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A B S T R A C T

This paper presents a maintenance policy for a modular system formed by 𝐾 independent modules (n-
subsystems) subjected to environmental conditions (shocks). For the modeling of this complex system, the use
of the Matrix-Analytical Method (MAM) is proposed under a layered approach according to its hierarchical
structure. Thus, the operational state of the system (top layer) depends on the states of the modules (middle
layer), which in turn depend on the states of their components (bottom layer). This allows a detailed description
of the system operation to plan maintenance actions appropriately and optimally. We propose a hierarchical
decision-based maintenance strategy with periodic inspections as follows: at the time of the inspection, the
condition of the system is first evaluated. If intervention is necessary, the modules are then checked to make
individual decisions based on their states, and so on. Replacement or repair will be carried out as appropriate.
An optimization problem is formulated as a function of the length of the inspection period and the intervention
cost incurred over the useful life of the system. Our method shows the advantages, providing compact and
implementable expressions. The model is illustrated on a submarine Electrical Control Unit (ECU).
1. Introduction

1.1. Motivation

Modularity is a concept widely applied in many fields, such as
manufacturing industry, power and energy systems, computer science,
smart grid, biology. In fact, many modern systems consist of mod-
ules e.g. aircrafts, rockets, submarines, automobiles, high-tech medical
equipment and others. The advantages of using modular product design
are discussed widely in the existing literature, which also shows a vari-
ety of recent applications to engineering systems [1–10]. When defining
the modules, diverse strategies are found based on different motiva-
tions or design goals [11,12]. Thus, a modular system can be defined
according to either its functioning requirements [13], manufactur-
ing considerations [2], reliability optimization [14] or maintainability
targets [15] among others.

In practice, most engineering systems have to fulfill missions that re-
quire high reliability, so they need to be maintained regularly to avoid
catastrophic failures and costly disruptions. In this respect, continuous
system monitoring or inspections over time are key to decide whether
a maintenance action should be performed, which could be preventive
or corrective. Preventive maintenance (PM) actions attempt to maintain
the system in an acceptable condition of operation by avoiding a system
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failure. Corrective maintenance (CM) refers to all actions that occur
when the system has already failed. For some systems, continuous
monitoring is not feasible and inspections turn out to be the only
alternative tool. Thus, determining the optimal frequency of inspections
to minimize its cost while keeping the system performance is essential.
An extensive amount of literature deals with multi-component models
under different approaches that involve periodic inspections, age-based
maintenance or condition-based maintenance; where reliability and
cost optimization problems are often formulated [16–22].

The present work focuses on multi-component systems designed
with a modular structure. Units (components) within each module
are assumed to be similar in some aspects, e.g. units that perform a
certain mission or function in the system [13,23], units that compose a
redundant structure [24], units making up voting circuits in electrical
or computer systems [25] and so on. In all cases, a module can be rep-
resented by a subsystem of components. Here, a system designed with
𝐾-independent modules (KMS) is studied, where each module is an 𝑛𝑖-
subsystem, and the system performs its function through its modules.
These modules are assumed to operate under environmental conditions
causing shocks that could affect each module in a different way. The
modeling of the shocks is done by Markovian Arrival Processes (MAPs).
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The lifetimes of the units within the modules are assumed to be Phase-
type distributed (PH-distributed). This system was already considered
by the authors in [26], where primarily a reliability analysis was
performed, and, maintenance was only treated briefly. Specifically, the
optimal length of the operating time of the system until it is inspected
for the first time was determined based on the probability (𝑞) that the
system reaches a critical operating state. In [26], certain cost-based
arguments were used to plan the optimal inspection schedule, but no
detailed analysis based on maintenance actions and cost specifications
as it is done here was carried out.

It is clear that modeling complex systems is a challenging task due to
the large number of units, structures and factors concerned, which lead
to an arduous and large dimensional framework. For this reason, many
multi-component systems are studied in the literature using numerical
or simulation techniques [27]. As an alternative, Markovian processes
and the use of the Matrix-Analytical Method (MAM) has proven to be
a useful tool for the study of complex systems [28–31]. Nevertheless,
to the authors’ knowledge, reliability literature on modular systems is
very limited and even more so using the above methodology. Thus, for
modeling this type of system, we propose the use of the MAM under a
layered/leveled approach according to its hierarchical structure where
the whole system is located at the top, the modules are in the middle
and the components are set at the bottom. As a first goal, in [26] the au-
thors designed the so-called MoMA (Modular Matrix-Analytic Method)
Algorithm to build (bottom-up) the generator of this system and from
it the assessment of the system was carried out. However, the present
work focuses on the design of a maintenance strategy for the system.
To this end, our approach is most appropriate by allowing a state-
based hierarchical description of the system operational conditions,
i.e. states at each level capture the operational health (states) of every
element at the level/s below. This provides detailed information that
makes possible to plan maintenance actions in a precise and optimal
way. Regarding the layered description of systems, other works can
be found in the literature under different targets and methodologies.
For instance, the work in [32] deals with a multi-level redundancy
assignment problem in a modular system, where the effect of redun-
dancies (at different levels) on the reliability of the system is evaluated.
For maintenance purposes for a multi-component system, the authors
in [27] propose a preventive and opportunistic method with a two-
phased inspection: the system is first inspected and, depending on its
condition, in the second phase, the units are inspected or not.

For our system, the states (at each level) can be categorized into
groups according to operational health under progressive deteriora-
tion or risk, i.e. optimal, critical and failure. Thus, we propose the
following inspection-maintenance policy: at the time of the inspection,
the operational state of the system is assessed first (optimal, critical
or failure), which determines whether or not a maintenance action is
required. If so, then it becomes necessary to look at the operational
state of each module to make individual decisions for each. Those
modules which are in a critical or failure state are ascertained. For
the rest, no intervention will take place. Thus, maintenance tasks will
be performed accordingly. As can be noted, this maintenance strategy
aligns with system design: system, module and component levels can
be distinguished. It is well justified for those multi-component systems
where it is not feasible or costly to inspect every single component. For
example, in a battery pack system in electric vehicles, voltage checking
for the bank of cells is cheaper than for individual cells, taking into
account the assembling and disassembling costs [27]. In connection
with this, existing literature establishes that in models with positive
economic dependencies maintaining similar units together is cheaper
than maintaining them separately since the set-up costs can be shared
as well as a specialized technicians team when similar maintenance
tasks are required [33,34]. In addition, replacing an entire module
when it fails is sometimes a more economical option than replacing
2

each of its components [35,36].
In short, we plan for the system a hierarchical and decision-based
maintenance with periodic inspections, where preventive and correc-
tive actions are included. These actions are implemented in blocks,
i.e. several units could be repaired at the same time or jointly replaced.
The maintenance effect on the modules is mathematically represented
by matrices, which describe the transitions rules from the occupied
state just before the inspection to the state (to be occupied) just after
the inspection. These matrices play an important role when determin-
ing the Markovian process that governs the evolution of the system over
time. As will be shown later, a recursive procedure allows to describe
the Markovian process along each inspection period starting from the
first one, where the system has not yet been inspected (addressed
in [26]). A cost analysis on each inspection period is performed, based
on maintenance costs, e.g. per inspection, per replacement of each unit,
per down-time, and others. Finally, an optimization problem is formu-
lated as a function of the time between inspections and the incurred
costs along the useful life of the system, where a maximum number
of inspections is allowed. The expressions and calculus are illustrated
on a real system, consisting of the electrical control equipment of a
submarine, formed by four modules. A discussion of the main results
and conclusions are reported.

