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A wide range of supervised classification algorithms have been successfully applied for credit scoring in
non-microfinance environments according to recent literature. However, credit scoring in the microfi-
nance industry is a relatively recent application, and current research is based, to the best of our knowl-
edge, on classical statistical methods. This lack is surprising since the implementation of credit scoring
based on supervised classification algorithms should contribute towards the efficiency of microfinance
institutions, thereby improving their competitiveness in an increasingly constrained environment. This
paper explores an extensive list of Statistical Learning techniques as microfinance credit scoring tools
from an empirical viewpoint. A data set of microcredits belonging to a Peruvian Microfinance Institution
is considered, and the following models are applied to decide between default and non-default credits:
linear and quadratic discriminant analysis, logistic regression, multilayer perceptron, support vector
machines, classification trees, and ensemble methods based on bagging and boosting algorithm. The
obtained results suggest the use of a multilayer perceptron trained in the R statistical system with a sec-
ond order algorithm. Moreover, our findings show that, with the implementation of this MLP-based
model, the MFIś misclassification costs could be reduced to 13.7% with respect to the application of other
classic models.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Microfinance institutions (hereafter, MFIs) offer saving services
and small loans (namely microcredits) to those sectors of the pop-
ulation with a very limited access to financial resources. For this
reason, the goals and management criteria of the MFIs have less
business component and higher social component than those used
by new competitors (international commercial banks). The micro-
finance sector has rapidly grown in the last years, turning into a
booming industry. As an example, the number of microfinance
institutions grew by 474% in the period 1998–2008, while the
number of customers grew by 1048%. This phenomenon has
moved a large number of international commercial banks to oper-
ate in the microfinance sector. This reinforced interest has in-
creased the competition between the players in this industry, but
it is negatively affecting the MFIs. Therefore, the MFIs need to in-
crease their efficiency in all their processes, minimize their costs
and control their credit risk if they want to survival a long-term.
In particular, credit scoring models may improve this efficiency.
Their objective is to assign credit applicants to one of two groups:
a ‘good credit’ group that is likely to repay the financial obligation
or a ‘bad credit’ group that should be denied credit because of a
high likelihood of defaulting on the financial obligation (Henley
& Hand, 1996).

An appropriate automatic evaluation of the credit applicants of-
fers several important advantages: the cost of credit analysis is re-
duced, cash flow is improved, faster credit decisions are enabled,
the losses are reduced, a closer monitoring of existing accounts is
possible, and prioritizing collections are allowed (West, 2000). In
this sense, Rhyne and Christen (1999) suggest that credit scoring
is one of the most important uses of technology that may affect
management of MFIs, and Schreiner (2004) claims that experi-
ments made in Bolivia and Colombia showed that the implementa-
tion of credit scoring improved the judgment of credit risk and thus
cut, in more than $75,000 per year, costs of MFIs. Nevertheless, and
unlike modeling in financial institutions, credit scoring algorithms
in microfinance sector have been mostly based on classical statis-
tical techniques, mainly linear discriminant analysis (LDA), qua-
dratic discriminant analysis (QDA), and logistic regression (LR).
Some references in this sense are Vigano (1993), Sharma and Zeller
(1997), Reinke (1998), Zeller (1998), Vogelgesang (2003), Kleimeier
and Dinh (2007), Rayo, Lara, and Camino (2010). However, several
authors, for example, Reichert, Cho, and Wagner (1983) and Karels
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Table 1
Description of predictor variables: financial ratios.

Variable Description Expected
sign

R1 Assets rotation: income sales/total assets �
R2 Productivity: gross utility/operating costs �
R3 Liquidity: cash/total asset liquidity �
R4 Liquidity rotations: cash/income sales � 360 +
R5 Leverage1: total liabilities/(total

liabilities + shareholders’ total equity)
+

R6 Leverage2: total liabilities/shareholders’ equity +
R7 ROA: Net income/total assets �
R8 ROE: Net income/shareholders’ equity �
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and Prakash (1987), point out that basic assumptions of LDA and
QDA are often violated when applied to credit scoring problems.
Other problems usually appearing in credit scoring data sets are
the mixed nature of the data (quantitative and qualitative) and
the high non-linearity in the association between the target vari-
able and the predictors.

These problems can be faced with Statistical Learning algo-
rithms. Statistical Learning is a framework for machine learning
with a strong statistical basis. As it is remarked by Hastie, Tibshira-
ni, and Friedman (2001), a related topic, data mining, is an impor-
tant element of Statistical Learning. Both terms can be considered
as parts of a wider process that was termed Knowledge Discovery
from Data (KDD) by Fayad, Piatetsky-Shapiro, and Smith (1996),
oriented to identify patterns in data sets.

