and
dots respectively represent the simulated and experimen-
tal data used to tune our models.

More than 90% of the striatal neurons are

MSN, showing competitive behaviors between chan-

nels through lateral inhibition, both directly and

through interneurons.35 We modeled the striatum as

a population of MSN with lateral inhibition. These

neurons show characteristic firing patterns such as

long-latency first spike following current injection

or membrane potential bi-stability in response to

random input activity, with a hyperpolarized down-

state and depolarized up-state plateau.28 Although

other neuron types have been reported (e.g. diverse

GABAergic populations36 and cholinergic interneu-

rons with a role in reinforcement-related signals37),

we have intentionally ruled them out since our pre-

liminary simulations showed that they did not im-

pact the transitory effect under study in the proposed

experimental setup. The MSN are divided into two

sub-populations of 1,146 neurons expressing differ-

ent types of DA receptors (D1 and D2). Thus, two

neuron types have been adjusted for the MSN sub-

population (see appendix 1 for further details). Fig-

ure 2 shows the comparison of the F-I curves from

our Izhikevich neuron models and the highly-detailed

multi-compartment models of the MSN.27

Neurons in the GPe have shown at least two dif-

ferent firing patterns in primates: high-frequency dis-

charge separated by intervals of total silence (HFD)

and low-frequency discharge and bursts (LFD).38 In-

terestingly, similar intracellular recording in rats39

have been reported to show three different identifi-

able firing patterns. In our model, we have followed

this latter approach by including three neuron types

named A, B and C.34 Our model includes 131 neu-

rons of type B, which behave similarly to HFD neu-

rons (the only neuron type able to evoke rebound

firing), and 7 and 17 neurons of types A and C re-

spectively, which behave similarly to LFD. Figure 2

shows the matching of the simulated neurons and the

experimental data (dotted) from Ref. 39.

The STN is composed of three different neuron

sub-types. All of them behave similarly when depo-

larized, with sigmoid F-I relation.40 However, they

have shown different responses after long depolar-

ization, including rebound bursts (RB), long-lasting

rebound spikes (LLRS) and no rebound effect (NR).

Our model respectively includes 28, 12 and 7 neu-

rons of each cell type distributed between the three

channels. Figure 2 includes experimental data (dots)

for STN RB cell type from Ref. 40.

Finally, the GABAergic SNr neurons show spon-

taneous high-frequency firing that may turn abruptly

into bursting or silence depending on external in-

put. In addition to this, this type of neuron emits

rebound spikes.41,42 Our model includes 3,000 SNr

neurons, whose parameters have been adjusted to ob-

tain firing rates around 20Hz in absence of external

current stimulation, and silent when the channel is

selected. These firing rates fall within the range ob-

tained in cell recordings considered in other compu-

tational models.37,43,44 Figure 2 shows a comparison
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of the firing rate of the simulated neuron and the ex-

perimental data for the SNr neuron type from.45

Table 1. Synaptic and connectivity parameters.

Connection Receptor Connectivity Probability

Cortex → MSN AMPA Intra-channel 1.0
NMDA Intra-channel 1.0

MSN → MSN GABAA Inter-channels 0.32
MSN → SNr GABAA Intra-channel 0.033
SNr → SNr GABAA Inter-channels 0.1

Cortex → STN AMPA Intra-channel 1.0
NMDA Intra-channel 1.0

STN → GPe AMPA Inter-channels 0.3
NMDA Inter-channels 0.3

GPe → STN GABAA Intra-channel 0.1
GPe → GPe GABAA Intra-channel 0.1
MSN → GPe GABAA Intra-channel 0.033
STN → SNr AMPA Inter-channels 0.3

NMDA Inter-channels 0.3
GPe → SNr GABAA Intra-channel 0.1066

All the neurons included in our BG model

implemented chemical synapses. These were mod-

eled using synaptic conductances governed by

exponentially-decaying functions and constant

synaptic weights (without plasticity mechanisms).

Three types of chemical receptors with different tem-

poral dynamics were implemented: AMPA, NMDA

and GABAA. The NMDA receptor also models the

voltage-dependent magnesium plug.46 In Table 1

we show the interconnectivity topology of our BG

models. All the neurons implemented a probabilistic

all-to-all connectivity distribution with connectivity

ratios between neuron types extracted from litera-

ture.1,34 These connections could be intra-channel

(neurons just connected with neurons in the same

channel) or inter-channels (neurons connected with

neurons in the same or different channels). The rest

of synaptic parameters were selected from the liter-

ature or obtained from local search/manual tuning.

Details on the implementation can be found in ap-

pendix B.

2.2. Huntington’s disease modeling

HD has been demonstrated to disrupt the indirect

pathway of the BG by reducing the number of MSN

D2 neurons12 during the early stages of the evolution

of the disease. In our study we have modeled this

effect by randomly removing a fraction of the MSN

D2 neurons (Eq. (1)). Additionally, MSN D2 neurons

also over-express NMDA receptors in early symp-

tomatic and pre-symptomatic HD patients, leading

to excessive action-potential emission and eventually

neuronal apoptosis.47 This effect has been modeled

by increasing the synaptic weight of NMDA recep-

tors onto the MSN neurons (Eq. (2)).

nMSN−D2 ← nMSN−D2(1− hd · ar) (1)

wNMDA ← wNMDA(1 + hd · sr) (2)

where hd represents the level of HD ranging from

zero (no HD effect) to one (maximum considered HD

affectation), nMSN−D2 is the number of MSN neu-

rons with DA receptor D2, ar is the cell apoptosis

ratio ranging from zero (no apoptosis) to one (maxi-

mum apoptosis), wNMDA is the synaptic weight from

cortex to MSN, and sr is the NMDA increase fac-

tor. The ar and sr parameters have been set to 0.8

and 1.0 since these values maximize the network ef-

fect during selection tasks according to previous re-

search.1 The combination of both effects simulates

the early and middle stages of HD (grades one and

two in the neuropathological scale proposed by Ref.

12). Finally, since advanced stages of HD are in-

compatible with behavioral experimentation (HD pa-

tients lose their motor control capabilities), model-

ing further damages in our BG model due to ad-

vanced stages of HD48 remains beyond the scope of

this work.

3. Results

3.1. Experimental framework

HD patients show a paradoxical improvement (both

in speed and precision) in the auditory decision task

proposed by Beste.14 In this experiment the subject

is told to distinguish between short (200ms) and long

(400ms) auditory tones in a series by pressing a left

or right button for each option (Fig. 3A).

The main inputs to the MSN and STN come

from afferent axons of the pyramidal neurons in layer

V from different cortex areas49 (e.g., the auditory

cortex50). This model assumes that the decision on

the presented tone length, and its consequent motor

action, has previously been performed in the cere-

bral cortex and propagated to the BG by modifying

the firing rate of the input fibers that arrive to each

BG channel. This cortical input activity has been

emulated by means of three populations of Poisson

spike train generators emulating the cortical activ-

ity. These three populations project over the three

channels in the MSN and STN (two channels for

the left and right motor response, and a third chan-
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nel processing cortical activity not related with the

task). Thus, each neuron in MSN and STN receives

the equivalent of 250 randomly-chosen input spike

trains.29

Figure 3. Experimental framework. A. Stimulus dis-
crimination experimental procedure: the subject must
press the left (right) button straight after a short (long)
tone onset. B. Firing rate evolution in the selected and
non-selected channels in the cortex.

The simulated protocol was taken from Ref. 1.

It started with a stabilization period of 1,500ms in

which the mean firing rate of the three Poisson popu-

lations was fixed to a baseline activity of 2.2Hz. The

end of this stabilization period corresponded with

the end of the auditory stimulus. During the follow-

ing 25ms, the two Poisson populations corresponding

with the short and long tones (press left and right

button) gradually increased their mean firing rate to

a medium excitation level of 2.9Hz (Fig. 3B). After

this 25-ms period, the subject was able to discrim-

inate the tone length and select the corresponding

motor action. During the next 25ms, the Poisson

population corresponding with the selected action

kept increasing its firing rate until it reached an av-

erage firing-rate of 3.6Hz. On the contrary, the non-

selected population returned to the baseline level of

activity. These activation levels were maintained dur-

ing an additional period of 1,000ms. Finally, the third

Poisson population remained in the baseline state

during the whole experiment (2,550ms). All these fir-

ing rates range within reported biological constraints

for the auditory cortical layer.51 Note that with this

experimental protocol we were not modeling the de-

tection of longer tones (which were already encoded

in the incoming cortex activity), but rather the se-

lection of the action to be performed in response to

the detection of short or long tones.

3.2. Data analysis: selectivity metrics

The resulting action potentials obtained during the

simulation of the model (each experiment lasting

2,550ms) were used to generate the activity his-

togram (1-ms bin) for each channel in every neuron

population. The population spikes were filtered by

convolving with a 7.5-ms Gaussian kernel to mimic

the resulting excitation/inhibition received in the

successive layer. Aiming to rule out the high variabil-

ity of the resulting activity histograms, the instanta-

neous firing rate in each time bin has been averaged

over 40 simulations with different random seeds for

each experimental condition (Fig. 4C).

In order to provide a quantitative evaluation of

the performance of the computational model in the

proposed behavioral task, the following assumption

has been made, which has been widely hypothesized

before:2,6, 7, 52–54 the BG chooses the action with the

highest reward expectance between multiple possi-

ble actions by increasing (decreasing) the activity in

the corresponding MSN (SNr) channel and reducing

(maintaining) the firing rate in the remaining MSN

(SNr) channels. Thus, the following estimators aim

to quantify how distinguishable the activity profiles

of the MSN and the SNr are in the considered chan-

nels.
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Figure 4. Analysis performed on the simulations results. A. Selected (blue) and non-selected (orange) channel activi-
ties after the application of Gaussian kernels to the raster plot histograms (MSN or SNr). B. Mean activity levels of the
SNr channels before the tone onset (Ftonic) and after the tone onset (Fi, Fj), where Fj is the selected channel and Fi the
non-selected one. C. For the ICA analysis, the raster plot histograms are filtered, normalized and decomposed in their
ICA components with their corresponding weights.

Activity evaluation in the striatum: selectivity

Following the approach in Ref. 1, the selectivity in

the MSN can be defined as the ability to robustly

distinguish competing signals. Two complementary

modes of selectivity have been proposed, measured

with different metrics applied to the mean activation

of each MSN channel population. Given a compe-

tition between different cortical inputs, a transient

selectivity is the temporary promotion of the most

salient signal simultaneously to suppression of the

least-salient signal. This effect results in the tran-

sient boost of the difference in salience between the

competing signals. The transient selectivity in the

MSN (TSMSN ) is defined according to

TSMSN = 1− F1 − F2

∆F1,2
(3)

where F1 and F2 are two signals (firing rates of the

two competing channels), ∆F1,2 is the maximum dif-

ference between F1 and F2 occurred during a transi-

tion window between 0ms and 200ms after the stim-

ulation, and F1, F2 are the mean stable activity of

signals F1 and F2 after the transition period (Fig.

4A).

Moreover, given a competition between different

input signals, the least salient signal (in our experi-

ments, F2) tends to be inhibited on a sustained basis

by the most salient signal (Fig. 4A); this is called

the stationary selectivity (SSMSN ) and is defined as

follows:

SSMSN = 100×
(

1− F2

FPre

)
(4)

where FPre is the mean stable activity of the sig-

nal F1 or F2 before the tone onset (both activity

level are similar before the stimulus onset). Thus,

the TSMSN provides an estimation of how distin-

guishable the competing signals are during the tran-

sitory state while the SSMSN quantifies how distin-

guishable the competing signals are once they have

reached their steady state.
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Activity evaluation in the SNr: distinctiveness

A more general metric, which can be applied to the

SNr, is the distinctiveness of a single selected chan-

nel, defined as the ability of a channel to generate

distinctively less activity than any other channel in

the layer.34 Since the SNr inhibits the thalamus, the

distinctive channel (the selected one with the lower

activity) inhibits the corresponding channel in the

thalamus in a lesser degree, propagating the BG se-

lection to the thalamus. The distinctiveness in the

SNr represents the degree to which the following two

conditions are fulfilled: (a) the firing rate of the se-

lected channel in the SNr is close to zero, and (b)

no other channel is far below tonic levels. These two

conditions can be quantitatively evaluated over the

time t according to aj(t) and bj(t) respectively:

aj(t) = 1− Fj(t)

max {Ftonic, Fj(t)}
(5)

bj(t) =
minFi 6=j(t)

max {Ftonic,minFi6=j(t)}
(6)

where j is the examined channel, Fj(t) is the firing

rate of channel j at time t, minFi 6=j(t) is the mini-

mum SNr firing rate of any channel different to j at

time t and Ftonic is the tonic firing rate of the SNr,

assumed here to be 20spikes/sec (Fig. 4B). Then, the

distinctiveness Dj(t) is defined as:

Dj(t) = aj(t) · bj(t) (7)

with Dj(t) values range in [0, 1], with 1 indicating

that the channel j at time t propagates distinctively

less inhibition than any other channel to the thala-

mus, and 0 the opposite condition (or channel ac-

tivity j is far from zero i.e. it is not chosen, or some

other channel is closer to zero i.e. the other channel is

chosen instead). The steady-state distinctiveness and

transient distinctiveness55 are both calculated from

Dj(t). The former is calculated as the average of the

stable post-transient activity (the signal is assumed

to reach steady state after 500ms from the stimulus

onset) while the latter is defined as the maximum

distance between the distinctiveness of the channels

during a fixed short interval (200ms in our experi-

ments) after the generation of the salient signal.

Independent component analysis

In order to evaluate the different temporal compo-

nents emerging from the population activity, we have

applied the independent component analysis (ICA)

algorithm56 to the filtered signal in the selected chan-

nel of the MSN (Fig. 4C). ICA is a widely used

computational method for separating a multivari-

ate signal into its additive non-orthogonal compo-

nents. This is done by assuming that the subcom-

ponents are non-Gaussian and statistically indepen-

dent signals. Although this algorithm is similar to

other classic methods, such as principal component

analysis (PCA), ICA imposes to the resulting signals

the harder constraint of being statistically indepen-

dent (and not just linearly uncorrelated as in PCA).

Based on preliminary simulations within the exper-

imental setup under evaluation in this article, ICA

demonstrated to be more successful than the PCA

on finding significant components.

Prior to the application of the ICA algorithm,

each signal was normalized by subtracting the mean

activation level before stimulus onset and the result-

ing signal was divided by its standard deviation, so

that it becomes insensitive to any possible firing rate

additive or multiplicative variation. After that, we

used the FastICA decomposition function from the

SciKit-Learn Python library57 to obtain the inde-

pendent components from the signals. We chose the

number of independent components to be at least

two (as we make the assumption of the existence of

the transient and the steady-state components) and

as high as needed to be able to explain at least 90%

of the variability of the signal. The same analysis

was applied to both the selected and the non-selected

channel populations of the SNr. Finally, the ICA al-

gorithm provided the relative weights of each com-

ponent in each experimental condition. The resulting

weights allowed us to evaluate the presence and the

relative importance of each temporal component for

different combinations of factors.

3.3. General network behavior

Our network model was first simulated in control

conditions (no HD hd = 0 and default level of DA

d1 = d2 = 0.3) during Beste’s task.14 The result-

ing activity of each population and their respective

channels are shown in Figure 5. This activity falls

within in vivo values in all nuclei: the MSN firing
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rates are below 2Hz when low activity and above

17Hz in high activity.34,44 The STN normally fires

at around 10Hz, but can get as high as 30-50Hz.58

The GPe firing rate is around 30Hz without activa-

tion but raise to 40Hz when its channel is not selected

and decrease to almost zero when its channel is se-

lected.34 The SNr activity has been reported to be

close to zero when receiving inhibition from MSN D1

and around 20-30Hz when it is being activated.34,44

Not surprisingly, the variability (standard deviation)

of the population firing rate depends on the number

of neurons included in each nucleus (ranging from

46 neurons in the GPe to 3,000 neurons in the SNr).

The initial 1,500ms are devoted to stabilizing the net-

work activity in response to the basal activation in

the cortex (Figs. 3B and 5). Some nuclei, such as

the GPe and the SNr, show intrinsic activation, re-

sulting in high firing rates at the beginning of the

simulation that slowly decrease due to the lateral in-

hibition existing within each nucleus (Fig. 5). On the

contrary, the MSN demonstrated the slowest adap-

tation mainly due to the intrinsic long first-spike la-

tency of this neuron model.

Figure 5. General network behavior. Raster plot (black
dots) and population firing rates (solid lines) for the cor-
tex (Ctx), MSN, STN, GPe and SNr populations. Se-
lected and non-selected channels are respectively drawn
with blue and orange background/line colors.

Once the network activity becomes steady, the

cortex increases its activity in both channels (cortex

selection onset) (Fig. 3B). After 25ms, the cortex se-

lects only one channel (which further increases the

firing rate, while the other one returns to the basal

level of firing) (Fig. 3B). This channel selection in

the cortex produces a strong response in the BG:

the selected channel increases their firing rate in the

MSN and STN and inhibits, in turn, the non-selected

channels (Fig. 5). However, the selected channel in

the MSN shows transient phenomena by producing

peaks of activity (200ms long or less, as will be dis-

cussed later in Fig. 6B) due to the intrinsic proper-

ties of its neuron model, the long time constant of

the NMDA receptor and the lateral inhibition. Con-

versely, the selected channel in the GPe and the SNr

receives strong inhibition from the MSN, thus com-

pensating for the stronger excitation from the STN

and leading to a notorious reduction of the firing rate

in the selected channel of the GPe and SNr (Fig.

5). Due to the recurrent loops between the GPe and

STN (Fig. 1), the activity of the GPe remains unsta-

ble for 500ms after the cortex selection onset. The

output nucleus (SNr), not unexpectedly, decreases

the activity for the selected channel, while the non-

selected one remains with a basal level of activity

(after a transient activity peak) (Fig. 5).

The commented network operation is valid for

the control case (default DA and no HD affectation).

We also tested the network with different levels of DA

or HD. Increased DA levels in the model resulted in

enhanced response of the MSN to the cortical input,

as previously reported in freely moving rats.59 In ad-

dition to this, the firing rates obtained for control

and pathological HD MSNs are in agreement with

the experimental results obtained from mice.60 We

used our model to explore if altered levels of DA and

the presence of HD affectation may change the bal-

ance between excitation and inhibition in any net-

work layer and, as a consequence, if they produce

enhanced/reduced levels of selectivity in the MSN

and distinctiveness in the SNr.