1.2. Contributions

The main contributions of this paper are listed below.

1. Modules are key to system reliability and maintainability: with
𝐾 independent modules, a failure in one module generally does
not compromise the entire system operation, although its per-
formance might degrade. Thus, system malfunctions or failures
can be identified and located more easily than in non-modular
logical structures. As a result, the system maintenance process
is simplified, potentially reducing time and costs. Our approach
takes these aspects of modular design theory into account..

2. The method we propose proves to be suitable for modeling this
kind of complex modular systems. Specifically, it allows:

• To give a state-based hierarchical description of the system
operational health, which provides detailed information.
Thus, the state of the system collects information about
the state of each of its elements, as each level captures the
state of the elements at the level below. This allows for
accurate assessments of the operational conditions at the
time of inspection, which enables maintenance needs to
be precisely established. This is an important contribution,
when compared with those systems that behave like black
boxes at the time of inspection-maintenance.

• To plan a hierarchical condition-based policy accordingly.
• To perform a stepwise analytical study, by levels, where

mathematical tools such as MAPs, PH-distributions and
Kronecker operators are essential and lead to compact
and algorithmic expressions that make the model imple-
mentable. Specifically, matrices that are relevant in this
maintenance analysis are novel and easily constructed un-
der this approach.

3. For the KMS described, already considered in [26], a mainte-
nance policy based on regular inspections along its useful life is
provided. A cost minimization problem is formulated in terms of
the frequency of inspection.

4. PH-distributions and MAPs extend the Exponential distribution
and Poisson arrival process, respectively, among others, often
assumed in engineering studies. For example, the submarine ECU
studied in [25] assumes all lifetimes and repair times exponen-
tially distributed; such study also reveals a complex framework
due to the large number of states given for the system, which
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Table 1
Acronyms.
KMS 𝐾-Modular System
PH-distribution Phase-Type distribution
MAP Markovian Arrival Process
MAM Matrix-Analytical Method
MoMA Modular Matrix-Analytic Algorithm
ECU Electrical Control Unit
SEM Subsea Electrical Module
BOP Blowout Preventer

could be improved using the MAM, as we propose in this paper.
Additionally, each module in the system is assumed to fail
independently of the others based on two sources of failure:
units wear-out and external shocks. This situation fits many
modular systems in practice, where each module can be exposed
to certain environmental or working conditions depending on
the assigned function to perform in the system or depending on
its physical location, e.g. modules underwater as considered in
the paper referenced before.

5. A case example concerning the Electrical Control Unit (ECU) of
a submarine illustrates numerically, for different cost scenarios,
the optimal length of the inspection period and, from this, the
total number of inspections to be performed over the useful life
of the system.

Further contributions can be made by applying our method to the
tudy of other complex models, such as the following ones: (1) systems
hat are decomposed into independent subsystems (modules) for simpli-
ication aims (see [37]); (2) modular systems where module is derived
n another way, depending on the purpose or context of application. For
xample, a module can be interpreted as a group of components to be
aintained in the same way (see [10]). In summary, our methodology

s a powerful and flexible tool for the analysis of complex systems.
herefore, it is suitable for addressing a wide variety of reliability and
aintainability problems taking advantage of the modular design. For

xample, by adding or updating functions, or adding redundancy in the
ystem by means of modules, the modeling of the system (after these
hanges) could be easily adapted.

The remainder of this paper is organized as follows. Section 2
rovides the relevant definitions for application of the MAM. Section 3
stablishes the assumptions of the system. Sections 4 and 5 are devoted
o the proposed maintenance policy for the system and the associated
ost model. In these sections, the key mathematical elements for mod-
ling the system maintenance and to formulate a cost optimization
roblem are defined. Section 6 illustrates the model on a real system,
submarine ECU comprising four modules. A discussion of the main

esults and some conclusions are presented in Section 7.

. Preliminaries

In this section we present the nomenclature used and define some
asic concept that will be needed for the rest of the paper.

.1. Acronyms & notation

In Table 1 we provide some acronyms and in Table 2 we detail the
otation used in the paper.

.2. Basic concepts

PH-distributions, MAPs, and Kronecker operations play an impor-
ant role in this paper. They are the basic elements in the application
f MAMs, and are formally defined below to provide a better under-
tanding of this work. For further details, readers are referred to [38–
3

0].
Definition 1 (PH-distribution). Consider a finite Markov chain with 𝑚
transient states and one absorbing state with the infinitesimal generator
𝑄 partitioned as

𝑄 =
(

𝑇 𝑇 0

0 0

)

.

where 𝑇 is a matrix of order 𝑚 and 𝑇 0 is a column vector such that 𝑇 𝑒+
𝑇 0 = 0. The vector 𝑒 is a column vector of ones. For eventual absorption
into the absorbing state, starting from the initial state it is necessary and
sufficient that 𝑇 be nonsingular. Suppose that the initial state of the
Markov chain is chosen according to the probability vector (𝛼, 𝑎𝑚+1).
Let 𝑋 denote the time until absorption; then, 𝑋 is a random variable
taking non-negative values, with probability distribution function given
by 𝐹 (𝑥) = 1 − 𝛼𝑒𝑇𝑥𝑒, for 𝑥 ≥ 0.

We then denote 𝑋 as following a 𝑃𝐻(𝛼, 𝑇 )-distribution of order 𝑚.

Definition 2 (Markovian Arrival Process). Suppose that 𝐷 =
(

𝑑𝑖𝑗
)

is the
generator of an irreducible Markov chain with 𝑚 states. At the end of a
sojourn time in state 𝑖 that is exponentially distributed with parameter
𝜆𝑖, one of the following two events could occur: with probability 𝑝(1)𝑖𝑗 ,
the transition corresponds to an arrival and the underlying Markov
chain is in state 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑚, while with probability 𝑝(0)𝑖𝑗 the
transition corresponds to no arrival and the state of the Markov chain
is 𝑗, 𝑗 ≠ 𝑖. We can define matrices 𝐷0 =

(

𝑑(0)𝑖𝑗

)

and 𝐷1 =
(

𝑑(1)𝑖𝑗

)

such that 𝑑(0)𝑖𝑖 = −𝜆𝑖, 𝑑(0)𝑖𝑗 = 𝜆𝑖𝑝
(0)
𝑖𝑗 , for 𝑗 ≠ 𝑖 and 𝑑(1)𝑖𝑗 = 𝜆𝑖𝑝

(1)
𝑖𝑗 , 1 ≤

𝑖, 𝑗 ≤ 𝑚. By assuming 𝐷0 to be a nonsingular matrix, the inter-arrival
times are finite with a probability of one, and the arrival process does
not terminate. Hence, it can be seen that 𝐷0 is a stable matrix. The
generator 𝐷 is then provided by 𝐷 = 𝐷0 + 𝐷1. Let 𝛼 be the initial
probability vector of the underlying Markov chain.