There are many papers providing empirical evidences support-
ing these alternative algorithms in credit scoring. West (2000)
developed several models applying various kinds of neural net-
works and he compared them with the classical statistical models
(LDA and LR) and some non-parametric methods, such as k-nearest
neighbor, kernel density and classification and regression trees
(CART). Lee, Chiu, Lu, and Chen (2002) developed a two-stage hy-
brid credit scoring model using multilayer perceptrons (MLP) and
multivariate adaptive regression splines (MARS). Multiple discrim-
inant analysis (MDA) and MLP were compared in Malhotra and
Malhotra (2003) to identify potential loans, revealing a better per-
formance for MLP model. Kim and Sohn (2010) implemented sup-
port vector machine (SVM) models to predict the default of funded
SMEs, comparing their performance with the MLP and LR models.
Ince and Aktan (2009) compare the performance of several credit
scoring models applied to credit card data set from a Turkish bank.
These authors use four statistical methods: multiple discriminant
analysis, logistic regression, artificial neural networks (ANN) and
classification and regression trees, and suggest that CART obtain
the best accuracy performance, following of LR, MDA and ANN.

However, similar works in the microfinance field are still ex-
pected to be developed. Following this research line, the main goal
of this paper is precisely to build a wide set of credit scoring mod-
els for the microfinance institutions inside Statistical Learning
framework. An empirical scheme has been adopted for this re-
search, accessing to information of almost 5500 microcredits from
a Peruvian Microfinance Institution. This data set was used to build
and compare the following supervised classification rules to decide
between default and non-default categories: linear and quadratic
discriminant analysis, logistic regression, multilayer perceptron,
support vector machines, classification trees, and three ensemble
methods (bagging, random forests and boosting). According to
Witten and Frank (2005), the different data mining methods corre-
spond to different concept description spaces searched with differ-
ent schemes. Thus, different description languages and search
procedures serve some problems well and other problems badly,
and that is the cause of the necessity to perform a careful compar-
ison of different data mining techniques.

These classification models are freely available in the R system
(R Development Core Team., 2012) which also provides the user
with a powerful statistical programming language. Ihaka and Gen-
tleman (1996) present an introduction to the main characteristics
of the R system.

The remainder of the paper proceeds as follows. In Section 2,
details of the analyzed data set are presented, including a detailed
examination of the available variables. Classification models are
presented from the point of view of the currently available R
implementations in Section 3, where several practical questions
associated with their use are also analyzed. In Section 4, the results
for the different models are presented and a comparison of them is
made. Finally, Section 5 provides the main conclusions of this
study.
2. Data description

2.1. The data set

A data set of microcredits from a Peruvian Microfinance Institu-
tions (Edpyme Proempresa) has been analyzed. It contains customer
information during the period 2003–2008 related to: (a) personal
characteristics of borrowers (marital status, sex, etc.); (b) economic
and financial ratios of their microenterprise; (c) characteristics of
the current financial operation (type interest, amount, etc.); (d)
variables related to the macroeconomic context; and (e) any delays
in the payment of a fee of microcredit. A previous cleaning of the
data set was performed to improve its quality, and therefore
abnormal cases, which had the top 1% and the bottom 1% of each
variable, were removed. After eliminating missing and abnormal
cases, 5451 cases remained. Among them, 2673 (49.03%) were de-
fault cases and 2778 (50.97%) were non-default cases. In line with
other studies (for example, Schreiner, 2004), a credit is defined as
default when it shows a delay in the payment of at least fifteen
days.

To perform an appropriate comparison of the classification
models the final data set was randomly split into two subsets; a
training set of 75% and a test set of 25%. The test sample contains
a total of 1363 cases (51.80% failed and 48.20% non-failed). The
configuration of parameters of each model was performed through
a 10-fold cross-validation procedure, as it will be described in Sec-
tion 3. Our paper follows the extensive discussion in Hastie et al.
(2001) regarding the mechanisms for an appropriate fitting and
comparison of classification rules in the Statistical Learning
framework.

2.2. Description of input variables

Tables 1–3 show the input variables used in this study. These
tables also show the expected sign of the relationship between
each input variable and the probability of default. Numerous qual-
itative variables are considered, following suggestions as Schreiner
(2004), who claims that the inclusion of qualitative variables im-
proves the prediction power of models. Moreover, since the default
of borrowers has a close relationship with the general economic
situation, variables linked to the macroeconomic context are also
considered as input variables.

The absence of variables with information about the economic
cycle has historically implied a major limitation of financial dis-
tress models. Furthermore, the macroeconomic environment is a
key factor that directly affects the payment behavior of any bor-
rower. For this reason, the following macroeconomic indicators
were computed (Table 3): DVMi,j = (VMi+j � VMi)/VMi, where DVMi,j

is the variation rate of the considered macroeconomic variable
VM, i is the moment of the granting of the loan and j is microcredit
duration.



Table 3
Description of predictor variables: macroeconomic Indicators.

Variable Description Expected
sign

GDP Rate of annual change of Gross Domestic Product
(GDP) during loan term

�

CPI Rate of annual change of Consumer Price Index (CPI)
during loan term

+

Empl_R Rate of annual change of variation of employment
rate (ER) during loan term

�

ER Rate of annual change of variation of exchange rate
(ER) PEN-$ during loan term

+

IR Rate of annual change of interest rate (IR) during
loan term

+

SEI Rate of annual change of stock exchange index (SEI)
during loan term

�

Water Rate of annual change in cost of municipal water
during loan term

+

Electricity Rate of annual change in cost of electricity during
loan term

+

Phone Rate of annual change in cost of telephone
consumption during loan term

+

Table 2
Description of predictor variables: non-financial information.