3.4. Striatum (MSN) activity

Overall, our simulations demonstrated that increase

in either DA levels or noteworthy HD affectation (or

both conditions together) resulted in enhanced levels

of MSN activation (Fig. 6A green, orange and pur-

ple solid lines in the top plot) and the rest of the

BG nuclei, resulting in different balances of excita-

tion/inhibition depending on the particular configu-

ration.
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Figure 6. Effect of different dopamine (DA) levels and Huntington’s disease (HD) conditions in the medium spiny neurons
(MSN). A. (Top) Average firing rate of the selected channel in the MSN. Each trace represents a different setting, while
some representative conditions have been highlighted in colors: control (default DA level and no HD) (blue), hiHD (default
DA and high HD) (orange), hiDA (high DA and no HD) (green), loDA (low DA and no HD) (red) and hiDAHD (high
DA and HD) (purple). (Bottom) Steady-state (SSMSN ) (left) and transient (TSMSN ) (right) selectivity within the
studied parameter space (DA vs HD level). Colored circles mark the cases previously considered. B. (Top) Independent
components obtained from the MSN firing histogram by using the ICA algorithm over all the experimental conditions.
(Bottom) Weight of each signal component in each experimental condition as obtained from the ICA algorithm.

In order to achieve a fuller understanding of the

functional effect that altered DA and HD levels pro-

duce in the processing layers of the BG, we simulated

a whole set of different configurations of the network

to perform Beste’s task. For each experimental con-

dition, the activity histogram of the selected channel

in the MSN has been extracted (top plot in Fig. 6A)

and the steady-state and the transient-state selectiv-

ity have been analyzed (bottom plots in Fig. 6A). As

a general rule, steady-state selectivity is enhanced by

increased DA levels while HD affectation reduces it.

On the other hand, transient selectivity is increased

by HD affectation and shows an inverted “U” rela-

tionship with DA levels (medium DA levels resulted

in increased transient selectivity).

Aiming to discriminate the effect of DA and

HD in the emergence of steady or transient compo-

nents of activity, we applied the ICA algorithm on

the activity histograms of the selected channel in the

MSN, resulting in the two components indicated in

the top row plots in Figure 6B. The first component

(left plot) represents a steady signal (corresponding

with the steady state before and after stimulus on-

set), while the second component (right plot) shows

transient behavior around the stimulus onset. By ex-

ploring the weights associated to each component for

each experimental condition, the first component is

similarly present in all the experimental conditions,

while the second component shows differences among

the configurations (bottom row in Fig. 6B). The sec-

ond component is more prominent with high HD af-

fectation and medium DA levels.

3.5. Substantia nigra (SNr) activity

Similarly as previously analyzed in the MSN, we

have explored the averaged firing activity of the SNr

(Fig. 7A) in response to the cortex input activity

that mimics the stimulation received during Beste’s

task. Moreover, we have also analyzed the distinc-

tiveness34 of the stimulus with different network con-

ditions (DA and HD levels). The results show that

both the transient and the steady-state distinctive-

ness increase with high levels of DA and reduced HD

affectation.

We also used ICA in the SNr signals, obtain-

ing three independent components able to explain at

least the 90% of the variability of the original sig-

nal. Fig. 7B shows the extracted independent com-
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Figure 7. Effect of different dopamine (DA) levels and Huntington’s disease (HD) conditions in the substantia nigra
reticulata (SNr). A. (Top) Average firing rate of the non-selected channel in the SNr. Each trace represents a different
setting, while some representative conditions have been highlighted in colors: control (default DA level and no HD) (blue),
hiHD (default DA level and high HD) (orange), hiDA (high DA level and no HD) (green), loDA (low DA level and no HD)
(red) and hiDAHD (high DA level and HD) (purple). (Bottom) Steady-state (left) and transient (right) distinctiveness
in the SNr within the parameters space studied (DA vs HD level). Colored circles mark the cases previously considered.
B. (Top) Independent components obtained from the SNr firing histogram by using the ICA algorithm over all the
experimental conditions. (Bottom) Weight of each signal component in each experimental condition as obtained from
the ICA algorithm.

ponents and their corresponding weights for each ex-

perimental condition. The first component is asso-

ciated to the steady-state evolution, while the other

two are related to the transient phenomena (slow and

fast). The distribution of the weights of these compo-

nents shows very distinct patterns. While the steady-

state and slow transient components show some lin-

earity (the first with DA level and the second with

HD level), the fast transient component shows a non-

linear behavior, with more weight when the DA level

is low and the HD level is medium.

4. Discussion

4.1. Interpretation of results

The obtained results are in agreement with previ-

ous research. Ref. 1 showed that the potentiation

of the transient component explains (at least, par-

tially) why HD patients achieve better performance

in timed decision tasks. This effect was previously ex-

plained as enhanced information processing in sim-

ple sensorimotor tasks. By using ICA we have evi-

denced neuronal correlates of this experimental per-

formance improvement resulting from increased DA

levels in healthy subjects receiving levodopa.9 Specif-

ically, the transient independent component detected

at MSN is more prominent with high HD affectation

and medium DA levels.

Regarding the SNr activity, both the steady-

state and the transient distinctiveness fail to explain

the enhanced performance of HD patients in Beste’s

task. Although previous articles in the literature have

associated this paradoxical improvement to the al-

teration of the selectivity in the MSN, our simula-

tions demonstrate that increased selectivity does not

propagate to the subsequent SNr layer (the output

nucleus of the BG). By studying the independent

components obtained from the activity histograms

we are able to offer an alternative explanation to this

paradoxical improvement. After observing the shape

of each component (bottom plots in Fig. 7B) we

have concluded that these components can propagate

from the MSN to the SNr. The weight of each compo-

nent for each experimental condition indicates which

circumstances facilitate the propagation of the cor-

responding component (e.g. while the slow-transient

component reliably propagates with high HD, the

fast-transient component more consistently propa-

gates with medium HD and low-medium DA). Thus,

the propagation of the fast-transient component from

the MSN to the SNr may support the paradoxical im-

provement in Beste’s task observed in patients in the
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early stages of HD.

4.2. Comparison with previous studies

To date, several BG computational models have been

proposed for different purposes. A detailed27 and a

subsequently simplified28 computational model ex-

pressing the DA modulation in MSN D1 and D2 were

proposed, and then added to a three-dimensional

network model together with fast spiking interneu-

rons (FSI) in the striatum.29 Other models stud-

ied the exploration/exploitation trade-off,8,30,61,62

or reproduced diverse behavioral tasks with a com-

plex model containing several neuronal nuclei (cor-

tex, BG and thalamus).63 In some models, phasic

DA signals have been added on top of a tonic DA

value, reproducing the neural mechanism for which

the triggering of a movement requires a dopamin-

ergic burst just preceding the movement onset.64,65

There are studies, more focused on HD, as in Ref.

(1), where they studied the origin of HD paradoxi-

cal effects as a consequence of the alteration of the

transient selectivity in the MSN.

The general behavior of the MSN population

has been evaluated against selectivity metrics previ-

ously proposed in the literature.1 According to these

metrics, high levels of HD affectation present con-

tradictory effects (decrease and increase) in steady-

state and transient-state selectivity, in agreement

with previous simulations. These results confirm the

prediction that the transient-state selectivity metric

in the MSN may explain the paradoxical speed im-

provement in Beste’s task by HD patients,14 assum-

ing that middle levels of HD in our model correspond

to the early stages of HD patients.10,66 Although

our simulations support this prediction, the evalu-

ation of similar metrics in the subsequent layer (the

SNr) indicates that the transient distinctiveness does

not reflect the paradoxical behavioral improvement

in HD patients. However, the analysis of the com-

ponents extracted by the ICA algorithm in the SNr

activity (the BG output layer) evidenced two tran-

sient components and one steady component. The

weights of the components in HD conditions indi-

cate that only the fastest component supports the

paradoxical speed improvement in Beste’s task. This

component would act by abruptly avoiding the ac-

tivity of alternative behavioral options.

Our computational model also allowed the anal-

ysis of tonic DA effect on BG operation. Previous

studies did not specifically address the effect of DA

in steady-state or transient-state selectivity (e.g. Ref.

1 included DA in the computational model of HD but

with a fixed value throughout all experimental con-

ditions). In our simulations, only the transient-state

metric in the MSN evidenced decremented selectiv-

ity caused by high or low (non-medium) DA lev-

els. According to these simulations, medium levels of

DA may improve the subject’s performance in selec-

tion tasks. Similar metrics in the SNr show enhanced

steady-state and transient distinctiveness linked to

higher levels of DA. These results are supported by

the cognitive improvement registered in behavioral

tasks by subjects receiving levodopa.9 The ICA al-

gorithm used on the SNr signals shows that tran-

sient components also occur in the SNr for high HD

affectation (slow component) or a combination of

medium HD affectation and low DA levels (fast com-

ponent). These results explain how the augmented

transient selectivity associated to the MSN of HD

patients propagates to the SNr, projecting to the cor-

tex through the thalamus and originating behavioral

effects.

The application of the ICA algorithm in the

SNr also evidences how different conditions affect

each component of the signal. The steady-state com-

ponent mainly depends on DA level, making this

component a candidate for a non-pathological im-

provement mechanism in performance during selec-

tion tasks. It is in agreement with the experimental

improvement of healthy subjects with high DA levels

in selection tasks.9 The slow-transient component is

affected by the HD affectation but not by DA levels

while the fast-transient component requires medium-

low levels of DA and medium levels of HD affecta-

tion. Since paradoxical improvement on HD patients

requires medium levels of HD affectation14 and low

or normal levels of DA, the fast-transient compo-

nent closely fits this experimentally observed pat-

tern. Thus, this fast component could be considered

as a plausible marker for sensorial discrimination

performance. Our model is also compatible with the

reported deterioration of HD patients treated with

levodopa,13 where high HD and DA levels would de-

teriorate performance as the fast-transient compo-

nent is reduced. In any case, further experimental

studies are required in order to validate this hypoth-

esis.
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4.3. Model limitations and future work

One of the main limitations of the proposed model

is that it lacks the recurrent loop between the BG

and the cortex (where the decision process is thought

to take place) through the thalamus. In absence of

the cortico-BG-thalamic-cortical loop, our model is

assuming a simple cause-effect relationship between

the cortex and the BG. Current research considers a

system-level approach where specific behaviors are

generated by the interplay of different subsets of

components of the brain.67–69 The BG is not mak-

ing the decision in isolation as the cortex is also tak-

ing part in this process: cortical feedback projections

to the striatum and STN make the internal com-

petition between channels a cumulative dynamical

process.70 Because of this, our result analysis is re-

stricted to a small time window around the stimu-

lus (before the re-entrant signal from the cortex is

able to affect the BG activity). This time window

is wide enough to allow us to explore the propaga-

tion of the transient components through a more

extensive model of the BG than any previous re-

search. Integrating the whole closed-loop is key in

future research, as recently proposed.64,65 The inclu-

sion of cortical processing structures in a closed loop

could facilitate further understanding of larger-time-

scale motor phenomena, such as the mechanisms

of event-related desynchronization/synchronization

found during motor imagery tasks.71

For the sake of simplicity of the analyses car-

ried out in this study, we just took into account the

tonic DA signals in our simulations (phasic DA sig-

nals were simplified). Future approaches should ad-

dress how phasic DA signals might unbalance the

state of equilibrium between the direct and indi-

rect pathways.64,65,70 Moreover, the presence of DA-

dependent plasticity26,31 in the cortex-MSN con-

nections may somehow affect the BG processing of

the incoming decisions. Nevertheless, the proposed

model does not consider learning at any level (cor-

tical or sub-cortical). Our simulations assumed the

subject had previously learnt the action-selection

task and it was on the automatization phase in which

the cortex-striatum network plays a pivotal role.72

Although interneurons in the striatum (and

specifically the FSI) shape the activity of the MSN,36

and other models in the literature have already in-

cluded these type of neurons,1,34,35 we have avoided

including these kinds of neurons as our preliminary

simulations have shown no relevant effect for our par-

ticular behavioral task. This might happen due to the

relatively low levels of input activity we have used in

our experiments. The FSI show a stronger influence

when a higher baseline and stepped inputs are used.1

Finally, one possible use of the components

found in this study is to help us understand the

origin of neurophysiology data obtained in real be-

havioral experiments. In Ref. 14 HD patients and

controls were required to differentiate between short

and long tones (a task very similar to the one simu-

lated in this article) while an electroencephalogram

(EEG) was recording the brain activity. They found

that the paradoxical behavioral improvement (re-

flected as better accuracy and faster time responses

in HD patients) correlated with the intensity of an

event-related potential (ERP) signal obtained in the

EEG known as mismatch negativity (MMN). This

ERP signal could indicate the recognition of unex-

pected events by the auditory system.14 Specifically,

its presence can be measured in an EEG as a negative

peak around 100ms after the stimulus presentation.

This timing precisely matches the propagation of the

fast transient component from the cortex to the SNr

(∼70ms after the stimulus presentation according to

the ICA algorithm) plus the transmission delay from

the SNr to the cortex through the thalamus, which

has been estimated around 35ms.73–75 In any case,

additional research with computational models (pos-

sibly including thalamic and cortical areas in the loop

with BG) is required to better understand this pro-

cess.

5. Conclusion

In this article we propose a new analysis method for

evaluating transient phenomena, and it has been ap-

plied to the activity of BG populations in the frame-

work of a detailed computational model. These novel

metrics allow the explicit assessment of how corti-

cal activity is transferred to the thalamus through

the BG. We have analyzed how the relevant inde-

pendent components of the signals in the input and

output layers of the BG are affected with HD affec-

tation and tonic DA levels. This combined study of

DA and HD represents an innovative contribution,

explaining the non-monotonic relationship between

DA/HD levels and the selectivity of the BG. This

paper describes the complex relations between BG
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neuronal populations that are in accordance with the

behavioral results that have been observed in the lit-

erature.
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Appendix A Neuron models

All the neurons included in our BG model have been

simulated using different versions of the Izhikevich

neuron model. This model is computationally very

efficient and allows the reproduction of all the fir-

ing patterns previously described in the BG.28,33 Ac-

cording to the Izhikevich model, the membrane po-

tential v of the neuron is updated according to Eq.

(A.1)

C
dv

dt
= k(v − vr)(v − vt)− u+ I (A.1)

where I is the total synaptic input (defined below),

C is the membrane capacitance, vr is the resting po-

tential, vt is the instantaneous threshold potential,

k is an abstract parameter that regulates the influ-

ence of the current membrane potential value in its

derivative and u is a recovery parameter updated by

Eq. (A.2)

du

dt
= a (b(v − vr)− u) (A.2)

where a sets the time scale of the recovery variable

with low values corresponding to slow recoveries, and

b describes the sensitivity of the recovery variable to

fluctuations of the membrane potential.

An action potential is elicited in this model

when the firing threshold (vpeak) is exceeded by the

membrane potential v. In this case, the variables in

the model are updated according to Eq. (A.3)

v ← c; u← u+ d (A.3)

where c is the voltage reset value and d is the reset

of the recovery variable.

All the neuron sub-types defined in the MSN

(D1 and D2), GPe (A, B and C) and SNr can be

implemented using the original Izhikevich neuron

model. On the contrary, the three neuron sub-types

of the STN show different responses after long de-

polarization, including rebound bursts (RB), long-

lasting rebound spikes (LLRS) and no rebound effect

(NR). These effects have been modeled by extend-

ing the original Izhikevich’s equations with one ad-

ditional recovery variable (u2).62 The state variables

are updated according to the following differential

equations

C
dv

dt
= k(v − vr)(v − vt)− u1 − w2 · u2 + I (A.4)

du1
dt

= a1(b1(v − vr)− u1) (A.5)

du2
dt

= a2(Gb2(v − vr2)− u2) (A.6)

where one additional recovery variable (u2) and its

parameters (a1, a2, b1, b2, d1, d2, w1, w2, G and U)

have been added to account for the previously de-

scribed behavior without losing the basic repertoire

of firing patterns supported by the basic recovery

variable u1.34,76 For the NR neurons, G is set to 1,

while for RB and LLRS neurons, G = H(vr2 − v) is

the Heaviside step function:

H(x) =


0 x < 0
1
2 x = 0

1 x > 0

(A.7)

When the membrane potential moves above the

adaptive firing threshold (v ≥ vpeak+Uu2) the model

variables are set as indicated in the following expres-

sions:

v = c− Uu2 (A.8)

u1 = u1 + d1 (A.9)

u2 = u2 + d2 (A.10)
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Finally, at high firing rates u2 may increase dra-

matically. To avoid this phenomenon the U value is

defined according to the following expression:

U =
1

w1 |u2|+ 1
w1

(A.11)

The value of all these neuron model param-

eters for each cell type can be found in the ta-

bles 2 to 4 in https://github.com/EduardoRosLab/

BG selectivity/raw/master/parameters tables.pdf.

Appendix B Synapse models

The input current (I) targeting a neuron is de-

fined as follows:29

I = IAMPA + INMDAB(v) + IGABA (B.1)

IAMPA, INMDA and IGABA are current inputs

from AMPA, NMDA and GABA receptors, and B(v)

is a term that models the voltage-dependent magne-

sium plug in the NMDA receptors46 as follows:

B(v) =
1

1 +
[Mg2+]0

3.57 e−0.062v
(B.2)

where
[
Mg2+

]
0

is the equilibrium concentration of

magnesium ions. The input current of each channel

z is defined as follows:

Iz = yz(Ez − v) (B.3)

where yz is a exponentially-decaying conductance

representing the contribution of receptor z to the

membrane potential, Ez is the reversal potential of

receptor z and v is the current membrane potential

of the neuron.

The value of all these synaptic parameters

can be found in the table 1 in https://github.

com/EduardoRosLab/BG selectivity/raw/master/

parameters tables.pdf.

Appendix C Dopaminergic modulation

model

In the MSN, the overall in-vivo effect of the DA re-

ceptors D1 and D2 is that the stimulation of the

D1 receptors increases neuron excitability, while the

stimulation of the D2 receptors decrements the neu-

ron firing,77 as expressed in Eq. (C.1) and (C.2).

There are also neuromodulatory effects implemented

following Ref. 1, 29 and 27, where da represents the

global level of DA in the system. This influences the

D1 and D2 DA receptors according to the neuro-

modulatory factors β1 and β2, respectively. Eq. (C.3)

models the D1-receptor mediated enhancement of

the inward-rectifying potassium current. Eq. (C.4)

models the enhancement of the L-type Ca2+ current.

Finally, Eq. (C.5) models the increased sensitivity to

injection current following D2 activation.