Then, 𝐷0 governs the transitions corresponding to no arrival and
𝐷1 governs those corresponding to an arrival. It can be shown that
MAP is equivalent to Neuts’ versatile Markovian point process. The
point process described by the MAP is a special class of semi-Markov
processes with their transition probability matrix provided by

∫

𝑥

0
𝑒𝐷0𝑡𝑑𝑡𝐷1 =

[

𝐼 − 𝑒𝐷0𝑥
]

(−𝐷0)−1𝐷1, 𝑥 ≥ 0

This MAP is represented by the MAP (𝐷0, 𝐷1) of order 𝑚.

Definition 3 (Kronecker Product of Matrices). If 𝐴 and 𝐵 are rectangular
matrices with dimensions 𝑚1 × 𝑚2 and 𝑛1 × 𝑛2, respectively, their
Kronecker product 𝐴⊗𝐵 is a matrix with the dimensions 𝑚1𝑛1 ×𝑚2𝑛2,
which can be written in compact form as (𝑎𝑖𝑗𝐵).

Definition 4 (Kronecker Sum of Matrices). If 𝐴 and 𝐵 are square
matrices with dimensions 𝑚1 and 𝑛1, respectively, their Kronecker sum,
denoted by 𝐴⊕𝐵, is a matrix defined by 𝐴⊗𝐼𝑛1 + 𝐼𝑚1

⊗𝐵, where 𝐼𝑚1
,

𝐼𝑛1 are identity matrices with dimensions 𝑚1 and 𝑛1, respectively.

3. System description

A system formed by 𝑁 units grouped in 𝐾 modules is considered.
The failure of each module can be due to the wear-out of its units or
to a shock that affects the module. The lifetime of each unit follows a
PH-distribution. Shocks arrive at the module (system) following a MAP.
The generator of such system was built in [26]. All the expressions
appearing in this section were derived in [26]. Here we summarize the
assumptions and the results needed for the paper.

3.1. Model assumptions

1. The 𝑖th module is formed by 𝑛𝑖 units. The lifetime of unit 𝑗 in the
module follows a PH-distribution 𝑃𝐻(𝛼𝑗,𝑖, 𝑇𝑗,𝑖), with 𝑚𝑗,𝑖 phases
where 𝑖 = 1, 2,… , 𝐾, 𝑗 = 1, 2,… , 𝑛𝑖 and 𝑁 =

∑𝐾
𝑖=1 𝑛𝑖. The units

within a module are considered independent.
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Table 2
Notation.
𝐾 Number of modules in the system
𝑛𝑖 Number of units in module 𝑖 = 1,… , 𝐾
Q𝑠𝑦𝑠 Infinitesimal generator of the system
𝑈 Set of operational states of the system
𝑈1 Set of optimal states of the system
𝑈2 Set of critical states of the system
𝐷 Set of down states of the system
𝑠𝑗𝑖 State of unit 𝑗 of module 𝑖
𝑠̃𝑖 State of module 𝑖
𝐬̃ State of the system
𝑀 𝑗

𝑖 Matrix of maintenance-effect on unit 𝑗 in module 𝑖
𝛽𝑗,𝑖 Vector of state-probability for unit 𝑗 in module 𝑖 after maintenance action
𝐌𝑖 Matrix of maintenance-effect on module 𝑖
𝛽𝑖 Initial probability vector for module 𝑖 after replacement of the module
𝜏a a𝑡ℎ inspection time
𝐴 Maximum number of inspections
𝑋(𝑡) State of the system at time 𝑡, 0 < 𝑡 < 𝜏 (without maintenance)
(a𝜏, (a + 1)𝜏] ath operational cycle of the system, a = 0,… , 𝐴 − 1
𝛼(a) System state probability vector after ath inspection
𝑋(a, 𝑡) State of the system at time a𝜏 + 𝑡, 0 < 𝑡 < 𝜏, a = 1,… , 𝐴
𝛼𝑖(a) Vector of state probabilities for module 𝑖 after ath inspection.
𝑋𝑖(a, 𝜏) State of module 𝑖 at the end of the ath operational cycle
𝛽 Initial probability vector of the system after full replacement
𝐂𝑖 Matrix of maintenance cost of module 𝑖
𝑓𝑠(a, 𝑡) Lifetime density of the system after ath inspection
𝐶𝑜𝑠𝑡(a, 𝜏, 𝑖) Total cost of maintenance on module 𝑖 at the ath inspection
𝐸𝐶𝑠𝑦𝑠(a, 𝜏) Total expected cost of maintenance of the system in the interval (a𝜏, (a + 1)𝜏]
2. Shocks arrive to module 𝑖 following a 𝑀𝐴𝑃 (𝐷0,𝑖, 𝐷1,𝑖), of order
𝑏𝑖 where 𝐷𝑖 = 𝐷0,𝑖 + 𝐷1,𝑖 is the infinitesimal generator. Matrix
𝐷0,𝑖 governs the inter-arrival times between shocks that affect
the module and matrix 𝐷1,𝑖 contains the transition rates between
the phases of the MAP when a shock arrives.

3. The MAP process affecting module 𝑖 is independent of the other
MAP processes affecting the rest of the modules.

4. Following the bottom-up strategy explained in [26], the state of
the system is ultimately determined by the states of the units that
are part of each module. We consider the following notation. Let
𝐸 be the set of states of the system. We denote 𝐬̃ one particular
element of 𝐸, which we describe as follows

𝐬̃ = (𝑠̃1; 𝑠̃2;… ; 𝑠̃𝐾 ),

where 𝑠̃𝑖 = (𝑠𝑖1, 𝑠𝑖2,… , 𝑠𝑖𝑛𝑖 ) denotes the state of module 𝑖 and
is given by a particular combination of the states of the units
within the module. That is 𝑠𝑗𝑖 is the state of the 𝑗th unit of the
module 𝑖, with 𝑗 = 1,… , 𝑛𝑖; and 𝑖 = 1,… , 𝐾. Notice that we use
‘‘,’’ to discriminate states of the units within a module and ‘‘;’’
to distinguish the states of two different modules. Finally, let 𝑛
denote the total number of states of the system.

5. A shock may or may not cause the failure of a module. Let
𝑝1,𝑖, 𝑖 = 1,… , 𝐾 be the probability that a shock causes the failure
of module 𝑖, and 𝑝0,𝑖 the probability that the module does not
fail due to the shock. Additionally, 𝑝0,𝑖 + 𝑝1,𝑖 = 1.

6. The system might fail even if some modules are still operational.

Below we provide the expression of the system generator (Q𝑠𝑦𝑠).
This generator is given in terms of the number of modules that have
not failed, i.e. the macro-states in the generator refer to the number of
modules that remain operational.