Variable Description Expected
sign

Zone Geographical location of the agency or
branch. Dummy variable: (0) central
zone, (1) outskirts

+

Old Duration as a borrower of the MFI.
Numeric variable

�

Previous_Loan_Grant Previously granted credits. Numeric
variable

�

Loan_Grant Loans granted in the last year. Numeric
variable

�

Loan_Denied Previously denied loans. Numeric
variable

+

Sector Activity sector of the micro-business.
Categorical variable: (0) commerce, (1)
agriculture, (2) production, (3) service

±

Purpose Destination of microcredit. Dummy
variable: (0) work capital, (1) fixed asset

+

Mfi_Class MFI customer classification Dummy
variable: (0) normal customer, (1)
customer with repayment problems of
any sort

+

Total_Fees Total number of fees paid in credit
history. Numeric variable

�

Arrears Number of arrears. Numeric variable +
Ave_Arrear Average (days) of customer default.

Numeric variable
+

Max_Arrear Number of days of major default.
Numeric variable

+

Gender Borrower gender. Dummy variable: (0)
male, (1) female

�

Age Age at time of application. Numeric
variable

±

Marital_St Marital status. Dummy variable: (0)
single, (1) family unit

-

Employm_St Employment Status of borrower. Dummy
variable: (0) owner, (1) dependent

±

Guarantee Guarantee presented. Dummy variable:
(0) sworn declaration, (1) real guarantee

+

Currency Type of currency for loan granted.
Dummy variable: (0) Nuevos Soles (ISO
code PEN) (1) US Dollar ($)

+

Amount Amount of microcredit. Numeric variable �
Duration Number of monthly fees for applied loan.

Numeric variable.
+

Interest_R Monthly interest rate for microcredit.
Numeric variable

+

Forecast Loan officer forecast: credit situation at
expiration. Dummy variable: (0) without
problems, (1) with problems

+
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3. Classification models and evaluation measures

3.1. Linear and quadratic discriminant analysis

LDA classification rule is based on a linear combination of the
predictors, and it can also be formulated by predicting class 1 if
the estimated probability for the class 1 is greater than a threshold
probability pc.

As it is pointed out by Hastie et al. (2001), the direction arising
in the LDA rule does not depend on Gaussian assumptions when it
is derived via least squares, but the intercept does require Gaussian
data. Therefore, the intercept, or equivalently, the threshold pc

could be selected by a K-fold cross-validation. Thus, 99 possible
values for pc (0.01,0.02, . . .,0.99) were considered in our study,
and the value minimizing the 10-fold cross-validation classifica-
tion error set was selected, namely 0.35. This cross-validation
search was also performed in the remaining techniques to be ex-
plained in this section. LDA was fitted with R function lda (Ven-
ables & Ripley, 2002) available in the MASS library. Previously, a
variable selection process was performed with the function
greedy.wilks of the package klaR of R (Weihs, Ligges, Luebke, & Raa-
be, 2005), based on the Wilḱs lambda statistic.

When the covariance matrices are not assumed to be equal,
quadratic discrimination functions are computed. The R function
qda (Venables & Ripley, 2002) in the MASS library has been used
in this study. A similar search for the cut point was also followed
for QDA model through the same set of 99 threshold probabilities
as in LDA, obtaining 0.99.

3.2. Logistic regression

The LR model was fitted with the glm function in R (Venables &
Ripley, 2002), which tries to compute the maximum likelihood
estimators of the p + 1 parameters by an iterative weighted least
squares (IWLS) algorithm. Like in LDA, a previous stepwise
procedure in order to select the most significant variables was
performed. We used the function step.glm of R, which applies a
forward sequential procedure based on the Akaike Information
Criterion. LR can be fully embedded in a formal decision frame-
work, but in order to perform a comparison with the other models,
a threshold probability must be specified, what it corresponds in
fact to varying the prior classes probabilities. Thus 99 possible
values for this threshold probability (0.01,0.02, . . .,0.99) were also
considered, selecting that value minimizing the 10-fold validation
error, obtaining 0.58.

3.3. Classification trees

We have used the rpart package of R (Venables & Ripley, 2002),
which implements the CART methodology as proposed by Breiman,
Friedman, Olshen, and Stone (1984). The Gini index (default
impurity measure) has been considered as the splitting criterion.
Given that large trees can lead to overfitting the data, with a loss
in the generalization capability for new data, the user must tune
a fundamental parameter: the number of terminal nodes, called
the size of the tree. The one-standard-deviation rule was followed,
as it can be seen in Maindonald and Braun (2003).

3.4. Multilayer perceptron

The multilayer perceptron (MLP) is the most commonly used
type of neural network in business studies, Vellido et al. (1999)
and Zhang, Patuwo, and Hu (1998). Several theoretic results
support this particular architecture, for example the universal
approximate property (Bishop, 1995). A three-layered perceptron



Table 4
Multilayer perceptron models.