INMDA ← INMDA(1 + β1 · da) (C.1)

IAMPA ← IAMPA(1− β2 · da) (C.2)

vr ← vr(1 + β1 · da) (C.3)

d← d(1− β2 · da) (C.4)

k ← k(1− β1 · da) (C.5)

GPe and STN neurons also show DA neuro-

modulatory effects on their synaptic receptors, which

have been modeled as follows:

IAMPA ← IAMPA(1− β1 · da) (C.6)

INMDA ← INMDA(1− β1 · da) (C.7)

IGABA ← IGABA(1− β2 · da) (C.8)

The value of all these dopaminergic modulation

parameters for each cell type can be found in the ta-

bles 2 to 4 in https://github.com/EduardoRosLab/

BG selectivity/raw/master/parameters tables.pdf.
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ABSTRACT2

The basal ganglia (BG) is a brain structure that has long been proposed to play an essential3
role in action selection, and theoretical models of spiking neurons have tried to explain how the4
BG solves this problem. A recently proposed functional and biologically inspired network model5
of the striatum (an important nucleus of the BG) is based on spike-timing-dependent eligibility6
(STDE) and captures important experimental features of this nucleus. The model can recognize7
complex input patterns and consistently choose rewarded actions to respond to such sensory8
inputs. However, model tuning is challenging due to two main reasons. The first is the expert9
knowledge required, resulting in tedious and potentially biased trial-and-error procedures. The10
second is the computational cost of assessing model configurations (approximately 1.78 hours11
per evaluation). This work studies how to address the model tuning problem through numerical12
optimization. Considering the cost of assessing solutions, the selected methods stand out due to13
their low requirements for solution evaluations and compatibility with high-performance computing.14
They are the SurrogateOpt solver of Matlab and the RBFOpt library, both based on radial basis15
function approximations, and DIRECT-GL, an enhanced version of the widespread black-box16
optimizer DIRECT. Besides, a parallel random search serves as a baseline reference of the17
outcome of opting for sophisticated methods. SurrogateOpt turns out to be the best option for18
tuning this kind of model. It outperforms, on average, the quality of the configuration found by19
an expert and works significantly faster and autonomously. RBFOpt and the random search20
share the second position, but their average results are below the option found by hand. Finally,21
DIRECT-GL follows this line becoming the worst-performing method.22

Keywords: striatum, reinforcement learning, spiking neural network, dopamine, spike-timing-dependent plasticity, model tuning,23
surrogate optimization, black-box optimization24
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1 INTRODUCTION

Computational models of the brain are useful tools for studying learning mechanisms. However, the25
difficulty involved in finding parameters that provide good solutions is a major challenge.26

A model already published in a previous article (Gonzalez-Redondo et al., 2022) is a complex model27
that is difficult to obtain good solutions for. This model tries to better understand how learning through28
interaction to achieve a goal is solved by animals (or agents) by choosing among many possible actions to29
obtain rewards, as described in the reinforcement learning (RL) paradigm (Sutton et al., 1992). The model30
is based on spike-timing-dependent eligibility (Gurney et al., 2015) (STDE), a learning rule capturing31
important experimental features in the brain and, specifically the basal ganglia (BG, a set of nuclei located32
in the forebrain). This brain structure is related with the process of action-selection, according to biological33
(Grillner et al., 2005; Graybiel, 1998; Hikosaka et al., 2000) and computational studies (Gurney et al.,34
2001; Tomkins et al., 2014; Redgrave et al., 1999). We implemented (Gonzalez-Redondo et al., 2022) a35
functional and biologically inspired network model of the striatum (STR, an important input nucleus of36
the BG), where learning is based on STDE. The proposed model has been demonstrated to be capable of37
recognizing input patterns relevant to the task and consistently choosing rewarded actions in response to38
that input.39

However, models require tuning (Martı́nez-Álvarez et al., 2016; Van Geit et al., 2007), and the quality40
expectations, datasets, and adaptability requirements are continuously growing (Masoli et al., 2020;41
Van Geit et al., 2008). The model described in (Gonzalez-Redondo et al., 2022), which attracts the attention42
of this work, contains dozens of free parameters: learning kernel shapes, synaptic and neuron time constants,43
lateral inhibition weight, etc. Some of them can be inferred from experimental data, but most of them must44
be manually tuned with plausible values. With this number of parameters, the curse of dimensionality45
leads to a tedious trial-and-error search procedure prone to failures. Another problem is the computational46
cost of evaluating each model configuration: it takes approximately 1.78 hours per evaluation in a modern47
laptop using a single CPU core. Both made the tuning of our model slow (the parameters finally used were48
found after two months of search), sub-optimal (as there are a huge parametric space not covered) and49
biased (by the intuition of the expert). Fortunately, model tuning can be addressed as a global optimization50
problem. There exist modern frameworks, such as Ray[Tune] (Liaw et al., 2018) and Vizier (Golovin et al.,51
2017), which implement multiple algorithms compatible with this purpose. Besides, the current increase in52
computer power that allows for defining more sophisticated models also helps us to face more challenging53
optimization problems (Cruz et al., 2021; Marı́n et al., 2021; Van Geit et al., 2008).54

When addressing model tuning as an optimization problem, the objective function generally represents55
the difference between the desired and achieved output of the model for any candidate configuration.56
Concerning the associated problem, when the objective function exhibits mathematically exploitable57
properties, such as linearity, convexity, and continuous variables, it can be exactly solved. Otherwise, its58
resolution can be significantly challenging (Lindfield and Penny, 2017; Salhi, 2017). This issue might arise59
when the objective function does not have a closed analytical form or relies on sophisticated models with60
non-linear expressions, uncertainty, and simulations (Cruz et al., 2018; Marı́n et al., 2021). Luckily, some61
methods aim at finding acceptable results with a reasonable effort by using randomness and intuitive ideas.62
Most heuristics and meta-heuristics would fall into this group (Lindfield and Penny, 2017; Salhi, 2017).63
Similarly, if a method does not have specific knowledge or strict requirements for the objective function64
apart from being able to evaluate candidate solutions, it is classified as a black-box optimizer (Audet and65
Hare, 2017; Golovin et al., 2017). Both categories are frequently linked, as many meta-heuristics, such as66
evolutionary and swarm intelligence algorithms, are also black-box methods.67
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In this context, black-box optimization methods can be classified into two groups: those without specific68
components to require few function evaluations and those with them. It could be said that needing few69
function evaluations to converge is one of the goals pursued when designing any optimization method.70
However, most population-based meta-heuristics need numerous function evaluations (Costa and Nannicini,71
2018) to compensate their instability due to randomness (Jones and Martins, 2021). They would hence72
fall into the first group. For instance, for the successful evolutionary optimizer UEGO (Cruz et al., 2018;73
Garcı́a-Martı́nez et al., 2015; Marı́n et al., 2021), a robust configuration could need up to 1,000,000 function74
evaluations (Ortigosa et al., 2001). This potential requirement is usually attenuated with parallel computing,75
which fits well with population-based algorithms (Cruz et al., 2019; Jelásity, 2013; Storn and Price, 1997).76
This can be seen as a brute-force approach to tackle the high consumption of function evaluations. The77
methods in the second group do not renounce the benefits of high-performance computing, but they try78
to avoid function evaluations by design. Their use can be the only option when the cost of evaluating the79
objective function cannot be hidden with parallel computing. The most relevant methods in this group are80
surrogate optimizers (Bhosekar and Ierapetritou, 2018; Costa and Nannicini, 2018; Vu et al., 2017), which81
avoid evaluating the real objective function by constructing a lightweight model of it. They define an active82
research line in Global Optimization.83

In this work, the objective function is not a plain mathematical function, such as a parabola. Instead, each84
evaluation launches a process that consists in building the neural network according to the input parameters85
of the candidate configuration, training it, and returning its performance at the target task. As mentioned86
above, this process is computationally demanding. For this reason, this work pays attention to optimization87
algorithms requiring few function evaluations. The selection consists of four solvers in total. The first two88
are SurrogateOpt, provided by the official Global Optimization Toolbox of Matlab (López, 2014), and89
RBFOpt (Costa and Nannicini, 2018), open-source and written in Python. Both construct a surrogate of90
the real objective function by combining radial basis ones (Gutmann, 2001; Regis and Shoemaker, 2007).91
The third method is DIRECT-GL (Stripinis et al., 2018), an enhanced version of the widespread DIRECT92
(Jones and Martins, 2021), which stands out due to its deterministic and effective strategy of dividing the93
search space and prioritizing the most promising areas to save function evaluations. The last one is a simple94
random search (Cruz et al., 2018), which is expected to define the baseline performance. Nonetheless, this95
method has also been implemented to benefit from parallel computing, so its rate of candidate solution96
evaluation is high. To the best of the authors’ knowledge, the tuning of spiking neural models of striatum97
plasticity has not been studied from this perspective before. Hence, the ultimate goal of this research is98
to recommend the most effective strategy for this purpose to save tedious trial-and-error procedures and99
hyper-parameter tuning for Spiking Neural Networks (SNNs) by hand in general, which is inherently100
biased by the expert.101

The rest of the paper is structured as follows: Section 2 describes materials and methods. Section 3102
contains the experimentation and results. Finally, Section 4 shows the conclusions and states future work.103

2 MATERIALS AND METHODS

This section starts with a detailed description of the computational models that define the agent behavior104
and the task it is solving. After that, the four optimization strategies considered are explained.105

2.1 Computational models106

For the network model we used conductance-based versions of the Leaky-Integrate and Fire (LIF) neuron107
model (Gerstner and Kistler, 2002). LIF model simplifies many aspects of neuronal dynamics, so it is108
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more computationally efficient than other commonly used neural models in SNNs. We use this model in109
every layer of the network. Before the use of optimization methods, the parameters were manually tuned110
to obtain reasonable firing rates (see details in Supplementary Materials). The STR neurons are divided111
in D1 or D2 populations, each one with different learning kernel constants (so they can learn to respond112
to different situations; more on this later), and also divided by channels (one per action). STR D1 and113
D2 populations are complementary, as the D1 population tries to learn what action it has to do, while D2114
population tries to learn what action it has to stop. The action neurons are a population that integrates its115
channel activity and outputs the agent’s behavior, and they are tuned to fire every input cycle if they receive116
enough stimulation (at least two more spikes from D1 neurons than D2 neurons each cycle). The dopamine117
neuron was tuned to have a firing range from 50 to 350 spikes per second, with these unrealistic values118
chosen to improve computational performance (instead of simulating a bigger dopaminergic population).119

The input generation procedure is described in Gonzalez-Redondo et al. (2022) and based on Masquelier120
et al. (2009); Garrido et al. (2016). The agent perceives the environment as 2000 analog inputs. These inputs121
are fed one-to-one to an input layer of LIF neurons as currents (Figure 1B), altogether with an oscillatory122
drive. This oscillatory drive leads to a current-to-phase conversion: the neurons that receive the strongest123
analog input currents will fire first during the phase of the cycle (Masquelier et al., 2009). This way we124
encode analog inputs in specific spatio-temporal spike activity patterns. This is called phase-of-firing125
encoding and represents information in the spike times of neurons relative to the phase of a background126
oscillation (in our case, the oscillatory drive). New input stimuli are presented at uniformly distributed127
random intervals of 200-500ms. The stimulus can be a repeating pattern or noise, and both are generated128
randomly depending on the simulation seed. When presenting a repeating pattern, only half of the input129
neurons (1000) are pattern-specific, while the other half receives random current values. When no pattern130
is presented, all the input neurons receive random current values.131

The network model (Figure 1A) contains two channels. Every channel contains two parallel layers (STR132
D1 and D2 neurons, respectively) of striatal-like neurons with asymmetrical structured lateral inhibition (as133
in Burke et al. (2017)) within and between STR D1 and D2 populations. The output of each channel is an134
action node that integrates the channel activity to decide if the agent takes an action or not. The agent can135
do none, both, or any of them at a time. A dopaminergic neuron projects its activity to both action channels136
as a neuromodulator (dopamine) determining what the agent should learn from the recent past experience.137
An environment reward signal (based on the chosen and the expected action) is delivered to this neuron as138
excitatory (rewards) or inhibitory (punishments) input.139

The neurons in each channel receive plastic synapses from the input layer. The STDE (Gurney et al., 2015)140
learning rule is used, a modification of a reward-modulated STDP learning rule where the kernel constants141
are dopamine-dependent (that is, different values are defined for low dopamine and high dopamine values,142
see Figure 2). This rule also uses elegibility traces to store the potential changes, similarly to Izhikevich143
(2007). The learning kernels are different for STR D1 and D2 neurons, as their biological counterparts144
respond to different situations (Gerfen and Surmeier, 2011): D1 neurons are more predominant in the direct145
pathway of the BG, which tend to promote behavior when it is active. D2 neurons are more predominant in146
the indirect pathway of the BG, which tend to inhibit behavior when it is active. For this reason the initial147
learning kernels were manually chosen to be complementary: D1 neurons learn to do actions, and D2148
neurons learn to stop actions. The dopaminergic modulatory signal is global and delivered to every STDE149
connection from input layer to channel neurons. Lastly, two homeostatic mechanisms are added to improve150
the learning process: first, the synapses implementing the STDE included a non-Hebbian strengthening in151

Frontiers 4



Cruz et al. Tuning spiking neural models

response to every pre-synaptic spike. Second, we include adaptive threshold to our neuron models based on152
Galindo et al. (2020).153

Figure 1. Cortico-striatal network solving a RL task (from Gonzalez-Redondo et al. (2022)). A. Structure
of the network. B-F. The activity of the network during the last 5 seconds of simulation. Background color
indicates the reward policy (yellowish colors, action A is rewarded and B is punished; bluish colors, action
B is rewarded and A is punished; grey, any action is punished). B. Input pattern conveyed to the input layer.
C. Raster plot of the channel-A action neurons. Yellow dots represent STR D1 spikes, and orange dots are
STR D2 spikes. D. Raster plot of channel B. Cyan dots represent STR D1 spikes, and dark blue dots are
STR D2 spikes. E. Action neuron firing rates. The middle horizontal line represents 0 Hz. Action A and B
activity are represented in opposites directions for clarity. Action A neuronal activity increases in yellow
zones while action B neuronal activity in cyan intervals. F. Firing rate of the dopaminergic neuron (black
line). Dotted horizontal lines indicate the range of dopamine activity considered: black is the baseline,
green is the maximum reward, and red represents the maximum punishment. Dots indicate rewards (green)
and punishment (red) events delivered to the agent. G. Evolution of the learning accuracy of the agent, see
Section 2.1 for further details. The dotted line marks the accuracy level by chance.

The agent has to learn a simple mapping task from stimulus to action. Every 200-500ms a new stimulus154
is presented and the agent has to respond with an appropriate action. There are five different repeating155
patterns and the agent has two possible actions to choose, A or B. Two patterns require action A, other156
two patterns require action B, and the fifth pattern requires do nothing. If the agent responds correctly, the157
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environment gives a reward. If a different action is taken, a punishment is given. If the input is just noise,158
the environment does not give rewards nor punishments.159

We use a confusion matrix to help measure the performance of the model. Each row indicates the160
rewarded action in response to the presented pattern, and each column indicates the selected action in161
response to the presented pattern. Every cell mij then counts the number of occurrences of j action being162
done when i action was expected to be done. We only consider in the calculation those trials in which163
some reward or punishment can be delivered, ignoring those intervals with only noise as the stimulus.164
We consider that an action has been taken if the corresponding action neuron has spiked at least once165
during the pattern presentation, and conversely, we consider that no action has been taken if none of the166
action neurons spikes during the same duration. By doing so, we obtain a confusion matrix, widely used in167
classification problems when the objective is to describe the accuracy of a final map process (Stehman,168
1997). The confusion matrix is defined as in expression (1),169

C ≡


m11 m12 · · · m1C

m21 m22 · · · m2C
...

... . . . ...
mC1 mC2 · · · mCC

 (1)

where mij represents the number of occurrences belonging to the i-th class (the rewarded action) but170
classified as members of the j-th class (the selected action).171

We then measure the model’s performance as the accuracy of the classification, defined as the sum of the172
number of correct predictions (the trace of the matrix) divided by the total number of pattern presentations173
considered (the sum of the whole matrix). In order to measure the evolution through time of the performance174
of the models, we calculate the confusion matrix for each pattern presentation and then use a rolling mean175
of the last 100 values to obtain an estimation of the temporal evolution of the accuracy.176

2.2 Model tuning as an optimization problem177

In this context, it is possible to measure the performance of the model resulting from any set of parameters178
as the accuracy, F , of the classification, according to Equation (2). This value is defined as the sum of the179
number of correct predictions (the trace of the matrix) divided by the total number of pattern presentations180
considered (the sum of the whole matrix). To measure the evolution through time of the performance of the181
models, we calculate the confusion matrix for each pattern presentation and then use a rolling mean of the182
last 100 values to obtain an estimation of the temporal evolution of the accuracy.183

F =

∑
imii∑

i

∑
j mij

(2)

The value of F will ultimately depend on thirteen variables, a selected subset of all the variables of the184
model, which determine the model behavior. Notice that the model features inherent stochasticity, which185
is handled by returning the average of five simulations. The variables are shown in Table 1, including186
their corresponding ranges. These variables have been chosen to be optimized as they are the ones related187
to the learning process of the model. We did not optimize the neuron model variables as we already188
found reasonable values to make their firing behavior match their biological counterparts. Variable wmax189
represents the maximum weight of each plastic synapse. Variable Cpre is the homeostatic term applied per190
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presynaptic spike. Variable τth is the time constant of the adaptive neuron threshold. Variable Cth defines the191
additive increment of the adaptive threshold of a striatal neuron after a spike, and it is inversely proportional192
to the target firing rate. Variable µ is a dimensionless constant that modulates all learning parameters. Lastly,193
the kernel shape of the STDE learning rule is defined by the parameters kSPK

DA with SPK ∈ {+,−} being194
the spike order pre-post for applying k+DA and post-pre for applying k−DA, respectively, and DA ∈ {hi, lo}195
being the high- or low-DA cases, resulting in four parameters per neuron population: k+hi, k

+
lo, k−hi and k−lo.196

As we have two neuron populations POP ∈ {d1, d2}, there are eight kPOP
SPK
DA STDE parameters in total:197

kd1
+
hi, kd1

+
lo, kd1

−
hi, kd1

−
lo, kd2

+
hi, kd2

+
lo, kd2

−
hi and kd2

−
lo. A graphical representation of all these kernels for198

the manually-tuned case can be found in Figure 2.199

Table 1. Parameters to tune for the neural model and their allowed ranges.
Variable Lower bound Upper bound Unit
wmax 10−3 10−1 µS
Cpre −10−5 10−5 µS
µ 5 · 10−4 5 · 10−2 -
τth 1 200 seconds
Cth 10−2 2 mV
kd1

+
hi −1 1 -

kd1
−
hi −1 1 -

kd1
+
lo −1 1 -

kd1
−
lo −1 1 -

kd2
+
hi −1 1 -

kd2
−
hi −1 1 -

kd2
+
lo −1 1 -

kd2
−
lo −1 1 -

Based on this quality metric and the variables involved, model tuning can be expressed as an optimization200
problem. It focuses on finding the values of the parameters (within their feasible range) that maximize the201
value of F , which becomes the objective function in optimization terms. The problem can be formulated202
according to Equation (3). For simplicity, only the first and the last variables are shown. The constraints203
keep every variable in its feasible range, which results in a box-constrained problem (Costa and Nannicini,204
2018; Stripinis and Paulavičius, 2022). The max and min superscripts linked to each parameter symbol205
denote its upper and lower bounds, respectively. The numerical values are those shown in Table 1.206

maximize
wmax,...,kd2

−
lo

F (wmax, . . . , kd2
−
lo)

subject to wlower
max ≤ wmax ≤ wupper

max

. . .

kd2
−,lower
lo ≤ kd2

−
lo ≤ kd2

−,upper
lo

(3)
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Figure 2. Manually-tuned kernels used for STDE synapses of MSN D1 (left) and D2 (right), showing
the weight change depending on the time difference between pre- and post-synaptic spikes and dopamine.
Lines represent kernels at dopamine minimum and maximum values (red and green, respectively).