Q𝑠𝑦𝑠 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐐′
𝐾 𝐐̃′

𝐾 0 0 ⋯ 0
0 𝐐′

𝐾−1 𝐐̃′
𝐾−1 0 ⋯ 0

0 0 ⋱ ⋱ ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 0 𝐐′

𝐾−(𝐾−1) 𝐐̃′
𝐾−(𝐾−1)

0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (1)

In this generator, the transitions between the macro-states are given
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by:
• 𝐐′
𝐾−𝑙 is a matrix describing the transitions when 𝑙 modules out of

𝐾 modules have failed and the rest remain operational. Transi-
tions in this matrix have to consider all possible combinations of
𝑙 modules failing out of 𝐾, therefore this matrix is composed of
(𝐾
𝑙

)

×
(𝐾
𝑙

)

blocks of matrices. The blocks in the diagonal contain
the transitions within the same state i.e. from the state where 𝑙
specific modules have failed to the state where exactly the same
modules have failed. The off-diagonal blocks in this matrix are
given by matrices of zeros of appropriate dimensions, as these
transitions mean that a different set of modules have failed and
that is not possible. The diagonal blocks are akin to the following
one:

𝐐𝑠
1 ⊕⋯⊕𝐐𝑠

ℎ1−1
⊕𝐐𝑠

ℎ1+1
⊕⋯⊕𝐐𝑠

ℎ𝑙−1
⊕𝐐𝑠

ℎ𝑙+1
⊕⋯⊕𝐐𝑠

𝐾 . (2)

with ℎ𝑟 in {1, 2,… , 𝐾}, 𝑟 = 1,… , 𝑙 and ⊕ is the Kronecker sum.
In (2) matrix 𝐐𝑠

𝑖 provides the transitions between the operational
states in module 𝑖. These transitions could be due to the change
of phase of its units (wear-out of the units) or to the arrival of a
shock that does not affect the module. This matrix is given by,

𝐐𝑠
𝑖 = 𝐐𝑖 ⊕ (𝐷0,𝑖 + 𝑝0,𝑖𝐷1,𝑖),

where matrix 𝐐𝑖 is the matrix that represents the internal changes
in module 𝑖, i.e. changes between the operational phases of the
units, that do not lead to the module failure.

• Matrix 𝐐̃′
𝐾−𝑙 is formed by

(𝐾
𝑙

)

×
( 𝐾
𝑙+1

)

blocks of matrices that
describe the transitions when a module fails, e.g. module 𝑝, out of
the remaining operational ones, i.e. from 𝐾−𝑙 specific operational
modules to 𝐾 − (𝑙 + 1), where 𝑙 of the modules have previously
failed. These transitions can be described by matrices like the
following one:

𝐼∑𝑛1
𝑗=1 𝑚𝑗,1

⊗⋯⊗𝐼∑𝑛𝑝−1
𝑗=1 𝑚𝑗,𝑝−1

⊗(𝐐̃𝑠
𝑝𝑒)⊗𝐼∑𝑛𝑝+1

𝑗=1 𝑚𝑗,𝑝+1
⊗⋯⊗𝐼∑𝑛𝐾

𝑗=1 𝑚𝑗,𝐾
, (3)

with 𝑒 a column vector of 1s of the appropriate dimension. The
rest of the transitions in matrix 𝐐̃′

𝐾−𝑙 are given by matrices of
zeros of appropriate dimension.
Note that in this case module 𝑝 fails out of the remaining oper-
ational modules, being module 𝑝 not necessarily consecutive to

any of the previously failed ones.
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In (3) matrix 𝐐̃𝑠
𝑖 represents the transitions when the module fails

due to the failure of one of its units or due to a shock. Matrix 𝐐̃𝑠
𝑖

is given by:

𝐐̃𝑠
𝑖 =

(

𝐐̃𝑖 ⊗ 𝐼 𝐼 ⊗ 𝑝1,𝑖𝐷1,𝑖

)

.

where matrix 𝐐̃𝑖 is the matrix that represents the transitions to a
failure state due to an internal failure, i.e., the failure of its units
as a consequence of the wear-out process.

• Finally, for any 𝑖 in {1,… , 𝐾}, matrix 𝐐∗𝑠
𝑖 is the generator of

module 𝑖 considering that it might fail due to the wear-out process
or due to the arrival of a shock. This generator is given by the
following expression:

𝐐∗𝑠
𝑖 =

(

𝐐𝑠
𝑖 𝐐̃𝑠

𝑖
0 0

)

.

xample. A 𝑘-out-of-𝐾 system

The macro-states of the system can be grouped into operational and
ailure states depending on its arrangement, for the particular case of
𝑘-out-of-𝐾 system, 𝐾 − 𝑘 + 1 modules must fail for the system to

ail. Let Q′
𝑠𝑦𝑠 be the matrix that describes the transitions between the

perational states, and Q̃′
𝑠𝑦𝑠 the matrix that describes the transitions

etween the operational and failure states. These matrices are given
y,

′
𝑠𝑦𝑠 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐐′
𝐾 𝐐̃′

𝐾 0 ⋯ 0
0 𝐐′

𝐾−1 𝐐̃′
𝐾−1 ⋯ 0

0 0 ⋱ ⋱ ⋯
⋮ ⋮ ⋱ 𝐐̃′

𝑘+1
0 0 0 0 𝐐′

𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and,

Q̃′
𝑠𝑦𝑠 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
⋮
0
𝐐̃′

𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Therefore, the generator of the system can be described in a compact
form as follows:

Q𝑠𝑦𝑠 =

(

Q′
𝑠𝑦𝑠 Q̃′

𝑠𝑦𝑠
0 0

)

,

As it can be seen, this generator is given in terms of 2 macro-states, the
perational state (up state) that will be denoted by U and the failure
tate (down state) that will be denoted by D.

As for the system, we can also group the states of each module
nto operational and failure states. In [26] 𝑄∗

𝑖 is the generator that
escribes how the module might fail solely due to the wear-out of its
nits, and is given in terms of the operational units, in a similar way to
he description of the failure of the system in terms of the operational
odules see (1). More specifically,

∗
𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑄𝑛𝑖 𝑄̃𝑛𝑖 0 0 ⋯ 0
0 𝑄𝑛𝑖−1 𝑄̃𝑛𝑖−1 0 ⋯ 0
0 0 ⋱ ⋱ ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 0 𝑄1 𝑄̃1
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

The macro-states of this generator can be in turn grouped into
perational and failure macro-states depending on the configuration of
he units within the module, e.g. if the units in the module are set in
eries then

= 𝑄 and 𝐐̃ = 𝑄̃
5

𝑖 𝑛𝑖 𝑖 𝑛𝑖 d
where the rest of the blocks in matrix 𝐐∗
𝑖 are given by matrices of 0𝑠

f appropriate dimensions.

emark 1. Matrix Q𝑠𝑦𝑠 is the generator that governs the evolution of
the system until it fails. In the described system we have considered that
independent MAPs can affect individual modules. Alternatively, in [26]
the case where a shock that arrives following a MAP and affects the
system as a whole is also considered. We do not describe this particular
case in the present paper but in the next sections, matrix Q𝑠𝑦𝑠 might
epresent the evolution of the system standing shocks that affect the
ystem as a whole as well.