Models Training algorithm Statistical
software

Hidden layer
size

Early
stopping

MLP 1 Gradient descent Matlab 14 No
MLP 2 Gradient descent Matlab 14 Yes
MLP 3 Gradient descent with

momentum
Matlab 10 No

MLP 4 Gradient descent with
momentum

Matlab 10 Yes

MLP 5 BFGS Quasi-Newton Matlab 9 No
MLP 6 BFGS Quasi-Newton Matlab 9 Yes
MLP 7 Levenberg–Marquardt Matlab 2 No
MLP 8 Levenberg–Marquardt Matlab 2 Yes
MLP 9 Scaled Conjugate

Gradient
Matlab 14 No

MLP10 Scaled Conjugate
Gradient

Matlab 14 Yes

MLP11 Resilient Matlab 9 No
MLP12 Resilient Matlab 9 Yes
MLP13 BFGS Quasi-Newton R 10 (k = 0) No
MLP14 BFGS Quasi-Newton R 3(k = 0.2) No
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was considered, where the output layer is formed by one node
which provides the estimation of the probability of default, com-
puted with the logistic activation function g(u) = eu/(eu + 1), also
used in the hidden layer. Denoting by H the size of the hidden
layer, {vih, i = 0,1,2, . . .,p, h = 1,2, . . .,H} the synaptic weights for
the connections between the p-sized input and the hidden layer
and {wh,h = 0,1,2, . . .,H} the synaptic weights for the connections
between the hidden nodes and the output node, the output of
the neural network from a vector of inputs (x1, . . .,xp) is

ŷ ¼ g w0 þ
XH

h¼1

whg
�

v0h þ
Xp

j¼1

v ihxj

� !
ð4Þ

The output of this model provides an estimation of the probability
of default for the corresponding input vector. A final decision can
be obtained comparing with a threshold, usually 0.5, thus the deci-
sion is default if ŷ > 0:5.

The MLPs used in this paper have as inputs those variables sta-
tistically significant (p-value less than 0.05) in the previous LR
model, and the range of each predictor variable was linearly
mapped into the [�1,1] interval. Two different programs were
used to build the MLP credit scoring models.

The first choice was the freely available R system. The nnet R
function (Venables & Ripley, 2002) fits single-hidden-layer neural
networks by the BFGS procedure, a quasi-Newton method also
known as a variable metric algorithm, trying to minimize an error
criterion which allows a decay term k intending to avoid overfitting
problems. Let W = (W1, . . .,WM) be the vector of all the M coefficients
of the net, and n targets y1, . . .,yn, being yi = 1 for default microcredit,
and yi = 0 otherwise, are known in the available sample. For classifi-
cation problems, an appropriate error function is conditional maxi-
mum likelihood (or entropy) criterion (Hastie et al., 2001). Thus,
the BFGS method is applied to the following problem:

Min
W

Xn

i¼i

yi ln ŷi þ ð1� yiÞ lnð1� ŷiÞð Þ þ k
XM

i¼i

W2
i

 !
ð5Þ

The R implementation of a MLP model requires the specification of
two parameters: the size of the hidden layer (H) and the decay
parameter (k), and therefore a 10-fold cross validation search of
the size of the hidden layer (H) and the decay parameter (k) was
carried out over a grid defined as {1,2, . . .,20} � {0,0.01,0.05,0.1,
0.2, . . .,1.5}.

Neural Network Toolbox (Demuth & Beale, 1997) with Matlab
R2010b was the other tool used to fit MLP. This commercial system
offers a great variety of learning rules, and the following six main
learning algorithms were used: gradient descent, gradient descent
with momentum, BFGS quasi-Newton (like R), Levenberg–Marqu-
ardt, scaled conjugate gradient and resilient back-propagation.
The first is the traditional back-propagation method originally pro-
posed for MLP, while the second rule is a variant based on a
momentum term. These two training algorithms require a key
parameter, the learning rate. According to practical suggestions
in Rumelhart, Hinton, and Williams (1986), learning rate 0.010
was used for gradient descent and gradient descent with momen-
tum. For the second rule, as is recommended by Matlab, the
momentum took the value 0.90. The other four methods are sug-
gested in the Matlab documentation for classification problems,
being widely known like second-order training algorithms. These
six learning rules try to minimize a sum of squared errors (SSE):

Min
W

Xn

i¼i

yi � ŷið Þ2 ð6Þ

As in R, there remains the problem of selecting H, and it was also
chosen through a 10-fold cross-validation search in {1,2, . . .,20}
for each learning method.
Matlab allows the use of early stopping in MLP training. This
well-known strategy splits the training data set into effective train-
ing and validation sets, and the error on the validation set is mon-
itored during training. The Matlab neural nets of this work were
trained both with early stopping (25% size) and without early
stopping.