Notice that the problem is defined as a maximization one, but optimization methods traditionally aim207
at minimization. Regardless, this is not relevant because converting a maximization problem into a208
minimization one is trivial. It is only necessary to multiply the objective function by -1, i.e., maximizing209
F (. . . ) is equal to minimizing −F (. . . ).210

2.3 Optimization methods211

As introduced, evaluating the objective function relies on non-deterministic simulations and is212
computationally demanding. Thus, the methods considered are designed for black-box optimization213
(Audet and Hare, 2017), i.e., RBFOpt (Costa and Nannicini, 2018), SurrogateOpt (Matlab, 2021), DIRECT-214
GL (Stripinis et al., 2018), and a random search Cruz et al. (2018). The first three, which are also the215
preferred options, have been explicitly designed to require few function evaluations. All of them are216
prepared for exploiting parallel computing. Finally, it is relevant to highlight that among the considered217
methods, DIRECT-GL is the only deterministic one, which means that the algorithm does not rely on218
randomness and always returns the same result for the same problem instance and configuration.219

2.3.1 RBFOpt220

RBFOpt, published in Costa and Nannicini (2018), is an open-source library written in Python for221
black-box optimization with computationally-expensive objective functions. This tool is based on the222
method proposed by Gutmann (2001).223

RBFOpt belongs to the family of surrogate optimization methods. The fundamental idea of surrogate224
optimization is that the process relies on iteratively building an approximate model (response surface or225
surrogate model) of the real objective function. While the former approximates the latter, its computational226
requirements are expected to be significantly lower, and the accuracy can improve as the information227
on the target function increases with the points evaluated (Vu et al., 2017). For building the surrogate228
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Table 2. Frequent radial basis functions.
ϕ(r) Type Minimum degree
r Linear 0
r3 Cubic 1

r2 log r Thin plate spline 1

model, RBFOpt uses radial basis functions, whose output depends on the distance between the input and a229
given reference. In this field, Gutmann (2001) was a pioneer of using radial basis functions for optimizing230
computationally demanding black-box functions (Costa and Nannicini, 2018).231

Let f(x) be an abstract objective function of the form f : RN → R, where x ∈
[
xmin, xmax

]
, and232

xmin, xmax ∈ RN , i.e., the corresponding lower and upper bounds of each decision variable. Notice that233
this can be seen as a generalization of the particular problem formulation in Equation (3). For K different234
points of the search space, x1, . . . , xK , with known values, y1 = f(x1), . . . , yK = f(xK), the associated235
radial basis function interpolant, sK , has the following structure as the sum of K radial basis functions236
(Costa and Nannicini, 2018; Vu et al., 2017):237

sK(x) =
K∑
i=1

λiϕ (∥x− xi∥) + p(x) (4)

where ϕ : R+ → R, which is a radial basis function, λ1, . . . , λK ∈ R acting like weights of the model, and238
p(x) is a polynomial. The minimum degree of p to guarantee the existence of the interpolant depends on the239
form of ϕ. Table 2 contains three common radial basis functions for a generic input, r. It also includes the240
minimum degree of their accompanying polynomial p that ensures the existence of the interpolant. If these241
components are appropriately configured, the desired radial basis function interpolant can be efficiently242
computed by solving a linear system to find the unknown parameters, such as the weights. For instance,243
x1, . . . , xK should be pairwise distinct (Costa and Nannicini, 2018; Vu et al., 2017).244

The general procedure applied by optimization methods using radial basis functions follows Algorithm 1245
(Costa and Nannicini, 2018). A particular method will define a strategy to implement these generic steps,246
starting from selecting the initial points. For example, for low-dimensional problems, a valid approach is to247
choose the corners of the search space. Another one is to pick the corners and the central point. Controlling248
the effort put into improving the accuracy of the surrogate model and finding the best point with the current249
model is also critical. The method by Gutmann (2001) defined a measure of the bumpiness of the surrogate250
model for this purpose. Their method assumes that the real objective function does not oscillate excessively,251
so when configuring models and considering new points, the smoother (or ‘least bumpy’) interpolant is252
preferred (see Figure 3, which assumes four known points and a hypothetical target value of the cost253
function). Regardless, describing these aspects in detail is out of the scope of this paper. See the work by254
Vu et al. (2017) to have a detailed overview, and that by Costa and Nannicini (2018) to understand the255
fundamentals of RBFOpt.256

In this context, RBFOpt has two main contributions. The first is an automatic model selection component.257
The second is the support for using faster yet less accurate variants of the objective function. The latter is258
especially appropriate for the target problem since the simulation-related parts of the objective function,259
such as the training time and the seeds, are adjustable. They can be modified by the expert in charge of260
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Algorithm 1 Generic global optimization through radial basis functions
1: Initial step - Select K points
2: while There is available function evaluations do
3: Compute the radial basis function interpolant
4: Decide between improving the surrogate model and finding the best point using the current model.
5: Determine the next point to consider according to the previous decision
6: Evaluate the objective function at the new point
7: end while
8: return Best point found

Figure 3. Depiction of two surrogate models interpolating four points (blue circles) and reaching a target
value (horizontal dashed line). The green solid-line model is considered more likely than the red dashed-line
one since it is smoother. In other words, the method by Gutmann (2001) assumes that it is more likely
that the point tagged with a diamond exists (green line) rather than that with a square (red line) in the real
function (Costa and Nannicini, 2018).

model tuning to reduce time at the expense of losing accuracy. These properties, along with its open-source261
nature, the compatibility with parallel computing, and the good results reported in Costa and Nannicini262
(2018) motivated its consideration for the present work.263

2.3.2 SurrogateOpt264

SurrogateOpt is a solver for computationally-demanding black-box optimization problems provided by265
the Global Optimization Toolbox (López, 2014) of Matlab Matlab (2021) since its version R2018b. As266
introduced, it belongs to the same group as RBFOpt since the method is a surrogate optimization algorithm.267
SurrogateOpt also uses radial basis function interpolators. Its documentation motivates this decision by268
highlighting that they support any number of dimensions and are computationally cheap to construct,269
evaluate, and extend. This tool is mainly based on the algorithm proposed by Regis and Shoemaker (2007).270
It has been selected due to its effectiveness, simplicity of use, and compatibility with parallel computing.271

Conceptually, SurrogateOpt follows a scheme similar to Algorithm 1. The fundamental differences272
correspond to the implementation of each step and specific definitions. In this regard, SurrogateOpt has273
a rich set of associated concepts and procedures, which are summarized below. According to its official274
documentation, the method alternates between two stages: Construct Surrogate and Search for Minimum.275
The change between them occurs after what is called the surrogate reset.276

In the first stage, the method builds a surrogate of the real objective function. For this purpose, it277
interpolates a radial basis function through a set of points whose value must be computed with the real278
yet computationally demanding objective function. SurrogateOpt uses a cubic radial basis function with279
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a linear tail, which minimizes the concept of bumpiness (Gutmann, 2001) previously mentioned when280
describing RBFOpt. In the beginning, the solver computes and evaluates a user-given number of random281
points distributed adequately within the bounds. It can also start from a user-given set of points of known282
value. In later executions of this stage, the software package will create and evaluate a parameter-defined283
number of random points. As explained for RBFOpt, building the desired interpolant involves solving a284
linear system of equations.285

In the second stage, SurrogateOpt looks for a minimum of the objective function using a procedure286
that resembles a local search. More specifically, the method defines a search region radius, known as287
the scale, whose initial value is 0.2. It starts from the best point since the last surrogate reset, i.e., the288
one with the smallest objective function value. This point is called the incumbent point. The search then289
focuses on finding a minimum of a merit function that relates the surrogate and the distance from the points290
evaluated with the real objective function. This approach aims to find a trade-off between minimizing the291
surrogate, which is not the real objective function and is potentially less accurate, and evaluating new292
points accurately.293

Mathematically, the definition of the merit function for any point x combines two weighted terms, the294
scaled surrogate, S(x), and the scaled distance, D(x). Being smin and smax the minimum and maximum295
surrogate values of the sample points, respectively, and s(x) that of the considered point, the scaled296
surrogate is defined as follows (Matlab, 2021):297

S(x) =
s(x)− smin

smax − smin
(5)

S(x) is non-negative and zero at points having minimal surrogate values among sample points. Concerning298
the scaled distance, it is defined as follows:299

D(x) =
dmax − d(x)

dmax − dmin
(6)

where dmin and dmax are the minimum and maximum distances from a sample point to any evaluated one,300
respectively, and d(x) is the minimum distance of the point x to an evaluated one. D(x) is non-negative,301
and zero at points at the furthest distance from evaluated points. Hence, minimizing D(x) orientates the302
algorithm towards regions separated from evaluated points. The merit function is a convex combination of303
both parts according to the following structure:304

wS(x) + (1− w)D(x) (7)

where w is a weighting factor between zero and one. The greater it is, the most effort is put into minimizing305
the surrogate model. Analogously, the smaller it is, the most interest in exploring new regions. This306
weighting factor cycles through the following values, according to Regis and Shoemaker (2007): 0.3, 0.5,307
0.8, and 0.95.308

During the search, the solver adds multiple (up to thousands) random vectors to the incumbent point to309
generate sample points. The vectors are shifted and scaled by the bounds in each dimension and ultimately310
multiplied by the scale. The sample points must also respect the problem bounds. Then, the merit function311
is evaluated at all of them further than a parameter-defined distance from any point previously evaluated.312
The one featuring the best (lowest) value of the merit function becomes an adaptive point. The real objective313
function will be ultimately computed at it, which will be used to update the surrogate model and assess the314

Frontiers 11



Cruz et al. Tuning spiking neural models

real gain from the incumbent value. If the real value of the adaptive point is significantly better than the315
current incumbent point, the former replaces the latter, and the search is considered successful. Otherwise,316
the incumbent point remains unaltered, and the search is classified as unsuccessful.317

The scale of the search changes when one of the following conditions is met:318

1. There have been three successful searches since the last scale change.319

2. There have been either five or the number of problem variables (whichever greater) unsuccessful320
searches since the last scale change.321

If the first condition is met, the scale is doubled (up to a maximum length of 0.8 times the size of the box322
defined by the problem bounds). If the second situation occurs first, the scale is divided by two (without323
becoming lower than 1e−5 times the size of the box defined by the problem bounds). By proceeding this324
way, the search ultimately focuses near an incumbent point featuring a small objective function value.325

After considering all the new sample points further than a minimum distance from evaluated points, the326
Search for Minimum phase ends to go back to the Construct Surrogate one, i.e., resetting the surrogate327
model. This phase change generally occurs after reducing the scale until all sample points are closely328
around the incumbent point.329

2.3.3 DIRECT-GL330

DIRECT-GL, proposed by Stripinis et al. (2018); Stripinis and Paulavičius (2022), is an enhanced version331
of a popular method, DIRECT (Jones and Martins, 2021). This new variant is designed as a modification332
of a specific part of the original method. Hence, it is convenient to start by describing the initial DIRECT333
and its framework, inherited by the new one.334

DIRECT was proposed in Jones et al. (1993) as a modification of Lipschitzian Optimization that did335
not require specifying a Lipschitz constant, i.e., a bound on the rate of change of the objective function,336
which cannot be easily computed in real problems (or it may not exist). Aside from keeping a deterministic337
behavior, the method was simpler, converged faster, and featured a certain degree of compatibility with338
parallel computing. It was later revised by his author in Jones (2001) to handle not only box or domain339
constraints and continuous variables, but also nonlinear inequality constraints and integer variables. From340
the beginning, this method was conceived for black-box optimization and situations in which the objective341
function was time-consuming.342

Global optimization algorithms must find a trade-off between exploration and exploitation of the search343
space (Van Geit et al., 2008). The first term refers to finding unexplored regions, and the second represents344
the capacity to find the best solution in a known zone (global and local search capabilities, respectively).345
In Lipschitz Optimization, the Lipschitz constant is treated as a weighting factor determining how much346
emphasis to put into global over local search by indicating where to split the search space into sub-regions.347
This value must equal or exceed the maximum rate of change of the objective function, so conservative348
configurations excessively focus on global search. It also makes these methods slow to converge because349
modifying the value at search is challenging. In contrast to them, DIRECT could maintain the scheme of350
dividing the search space and autonomously prioritized the regions to explore by virtually considering all351
possible constants. The division was also independent of the number of dimensions, so the algorithm was352
more scalable with the problem dimensionality (yet not recommended for more than 20 variables (Jones,353
2001)).354
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Figure 4. Main aspects of DIRECT and its search space after two iterations. At the beginning of the initial
iteration, point A is the first evaluated and represents the first and only rectangle (square) defined by the
search space. It is trisected and results in the rectangles defined by points B and C. At the second iteration,
the rectangle defined by point C is selected and trisected resulting in rectangles defined by points D and E.

More specifically, DIRECT starts by normalizing each variable to [0, 1] so that the search space becomes355
the unit hypercube. Then, the method proceeds by dividing it into sub-rectangles. This scheme determines356
the name of the method, since DIRECT comes from ‘DIviding RECTangles’. The rectangles are represented357
by the value of the objective function at their center, which avoids the effect of problem dimensionality:358
rectangles only have one center independently of the dimensions. It is also relevant to highlight that the359
referred division is a trisection in reality, which allows keeping the focus on the original rectangle without360
further re-evaluation, i.e., its center stills refer to a different region. Figure 4 depicts these ideas assuming a361
2D search space and two divisions (trisections).362

The fundamental aspect of DIRECT is how the rectangles are selected for division and further exploration363
at each iteration. This selection is deterministic and theoretically considers every possible balance between364
exploration and exploitation (Lipschitz-like constant). As detailed in Jones (2001), a pure global method365
would always select the widest rectangle. A pure local one would opt for the one with the best value at its366
center. The former avoids overlooking the promising regions, while the latter promotes that.367

DIRECT does not force itself to select just one rectangle, which would require parameters to tune. Instead,368
the method computes all the weightings of local versus global search. For this purpose, it defines the size369
of any rectangle as the distance between its center and one of its vertices. Then, for every selection at a370
particular iteration, the method represents all the available rectangles depending on their size and the value371
of their center. After that, it proceeds to select those in the low-right convex hull. Figure 5 depicts this idea372
assuming a minimization problem. The selected rectangles are the balanced options between local and373
global search considering the central value and size of the corresponding regions. Notice the similitude374
of this approach to computing the Pareto set as the solution to a multi-objective optimization problem375
(Filatovas et al., 2017).376

Interestingly, as explained in Jones (2001) and also shown in Figure 5, the selection of rectangles can377
be alternatively derived from the rate of change of the function in each. If one knows the optimal value,378
anchors a half-line at it, and swings the free extreme upwards, the first dot touched represents the rectangle379
with the most reasonable rate of change, i.e., gradual instead of steep, to contain the optimum. Hence, that380
rectangle must be selected. In reality, the optimal value is not usually known. However, it is possible to381
repeat this process from the best value known so far, as the optimal value will be equal to or lower than it,382
to minus infinity. Selecting the touched dot for each anchored point results in the lower-right convex hull383
previously defined. It is hence possible to obtain the same selection scheme yet by thinking differently.384
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Figure 5. Selection of rectangles to further explore (divide) in DIRECT for a hypothetical minimization
problem. The available rectangles are represented as dots (circles are shown for clarity). The horizontal
axis corresponds to the size of each rectangle, and the vertical one shows the value of the objective function
at its center (lower is better for minimization). In this context, rectangle A is the one with the best central
value, while B encompasses the broadest region. The rectangles selected will lie in the lower-right convex
hull, which represents the optimal balance between exploration and exploitation. The red lines at the
bottom shows an alternative way to derive this selection method: A line is anchored at every value better
than known, starting from that one minus the desired accuracy (minimum relevant change), ϵ, and swept
upwards until reaching a rectangle. Repeating the process to (negative for minimization) infinity results in
the same convex hull (and avoids regions with expected negligible improvements).

Besides, it is possible to subtract an arbitrary value, ϵ, to the best value known to discard from the hull385
the rectangles with negligible improvements. Accordingly, DIRECT only expects as input the maximum386
number of function evaluations and the constant ϵ, which can be seen as the desired accuracy of the solution.387
The interested reader can see Jones (2001) for further information about this algorithm.388

Despite its good properties (conceptual simplicity, ingenious deterministic exploration, and requiring a389
single parameter), DIRECT is not free of potential drawbacks, and researchers have proposed numerous390
variants (Jones and Martins, 2021; Stripinis and Paulavičius, 2022). The two main flaws of the initial391
method are (Stripinis and Paulavičius, 2022) i) the potential waste of function evaluations in sub-optimal392
regions for functions with many local optima and ii) the slow convergence rate even after having identified393
the basin of the global optimum (Jones and Martins, 2021). Accordingly, the method selected for this work394
is one of the revised versions of DIRECT, i.e., DIRECT-GL, which tries to overcome both (Stripinis et al.,395
2018).396

For this purpose, the authors of DIRECT-GL modified the selection of rectangles to consider more than its397
ancestor. The process has two stages and fits into the original framework without requiring extra parameters.398
The first one enhances the global search component of the method, represented by the letter ‘G’ in its name.399
It starts by adding the rectangles with the best central value and prioritizing those that are bigger. This400
approach results in more rectangles of medium size and the best values. The second phase is similar, but401
it considers the Euclidean distance to the best point known so far instead of the objective function value.402
Namely, it tries to add more hyper-rectangles close to the current minimum. This strategy strengthens the403
exploration of the most promising area, i.e., it enhances the local search aspect of the method, represented404
by the letter ‘L’ in its name.405

Aside from the computational studies in Stripinis et al. (2018), the effectiveness of this strategy is406
supported by the recent comparison in Stripinis and Paulavičius (2022), where DIRECT-GL exhibits the407
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best performance among all the DIRECT-based methods. The implementation in Stripinis and Paulavičius408
(2022), also used in this work, unifies the results of both stages in a single selection. This aspect differs409
from the original work to make the method more suitable for parallelization and more effective.410

2.3.4 Random Search411

A pure random search procedure is arguably the simplest global optimizer (Brooks, 1958), and it belongs412
to the stochastic family of optimization methods (Cruz et al., 2018). More specifically, it consists in413
randomly generating solutions in the search space while keeping a record of the best one found so far.414
Algorithm 2 describes this process in detail. Notice that it is expressed in general terms, and the comparison415
criterion will depend on if the objective function is to be minimized or maximized.416

Algorithm 2 Random search
Require: Objective function: f , Evaluations allowed: evals

1: solution← ∅
2: currentVal← worst value
3: iter← 0
4: while iter < evals do
5: point← random()
6: if f(point) is better than currentVal then
7: solution← point
8: currentVal← f(point)
9: end if

10: iter← iter + 1
11: end while
12: return solution

Despite its simplicity, this method converges to a global optimum when the number of allowed evaluations417
tends to infinity (Brooks, 1958). On the one hand, its practical applicability is low due to the lack of418
orientation during the search. For this reason, it has been initially selected for the problem at hand419
as the expected baseline reference, especially considering that the computational cost of the objective420
function makes it difficult to work with high evaluation budgets. Thus, the previous methods are expected421
to outperform this one because of their sophisticated components to explore and exploit the search422
space (Van Geit et al., 2008). On the other hand, the simple structure of this procedure, which is also423
embarrassingly parallel in terms of high-performance computing (Trobec et al., 2018), ensures a high424
rate of solution evaluations in an appropriate computing platform. Hence, its results can be of interest425
depending on the ultimate problem difficulty and the quality requirements.426