.2. The MoMA algorithm

The MoMA algorithm was developed in [26] to built the system
enerator using a bottom up approach, i.e. starting from the units
enerators. In this algorithm first the generator of module i is built
onsidering the units generators, then the system generator is built
ombining the module generators as well as the generators correspond-
ng to the shocks arrival. Three scenarios are considered: 1. There are
o shocks affecting the system, 2. A shock could affect the system as a
hole causing its failure and 3. 𝐾 independent shock processes might
ffect the modules causing their failure.

. Maintenance policy

For the above described system we propose the following mainte-
ance policy: the system is inspected at times 𝜏a = a𝜏, where 𝜏 is fixed
nd determined considering maintenance costs as it will be shown later
n. Additionally, maintenance actions depend on the state of the system
t inspection time 𝜏a. For this system we distinguish between optimal
perational states, critical states (the performance of the system has
egraded, it could mean that although it has not failed it might be
pproaching the end of its life) and down states (the system has failed).
he set of states that are optimal are labeled by 𝑈1, the set of critical
tates are labeled by 𝑈2 and the set of down states are labeled by 𝐷,
lthough we are only considering one down state and do not distinguish
ailure modes.

As mentioned above, the maintenance policy looks at the state of
he system at the inspection time and proceeds as follows:

• If the system is in an optimal state
(

𝑈1
)

, no intervention takes
place, leaving the system in the same state.

• If the system is in a critical state
(

𝑈2
)

, we look at the modules.
The failed modules are replaced and for the rest we distinguish
between modules in a critical state (approaching their failure) and
those in an optimal state, for the former ones the failed units are
maintained, for the latter ones no intervention takes place, i.e. the
wear-out state of the module remains the same.

• Finally, if the system has failed we replace it.

As it can be seen, we only inspect the modules if the system is in
critical state at inspection times. Otherwise, if the system is in an

ptimal state we do nothing, and if the system has failed we replace it
ollowing initial probability vector 𝛽. Additionally, when the system
s in a critical state, maintenance actions restore the modules to an
ptimal state.

Fig. 1 describes the transitions between the set of states 𝑈1, 𝑈2
nd 𝐷 considering wear-out, shocks and the maintenance policy. The

escribed transitions replicate at module level.
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Fig. 1. Modular system transitions. (1) Units wear-out. Shock processes. Modules
might fail. (2) Failure of 𝑠th module. (3) Failure of 𝑟th module. System failure. (4)
System failure due to a shock. (5) Maintenance. Restore failed units and modules. (6)
Maintenance. Replace system.

4.1. Construction of maintenance matrices 𝐌𝑖

Let us define matrix 𝐌𝑖 to describe how the maintenance policy
affects module 𝑖 when the system is in a critical state. We describe
this matrix by blocks. In general, let us denote 𝑀𝐴1 ,𝐴2

the sub-matrix
describing the transitions from states in subset 𝐴1 to states in subset
𝐴2, for any 𝐴1, 𝐴2 ⊂ 𝐸𝑖 where 𝐸𝑖 = 𝑈𝑖1 ∪ 𝑈𝑖2 ∪𝐷𝑖 is the state space for
module 𝑖, for 𝑖 = 1,… , 𝐾. At inspection time 𝜏𝑎:

• If the module is in an optimal state, then no intervention takes
place. Therefore 𝑀𝑈𝑖1 ,𝑈𝑖1

= 𝐼 .
• If the module is in a critical state, 𝑈𝑖2, all the failed units are

maintained, the rest remain unchanged. Within 𝑈𝑖2 we have
different combinations of units in operational and failed state. For
example, let us consider a 2-out-of-4 module, this module will
be in a critical state when 2 of its units have failed, we have
(4
2

)

combinations of failed and operational units that should be
taken into account to determine the states within 𝑈𝑖2. In 4.2 some
detailed examples are given.
In general, for a specific combination of failed units in module 𝑖
and after a maintenance action, module 𝑖 re-initiates its operation
considering the following expression:

𝑀1
𝑖 ⊗𝑀2

𝑖 ⊗⋯⊗𝑀𝑛𝑖
𝑖 .

where 𝑀 𝑗
𝑖 = 𝐼 if unit 𝑗 is in an operational state. If the unit is in

a failed state it re-initiates its operation following a maintenance
action vector 𝛽𝑗,𝑖, where 𝛽𝑗,𝑖 contains the probabilities of the
maintenance action restoring the unit to any of its operational
phases.
As an example, if unit 𝑗, 𝑗 = 1,… , 𝑛𝑖 has failed then the cor-
responding block of probabilities in sub-matrix 𝑀𝑈𝑖1 ,𝑈𝑖2

is given
by:

𝐼𝑚1,𝑖
⊗⋯⊗ 𝐼𝑚𝑗−1,𝑖

⊗ 𝛽𝑗,𝑖 ⊗ 𝐼𝑚𝑗+1,𝑖
⊗⋯⊗ 𝐼𝑚𝑛𝑖 ,𝑖

.

• If the module has failed, then the module is replaced and it re-
initiates its operation following maintenance action vector 𝛽𝑖.
Therefore, 𝑀𝐷,𝑈𝑖1

= 𝛽𝑖. Eventually one can take 𝛽𝑖 = 𝛼𝑖 (the initial
probability distribution), however, to be general, we consider
here that the probability of restoring module 𝑖 to any operational
state might be different from the provided by initial probability
distribution.

• The rest of the blocks within this matrix are given by matrices of
zeros.

n summary, each row in matrix 𝐌𝑖 is a vector describing the proba-
ilities to restore the module from an specific state to any operational
tate after a maintenance action takes place.
6

.2. Examples

Let us illustrate matrix 𝐌𝑖 with a couple of examples.