The basic parameters of all the fitted MLP models are presented
in Table 4.
3.5. Support vector machines

We have employed the svm function available in the library
e1071 of the R system Dimitriadou, Hornik, Leisch, Meyer, and
Weingessel (2011), which offers an interface to the award-winning
C++ implementation, LIBSVM, by Chang and Lin (2011). The data
set is described by n training vectors {(Xi,yi)}, i = 1,2, . . .,n, where
the multi-dimensional vectors Xi contain the predictor features
and the n labels yi e {�1,1} identify the class of each vector. From
among the several variants of SVM existing in the library e1071,
following Meyer (2012), we have used C-classification with the Ra-
dial Basis Gaussian kernel function:

Kðu;vÞ ¼ exp �c u� vj j2
� �

ð7Þ

The primal quadratic programming problem to be solved is:

Min
w;b;n

1
2

wtwþ C
Xn

i¼1

ni
yiðwt/ðXiÞ þ bÞP 1� ni ð8Þ
ni P 0; i ¼ 1;2; . . . ;n

C > 0 is a parameter controlling the trade-off between margin and
error, and

Pn
i¼ini is an upper bound on the sum of distances of the

wrongly classified cases to their correct plane.
Two parameters must be tuned: C and c. The suggestions of

Meyer (2012) were followed to select the parameters of the SVM
model, and therefore a grid search for C was first defined over
the set {1,10,20,30,40,50,100,150, . . .,1000}. Secondly, a grid
search for c was conducted in the set {0.10,0.15,0.20, . . .,0.90}. This
search of C and c was performed by a 10-fold cross-validation
mechanism with the function tune.svm in the library e1071.
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3.6. Bagging

Bagging (Bootstrap Aggregating) is a method proposed by
Breiman (1996) to improve the performance of prediction models.
Given a classification model, bagging draws B independent sam-
ples with replacement from the available training set (bootstrap
samples), fits a model to each bootstrap sample, and finally it
aggregates the B models by majority voting. Bagging uses to be a
very effective procedure when applied to unstable learning algo-
rithms (i.e., ‘‘small changes in the data can cause large changes
in the predicted values’’, Breiman, 1996) such as classification
and regression trees and neural networks. The R package ipred
(Peters & Hothorn, 2012), that computes bagged tree models
(CTBag), has been used in this study, while two values for B, 50
and 100, have been considered, selecting that one minimizing
the 10-fold cross-validation classification error.

3.7. Random forests

Random forests (RF) were proposed by Breiman (2001) as a way
to combine many different trees. A number of trees are con-
structed. Each one is grown over a bootstrap sample of the training
data set, and a random selection of variables is considered to
choose splits in each node. As in bagging, the trees are combined
by majority voting, and out-of-bag estimates can also be com-
puted. One important feature of this ensemble method is the avail-
ability of some measures to asess the importance of each variable
and to identify outlier observations. Breiman (2001) claimed that
RF does not generally overfit, and he showed that Bayes consis-
tency is achieved with a simple version of RF. The R package ran-
domForest (Liaw & Wiener, 2002) has been used in our paper. It
builds 500 trees by default, a suggested value used in this paper.
However, the number of variables to randomly select has been
chosen by a 10-fold cross-validation search around the default va-
lue (mtry = square root of the number of predictors), namely from
mtry � 5 to mtry + 5.

3.8. Boosting

Friedman, Hastie, and Tibshirani (2000) linked AdaBoost and
other boosting algorithms to the framework of statistical estima-
tion and additive basis expansion. This point of view is followed
in the library mboost (Hothorn, Bühlmann, Kneib, Schmid, &
Hofner, 2012) in R, as it is described in Bühlman and Hothorn
(2007). This library considers the problem of estimating a real-val-
ued function

f �ð�Þ ¼ argf ð�Þ min E½qðY ; f ðXÞÞ� ð11Þ

where q is a loss function. Supposing n training vectors {Xi,yi},
i = 1,2, . . .,n, and having selected a base procedure, the generic func-
tional gradient descent algorithm is:
1. Initialize f̂ ½0�ð�Þ with an offset value. Set m = 0.
2. Increase m by 1. Evaluate at f̂ ½m�1�ðXiÞ the negative gradient of

the loss function:
Table 5

Ui ¼ �

@

@f
qðY ; f Þ

����
f¼f̂ ½m�1� ðXiÞ

; i ¼ 1; . . . ;n ð12Þ

Boosting algorithms.

Algorithm q(y, f) f⁄(x) M pc

AdaBoost exp(�(2y � 1)f) log(p(x)/
(1 � p(x))/2

1628 0.040

BinomialBoosting log2(1 + exp(�2(2y � 1)f)) log(p(x)/
(1 � p(x))/2

2303 0.001

L2Boosting (y � f)2/f E[Y/
X = x] = p(x)

310 0.395
3. Fit the base procedure to predict {Ui, i = 1, . . .,n} from {Xi, -
i = 1, . . .,n}, obtaining ĝ½m�ð�Þ.