3 EXPERIMENTATION AND RESULTS

3.1 Problem-specific setup and reference value427

A sample tuning problem of a spiking neural model of striatum plasticity has been addressed to assess428
the performance of the considered optimization methods. The problem was selected due to its high number429
of parameters, biological relevance, and computational cost of evaluating solutions. The model details are430
in (Gonzalez-Redondo et al., 2022), and the important problem-specific setup is summarized below.431

The simulation time was 500 seconds, enough to the hand-tuned models to converge to a solution. The432
model contains 2000 leaky integrate-and-fire (LIF) input neurons and 16 spiking LIF output neurons433
with adaptive threshold divided in two channels (one per possible action). During the learning protocol 5434
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different repeating stimuli were used, besides noise. The duration of each stimulus is taken from a uniform435
random distribution between 100 and 500ms. Five different random seeds were used for every set of436
parameters tested and the resulting fitness of each seed averaged.437

The best result obtained without optimization methods is shown in Figure 1. Panels C-F show network438
activity and rewards/punishments during the last 5 seconds of simulation. The most relevant information439
is the accuracy through the training process. The mean of the last 100 seconds of the accuracy is used as440
the fitness for the objective function. The procedure to calculate the accuracy is described in section 2.1.441
The accuracy evolution of the best result obtained by an expert after manually tuning for two months the442
parameters using a trial-and-error procedure is shown in Figure 1G. Good sets of parameters typically443
plateau after 400 seconds, as wrong actions are taken from time to time even with further training.444

3.2 Computational setup445

The computational platform used belongs to the high-performance computing cluster of the446
Supercomputing – Algorithms research group from the University of Almerı́a, Spain. Specifically, up to447
8 Bull Sequana X440-A5 nodes were used to launch different executions. Every node features 2 AMD448
EPYC Rome 7642 with 48 cores each, i.e., 96 cores in total, 512 GB of RAM, and 240 GB SSD as its449
main disk. In a core of one of these nodes, evaluating a candidate solution or set of model parameters for450
the configuration described above takes 1.78 ± 0.12 hours on average. This value has been computed by451
generating and evaluating 96 random feasible parameter sets. The software environment consists of Matlab452
2020b for SurrogateOpt, DIRECT-GL, and Random Search, and Python 3.6.8 for RBFOpt.453

Two computational budgets have been considered, 300 and 600 function evaluations. The first results454
from taking into account the estimated run time as follows: Since each evaluation takes 1.78 hours on455
average using a high-end processor, 300 evaluations should take 300× 1.78 = 534 hours at least, i.e., 22456
days approximately. This estimation assumes a sequential execution workflow, as a human expert will457
likely proceed, and neglects the overhead associated with the internal computations of the optimizers. The458
value of 22 days of work is in the same order of magnitude as the most favorable conditions found by the459
authors of this paper when doing the referred model fitting by hand. Similarly, the value of 300 function460
evaluations is equal to the budget used by RBFOpt by default. Concerning the second limit used, 600,461
it has been adjusted to two times the lower value. By proceeding this way, it will be possible to assess462
the benefits of doubling the effort. This value would also be close to the maximum function evaluations463
that Surrogateopt would assign to the problem at hand, namely, 50× 13 = 650 according to the official464
documentation.465

The sequential run time estimations would be 22 and 44 days, approximately. The former, for 300466
evaluations, is demanding, but the latter, for 600, starts to be overwhelming for a person. Nevertheless,467
when automating the process by using optimizers compatible with parallel computing and there is access to468
a cluster, both conditions met in this work, the run time can be significantly lower. Ideally, by deploying469
96 threads, the objective function evaluation time could be reduced by a factor up to 96. This speedup470
would mean turning the 534 hours turn into 5.56, approximately. In general, perfect speedup is achieved471
rarely. Spawning and managing concurrent execution units comes at a cost, sequential tasks do not benefit472
from them, and there might not always be enough work for all (e.g., few hyper-rectangles selected by473
DIRECT-GL at a particular iteration). Regardless, the time taken by the optimizers in the cluster is expected474
to be significantly lower than estimated above for a sequential execution.475

Apart from controlling the number of function evaluations allowed, the four solvers have been configured476
with their default options. This includes configuring RBFOpt to use the Bonmin (Bonami et al., 2008)477
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and Ipopt (Wächter and Biegler, 2006) solvers (Costa and Nannicini, 2018) for addressing the internal478
sub-problems that arise (e.g., adjusting the radial basis function interpolants). Aside from this, notice that479
RBFOpt stands out by being capable of using a less accurate yet faster version of the objective function.480
Working with it requires both the referred kind of function and the lower and upper bounds of the expected481
error. To accelerate the neural model assessment, i.e., the objective function, the number of simulation482
seeds has been reduced from 5 to 1, which should make its computation five times faster on average.483

The inaccuracy estimation has been computed as follows: 8 cluster nodes with the same specifications as484
defined above were used to generate 26880 feasible configurations randomly. Then, the standard deviation485
of the objective value for each one of the five simulation seeds was recorded. The average standard deviation486
between seeds for the same configuration was approximately 0.03. Then, according to the empirical rule487
of Statistics, this average standard deviation was multiplied by 3 to cover 99.7% of the values assuming488
a standard distribution. The result is 0.09, which was ultimately rounded up to 0.10 to add an arbitrary489
extra margin. Accordingly, the inaccurate yet faster function is passed to RBFOpt considering that the real490
value (if 5 simulations seeds were considered instead of 1) will be in the range of ±0.10 plus the inaccurate491
estimation.492

3.3 Numerical results493

Table 3 contains the results for the model tuning problem addressed with each optimizer and function494
evaluation budget. The first column shows the optimization algorithm. The second one displays the number495
of function evaluations allowed. The values generally refer to the standard function with five simulation496
seeds. However, the two last cases of RBFOpt combine the full function with the one featuring a single497
simulation seed to be faster despite reducing its accuracy. They include the word ‘fast’ to highlight this498
aspect. Notice that dividing the fast term by 5 and adding it to the standard one results in the same budgets499
considered, i.e., 300 and 600 standard function evaluations. In the beginning, the second configuration500
of this type for RBFOpt consisted of 400 complete evaluations and up to 1000 fast ones, but the results501
were worst, and the solver opted for not executing that many fast evaluations. Thus, it seems preferable to502
put more emphasis on complete ones even though the estimated cost is theoretically equivalent, and we503
ultimately chose the configuration shown.504

The following two columns contain the average efficiency (higher is better, with the best value in bold505
font) and the standard deviation for each optimizer and configuration. All the stochastic methods have506
been independently executed 20 times. With this information, the 95% confidence intervals have been507
computed according to the t-Student distribution considering the sample sizes (i.e., under 30 records508
each). They are shown in the fifth column. The sixth and last column contains the average run time509
for each case (the standard deviations are omitted because of not being either significant or especially510
relevant for this variable). For DIRECT-GL, the run times have been obtained by launching 8 independent511
executions, one per available node. Finally, it is relevant to mention that the RandomSearch results have512
been obtained from the dataset with 26880 random points used to assess the accuracy of the fast version of513
the objective function. More specifically, they come from taking 20 random samples with as many instances514
as the function evaluation budget. Thus, the run times of this method have been analytically estimated by515
multiplying the average evaluation time by the computational budget. They have been ultimately divided516
by the number of CPU cores due to the embarrassingly parallel nature of the process.517

Concerning the results, the most noticeable aspect is that DIRECT-GL shows the worst performance in518
terms of achieved fitness and required run time. The aptitude of its solutions for 300 and 600 function519
evaluations is even worse than that obtained with the simplest method, i.e., RandomSearch. Both results,520
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Table 3. Performance metrics for each optimizer and configuration considered computed with the results
of 20 independent executions.

Optimizer
Function

evaluations
Average
fitness

Standard
Deviation

Confidence
Interval (95%)

Average run
time (h)

SurrogateOpt
300 0.7269 0.0667 [0.6957, 0.7581] 6.07
600 0.7699 0.0691 [0.7376, 0.8022] 11.26

RBFOpt

300 0.5325 0.1461 [0.4641, 0.6009] 6.85
600 0.6267 0.1434 [0.5596, 0.6938] 13.27

200 + 500 fast 0.5843 0.1458 [0.5161, 0.6525] 5.30
500 + 500 fast 0.5923 0.1550 [0.5198, 0.6648] 12.29

DIRECT-GL
300 0.4165 - [0.4165] 81.98
600 0.4618 - [0.4618] 103.38

Random Search
300 0.5492 0.1412 [0.4831, 0.6153] 5.56
600 0.6159 0.1027 [0.5678, 0.6640] 11.13

i.e., 0.4165 and 0.4618, stay outside of the confidence interval of this stochastic method, and below the521
lower bounds for 300 and 600 function evaluations. The same occurs when considering RBFOpt and its522
configuration with 300 evaluations. Accordingly, the difference between these methods is statistically523
significant. Its average run time is also significantly higher than the rest, which comes from the fact that the524
parallelism of DIRECT-GL is strictly bounded by the number of selected rectangles at any point. For this525
reason, it will not always exploit all the available CPU cores, which is critical in the context of interest.526

Conversely, SurrogateOpt stands out as the best-performing method in terms of achieved fitness and a527
low standard deviation. The lower bound of its lowest confidence interval does not fall into the range of528
any other one, so the observed difference between these optimization strategies for the target problem is529
significant. Besides, considering that the run time of RandomSearch is an optimistic approximation, it530
could be said that the computational performance is virtually equivalent. Accordingly, the direct conclusion531
that can be drawn from the results shown in Table 3 is that SurrogateOpt is the best solver for this kind of532
model tuning problem. Moreover, its average results are comparable to that obtained by an expert after533
a tedious and time-demanding model tuning process. More specifically, as detailed in Section 3.1, the534
fitness of the expert-based model tuning was 0.7216, while the average of SurrogateOpt is 0.7269 with 300535
function evaluations only. Nevertheless, one can doubt the effectiveness of doubling the computational536
budget for SurrogateOpt because the confidence intervals of both cases overlap.537

When confidence intervals do not overlap, the difference between two groups is statistically significant.538
However, when they do, the difference might still be relevant Goldstein and Healy (1995); Sullivan (2008).539
To avoid this uncertainty, the confidence intervals for their difference will be computed. For this purpose,540
as both samples have less than 30 instances, the t-Student distribution will be used again. Notice that the541
following formulation assumes similar variances in the population, as it occurs between both cases of542
SurrogateOpt. The pooled estimate of the common standard deviation, SP is computed as follows:543

SP =

√
(n1 − 1)σ21 + (n2 − 1)σ22

n1 + n2 − 2
(8)
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where n1 and n2 are the sample sizes of groups 1 and 2, respectively, and σ1 and σ2 refer to their544
corresponding standard deviation. With this information, the confidence interval for the difference between545
two means, x1 and x2, is obtained as follows:546

(x1 − x2)± tSP

√
1

n1
+

1

n2
(9)

where t refers to the appropriate value from the t-Student table (determined by the sample sizes, as547
introduced) for the desired confidence level and n1 + n2 − 2 degrees of freedom. Notice that the two terms548
after t define the standard error of the difference in means between x1 and x2.549

Back to the mean and standard deviations of both configurations of SurrogateOpt, the 95% confidence550
interval of their difference is [-0.0865, 0.0005] according to 9. It defines a range of likely values for the551
difference in means between both cases, x1 - x2, where x1 is that of 300 function evaluations and x2 is that552
of 600. Theoretically, since the interval contains the null value, i.e., 0, it can be concluded that there is553
no statistically significant difference between the average results of launching SurrogateOpt with 300 and554
600 function evaluations. Even if the upper bound of this interval were slightly below zero, the average555
difference could be perceived as negligible yet confirmed. That said, in practical terms, since the outcome556
of this process is a model parameter set with the highest possible fitness, it seems reasonable to work with557
600 function evaluations and several independent runs whenever possible.558

Regarding RBFOpt and RandomSearch, they remain between the best performing solver, SurrogateOpt,559
and the worst, DIRECT-GL. Being free to use without cost, unlike SurrogateOpt, is their main attribute560
in this context. It is hard to find the best option among them at a glance due to the significant overlap561
and comparatively high standard deviations. Technically, RBFOpt offers the best average results when562
allowed to execute 600 function evaluations. Besides, the 95% confidence interval of the difference between563
300 and 600 function evaluations confirms the effectiveness of doubling the computational effort, yet it564
is arguably negligible. However, the difference with the cases using fast evaluations is not statistically565
significant. The same occurs when comparing RandomSearch and RBFOpt with 600 function evaluations.566
This close similarity indirectly benefits RandomSearch, as it is the simplest strategy to apply, especially567
when there is an available parallel computing platform.568

3.4 Insight into optimization-based model tuning results569

The results of the optimization process yielded better learning capabilities than those of manual tuning.570
Figure 6A shows one of the best configurations found by SurrogateOpt, the preferred method, in action,571
and compares it to the manually tunned option. Although the manually tuned result plateaus after 400572
seconds, the optimized result continues to improve accuracy after that point. In addition, the optimized573
result is more reliable, as its standard deviation is smaller.574

Of the various parameters, the most interesting are the ones that define the shape of the STDE kernels of575
the learning rule for the neurons (MSN D1 and D2). Figure 6B shows the differences between the manually576
tuned kernel and the optimized kernel. While the manually tuned solution tends to use asymmetrical kernels577
in every case, it seems that the optimized solution uses symmetrical kernels for low DA and asymmetrical578
kernels for high DA.579

If we consider symmetrical kernels having values with equal signs and asymmetrical kernels with opposite580
signs, this is in accordance with the values obtained by Gurney et al. (2015) in their exhaustive parametric581
search (Figure 11 in their article). This could be relevant as they are considering more biological constraints582

Frontiers 19



Cruz et al. Tuning spiking neural models

than us. The only discrepancy is in the case of high DA in MSN D2 neurons, where the optimized kernel is583
reversed from the range obtained by Gurney et al. However, further research is needed to better understand584
the significance of these findings as well as the plausibility of the proposed parameters.585

Figure 6. A. Comparison between one of the best results obtained with the SurrogateOpt optimization
method (blue) with the best manually-tuned result (orange), with the mean and standard deviation (n = 5).
B. Comparison of parameters related with the STDE kernel.

4 CONCLUSIONS AND FUTURE WORK

This study addresses the tuning of spiking neural models of striatum plasticity by using state-of-the-art586
black-box and surrogate optimization methods. This kind of model is useful for understanding how the587
brain could perform online reinforcement learning, a fundamental ability that is essential for many tasks588
such as motor control or decision-making. However, tuning these models is a difficult task due to the589
high dimensionality of the parameter space and the time required for the simulations. In addition, experts590
are often biased in their choices of parameter values. This problem can be addressed as an optimization591
problem, which can be solved using different methods.592

This work makes a selection of optimization algorithms designed for computationally-demanding593
objective functions and compatible with parallel computing. The goal is to find the best alternative594
to avoid the necessity of tedious and expert-biased trial-and-error tuning of biologically realistic neural595
models that require much time to be simulated. This approach could automate model tuning despite not596
having been broadly studied yet in this context. Automation will not only avoid potential errors and biased597
configurations, but it can also reduce the required time from weeks to hours.598

The solvers considered are SurrogateOpt, shipped with the Optimization Toolbox of Matlab, RBFOpt,599
which is an open-source optimizer written in Python, and DIRECT-GL, which is an improvement of600
a widespread optimizer written in Matlab yet open-source too. Aside from them, a naive pure-random601
search strategy has also been implemented. They have been compared when trying to tune a spiking neural602
model of striatum plasticity that takes 1.78 hours on average to be simulated in the computing platform.603
The methods were only allowed to evaluate 300 solutions in the first case and 600 in the second. Both604
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computational budgets are in the same order of magnitude as a human expert takes to tune the model used605
as the benchmark, i.e., several hundred function evaluations.606

SurrogateOpt stands out as the best solver to use, and it is hence recommended for this kind of607
computationally demanding neural model tuning problem. It achieves the best average results with the608
lowest standard deviation and significantly distinguishes itself from the rest. The model configurations that609
it finds with 300 function evaluations can compete with the expert-based reference. Namely, the fitness of610
the expert-based model tuning was 0.7216 after two months of work, and the average of SurrogateOpt is611
0.7269 with 300 function evaluations (6 hours approximately). This average increases up to 0.7699 when612
the method can launch 600 evaluations. However, the effectiveness of doubling the computational effort613
could not be confirmed on average for the studied problem. Regardless, the generic recommendation made614
is to work with the highest computational budget and multiple independent executions due to its stochastic615
nature.616

RBFOpt and RandomSearch, both stochastic methods too, perform significantly worse than SurrogateOpt617
in terms of average fitness despite spending similar times. Hence, they should be only used when there is618
no access to the referred solver. Nevertheless, the potential of RandomSearch for this kind of problem is619
remarkable, especially when a high-performance computing platform is available. This method is trivial620
to implement, and its performance can be significantly improved by increasing the number of evaluated621
solutions per unit of time.622

In contrast to the rest, DIRECT-GL, the only deterministic solver chosen, is also the worst option for623
the problem at hand. Its parallel computing capabilities are limited by the number of promising regions624
that the method can find. Since it does not find the best regions in the search space and finds few attractive625
zones, the algorithm is unable to fully exploit the computing platform. These aspects make it not only the626
solver that achieves the worst tuning configurations but also the slowest one.627

As future work, the best-performing solver will be used to tune other neural models featuring628
computationally demanding simulation processes. Additionally, the study might be extended as new629
suitable methods arise.630
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(Human Brain Project SGA3). Finally, A. González-Redondo is supported by an FPU Fellowship from the649
Spanish Ministry of Education (FPU17/04432).650

DATA AVAILABILITY STATEMENT

The neural model used, the datasets generated, the cost functions implemented, and the optimization scripts651
defined will be available upon acceptance. For now, the reviewers can access this material in a zip file652
attached during the upload.653

REFERENCES

Audet, C. and Hare, W. (2017). Derivative-free and blackbox optimization, vol. 2 (Springer)654

Bhosekar, A. and Ierapetritou, M. (2018). Advances in surrogate based modeling, feasibility analysis, and655
optimization: A review. Computers & Chemical Engineering 108, 250–267656
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SUPPLEMENTARY MATERIALS

Neuron models and parameters used773

We used conductance-based versions of the Leaky-Integrate and Fire (LIF) neuron model (Gerstner774
and Kistler, 2002) in every layer of the network, but with different parameters. We classify the neuron775
types according to the layer they belong to: cortical neurons for the input, striatal neurons for the learning776
layer, and action neurons for the output. There is also a dopaminergic neuron that receives the rewards and777
punishments.778

The parameters used for each type were manually tuned to obtain reasonable firing rates. For the cortical779
neurons we used a number of spikes per input cycle (with 8 cycles per second) close to Masquelier et al.780
(2009) and Garrido et al. (2016). For the striatal neurons, we tuned the parameters to obtain a mean firing781
rate of around one spike per second to be within biological ranges (Miller et al., 2008) but with activity782
peaks of two or three spikes per input cycle (16-24 spikes per second). The action neurons are tuned to fire783
every input cycle if they receive enough stimulation from its channel (at least two more spikes from D1784
neurons than D2 neurons each cycle). The dopamine neuron was tuned to have a firing range from 50 to785
350 spikes per second. The parameters used for each neuron type are shown at supplementary Table 4.786

Parameter Cortical Striatal Action Dopaminergic

eexc (mV) 0.0 0.0 0.0 0.0

einh (mV) −85.0 −85.0 −85.0 −85.0
τAMPA (ms) 5.0 5.0 5.0 5.0

τGABA (ms) 10.0 30.0 60.0 10.0

τref (ms) 1.0 15.0 15.0 1.0

Cm (pF) 250.0 50.0 100.0 250.0

gleak (nS) 25.0 10.0 25.0 25.0

Vthr (mV) −40.0 −50.0 −40.0 −65.0
eleak (mV) −65.0 −65.0 −65.0 −40.0

Table 4. Neuron parameters used in the model.
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Abstract

The basal ganglia (BG), and more specifically the striatum, have long been proposed to play
an essential role in action-selection based on a reinforcement learning (RL) paradigm. However,
some recent findings, such as striatal spike-timing-dependent plasticity (STDP) or striatal lateral
connectivity, require further research and modelling as their respective roles are still not well under-
stood. Theoretical models of spiking neurons with homeostatic mechanisms, lateral connectivity,
and reward-modulated STDP have demonstrated a remarkable capability to learn sensorial pat-
terns that statistically correlate with a rewarding signal. In this article, we implement a functional
and biologically inspired network model of the striatum, where learning is based on a previously
proposed learning rule called spike-timing-dependent eligibility (STDE), which captures important
experimental features in the striatum. The proposed computational model can recognize com-
plex input patterns and consistently choose rewarded actions to respond to such sensorial inputs.
Moreover, we assess the role different neuronal and network features, such as homeostatic mech-
anisms and lateral inhibitory connections, play in action-selection with the proposed model. The
homeostatic mechanisms make learning more robust (in terms of suitable parameters) and facili-
tate recovery after rewarding policy swapping, while lateral inhibitory connections are important
when multiple input patterns are associated with the same rewarded action. Finally, according to
our simulations, the optimal delay between the action and the dopaminergic feedback is obtained
around 300ms, as demonstrated in previous studies of RL and in biological studies.