1. First, we consider that module 𝑖 is formed by 2 units set in paral-
lel, both units are Phase-type distributed with two phases each,
phases 0 and 1 are the operational phases and phase 2 is the
absorption one, i.e. the unit has failed. We denote the absorption
phase by F from now on. We define the operational, critical and
failed states of the module in terms of the units phases as follows:
𝑈𝑖1 = {(0, 0), (0, 1), (1, 0), (1, 1)}, 𝑈𝑖2 = {(0, 𝐹 ), (1, 𝐹 ), (𝐹 , 0), (𝐹 , 1)},
and 𝐷𝑖 = {(𝐹 , 𝐹 )}. In this particular example the module is in a
critical state when one of its units has failed. Then, matrix 𝑀 𝑖

is given by,

𝐌𝑖 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑈𝑖1 𝑈𝑖2 𝐷𝑖

𝑈𝑖1 𝐼 0 0

𝑈𝑖2
𝐼 ⊗ 𝛽2,𝑖
𝛽1,𝑖 ⊗ 𝐼

0 0

𝐷𝑖 𝛽𝑖 = 𝛽1,𝑖 ⊗ 𝛽2,𝑖 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

.
2. Another example is given by a module composed by 3 units,

each of them Phase-type distributed with 1 phase, being 0 the
operational phase and F the absorption phase, i.e. they are
exponentially distributed.
Module 𝑖 is a 2-out-of-3 module. Therefore the optimal states
of the module are given by 𝑈𝑖1 = {(0, 0, 0)} and the critical
states are given by 𝑈𝑖2 = {(0, 0, 𝐹 ), (0, 𝐹 , 0), (𝐹 , 0, 0)}. The down
state encompasses states {(0, 𝐹 , 𝐹 ), (𝐹 , 0, 𝐹 ), (𝐹 , 𝐹 , 0), (𝐹 , 𝐹 , 𝐹 )},
although we do not distinguish failure modes and consider it as
a unique state, as mentioned above.
The expression of matrix 𝐌𝑖 is given by,

𝐌𝑖 =
⎛

⎜

⎜

⎝

𝑈𝑖1 𝑈𝑖2 𝐷𝑖

𝑈𝑖1 1 0 0
𝑈𝑖2 𝑒 0 0
𝐷𝑖 𝛽𝑖 = 1 0 0

⎞

⎟

⎟

⎠

.

where 𝑒 is a all-ones 3 × 1 vector.

4.3. Consequences of the maintenance actions

Let 𝑋(𝑡) be the state of the system before the first inspection takes
lace. Let us recall that the system generator is given by Q𝑠𝑦𝑠 and let
s say that 𝛼𝑠𝑦𝑠 is the system initial probability distribution.

Let us consider {𝑋(a, 𝑡), 0 ≤ 𝑡 ≤ 𝜏, a = 0, 1, 2,… , 𝐴}, where 𝑋(a, 𝑡)
s the state of the system at time 𝑡 ∈ [0, 𝜏] after the ath inspection. In
ther words, 𝑋(a, 𝑡) represents the state of the system at time a𝜏 + 𝑡.

Additionally, 𝐴 is the maximum number of inspections, i.e at the 𝐴𝑡ℎ
inspection the system is replaced, and 𝑋(0, 𝑡) = 𝑋(𝑡), 0 < 𝑡 ≤ 𝜏.

Let 𝐸 = 𝑈1∪𝑈2∪𝐷. In general, the order of the states in matrix Q𝑠𝑦𝑠
llows us to directly assign the states to 𝑈1, 𝑈2 and 𝐷 without having
o reorganize these states. However, this might not be always the case,
hen this happens we can in practice re-label the states to work with

hem. In what follows we assume that we do not need to reorganize
or re-label these states.

After the ath inspection the system is in one of the states in set 𝑈1,
.e. 𝑋(a, 0) ∈ 𝑈1. The new state depends on the state of the system
rior to the inspection and the performed maintenance action, as shown
n Fig. 2, then 𝑋(a, 0) is a function of 𝑋(a − 1, 𝜏) and the performed
aintenance action, which is determined by matrices 𝐌1,𝐌2,… ,𝐌𝐾 .
herefore, at the beginning of the ath period we have an initial proba-
ility distribution over the system states, let us denote this distribution

𝛼(a); if a = 0 then 𝛼(a) = 𝛼𝑠𝑦𝑠. To determine 𝛼(a) we can distinguish
hree situations (see Fig. 2).

Let a > 0, and, for a particular state of the system 𝐬̃ ∈ 𝐸, let us
enote

̃ ̃ ̃
𝛼(a, 𝐬) = P(𝑋(a, 0) = 𝐬).
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Fig. 2. Maintenance scheme for the system at inspection time.
It is clear that 𝛼(a, 𝐬̃) > 0 only for 𝐬̃ ∈ 𝑈1. Then we have:

1. Denote 𝛼𝑈1
(a), the initial law at the ath interval given that the

state of the system at the end of the previous inspection time is
optimal, i.e. {𝑋(a − 1, 𝜏) ∈ 𝑈1}. In this case, no maintenance
action is performed leaving the system as it was before the
inspection, consequently, for 𝐬̃ ∈ 𝑈1,

𝛼𝑈1
(a, 𝐬̃) = P(𝑋(a − 1, 𝜏) = 𝐬̃ ∣ 𝑋(a − 1, 𝜏) ∈ 𝑈1),

and 𝛼𝑈1
(a, 𝐬̃) = 0, for 𝐬̃ ∉ 𝑈1.

2. Denote 𝛼𝑈2
(a), the initial law at the ath interval given that the

state of the system at the end of the previous inspection time is
critical, i.e {𝑋(a − 1, 𝜏) ∈ 𝑈2}.
If at the time of inspection the system is in a critical state, we
look at the modules and act upon the modules to restore the
system to 𝑈1. In this sense, we can describe the probability dis-
tribution after the maintenance action in terms of the modules,
more specifically, let 𝑋𝑖(a, 𝜏) be the state of module 𝑖 at the ath
inspection, then,

𝛼𝑖(a) = 𝛼𝑖(a − 1)𝑒𝑥𝑝(𝐐∗𝑠
𝑖 𝜏)𝐌𝑖, 𝑖 = 1,… , 𝐾. (4)

being 𝐐∗𝑠
𝑖 the generator of module 𝑖, with 𝑖 = 1,… , 𝐾.

Considering the initial probability distribution for each module
at the ath inspection we obtain the initial probability distribution
of the system as follows

𝛼𝑈2
(a) =

(

𝛼𝑈11
(a)⊗ 𝛼𝑈21

(a)⊗⋯⊗ 𝛼𝑈𝐾1
(a), 0,… , 0

)

.

given that vector 𝛼𝑖(a) can be partitioned as
(𝛼𝑈𝑖1

(a) 𝛼𝑈𝑖2
(a) 𝛼𝐷𝑖

(a)). Notice that also in this case we have
that 𝛼2(a, 𝐬̃) = 0, for 𝐬̃ ∉ 𝑈1.

3. Finally, denote 𝛼𝐷(a), the initial law at the ath interval given
that the system has failed at the end of the previous inspection
time, i.e. {𝑋(a− 1, 𝜏) ∈ 𝐷}. In this case, the system it is replaced
following maintenance action vector 𝛽, then 𝛼3(a) = 𝛽.

So, the initial probability distribution for the system at inspection
time 𝜏a = a𝜏 taking into account these situations is given by

𝛼(a) = 𝛼𝑈1
(a)P(𝑋(a − 1, 𝜏) ∈ 𝑈1)

+ 𝛼𝑈2
(a)P(𝑋(a − 1, 𝜏) ∈ 𝑈2)

+ 𝛼 (a)P(𝑋(a − 1, 𝜏) ∈ 𝐷). (5)
7

𝐷

5. Maintenance cost

Every maintenance action has an associated cost that comprises
the inspection cost, the cost associated to the performed maintenance
action, the set-up cost, etc. Additionally, the maintenance action cost
depends on the performed maintenance action and this in turn depends
on the state of the system at the inspection time 𝜏a.