4. Update f̂ ½m�ð�Þ ¼ f̂ ½m�1�ð�Þ þ mĝ½m�ð�Þ.
5. Iterate steps 2–4 until some stopping value M.

Bühlman and Hothorn (2007) point out that the choice of the
step-length factor m is of minor importance, as long as it is small,
such as m = 0.1, and therefore this value was used in this paper.
The selection of the other elements of the algorithm drive to differ-
ent boosting procedures, and the three main methods appearing in
Bühlman and Hothorn (2007) have been explored in our study.
They share the same base procedure: select the best variable in a
simple linear model in the sense of ordinary least squares fitting.
This way, the final model f̂ ½M�ð�Þ is a linear combination of the input
variables, and the importance of each predictor can be assessed.
Table 5 shows each method, all of them were fitted with the glm-
boost function in the library mboost. The target variable Y is 1 for
default cases and 0 otherwise, being p(x) = P[Y = 1/X = x]. f⁄(x) is
the population minimizer of q(y, f). The offset value of step 1 is
computed replacing p(x) by the proportion of defaults.

The major tuning parameter of boosting is the number of itera-
tions M. A 10-fold cross-validation search of the value minimizing
the empirical loss, in the range 1 to 3000, was performed. Table 5
contains the selected value for M in each boosting algorithm. The
decision of Boosting can be expressed as p̂ðxÞ > pc , with threshold
pc = 0.5. However, the initial results showed an important imbal-
ance between the success rates in default and non-default cases,
with values around 71% in default cases and around 96% in non-de-
fault cases. A 10-fold validation search in the range
{0.001,0.002, . . .,0.999} was also carried out to avoid this problem.
Last column of Table 3 displays the value of pc.
3.9. Evaluation criteria

As is often employed in classification problems, we use the area
under the receiver operating curve (AUC) like performance mea-
sure of each model. The AUC was computed with the aid of the
ROCR library available in R (Sing, Sander, Beerenwinkel, & Leng-
auer, 2009). However, it is well known that the prior probabilities
and the misclassification costs should also be considered (West,
2000). It is apparent that the cost associated with a Type I error
(a customer with good credit is misclassified as a customer with
bad credit) and a Type II error (a customer with bad credit is
misclassified as a customer with good credit) are usually very
different. According to West (2000), the relative ratio of misclassi-
fication costs associated with Types I and II errors must be 1:5, and
hence special attention should be paid to Type II errors of all
constructed models. The expected misclassification cost (EMC) is
defined as follows (West, 2000):
EMC ¼ C21P21p1 þ C12P12p2 ð13Þ
where p1 and p2 are the prior probabilities of good and bad credit
populations, P21 and P12 measures, respectively, the probability of
making Type I errors and Type II errors. P21 is usually estimated
by the proportion of good-credit customers that are misclassified
as bad-credit customers, while P12 is estimated by the proportion
of bad-credit customers that are misclassified as good-credit cus-
tomers. p1 and p2 have been estimated by the proportions of good
and bad credits, respectively.



Fig. 1. AUC and EMC for each model.
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4. Results and discussion

Table 6 summarizes the results, in terms of AUC, accuracy (per-
cent of cases that were correctly classified), Types I and II errors
(expressed as percents) and EMC, on the test set. Table 6 offers a
clear decision about the best model. ‘‘MLP 14’’ has the greatest test
AUC (0.954), the greatest test accuracy (88.33%), the lowest Type II
error (15.30%) and the lowest EMC (0.434). The lowest Type I error
is achieved by ‘‘MLP 8’’ (3.70%) but it is accompanied by a higher
Type II error. Other MLP model, ‘‘MLP 11’’, has the same Type II er-
ror (15.30%) than ‘‘MLP 14’’ but the AUC is clearly lower. Fig. 1 dis-
plays the AUC and EMC for each model. The superiority of ‘‘MLP
14’’ can be confirmed in this figure, where ‘‘MLP 14’’ is in the ideal
right bottom zone.

‘‘MLP 14’’ is a three-layered perceptron, with 20 input nodes, 3
hidden nodes and one output node. The training has been per-
formed with R, using a BFGS quasi-Newton learning rule, and both
the hidden layer size and the decay term was selected by 10-fold
cross-validation, the value of this last parameter was 0.2.

It can be observed that the highest AUC test and lowest mis-
classification costs for MLP are obtained when the second-order
algorithms are applied. These results suggest that the gradient
descendent algorithm is less efficient than the second-order algo-
rithms considered in this study, what is confirmed by the locations
of ‘‘MLP 1’’, ‘‘MLP 2’’, and ‘‘MLP 3’’. This finding agrees with many
previous works remarking the shortcomings of the traditional gra-
dient descent. However, when the gradient descendent algorithm
is implemented with momentum and early stopping the perfor-
mance, both in terms of AUC test and EMC, is clearly improved
(see model ‘‘MLP 4’’ in Table 6, whose location is the same as
‘‘MLP 10’’ in Fig. 1).

From Table 6 and Fig. 1, the classical statistical models, as LDA,
QDA and LR are clearly overcome, both in term of AUC and mis-
classification costs, by other non-parametric methods. Focusing
on the parametric models, the AUC of LDA and QDA models are
lower than the AUC of the LR model (0.932). This fact is in line with
other authors (Lee et al., 2002; West, 2000), which claim that LR
outperforms both LDA and QDA. However, LDA shows the greatest
test accuracy (86.43%) and QDA has the lowest EMC (0.507) of the
Table 6
Test values for evaluation criteria.