Keywords: Striatum, Reinforcement learning, Spiking neural network, Dopamine, Eligibility
trace, Spike-timing-dependent plasticity

1. Introduction

Animals learn to choose actions among many
options by trial and error, thanks to the feed-
back provided by sparse and delayed rewards.
Reinforcement learning (RL) serves as a theo-5

∗Corresponding author
Email address: alvarogr@ugr.es

(Álvaro González-Redondo)

retical framework for an agent, a system that
acts based on received feedback, to learn to
map situations to actions. This state-action
mapping aims to maximize the performance of
actions, mainly (but not exclusively) consid-10

ering how rewarding or punishing the conse-
quences of the actions are (Sutton et al., 1992).
The basal ganglia (BG), a group of forebrain
nuclei, are posited to play a critical role in
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action-selection based on RL (Grillner et al.,15

2005; Graybiel, 1998; Hikosaka et al., 2000;
Gurney et al., 2001). However, the roles of
recent findings, such as striatal spike-timing-
dependent plasticity (STDP) models and stri-
atal asymmetrical lateral connectivity, remain20

unclear. Investigating these interactions could
improve our comprehension of the BG’s role in
RL, potentially leading to the development of
more efficient bio-inspired reinforcement learn-
ing agents.25

This study aims to explore the impact of
homeostatic mechanisms and asymmetric lat-
eral inhibitory connections on action-selection
in the striatum. We use the RL framework to
gain insights into the neural basis of decision-30

making and contribute to more biologically
plausible basal ganglia models. Our model
stands out from previous models in several
ways: it does not require a critic or extra cir-
cuitry for a temporal difference signal, thereby35

simplifying the model and reducing computa-
tional complexity; additionally, it employs a
spiking neural network with spike-time pattern
representation that adapts well to varying pat-
tern complexities in the pattern classification40

layer.

We propose a functional, biologically in-
spired striatum network model that in-
corporates dopamine-modulated spike-timing-
dependent eligibility (STDE, Gurney et al.45

(2015)) and asymmetric lateral connectivity
(Burke et al., 2017). This model improves
upon existing striatum models by integrating
homeostatic mechanisms, asymmetric lateral
inhibitory connections, and the STDE learning50

rule, capturing essential experimental features
found in the striatum.

In this article, we present a model that ef-
fectively processes complex input patterns in
the context of reinforcement learning. We con-55

duct multiple analyses to assess the interaction
between the learning rule, homeostatic mecha-
nisms, and lateral inhibitory connectivity pat-
terns. By incorporating these elements, we

strive to develop a comprehensive and biologi-60

cally plausible striatum model that offers valu-
able insights. Our study examines the indi-
vidual and combined effects of these factors,
shedding light on the unique topology of the
striatum network and its role in reinforcement65

learning tasks.
The main contributions and findings of this

work are:

• A functional and biologically inspired net-
work model of the striatum that integrates70

dopamine-modulated STDE, homeostatic
mechanisms, and asymmetric lateral in-
hibitory connectivity, providing a more
comprehensive and biologically plausible
representation of the striatum’s function.75

• Analysis of the role of homeostatic mecha-
nisms in making learning more robust and
facilitating recovery after rewarding policy
swapping.

• Investigation of the importance of lateral80

inhibitory connections when multiple in-
put patterns are associated with the same
rewarded action.

• The use of a spiking neural network
with spike-time pattern representation85

that scales well with different pattern com-
plexity, making the model suitable for a
wide range of reinforcement learning tasks.

• Demonstration that the optimal delay be-
tween action and dopaminergic feedback90

occurs around 300 ms, which is consistent
with previous reinforcement learning and
biological studies.

• A model that does not require a critic, sim-
plifying the learning process and reducing95

the need for additional circuitry.

1.1. Basal Ganglia Circuitry and Striatal Con-
nectivity in Decision Making

The BG network is composed of several
structures, grouped in inputs [being the stria-100

tum the best known, and populated by medium
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spiny neurons (MSN)], intermediate layers [the
external segment of the globus pallidus (GPe),
and the substantia nigra pars compacta (SNc)]
and output [substantia nigra pars reticulata105

(SNr)]. The information flows segregated
through the BG circuits (DeLong et al., 1985;
Parent and Hazrati, 1995). It has been pro-
posed that the BG process a large number of
cognitive streams or channels in parallel (Gur-110

ney et al., 2001), each of them representing a
feasible action to be performed (Suryanarayana
et al., 2019). According to recent research,
this segregation through the entire cortico-BG-
thalamic loop shows a very high specificity,115

down to almost neuron-to-neuron level (Hun-
nicutt et al., 2016; Foster et al., 2021). Thus,
it seems feasible to impact behavior at differ-
ent levels of detail. However, with the current
biological evidence it is not exactly known how120

the activation of a channel maps to the cor-
responding behavior and we just assume here
that these channels involve a decision making
process.

The striatum, as the primary input of the125

basal ganglia, connects to the SNr via direct
and indirect pathways, which are traditionally
thought to promote and inhibit behavior, re-
spectively. Each pathway crosses the striatum
through different subpopulations of MSNs, ex-130

pressing dopamine receptors D1 for the direct
pathway and D2 for the indirect pathway. Re-
cent genetic and optical studies on striatal cir-
cuits have allowed for testing classical ideas
about the functioning of this system, but new135

models are needed to better understand the
role of the striatum in learning and decision-
making (Cox and Witten, 2019).

1.2. Spiking Neural Networks: Learning, Re-
ward Modulation, and Striatal Connectiv-140

ity

In recent decades, the use of biologically
plausible computational models composed of
spiking neurons able to learn a target function
has demonstrated being increasingly success-145

ful (Taherkhani et al., 2020; Tavanaei et al.,

2019). These models use discrete-time events
(spikes) to compute and transmit information.
As the specific timing of spikes carry relevant
information in many biological contexts, these150

models are useful to understand how the brain
computes at the neuronal description level.
Combined with the use of local learning rules,
these models can be implemented in highly effi-
cient, low-power, neuromorphic hardware (Ra-155

jendran et al., 2019). Within this framework,
learning from past experiences can be achieved
using the STDP learning rule, a synaptic model
featuring weight adaptation that has been ob-
served in both biological systems (Levy and160

Steward, 1983) and the BG (Fino and Venance,
2010). The STDP also was demonstrated
to be competitive in unsupervised learning of
complex pattern recognition tasks (Masquelier
et al., 2009; Garrido et al., 2016). The com-165

plexity of the patterns comes from their statis-
tically equivalent activity level and from being
immersed within a noisy stream of hundreds
or thousands of inputs. These studies shown
that an oscillatory stream of inputs reaching170

a population of spiking neurons enables a tar-
get post-synaptic neuron equipped with STDP
to detect and recognize the presence of repeti-
tive current patterns (Masquelier et al., 2009).
The added oscillatory drive performs a current-175

to-phase conversion: the neurons that receive
the most potent static current will fire the first
during the oscillation cycle. This mechanism
locks the phase of the spike time, facilitating
the recognition of the previously presented pat-180

terns.

However, STDP-based learning systems tend
to use statistical correlations to strengthen
synaptic connections, resulting in the selection
of the most frequent patterns at the expense185

of the most rewarding (Garrido et al., 2016).
Thus, the STDP rule can be modified to drive
the learning of patterns that statistically cor-
relate with a reward signal (Izhikevich, 2007;
Legenstein et al., 2008). In biological systems,190

unexpected rewards signal relevant stimuli dur-
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ing learning by releasing dopamine (DA). More
specifically, the reward signal is linked to the
phasic modulation of dopaminergic neurons in
the SNc and ventral tegmental area (Schultz,195

2010), that sends reinforcement signals to the
striatal neurons. These rewards do not need
to happen instantly after the relevant stim-
ulus; they can be delayed seconds, resulting
in the distal reward and temporal credit as-200

signment problems. In Izhikevich (2007); Leg-
enstein et al. (2008), the authors suggest a
reward-modulated STDP rule that enables a
neuron to detect rewarded input patterns last-
ing milliseconds, even if the reward is delayed205

by seconds, by using the so-called eligibility
trace. Also, based on the eligibility trace, Gur-
ney et al. (2015) developed a synaptic learn-
ing rule called Spike-Timing-Dependent Eligi-
bility (STDE) based on physiological data that210

captures many features found in the biological
MSN of the basal ganglia. This model is more
flexible than the previous STDP-like rules as
different learning kernels can be used depend-
ing on the amount and type (reward or pun-215

ishment) of reinforcement received. Although
the authors did not include some important
BG features like the GPe nucleus or a cortico-
striatal loop, their model successfully learned
to select an action channel driven by stronger220

cortical input, based only on the timing of the
input and the reward signal.

Another relevant feature of the striatum is
its connectivity. Burke et al. (2017) proposed
a model of asymmetric lateral connectivity in225

the striatum that tries to explain how differ-
ent clusters of striatal neurons interact and
which role they play in information process-
ing. This model accounts for the in vivo phe-
nomenon of co-activation of sub-populations230

of D1 or D2 MSNs, which seems paradoxical
as each subpopulation projects to behaviorally
opposite pathways (direct and indirect, respec-
tively). This structured connectivity pattern is
determined by lateral inhibition between neu-235

rons that belong to the same channel and be-

tween neurons within different channels but ac-
counting for the same receptor type (D1 or D2).
The authors also include asymmetrical connec-
tions with more intensive intra-channel inhibi-240

tion from D2 to D1 neurons than in the op-
posite direction. This pattern resulted in syn-
chronized phase-dependent activation between
MSN D1 and D2 neuron groups that belong to
different channels.245

1.3. Contribution

All the previous ideas are important pieces
of the process of goal-oriented learning but fur-
ther research is required as their respective
roles and how they complement each other are250

still not well understood. The combination of
the STDE rule within a network with asym-
metrically structured lateral inhibition has not
been studied before, and some relevant con-
clusions emerge from this specific study. In255

this article, we design and study a functional
and biologically inspired model of the striatum.
Our approach is based on spike time represen-
tation of complex input patterns and integrates
dopamine modulated STDE and asymmetric260

lateral connectivity, among other mechanisms.
This model learns to select the most rewarding
action to complex input stimuli through RL.
The proposed model has been demonstrated to
be capable of recognizing input patterns rele-265

vant for the task and consistently choosing re-
warded actions in response to that input. We
performed numerous analyses to measure and
better understand the interaction between the
learning rule with homeostatic mechanisms and270

the lateral inhibitory connectivity patterns. By
measuring the single and combined effects of
these factors in the learning process, we want
to shed light on how the particular topology of
the striatum network facilitates the resolution275

of RL tasks.

2. Methods

Aiming to implement a RL framework in a bio-
logically plausible striatum model, we started de-
signing a task where the agent has to learn how280
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to map different input patterns into actions based
on the reward signal delivered by the environment.
We implemented a network model of the striatum
capable of learning this task. This system behaves
like a RL agent and can solve action-selection tasks.285

The methods section is structured as follows: we
first define the neuron and synapse models, input
pattern generation, and networks structures used in
our experiments. Then we describe the experimen-
tal design used with the network model and how we290

measure its learning capability. In Supplementary
Materials we also explain both a previous exper-
iment and a simpler model we made to test the
viability of the combination of oscillatory inputs,
STDE and homeostatic rules that we employed in295

the final network model.

2.1. Computational models

2.1.1. Neuron models
We used conductance-based versions of the

Leaky-Integrate and Fire (LIF) neuron model (Ger-300

stner and Kistler, 2002) as it is computationally ef-
ficient and captures certain biological plausibility.
We use this model in every layer of the network,
but with different parameters. We classify the neu-
ron types according to the layer they belong to:305

cortical neurons for the input, striatal neurons (di-
vided in two subpopulations according to which DA
receptor express, D1 or D2) for the learning layer,
and action neurons for the output. There is also a
dopaminergic neuron that receives the rewards and310

punishments. The parameters used for each type
were manually tuned to obtain reasonable firing
rates. For the cortical neurons we used a number
of spikes per input cycle (with 8 cycles per second)
close to Masquelier et al. (2009) and Garrido et al.315

(2016) (see details about the input protocol in sec-
tion 2.1.2). For the striatal neurons, we tuned the
parameters to obtain a mean firing rate of around
one spike per second to be within biological ranges
(Miller et al., 2008) but with activity peaks of two320

or three spikes per input cycle (16-24 spikes per
second). The action neurons (an integrative popu-
lation that outputs the agent’s behavior) are tuned
to fire every input cycle if they receive enough stim-
ulation from its channel (at least two more spikes325

from D1 neurons than D2 neurons each cycle). The
dopamine neuron was tuned to have a firing range
from 50 to 350 spikes per second, with these un-
realistic values chosen for performance (instead of
simulating a bigger dopaminergic population). The330

parameters used for each neuron type are shown at
supplementary table 1.

2.1.2. Input and oscillatory drive
In the input generation procedure (Masquelier

et al., 2009; Garrido et al., 2016) we consider a335

trial as a segment of time of the simulation where
we present some input stimuli to the network. The
length of each trial is taken from a uniform ran-
dom distribution between 100 and 500ms. An in-
put stimulus represents a combination of 2000 in-340

put current values conveyed one-to-one to a set of
cortical neurons of the same size (Fig. 8A). An
input pattern is a combination of current values
which target precisely the same cortical neurons
every time the input pattern is presented for the345

entire simulation. For every time bin, one or no
pattern is presented. Only half of the cortical neu-
rons (1000) are pattern-specific when presenting a
specific pattern, while the other half receives ran-
dom current values. The cortical neurons specific350

for each pattern are selected at the initialization.
When no pattern is presented, all the cortical neu-
rons receive random current values. Two thousand
current-based LIF cortical neurons transform the
input current levels into spike activity. These neu-355

rons have a firing rate between 8 to 40 spikes per
second due to the sum of the input current values
(ranged from 87% to 110% of the cortical neuron
rheobase currents) and an oscillatory drive at 8Hz
feeding these neurons (with an amplitude of 15% of360

the rheobase current of the cortical neurons). This
oscillatory drive turns the input encoding from ana-
logical signal to phase-of-firing coding (Masquelier
et al., 2009) by locking the phase of the cortical
spikes within the oscillatory drive, as shown in Fig.365

8B. By using these parameters, the cortical neurons
fire between 1 and 5 spikes per cycle.

2.1.3. Spike-Timing-Dependent Eligibility
(STDE) learning rule

We implemented a version of the STDE learn-370

ing rule (Gurney et al. (2015)), a phenomenological
model of synaptic plasticity. This rule is similar to
STDP, but the kernel constants are DA-dependant
(that is, different values are defined for low DA and
high DA values, and interpolated for DA values in-375

between, as shown in Fig. 1 and Supplementary
Fig. 9Ai and Aii). STDE is derived from in vitro
data and predicts changes in direct and indirect
pathways during the learning and extinction of sin-
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gle actions. Throughout, we used the following pa-380

rameters and procedures unless we specified other-
wise. The kernel shape is defined by the parameters
kSPKDA with SPK ∈ {+,−} being the spike order
pre-post for applying k+DA and post-pre for apply-
ing k−DA, respectively, and DA ∈ {hi, lo} being the385

high- or low-DA cases, resulting in four parameters
in total: k+hi, k

+
lo, k

−
hi and k−lo. We obtained these

learning kernel constant values by hand-tuning for
both MSN D1 and D2 cases (see Supplementary
Fig. 9 and supplementary table 2). As in the classic390

STDP learning rule, the weight variation in STDE
is calculated for every pair of pre- and post-synaptic
spikes and decays exponentially with the time dif-
ference between the spikes (Fig. 1). We use time
constants τ = 32 ms and the weights values are395

clipped to [0, 0.075].
Our implementation of STDE uses elegibility

traces that decay exponentially to store the poten-
tial weight changes, similarly to Izhikevich (2007).
Following Gurney et al. (2015) we have two different
eligibility traces per synapse, c+ and c− for spike
pairs with positive and negative timing respectively,
updated for every pair of pre- and post-synaptic
spikes at times tj and ti as in equations (1) and
(2):

δc+ =
(
αk+hi + αk+lo

)
· e

tj−ti
τeli if tj ≤ ti (1)

δc− =
(
αk−hi + αk−lo

)
· e−

tj−ti
τeli if tj > ti (2)

with α = 1−α, α been a value dependent of DA that
we define in equation 3, and τeli been the eligibility
trace time constant with a value twice the length of
the mean reward delay. Overall plastic change at a400

single synapse is then the sum of contributions from
both c+ and c−, scaled by a learning rate factor
η = 0.002.