Case 1: The system is in an optimal state

If the system is in an optimal state, no maintenance action takes
place, therefore, we just have an inspection cost given by 𝐶𝐼 .

Case 2: The system is in a critical state

In this situation we define matrix 𝐂𝑖 the cost matrix associated to the
maintenance actions performed to each module at the ath inspection.
This matrix is described by blocks in a similar way to matrix 𝐌𝑖:

• If the module is in an optimal state, then no intervention takes
place and we just have the inspection cost. Therefore 𝐶𝑈𝑖1 ,𝑈𝑖1

=
𝐶𝐼𝐼 , where 𝐼 is an identity matrix with the same dimensions as
𝑈𝑖1.

• If the module is in a critical state, all the failed units are main-
tained, the rest remain unchanged. We have an associated cost for
each of the failed units, that depends on the unit state and also
on the performed maintenance action.
Within block 𝐶𝑈𝑖2 ,𝑈𝑖1

we have different combinations of units in
operational and failed state. For a specific combination we have a
cost associated to the maintenance action performed on the failed
units, i.e. the total cost to restore the module to an optimal state
would be given by the sum of the costs associated to each of the
failed units.
In practice, to build this block in matrix 𝐂𝑖, we consider a cost
vector that includes the cost associated to restore each unit to
one of the optimal phases plus the inspection cost. Then, for
each specific combination of failed and operational units we
multiply the cost vector for a vector that contains 1 if the unit has
failed and the transition to the optimal phase is possible, and 0
otherwise. For example, let us consider a module with 3 units set
in parallel, the first unit is of Phase-type with 2 phases (0, 1 and F
being the absorption phase), and the second and third units are of
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Phase-type with one phase (0 and F being the absorption phase).
Let us consider the situation where the first and third unit have
failed, we want to calculate the cost of maintaining this module
in a critical state. We have two possibilities:

1. We could go from state (F,0,F) to state (0,0,0), in this case
the cost would be given by 𝑐1𝐹0 + 𝑐3𝐹0 =
(1, 0, 0, 1)(𝑐1𝐹0, 𝑐

1
𝐹1, 𝑐

2
𝐹0, 𝑐

3
𝐹0)

𝑡 where 𝑐1𝐹0 is the cost associated
to restoring unit 1 from failure to phase 0.

2. We could go from state (F,0,F) to state (1,0,0), in this situa-
tion the cost would be given by 𝑐1𝐹1 + 𝑐3𝐹0 =
(0, 1, 0, 1)(𝑐1𝐹0, 𝑐

1
𝐹1, 𝑐

2
𝐹0, 𝑐

3
𝐹0)

𝑡 where 𝑐1𝐹1 is the cost associated
to restoring unit 1 from failure to phase 1.

• If the module has failed then it is replaced with a cost re-
placement vector 𝐶𝑅𝑀,𝑖. This vector contains the cost of re-
initializing the module to any of its optimal phases after the main-
tenance intervention plus the inspection cost. See the application
in Section 6.

xample. 2-units parallel module

To illustrate matrix 𝐂𝑖 we consider a previous example of a mod-
le formed by 2 units set in parallel, being both units Phase-type
istributed with two phases. For this particular example, the cost
ssociated to maintaining the units is given by the cost vector 𝑐𝑖 =

(𝑐1𝐹0, 𝑐
1
𝐹1, 𝑐

2
𝐹0, 𝑐

2
𝐹1)

𝑡. We have that matrix 𝐂𝑖 is given by 𝐂𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑈𝑖1 𝑈𝑖2 𝐷𝑖

𝑖1 𝐶𝐼𝐼 0 0

𝑖2

(0, 0, 1, 0)𝑐𝑖 (0, 0, 0, 1)𝑐𝑖 0 0
0 0 (0, 0, 1, 0)𝑐𝑖 (0, 0, 0, 1)𝑐𝑖

(1, 0, 0, 0)𝑐𝑖 0 (0, 1, 0, 0)𝑐𝑖 0
0 (1, 0, 0, 0)𝑐𝑖 0 (0, 1, 0, 0)𝑐𝑖

0 0

𝑖 𝐶𝑅𝑀,𝑖 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

equivalently,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑈𝑖1 𝑈𝑖2 𝐷𝑖

𝑖1 𝐶𝐼𝐼 0 0

𝑖2

𝑐2𝐹0 𝑐2𝐹1 0 0
0 0 𝑐2𝐹0 𝑐2𝐹1
𝑐1𝐹0 0 𝑐1𝐹1 0
0 𝑐1𝐹0 0 𝑐1𝐹1

0 0

𝑖 𝐶𝑅𝑀,𝑖 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Case 3: The system has failed

Finally, if the system is in a failed state and needs to be replaced,
the cost associated is given by the inspection cost 𝐶𝐼 , the replacement
cost 𝐶𝑆𝑅 and the loss of production cost due to the system being down
during certain interval of time. For the latter we calculate the expected
loss of production cost, or down cost. Let us define 𝑐𝑑𝑜𝑤𝑛(a, 𝑡) a function
that provides the cost due to the system downtime at the ath interval
(a𝜏, (a + 1)𝜏]. If the system has failed at time a𝜏 + 𝑡, where 0 < 𝑡 < 𝜏,
then the expected down cost in the interval (0, 𝜏] is given by:

𝐸𝐶𝑑𝑜𝑤𝑛(a, 𝜏) = ∫

𝜏

0
𝑓𝑠(a, 𝑡)𝑐𝑑𝑜𝑤𝑛(a, 𝑡)d𝑡. (6)

here 𝑓𝑠(a, 𝑡) = 𝛼(a)𝑒𝑥𝑝(𝑄𝑠𝑦𝑠𝑡)(−𝑄𝑠𝑦𝑠𝐞) is the density function of the
ifetime of the system.

As a particular case we can consider 𝑐𝑑𝑜𝑤𝑛(a, 𝑡) a linear function of
the non-operational time since the failure of the system until 𝜏, then
𝑑𝑜𝑤𝑛(a, 𝑡) = (𝜏 − 𝑡)𝐶𝑑𝑜𝑤𝑛, where 𝐶𝑑𝑜𝑤𝑛 is a constant.