MODELS AUC Test
accuracy
(%)

Type I
errors (%)

Type II
errors (%)

EMC

LDA 0.930 86.43 8.52 18.27 0.514
QDA 0.920 85.33 11.72 17.42 0.508
LR 0.932 86.28 5.94 20.96 0.571
MLP 1 0.902 82.80 9.40 24.40 0.677
MLP 2 0.912 84.10 8.20 22.90 0.633
MLP 3 0.901 82.60 15.30 21.50 0.630
MLP 4 0.946 87.70 7.60 16.70 0.469
MLP 5 0.908 86.60 11.00 15.70 0.460
MLP 6 0.943 87.50 7.60 17.10 0.479
MLP 7 0.939 86.30 4.40 22.40 0.601
MLP 8 0.941 86.60 3.70 22.40 0.598
MLP 9 0.915 84.40 12.60 18.30 0.535
MLP 10 0.946 87.70 7.60 16.70 0.469
MLP 11 0.939 86.90 10.70 15.30 0.448
MLP 12 0.936 86.80 8.50 17.60 0.497
MLP 13 0.924 84.96 6.68 22.81 0.623
MLP 14 0.954 88.33 7.76 15.30 0.434
SVM 0.936 86.35 8.68 18.27 0.515
CART 0.898 85.91 11.57 16.43 0.481
CTBag 0.939 86.57 11.11 15.58 0.458
RF 0.941 87.45 8.22 16.57 0.469
AdaBoost 0.930 86.35 5.93 20.82 0.568
BinomialBoosting 0.932 86.79 6.69 19.26 0.531
L2Boosting 0.923 86.57 10.81 15.87 0.463
all parametric models. Therefore, there is not a clear winner inside
the parametric models, as it can also be observed from Types I and
II errors.

Table 6 also shows that CART and some MLPs are not effective
in this study, obtaining a low AUC, but the EMC and AUC of CART
(in particular, the second measure) are improved when Bagging
is applied (CTBag and RF, their performance measures are very
similar as it can be seen in Fig. 1), a fact that agrees with the the-
oretical and empirical properties of this ensemble model. RF has
the greatest AUC inside both bagging approaches, whereas CTBag
has a lower expected misclassification cost.

Last line of Table 6 and Fig. 1 show that a boosting algorithm
based on a squared loss function (L2Boosting) outperforms the
other two Boosting algorithms, apparently with more appropriate
loss functions for classification problems. SVM has greater AUC va-
lue, but its EMC is worse than L2Boosting. In fact, SVM and LDA
have offered similar test measures.

Based in the previous results, we conclude, in line with other
authors (for example, see Chen, Härdle, & Moro, 2011; Ince & Ak-
tan, 2009), that, in general, not only do non-parametric models
have a greater AUC but also lower misclassification costs than
the classical approaches. Moreover, despite the disadvantages that
the MLP method includes: (a) its black-box nature, which renders
the resulting model very difficult to interpret; and, (b) its long
training process in designing the topology of the optimal network,
we consider MFIs should use this method instead other models
since even a minor improvement in predictive accuracy of the
MLP credit scoring model is of critical value. Just a mere 1%
improvement in accuracy would reduce losses in a large loan port-
folio and save millions of dollars (West, 2000). The differences, in
terms of the misclassification costs, between the best MLP (MLP
14) with respect to the other models, vary from 2.4% of the CTBag
method to 13.7% of the LR model. That is, the implementation of
neural network approaches help to reduce the MFI losses signifi-
cantly, and therefore, provides a way to obtain a competitive
advantage over other MFIs which fail to implement this methodol-
ogy. Moreover, the use of credit-scoring models provides the MFI
with further relevant management advantages, such as the possi-
bility of adopting the Basel II Internal rating-based (IRB) approach
which enables MFIs to attain more risk-sensitive capital require-
ments and to adjust interest rates to the risk of each borrower.



Table A.2
Statistical description of qualitative independent variables.

Variable Categories Failed (%) Non-failed (%)

Zone Centre 46.94 53.06
Outskirts 55.84 44.16

Sector Commerce 48.53 51.47
Agriculture 60.68 39.32
Production 53.22 46.78
Service 54.31 45.69

Purpose Work capital 47.07 52.93
Fixed asset 77.51 22.49

Gender Male 51.32 48.68
Female 50.71 49.29

Marital_St Single 50.73 49.27
Family unit 51.06 48.94

Employm_St Owner 50.81 49.19
Dependent 70.73 29.27

Guarantee Sworn declaration 58.50 41.50
Real guarantee 43.47 56.53

Currency PEN 89.30 92.10
$ 10.70 7.90

Forecast Without problems 42.94 57.06
With Problems 97.27 2.73

Table A.3
Significant variables using linear discriminant analysis.

Linear discriminant analysis model

Variablea Coefficient

Forecast 2.2062⁄

ER 0.1684⁄

CPI �0.0956⁄

Total_Fees 0.0125⁄

Arrears �0.0232⁄

Mfi_Class 0.7577⁄

Guarantee �0.2508⁄
⁄
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5. Conclusions

In this paper, an appropriate solution is offered so that the MFIs
can benefit from all the positive aspects that the implementation of
the credit scoring systems involves, such as the increase in effi-
ciency, profitability and market share, reduction of costs and
losses, and professional-image management.