The level of DA in the system is determined by
one neuron that fires at high (and unrealistic) rates405

for computational simplicity, representing a popu-
lation of neurons from the SNc. This neuron fires
spontaneously at a baseline frequency of 200Hz.
The environment (i.e., the application of rewarding
policies during the experiment) injects positive (or410

negative) current in the dopaminergic neuron when
rewards (or punishments) are applied to the model,
resulting in the firing rate of this neuron ranging be-
tween 50Hz and 350Hz. All plastic synapses share
a global DA level d that decays exponentially with415

temporal constant τda = 20ms. For each spike emit-

Figure 1: Kernels used for STDE synapses of MSN D1
(top) and D2 (bottom), showing the weight change de-
pending on the time difference between pre- and post-
synaptic spikes and dopamine. Thick lines represent
kernels at dopamine minimum, normal, and maximum
values (red, black, and green, respectively). Thin lines
are interpolations of these values.
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ted by the dopaminergic neuron, d is increased by
1
τda

with 200-ms delay.
Our implementation of STDE uses the linear

mixing function α in equation (3), clipped to [0, 1],
to smoothly morph between kernels with low and
high DA:

α =
d− dmin

dmax − dmin
(3)

where dmin and dmax are the minimum and maxi-
mum values of DA considered. We use this equation420

for computational efficiency instead of the Naka-
Rushton function used in Gurney et al. (2015) (the
authors also noted that this is not a requirement, as
long as the mixing function was increasingly mono-
tonic and saturating). The function is bounded to425

values of DA firing rate between 50 and 350Hz, with
the baseline at 200Hz.

2.1.4. Homeostatic mechanisms
During learning, in some cases, the neurons can

stop firing indefinitely due to a learning history430

leading to the wrong parameters. Neuron activity
can also die by sudden changes in the reward policy,
leaving the state of the synaptic weights ill (not rep-
resenting any stimuli and not getting enough input
to fire by chance). To recover neurons from this435

state, we added two different homeostatic mech-
anisms, one at the synaptic level and one at the
neuron level. Although one or the other is enough
to avoid the ill-states, we saw in our tests that we
recovered faster and more reliably by using both.440

The synapses implementing the STDE included
a non-Hebbian strengthening in response to every
pre-synaptic spike. For each arriving spike, the
synaptic weight increases by Cpre = η · 4 · 10−4.
This non-Hebbian strengthening is added to enable445

the recovery of low-bounded synapses (e.g., after a
rewarding policy switch). Although the rewarding
policy does not change in the network experiment,
this homeostatic mechanism also benefits the com-
plete network model learning (more details in sec-450

tion 5.2.2 and Supplementary Fig. 14).
In order to avoid neurons to become permanently

silent during learning, we include adaptive thresh-
old to our neuron models based on Galindo et al.
(2020) according to the following equation:455

dVth
dt

= −Vth − Eleak
τth

(4)

where Vth represents the firing threshold at the
current time, Eleak is the resting potential of the

neuron, and τth is the adaptive threshold time con-
stant. According to equation 4, in the absence of
action potentials, the threshold progressively de-460

creases towards the resting potential, facilitating
neuron firing. When the neuron spikes, the firing
threshold increases a fixed step proportional to the
constant Cth as indicated in equation 5, making
neuron firing more sparse.465

δVth =
Cth
τth

(5)

2.1.5. Striatum network model
The network model of the striatum (Fig. 3A)

contains two channels (channel A and channel B,
each one representing a possible action). Every
channel contains two same-sized subpopulations470

(D1 and D2 neurons, respectively) of striatal-like
neurons (in total, 16 neurons per channel) and one
so-called action neuron that integrates excitatory
activity from D1 neurons and inhibitory activity
from D2 neurons. This design simplifies the bio-475

logical substrate in which all MSN are inhibitory,
but we implemented the network computation by
considering the net effect of each neuron type on
behavior. Biological MSN D1 neurons inhibit SNr,
which promotes behavior, and MSN D2 neurons in-480

hibit GPe, which, in turn, inhibit SNr with the total
effect of decreasing behavior (Fig. 3A).

Our striatum model implements lateral inhibi-
tion within each MSN D1 population, within each
MSN D2 population, between MSN D1 and MSN485

D2 populations within the same channel, and be-
tween the MSN populations associated with differ-
ent action channels. Inspired by Burke et al. (2017),
we used an asymmetrical structured pattern of con-
nectivity (Fig. 5E in (Burke et al., 2017), and490

adapted here in Fig. 2). Following this connec-
tivity pattern, we added lateral inhibition between
neurons that belong to the same channel and be-
tween those that belong to different channels but
use the same dopaminergic receptor D1 or D2 (with495

stronger inhibition from D2 to D1 neurons than in
the opposite direction). Since the small size of the
network under study and the small weight of the D1
to D2 MSN connections, the overall contribution of
these connections was neglectable, so we decided500

not to include them in our simulations as we see no
significant impact on previous simulations.

The environment generates the reinforcement
signal based on comparing the chosen and the ex-
pected action and then delivers it to the dopamin-505
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Figure 2: Connectivity pattern used for the lateral in-
hibition, inspired on Burke et al. (2017). Two channels
(action A and action B) are shown, each with two pop-
ulations of D1 and D2 MSN.

ergic neuron. Rewards are excitatory, and punish-
ments are inhibitory inputs to this neuron. The
dopaminergic modulatory signal is global and deliv-
ered to every STDE connection from cortical layer
to striatal neurons (Fig. 3A). It is important to510

note that this model does not implement a critic
(commonly used in actor-critic frameworks (Sutton
et al., 1992)), so there is no reward prediction error
signal.

2.2. Experimental design515

We first validated the proposed learning mech-
anisms with a simpler network model of only one
neuron and a easier experimental task, as can be
seen in Supplementary Methods 5.1 and Supple-
mentary Results 5.2.520

The action-selection task used to test the model
(Fig. 3B) works as follows: the agent has two possi-
ble actions to choose, A or B. An action is selected
if the activity balance of its D1 and D2 neurons
is biased to D1 in two spikes at least in one cy-525

cle (making the corresponding action neuron spike).
The agent can do none, both, or any of them at a
time. The input stream contains five different non-
overlapping input patterns, each one presented 16%
of the time (80% in total). The policy used to give530

rewards (excitation) and punishments (inhibition)
to the agent (dopaminergic neuron) is the follow-
ing. When pattern 1 or 2 is present, the agent is
rewarded if action A is selected (action A neuron
fires during the pattern presentation and action B535

neuron does not fire) but punished if action B is
selected. When pattern 3 or 4 is present, the agent
is rewarded if action B is selected but punished if
action A is selected. When pattern 5 is present, the
agent is punished if it selects action A or B. This540

policy applies no punishment or reward to the agent
during noisy inputs, whatever the action taken is.
In case of spiking both action neurons during a re-
inforced input, the network is punished.

2.3. Performance measurement545

In the action-selection task we measure the per-

formance of the models by calculating the percent-

age of correct action choices (i.e. the learning accu-

racy). This measure is widely used in classification

problems when the objective is to describe the ac-550

curacy of a final map process (Stehman, 1997). To

do so, for each pattern presentation we store the

rewarded (expected) action in response to the pre-

sented pattern, and the finally selected (chosen) one

during that pattern presentation. We only consider555

in the calculation those trials in which some reward

or punishment can be delivered, ignoring those in-

tervals with no repeating patterns conveyed to the

inputs (only noisy inputs). We consider that an

action has been taken if the corresponding action560

neuron has spiked at least once during the pattern

presentation. Conversely, we consider that no ac-

tion has been taken if none of the action neurons

spikes during the same duration. In order to obtain

an estimation of the temporal evolution of the ac-565

curacy we use a rolling mean of the last 100 values.

3. Results and discussion

We did extensive testing of the learning
mechanisms we proposed. Some of these re-
sults demonstrate that the combination of570

STDE learning rule and homeostatic mecha-
nisms allow learning (and re-learning) of re-
warded patterns, or that there is no effect of
the reward delay and the frequency of the input
pattern on the learning process, among others.575

However, as they are not the main concern for
this article, they are placed in the Supplemen-
tary Results 5.2 section for further examina-
tion.

The main results and discussion are struc-580

tured as follows: we first show the general be-
havior of the network. Then we study the effect
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of the lateral connectivity pattern on the per-
formance and the way neurons are processing
information. Finally, we put our results in con-585

text by comparing our model with previously
proposed models in the literature.

3.1. General network behavior

During the simulation of the action-selection
task, each action group neuron becomes over-590

all active in response to the presentation of the
associated patterns as shown in the raster plots
(Fig. 3C and D) and the activity balance for
the action neuron groups (Fig. 3E), produc-
ing mainly dopaminergic rewarding (Fig. 3F).595

The action accuracy reveals steady-state per-
formance after 200 seconds of simulations (Fig.
3G). According to these results, our combi-
nation of STDE learning rule (Gurney et al.,
2015) with homeostatic mechanisms and an os-600

cillatory input signal in a cortico-striatal model
learns to accurately select the most rewarding
action.

The way our network learns to associate
the corresponding input stimulus with sub-605

populations of D1 and D2 neurons in channel A
or channel B is the following: If the agent takes
the right action for a specific input pattern, the
environment delivers a reward with some delay
(high DA level in Fig. 3F). This reward poten-610

tiates the synapses between the cortical layer
and the action-associated D1 sub-population,
resulting in more frequent firing. On the other
hand, if the agent takes a wrong action, then it
receives a punishment sometime later (low DA615

level in Fig. 3F). This punishment weakens the
synapses from the cortical layer to the action-
associated D1 sub-population while strength-
ening the corresponding synapses to the D2
(inhibitory) sub-population of the same chan-620

nel. This learning process makes the agent
stick to the rewarded action and switch to a
different one when punished. For the specific
case when the environment punishes any action
during a stimulus presentation, both D2 sub-625

populations increase their activity, and both
action neurons remain silent.

The proposed model shows how combin-
ing two complementary dopamine-based STDE
learning rules (Fig. 1) can facilitate the associ-630

ation between sensorial cortical inputs and re-
warded actions with arbitrary rewarding poli-
cies. Previously, the STDE rule had been
shown to be capable of learning to select an
action channel driven by stronger cortical in-635

put (Gurney et al., 2015), and here we show
that this rule can also be used to learn inputs
defined by the specific timing of their spikes
(as all the inputs have the same average fir-
ing rate). This represents a higher complex-640

ity task and illustrates how STDE can be effi-
ciently used for spike time pattern representa-
tion.

The model also is completely bioplausible,
as all the mechanisms used have been de-645

scribed in biological systems: DA induces bidi-
rectional, timing-dependent plasticity at MSNs
glutamatergic synapses (Shen et al., 2008), in
vitro pyramidal neural recordings are consis-
tent with simulations of adaptive spike thresh-650

old neurons, and they lead to better stimulus
discrimination than would be achieved other-
wise (Huang et al., 2016), and rat hippocam-
pal pyramidal neurons in vitro can use rate-
to-phase transform (McLelland and Paulsen,655

2009). Detailed discussion on the role of the
homeostatic mechanisms can be found in Sup-
plementary Materials.

3.2. Effect of lateral inhibition patterns and
task complexity660

Once we have demonstrated how the stri-
atal network can support RL, we wondered to
what extent the connectivity pattern of the lat-
eral inhibition in the striatum could impact the
learning capabilities. So that we extensively665

explored different versions of connectivity.
We first study if there is any relationship

between the connectivity pattern and diffi-
culty of the task. We organized the lateral
inhibitory connections in two groups: intra-670

channel (inhibitory connections from D2 MSNs
to D1 MSNs within the same channel) and

9



Figure 3: Cortico-striatal network solving a RL task. A. Structure of the network. See section 2.1.5 for a detailed
explanation. B-F. The activity of the network during the last 5 seconds of simulation. Background color indicates
the reward policy (yellowish colors, action A is rewarded and B is punished; bluish colors, action B is rewarded and
A is punished; grey, any action is punished). B. Input pattern conveyed to the cortical layer. C. Raster plot of the
channel-A action neurons. Yellow dots represent MSN D1 spikes, and orange dots are MSN D2 spikes. D. Raster plot
of channel B. Cyan dots represent MSN D1 spikes, and dark blue dots are MSN D2 spikes. E. Action neuron firing
rates. The middle horizontal line represents 0 Hz. Action A and B activity are represented in opposites directions
for clarity. Action A neuronal activity increases in yellow zones while action B neuronal activity in cyan intervals.
F. Firing rate of the dopaminergic neuron (black line). Dotted horizontal lines indicate the range of DA activity
considered: black is the baseline, green is the maximum reward, and red represents the maximum punishment. Dots
indicate rewards (green) and punishment (red) events delivered to the agent. G. Evolution of the learning accuracy
of the agent, see section 2.3 for further details. The dotted line marks the accuracy level by chance.
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Figure 4: Effect of the lateral inhibitory connectivity
on the performance during a simpler version of the RL
task. The horizontal dotted line represents the accu-
racy obtained by a random agent. The curves represent
the mean and the standard error of the mean of the
evolution of each agent during the task (n=5).

inter-channel (inhibitory connections between
D1 MSNs of different channels, and between
D2 MSNs of different channels). We obtained675

four possible subsets of connectivity patterns
by keeping or removing each connection type
(Fig. 2). We used three difficulty levels for the
task: easy, normal and hard. The easy task
uses only one stimulus associated with each ac-680

tion (stimulus 1 to action A, stimulus 2 to ac-
tion B, stimulus 3 to no action). The normal
task uses two stimulus per action, and one no-
go stimulus. The hard task uses four stimuli
per action, and two no-go stimuli.685

The results of the easy version of the exper-
iments are shown in the Fig. 4. The models
without inter-channel inhibition work worse,
as they stabilize with lower values of accuracy.
The models with inter-channel inhibition seem690

to reach a similar level of accuracy but the
intra-channel inhibition seems to reduce the
learning rate.

In the normal version of the task, we again
obtained the best learning performance when695

Figure 5: Effect of the lateral inhibitory connectivity on
the performance during the normal RL task. The curves
represent the mean accuracy and the shaded areas rep-
resent the standard error (n=30). Four different config-
urations are tested, depending on the presence of two
types of lateral connectivity: intra- and inter-channel
inhibition. The horizontal dotted line represents the
accuracy obtained by a random agent with no learning
mechanisms.

using the inter-channel lateral inhibition with
asymmetrical structured connection pattern,
and the difference increased. In this case, there
is no apparent effect in of the intra-channel lat-
eral inhibition in this task (Fig. 5). According700

to our simulations, lateral inter-channel inhi-
bition facilitates the emergence of one action-
related channel over the other one in a winner-
take-all manner, as expected.

We saw in previous experiments that the705

inter-channel lateral inhibition is always in-
creases accuracy, so we will use it always in the
following tests. In the hard task we obtained
small but significant differences: The accuracy
of the network improves faster with the intra-710

channel lateral inhibition (see Fig. 6). Also,
apparently the network with the intra-channel
inhibition settled in a more stable regime as
it maintains its performance, compared with
the network without this intra-channel inhi-715

bition which slowly degrades (Supplementary
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Figure 6: Effect of the intra-channel lateral inhibitory
connectivity on the performance during a harder version
of the RL task. The horizontal dotted line represents
the accuracy obtained by a random agent. The curves
and the filling color represent the mean, the standard
error of the mean, respectively, of the evolution of each
agent during the task (n=150), simulated for 500 sec-
onds.

Fig. 13). The results so far suggest that both
connectivity patterns contribute to a reliable
action-selection paradigm.

Taking these results together, it seems that720

when we use several stimuli associated with
each action, intra-channel inhibition improves
the RL action selection task. However, when
only one stimulus is associated with each ac-
tion, this intra-channel inhibition does not im-725

pact learning performance. When compared
with the results in Fig. 5 and 6, it seems that
the intra-channel lateral inhibition improves
the learning capabilities only with a harder
task, but when the task is too simple then the730

intra-channel connection increases the learning
time.

We also explored the effect of connectivity
patterns of lateral inhibition different from the
proposed by Burke et al. (2017)), by adding or735

removing lateral connections within a channel,
within each subpopulation, and between sub-
populations of the same channel. All variations

from the original resulted in reduced learning
performance (Supplementary Fig. 15). In this740

Figure, the curve #5 represents the network
with both lateral inhibition in D1 layer and D2
layer, as well as intra- and inter-channel lateral
inhibition. This structure (similar to the one
proposed by Burke et al. (2017)) obtains the745

best accuracy.

3.3. Effect of intra-channel lateral inhibition
on neuronal specialization

Intra-channel inhibition seems to facilitate
learning in more complex tasks, possibly be-750

cause it enhances neuron specialization. We
saw a strong reduction of correlation at time
difference δt = 0 between action A and B D1
sub-populations caused by intra-channel inhi-
bition (data not shown), but this does not seem755

to justify the improved accuracy for more com-
plex tasks.

Then, we hypothesized that intra-channel in-
hibition could encourage neuron specialization
to specific cortical patterns. We tested this760

idea by analyzing the preferred stimuli for each
neuron after the learning process (Fig. 7), and
obtained the opposite result: the intra-channel
lateral inhibition affects D1 neurons by forcing
them to share more evenly their activity over765

several stimuli, in addition to reducing their av-
erage activity. This is in contrast with the net-
work without intra-channel lateral inhibition,
where the activity is more focused on the fa-
vorite stimuli and has higher mean activity.770

According to these results, although individ-
ual neurons of the network with intra-channel
inhibition have less precise representation of in-
dividual sensorial stimuli, these models have
higher precision to associate rewarding actions.775

This can be explained assuming some sparse
representation of the stimuli, where the simul-
taneous firing of several (but not many) neu-
rons are needed to indicate the presence of an
input stimuli. This more sparse representation780

emerges due to the combination of stronger in-
hibition and the homeostatic mechanisms: a
neuron avoids firing when it is inhibited, so

12



Figure 7: Effect of the intra-channel lateral inhibitory
connectivity on the firing rate pattern on their preferred
stimuli of D1 neurons. Higher and more specialized fir-
ing patterns occur in networks without intra-channel
lateral inhibition, while more sparse representations oc-
cur in networks with it. Lines and shaded areas rep-
resent mean and 95% confidence intervals of the mean
(n = 150), respectively.

the homeostatic mechanisms tend to compen-
sate for this activity reduction by increasing785

its chances to fire in response to several stim-
uli. This sparse representation has been sug-
gested to facilitate sensorial pattern recogni-
tion in other brain areas, such as the cerebellar
cortex, the mushroom body, and the dentate790

gyrus of the hippocampus (Cayco-Gajic and
Silver, 2019).

In the context of our model, the sparse repre-
sentation due to intra-channel inhibition plays
a role in the action selection process, which can795

be seen as a form of classification. Here, the
goal is not to classify stimuli per se, but to as-
sign stimuli to appropriate actions. The sparse
coding helps to achieve more efficient and ro-
bust action selection by reducing the overlap-800

ping between representations of different sen-
sorial states, minimizing interference, and en-
abling more reliable decision-making.

3.4. Comparison with previous models of rein-
forcement learning and basal ganglia805

We presented a point-neuron model of the
BG that can solve complex action-selection
tasks using a RL paradigm. We do so by

using multiple mechanisms proposed in the
literature: the STDE learning rule that im-810

plements synaptic modification in cortex-MSN
connections (Gurney et al., 2015), combined
with homeostatic mechanisms (Galindo et al.,
2020) and an oscillatory input signal (Masque-
lier et al., 2009; Garrido et al., 2016) in a net-815

work with asymmetrical structured lateral in-
hibition (Burke et al., 2017) can rapidly and
consistently learn to detect the presence of re-
warded input patterns. These processes have
been described in biological systems and here820

proved to be robust.

Simpler STDP-like rules have been used for
RL tasks (Izhikevich, 2007; Legenstein et al.,
2008), but they were employed in simpler net-
works, single neurons, and simple tasks. Be-825

yond the state-action mapping role proposed
in this article for the striatum, other theories
exist about the action decision process. How-
ever, computational models of BG in the lit-
erature have considerably evolved during the830

last two decades (Rubin et al., 2021), and
there is still no consensus about how to achieve
goal-oriented learning in a BG model. Pre-
vious models ranged from those with action-
selection features but no learning (Beiser et al.,835

1997; Gillies and Arbuthnott, 2000; Humphries
et al., 2006; Lo and Wang, 2006a; Berns and
Sejnowski, 1998; Gurney et al., 2001; Sen-
Bhattacharya et al., 2018; Frank, 2006; Rat-
cliff and Frank, 2012; Bogacz, 2007) (but see840

(Frank, 2005)) to simple forms of learning,
with RL (Bogacz and Larsen, 2011), rate-based
learning rules (Hong and Hikosaka, 2011), or
based on modulated STDP with eligibility
traces (Humphries et al., 2009; Gurney et al.,845

2015; Baladron et al., 2019). These models
considered direct and indirect pathways (as
”selection” and ”control” routes, respectively),
composed of MSN D1 and D2 striatal neu-
rons controlling GPe and SNr. Many models850

assume that the BG work as an actor-critic
model (Bogacz and Larsen, 2011; O’Doherty
et al., 2004), and actor-critic frameworks have
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been used for RL tasks like maze navigation
(Frémaux et al., 2013; Potjans et al., 2009;855

Vasilaki et al., 2009) and cartpole (Frémaux
et al., 2013). More biologically-constrained
models of the BG have been proposed to ex-
plain the origin of diseases like Parkinson’s dis-
ease (Lindahl and Kotaleski, 2016) and the role860

of specific interneurons (Goenner et al., 2021)
or pathways (Girard et al., 2021) during action-
selection. Recent accumulation-to-bound mod-
els describe the decision process as an accumu-
lation of evidence for each alternative action865

until a decision threshold is exceeded in one
of these actions (Mulder, 2014). It would be
interesting to explore how these models could
be incorporated with the proposed model, po-
tentially requiring additional brain areas. In870

this regard, some models incorporate recurrent
activity loops with the cortex through the tha-
lamus (Lo and Wang, 2006b).

Moreover, we acknowledge that similar mod-
els can already deal with more complex action-875

selection tasks than the one used in this work,
such as cart-pole, inverted pendulum, or sim-
ple mazes (Frémaux et al., 2013). However,
there exist some important differences between
their model and the one proposed in this arti-880

cle. First, our network does not include a critic.
Second, their learning rule requires a temporal
difference (TD) signal that would need addi-
tional circuitry. Third, their model requires
an additional place-cell layer with unsupervised885

learning to represent complex input patterns.
However, it remains as a future work to em-
bed the network model into a closed-loop ex-
perimental setup requiring continuously graded
output (instead of selecting an action in a dis-890

crete set of possibilities). This way, the model
could deal with a larger set of RL tasks. In
our case, we have integrated a spiking neu-
ral network with spike-time pattern represen-
tation that scales well with different patterns895

complexity at the pattern classification layer.
Future work will explore how our model could
be extended for such complex action control

frameworks.

4. Conclusion900

In this article we tested the respective roles
in learning of the different mechanisms used
during our simulations: homeostatic mecha-
nisms make the neurons change their response
to compensate for long-lasting changes in the905

input level, making learning faster and more
robust to the configuration. The asymmetri-
cal lateral inhibition consistently outperformed
other connectivity configurations. By adding
intra-channel lateral inhibition to the network910

model, we induced the channels to generate a
sparse representation of each stimulus relevant
for the task. This made the network less prone
to errors as the model had to recruit more
neurons to take an action. Lastly, by segre-915

gating striatal and action neurons in indepen-
dent channels for each action and incorporating
MSN D1 (Go neurons) and MSN D2 (No-Go)
sub-populations with different learning kernels,
the model effectively learned arbitrary map-920

pings from sensorial input states to action out-
put in a two-choice action-selection task. MSN
D1 neurons and MSN D2 neurons coopera-
tively facilitated action selection with contrary
effects; MSN D1 neurons learned to potenti-925

ate preferred actions while MSN D2 neurons
learned to inhibit non-preferred actions.
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5. Supplementary materials

5.1. Supplementary methods

5.1.1. Single-striatal-neuron model and experiments

Figure 8: Pattern detection experiments with reinforcement learning and a single striatal neuron. A. Single-striatal-
neuron model setting, with serial and oscillatory input currents feeding to a cortical layer. In this simulation, two
different input patterns are used and colored in green and red. The cortical layer feeds the striatal neuron with plastic
synapses with STDE, where learning occurs. A reward or punishment signal is delivered to a global dopaminergic
neuron that modulates the plastic synapses. B. Raster plot of the cortical neurons (blue dots), with input patterns
containing only half of the cortical neurons, oscillatory driving current (solid red line), and the striatal neuron
(bottom, red dots). C. Evolution of the striatal neuron’s response to each input pattern through time measured
using a uncertainty coefficient (see details in the methods section). Insets show the distribution of synaptic weights
at the beginning and the end of the learning procedure.

In order to assess the learning capabilities of the proposed model, we define two types of experi-
ments: pattern detection and action-selection. The latter one is already explained in the main text.1195

During pattern detection experiments (Supplementary Fig. 8B), we train a simple model to detect
one specific pattern within a noisy input stream. Two (the so-called selected and non-selected)
non-temporally-overlapping repeating patterns are presented 20% of the time each (40% in total).
We test the STDE learning rule in a RL setting, where a reward (excitation to the dopaminergic
neuron) is given if the striatal neuron spikes sometime after the selected pattern is presented. Oth-1200

erwise, if the striatal neuron fires in response to the non-selected pattern, punishment (inhibition
to the dopaminergic neuron) is given to the striatal neuron. Finally, as a stress test, we added a
policy swapping procedure for switching the rewarded pattern every 200 seconds (Supplementary
Fig. 9). This way, we can test how robust is our combination of synaptic and homeostatic rules
during learning.1205

For this first set of experiments, we used a model with only one striatal neuron that learns to solve
a simple RL task. This model allows the validation of the proposed learning mechanisms. It uses
the input protocol explained in the oscillatory drive section 2.1.2. A dopaminergic signal modulates
the synapses that connect from the cortical neurons to the striatal neuron (Supplementary Fig.
8A), implementing the STDE learning rule as well as the homeostatic mechanisms. Rewards1210

(punishments) delivered by the environment alter the dopaminergic modulatory signal by exciting
(inhibiting) the dopaminergic neuron every time the striatal neuron spikes when the input pattern
is correct (incorrect). The environment delivers rewards and punishments with some delay (fixed
to 300 ms by default). If the striatal neuron does not fire, the environment delivers no reward nor
punishment to the DA neuron.1215
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5.1.2. Mutual information

In order to measure how good the detection is in the pattern detection experiments, we calculated
the mutual information (MI) between the presentation of each input pattern and the striatal neuron
activity, as previously done in Garrido et al. (2016). We consider that the striatal neuron responded
to the pattern if it fires at least once during the stimulus presentation, lasting from 100 to 5001220

ms following a uniformly distributed random distribution. For each stimulus used in the pattern
detection experiments, we consider the possible states S of the pattern (present or absent) and the
possible response R of the striatal (neuron fired or not). The MI is then defined in equation (6).

MI = H(S) +H(R)−H(S,R) (6)

where H(S) is the entropy of the stimuli patterns, H(R) is the entropy of the responses, and
H(S,R) the joint entropy of the stimuli patterns and the responses. These values are defined as in1225

Garrido et al. (2016). The upper bound of the MI for a perfect detector would be MImax = H(S),
so we can obtain a normalized measurement of performance called uncertainty coefficient (UC)
defined in equation (7). The UC is calculated independently for both the rewarded and the non-
rewarded patterns during pattern detection experiments.

UC =
MI

MImax
=
H(S) +H(R)−H(S,R)

H(S)
(7)

5.1.3. Parameters used1230

Parameter Cortical Striatal Action Dopaminergic

eexc (mV) 0.0 0.0 0.0 0.0

einh (mV) −85.0 −85.0 −85.0 −85.0

τAMPA (ms) 5.0 5.0 5.0 5.0

τGABA (ms) 10.0 30.0 60.0 10.0

τref (ms) 1.0 15.0 15.0 1.0

Cm (pF) 250.0 50.0 100.0 250.0

gleak (nS) 25.0 10.0 25.0 25.0

Vthr (mV) −40.0 −50.0 −40.0 −65.0

eleak (mV) −65.0 −65.0 −65.0 −40.0

Table 1: Neuron parameters used in the model.

MSN D1 MSN D2

Parameter Value Parameter Value

k−lo 0.0 k−lo −1.0

k+lo −1.0 k+lo 1.0

k−hi −1.0 k−hi 0.0

k+hi 1.0 k+hi −1.0

Table 2: STDE parameters used in the model.
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5.2. Supplementary results

5.2.1. Single-striatal-neuron experiments

In a previous article by Masquelier et al. (2009), an oscillatory driving signal greatly facilitates the
recognition of complex patterns over noise with STDP-like rules. We have extended this learning
rule to account for a rewarding signal in a RL paradigm. During a whole learning task (lasting1235

200 seconds), two different repeating and non-overlapping input patterns are presented. Only
one of them produces a rewarding signal if, and only if, the striatal neuron fires simultaneously
to the pattern presentation, providing reward modulation to the learning rule. Using this RL
framework, the striatal neuron becomes selective to the presentation of the rewarded pattern only
(Supplementary Fig. 8B). It usually takes less than 100 seconds of simulated time to consistently1240

generate spikes with the presentation of the rewarded pattern (Fig. 8B). The detection capabilities
of this network are also evidenced by the evolution of the uncertainty coefficient (green line in
Supplementary Fig. 8C), which remains stable between 0.6 and 0.8 after 80 seconds of discontinuous
pattern presentation (Supplementary Fig. 8C), while the punished pattern receives no considerable
response (red line in Supplementary Fig. 8C). It can also be observed how the initial uniform1245

weight distribution (insets in Supplementary Fig. 8C) turns into a binomial distribution with a
small number of synapses with near-maximum weights and most of the synapses near the minimum
weight.

Once demonstrated the effectiveness of the STDE learning rule, we aim to assess if it allows
detection of rewarded patterns with policy swapping (i.e., the pattern that offers rewarding signals is1250

swapped every 400 seconds of simulation). Every time that the rewarding policy swaps, the neuron
temporarily reduces its average firing rate (cyan line in Supplementary Fig. 9Di), and consequently,
the adaptive firing threshold approaches the resting potential (pink line in Supplementary Fig.
9Di). Once the threshold is low enough, the neuron starts learning the new rewarded pattern,
increasing the activity of the dopaminergic neuron as a consequence (Supplementary Fig. 9Ei).1255

This is an important feature because neurons can recover from silent states caused by sudden
changes in the reward policy.

Inspired by the different types of neurons existing in the striatum, we adapted the synaptic
model parameters to reproduce the differential operation of the learning rule for the MSN D1 and
the MSN D2 neurons (MSN D1 and D2 parameters for STDE in Supplementary Table 2). Thus,1260

we adjusted different kernel shapes for low and high DA (Supplementary Fig. 9Bi and Bii, left and
right, respectively). According to our simulations, the neuron equipped with a D1 kernel learns
to detect only the rewarded pattern (Supplementary Fig. 9Ci). In contrast, the striatal neuron
equipped with MSN D2 kernel parameters (a reversed version of MSN D1) learns to detect the
non-rewarded pattern (Supplementary Figs. 9Cii, 9Dii and 9Eii). These results point out that, in1265

a network of MSNs with D1 and D2 subpopulations, the D1 subpopulation learns to respond to
rewarded patterns while the D2 neurons learn to fire in response to the punished (or non-rewarded)
patterns. In this way, the output layer makes simple decisions by just weighting the activity of
these subpopulations.

5.2.2. Homeostatic mechanisms: non-Hebbian strengthening and adaptive threshold1270

Aiming to check the influence of the homeostatic mechanisms, we have replicated the same
policy-swapping learning framework with a more complex task (five different input patterns) and
different configurations of the homeostatic rules. In the absence of non-Hebbian strengthening,
successful learning requires fine-tuning of the learning rule parameters and maximum weight for
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Figure 9: Pattern detection experiments with two different STDE sets of parameters. Xi column shows the training
resulting from using a learning kernel adapted to learn rewarded patterns, as used in MSN D1 synapses. Xii column
shows the same training results for the MSN D2 kernel used. Note that this kernel is learning the opposite (punished)
pattern. A row shows the kernel functions used with different levels of DA. B row shows the response of the striatal
neuron. The background color indicates which pattern is being rewarded at that specific time frame, and the vertical
dotted lines indicate when the rewarding policy swaps. C row shows the evolution of the adaptive threshold and
the firing rate of the striatal neuron. D row shows the firing rate of the dopaminergic neuron, which represents the
amount of reward obtained by the striatal neuron through the task. The horizontal green, black and red dotted lines
indicate the maximum, baseline, and minimum dopaminergic activity.

each simulation seed (data not shown). Thus, we barely managed to find a set of parameters suitable1275

for multiple seeds without this homeostatic mechanism. For this reason, in all the simulations shown
in this article we employ the non-Hebbian strengthening mechanism.

On the other hand, the adaptive threshold is not strictly necessary for successful learning. How-
ever, the learning performance (in terms of UC) with adaptive threshold increases faster and more
reliably than without adaptive threshold (Supplementary Fig. 10). It is important to highlight1280

that lack of homeostatic mechanisms often resulted in the more frequent inability of detecting cor-
tical patterns, as demonstrated by lower MI values for the 25-percentile of the simulations (lower
boundary of blue shadow in Supplementary Fig. 10, right). In the absence of these mechanisms,
the striatal neuron activity extinguishes when the reinforcement policy swaps and, in many cases,
remain silent for the rest of the simulation. We tested different learning rates and time constants1285

of dopamine and, in every case, learning was faster with adaptive threshold, as shown in Supple-
mentary Fig. 14. Thus, these homeostatic rules provide the STDE rule with the ability to re-learn
different patterns reliably. Moreover, using both of these mechanisms also makes learning robust
within a broader parameter space and makes it unnecessary to fine-tune the parameters for each
experiment. Although only one of these homeostatic mechanisms would be enough to avoid silent1290
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neurons, we saw in our tests that the system recovered faster and more reliably by using both.

Figure 10: Effect of the adaptive threshold in the learning performance of the single-striatal-neuron model. In this
experiment we used a more complex version of the policy-swap task with 5 (one rewarded, the rest punished) different
patterns instead of 2. The left curves and the filling represent the evolution of the mean uncertainty coefficient and
standard error during a repeated 400-s learning protocol (n=300). The asterisks marked intervals indicate where the
means are statistically different with 95% confidence level. The right plot shows the percentiles 5-25-50-75-95, with
dashed lines (5 and 95 percentiles), fillings (25 and 75 percentiles) and solid lines (50 percentiles).

5.2.3. Effect of reward delay and input pattern

We wondered how the delay between the action decision (in response to cortical stimulus) and
the rewarding signal affects the learning capabilities of our system. In order to evaluate the impact
of this parameter, we carried out network simulations with different reward delays (we did not1295

have to adjust any other parameter due to the robustness of the model). We found the best
performance when the rewarding signal was provided 300 ms after the sensorial presentation (blue
line in Supplementary Fig. 11). Longer or shorter delays resulted in decaying learning accuracy.
This result is similar to what can be found in biology ((Yagishita et al., 2014)).

Since our implementation of the DA-modulated learning rule is based on eligibility traces, we1300

wondered if this optimal delay was somehow related to the duration of the stimulation patterns.
Then, we evaluated the reward delay effect on learning when sensorial patterns were longer (300-
700 ms and 500-900 ms) than in the control case (100-500 ms). However, our simulations show
similar learning accuracy with longer cortical patterns (orange and green lines in Supplementary
Fig. 11) as in control conditions (blue line in Supplementary Fig. 11). So that it seems unlikely1305

that the pattern generation algorithm influenced the preferred delay.
Finally, we also studied how the frequency of pattern presentation influences the accuracy

achieved at the end of the simulation. We compared the results obtained presenting the pat-
terns 80 percent of the time (as in the rest of the experiments made) with the results obtained by
presenting the patterns 40 percent. In order to compensate for the lower exposure of the striatal1310

neurons to input patterns (since in the latter, the network will only see the patterns half the time),
we simulated twice as long (up to 1000 seconds). According to our simulations, the proposed net-
work similarly managed to successfully associate cortical inputs to associated actions independently
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of how often the patterns are presented, as long as it experiences enough trials (Supplementary
Fig. 12).1315
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Figure 11: Effect of the delay of the rewarding feedback in the learning accuracy. A. Simulations with different
pattern lengths: within 100 to 500 ms (blue), within 300 to 700 ms (in orange), and within 500 to 900 ms (in green).
Every point represents the mean accuracy level obtained in the last 100 seconds of simulation with different delay
values, and the shaded area shows the standard error of the mean (n=10). B. Notched box plot of all the values.
Notice that ”if the notches about two median do not overlap, the medians are, roughly, significantly different at
about a 95% confidence level” (see McGill et al. (1978) for details).
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Figure 12: Effect of the delay of the reward in the learning performance with input pattern proportion of 0.8 (in
blue), and with input pattern proportion of 0.4 (in orange). Every notched box (McGill et al., 1978) represents the
median (n=10) performance level obtained in the last 100 seconds of simulation for different delay values.
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5.2.4. Effect of lateral inhibition in harder experimental setting

Figure 13: Same as in Fig. 6, but simulated for 1000 seconds.
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5.2.5. Effect of DA time constant, learning rate and adaptive threshold

Figure 14: Learning performance for different values of DA time constant, learning rate and adaptive threshold. At
the top, mean and standard error are shown for each condition. At the bottom, boxplots of the last 200 seconds of
simulation (n=80).
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5.2.6. Lateral connectivity patterns effect

Figure 15: Learning performance for different connectivity patterns of lateral inhibition. Left: Connectivity topologies
tested in these experiments. Note that all these tests assume inter-channel inhibition, as they clearly outperformed
other models. Right: evolution of the learning accuracy during 500s of simulation with the medium-complexity task.
Every line is marked with the same color of the topology under test. Each line represents the average value with
n = 10 seeds
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