The results of Section 4 let to extend for microcredit framework
a set of findings agreeing with previous works in credit risk analy-
sis as West (2000), Malhotra and Malhotra (2003), Min and Lee
(2005). Therefore, it can be expected for the non-parametric ap-
proaches a higher AUC and a lower EMC than those offered by
the traditional LDA, QDA and LR methods for microcredits. After
examining the wide set of models that were fitted in this paper,
a MLP model trained inside the free statistical environment R is
suggested to assess the success or default of credits in microfi-
nance industry.

A possible reluctance to use a multilayer perceptron in credit
scoring could be explained by some shortcomings as its black
box nature, being very difficult to interpret the resulting model,
and its long training process in designing the optimal networḱs
topology. However, despite of these disadvantages, these models
could clearly benefit the microfinance industry because of even a
small improvement in predictive accuracy of a default prediction
model is critical. According to West (2000), a 1% improvement in
accuracy would reduce losses in a large loan portfolio and save mil-
lions of dollars. That is, the implementation of a classification mod-
el as in this paper supposes that the MFIs reduce their losses in
terms of millions of dollars, and therefore provides a way for the
MFIs to achieve a competitive advantage over their competitors
(mainly commercial banks), since it constitutes a key to an increas-
ingly constrained environment. Therefore, it is worth a careful
comparison of Statistical Learning methods as in this work to
Table A.1
Statistical description of quantitative independent variables.

Variable Failed Non-Failed

Mean Standard
deviation

Mean Standard
deviation

R1 0.7637 0.8055 0.8436 0.8528
R2 3.9421 4.8284 3.8881 6.8548
R3 0.0683 0.0689 0.1448 3.2438
R4 0.1301 0.1368 0.1654 1.9812
R5 0.1421 0.1617 0.1196 0.1474
R6 0.2242 0.3227 0.1810 0.2789
R7 0.1531 0.1764 0.1771 0.2756
R8 0.1799 0.2015 0.2012 0.2911
Old 2.3468 1.5110 2.2397 1.5099
Previous_Loan_Granted 5.3900 5.0040 5.0600 4.6940
Loan_Granted 3.4600 2.3040 4.3400 2.3400
Loan_Denied 0.3200 0.5380 0.3300 0.5360
Mfi_Class 0.3500 0.4770 0.1100 0.3110
Total_Fees 36.1800 25.8510 31.7100 22.8390
Arrears 13.0400 10.7870 13.3400 11.1700
Ave_Arrear 8.0000 8.1510 6.8600 6.4340
Max_Arrears 20.2000 27.7650 16.5500 21.5030
Age 43.0175 10.6148 42.5628 10.4770
Amount 0.7338 0.6548 0.6458 0.5998
Duration 8.1100 4.7950 7.0300 3.5520
Interest_R 4.9242 0.9183 5.1255 0.8801
GDP 8.8985 29.7134 4.8139 26.3989
CPI 2.6377 2.2101 3.1247 2.1318
Empl_R 3.5702 10.6827 2.8671 9.6861
ER �2.4123 4.4517 �5.5607 3.8899
IR 5.9631 13.9525 12.1717 11.7493
SEI 44.5991 32.4527 49.5322 33.3754
Water 2.4576 3.7483 3.1681 4.2243
Electricity 3.6054 12.2598 8.5162 10.4552
Phone �7.1809 8.0019 �1.7179 3.8308

Table A.4
Significant variables using logistic regression.

Logistic regression model

Variablea Coefficient

Forecast 4.2624⁄⁄⁄

ER 0.3477⁄⁄⁄

Total_Fees 0.0221⁄⁄⁄

Arrears �0.0449⁄⁄⁄

Mfi_Class 1.2592⁄⁄⁄

Guarantee �0.6117⁄⁄⁄

IR �0.1011⁄⁄⁄

Empl_R �0.0247⁄⁄

Purpose 0.6048⁄⁄

GDP �0.0235⁄⁄⁄

Zone 0.4209⁄⁄⁄

Water 0.0346⁄

Duration �0.1275⁄⁄⁄

Intercept 0.2685

a ⁄⁄⁄p-value <0.001; ⁄⁄p-value <0.01; ⁄p-value <0.05.

Duration �0.0684
IR �0.0461⁄

Empl_R �0.0290⁄

Electricity �0.0125⁄

Purpose 0.3559⁄

SEI 0.0040⁄

GDP �0.0052⁄

Zone 0.1412⁄

R8 �0.3811⁄

Max_Arrears �0.0022⁄

R2 0.0077⁄

a ⁄⁄⁄p-value <0.001; ⁄⁄p-value <0.01; ⁄p-value <0.05.
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provide MFIs with all the advantages of automatic credit scoring
systems, such as the increase in efficiency, profitability and market
share, reduction of costs and losses, and professional-image
management. Hence MFIs will have more chance to compete with
commercial banks by using these advanced risk-management
tools.
Appendix A

Tables A.1–A.4.
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