Considering all the possibilities, we obtain the expected mainte-
ance cost at the ath inspection time. Firstly, the cost incurred due to
8

w

the maintenance of module 𝑖, if the system is in a critical state at the
ath time, is determined as follows

𝐶𝑜𝑠𝑡(a, 𝜏, 𝑖) = 𝛼𝑖(a − 1)𝑒𝑥𝑝(𝐐∗𝑠
𝑖 𝜏)𝐃𝐢,𝐔𝟐

(𝐌𝑖 ⊙ 𝐂𝑖)𝑒, 𝑖 = 1,… , 𝐾. (7)

here ⊙ represents the Hadamard product or element wise product.
esides, for the system to be in a critical state, only certain states of
he module 𝑖 are allowed for the expression (7). More specifically, for
𝑖 = 1,… , 𝐾, let (̃𝐬; 𝑠̃𝑖) denote a state of the system in which the 𝑖th
module is in state 𝑠̃𝑖, regardless the rest of the modules of the system.
We denote 𝐃𝐢,𝐔𝟐

a diagonal matrix of appropriate dimension, which
has 1 in the diagonal only in those positions corresponding to states 𝑠̃𝑖
for which there exists a combination of states of the rest of modules
such that (̃𝐬; 𝑠̃𝑖) ∈ 𝑈2. That is, to calculate the cost incurred by the

aintenance action of module 𝑖 in this case, we only consider when
odule 𝑖 is in one of those states that lead to a critical state of the

ystem. Therefore, we need to consider the combination of the modules
tates to determine the system state.

Then, the expected maintenance cost for the system is given, at
nspection ath, by

𝐶𝑠𝑦𝑠(a, 𝜏) = 𝐶𝐼P(𝑋(a − 1, 𝜏) ∈ 𝑈1)

+

( 𝐾
∑

𝑖=1
𝐶𝑜𝑠𝑡(a, 𝜏, 𝑖)

)

P(𝑋(a − 1, 𝜏) ∈ 𝑈2)

+
(

𝐶𝐼 + 𝐸𝐶𝑑𝑜𝑤𝑛(a − 1, 𝜏) + 𝐶𝑆𝑅
)

P(𝑋(a − 1, 𝜏) ∈ 𝐷).

Finally, assuming a maximum number of 𝐴 inspections to perform
long the useful life of the system, the total maintenance cost for that
eriod is given by

𝐶𝑠𝑦𝑠(𝜏) =
𝐴
∑

𝑎=1
𝐸𝐶𝑠𝑦𝑠(a, 𝜏).

hus, an optimization problem can be formulated as a function of the
ncurred cost and the frequency of inspection 𝜏. We will address this
roblem numerically in the next section when the model is illustrated
y means of a real case study.

. Numerical application

Our numerical example is inspired by the case study presented in
iu and Cai (2014) [25]. The authors carry out a reliability analysis
f the electrical control system of a subsea Blowout Preventer (BOP)
tack based on Markov methodology. Specifically, two voting schemes
n system performance are evaluated based on Markov modeling.
he electrical control system of subsea BOP system is a redundant
ystem. As it is described in [25], two control pods are above the
OP stack, affording redundant control of subsea functions. Each pod
ontains a Subsea Electrical Module (SEM), which is contained in
omed containers made of thick steel under external water pressure.

The SEMs contain processor modules, input modules, and output
odules. Other secondary components of the system are considered

ompletely reliable. Three processors are used to form a processor sub-
ystem (module). Each processor runs the same application programs,
rocessing data and sending command signals. The processor subsystem
erforms 2-out-of-3 voting, which means the system can hence detect
nd correct a single failure. For the sake of simplicity, in this paper we
ssume that the input and output modules also performs 2-out-of-3 vot-
ng. In the surface, 2 control panels are installed working in parallel. If
ontrol panels fail, they will be repaired immediately without removing
he BOP system from the water. The subsea components namely input
odules, output modules and processors will be pulled to the surface

nd repaired when the control system cannot work due to their failure.
We consider the same values of transition rates of [25] for proces-

ors, input and output modules. That is, the lifetime of each of the 3
rocessors in the corresponding module has Exponential distribution

ith rate 𝜆𝑝 as specified in Table 3. We treat the input and output
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Table 3
Lifetime distribution of the units per module. Time is scaled by 1e-5 time units.

Module Distribution Parameters

Processor Exponential 𝜆𝑝 = 1.820
Input Exponential 𝜆𝑖𝑛 = .9798
Output Exponential 𝜆𝑜𝑢𝑡 = .9780

Control Panel Phase type 𝐐𝐜 =
(

−6.304 6.304
0 −6.304

)

; 𝛼𝑐 = (1, 0)

Fig. 3. Reliability Block Diagram of the SEM system.

modules similarly. However, for the control panels, we consider a more
general case. Specifically we assume that each follows a Phase-type
distribution with the parametrization given in Table 3. In this case
we have chosen the parameters of the Phase-type distribution with the
same mean time as the Exponential distribution considered in [25] for
the control panels.

6.1. Description of the modules

Following [25] the SEM system consists of the 4 modules described
above (control panel, processors, input and output) arranged in series.
Fig. 3 shows the corresponding reliability block diagram.

Let 𝑋(𝑡) denote the state of the system (SEM) at time 𝑡. We then have
that {𝑋(𝑡), 𝑡 > 0} is a continuous-time Markov chain and we can use
the algorithm MoMA described in [17] to derive the system generating
matrix. We first analyze each module separately.

In this system we have two types of modules, for each module we
obtain its generator. In generator 𝐐𝑖 we only provide the transitions
between optimal and critical states, given that the transitions to the
down state can be deduced from them.

• 𝑀1: Control panel. This module is a two-units parallel structure.
Each unit has Phase-type distribution lifetime with parameters
(𝛼𝑐 ,𝐐𝑐 ) given in Table 3. The state of 𝑀1 along time is de-
scribed by a Markov process {𝑋1(𝑡), 𝑡 > 0}. At any time 𝑡 >
0 each unit of the module can be in one of three states: 0,
if the unit is in optimal state; 1, if the unit is operative but
critical; and, 𝐹 , if the unit is in failure. Then after applying
MoMA we get the set of all possible states of the module, that
is, 𝐸1 = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 𝐹 ), (1, 𝐹 ), (𝐹 , 0), (𝐹 , 1), (𝐹 , 𝐹 )}.
Given the parallel structure of this module we can split the
state space into a subset of optimal states 𝑈11 =
{(0, 0), (0, 1), (1, 0), (1, 1)}; a subset of critical states 𝑈12 =
{(0, 𝐹 ), (1, 𝐹 ), (𝐹 , 0), (𝐹 , 1)}, and a unitary subset with the failure
state 𝐷1 = {(𝐹 , 𝐹 )}. The lifetime of the module has Phase-type
distribution with parameters given as

𝐐1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−12.608 6.304 6.304 0.000 0.000 0.000 0.000 0.000
0.000 −12.608 0.000 6.304 6.304 0.000 0.000 0.000
0.000 0.000 −12.608 6.304 0.000 0.000 6.304 0.000
0.000 0.000 0.000 −12.608 0.000 6.304 0.000 6.304
0.000 0.000 0.000 0.000 −6.304 6.304 0.000 0.000
0.000 0.000 0.000 0.000 0.000 −6.304 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 −6.304 6.304
0.000 0.000 0.000 0.000 0.000 0.000 0.000 −6.304

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and initial vector 𝛼1 = (1, 0, 0, 0, 0, 0, 0, 0).
• 𝑀2: Processor. This module is a 2-out-of −3 structure. It is com-

posed of 3 units that are independent and identically distributed
(i.i.d.) with Exponential lifetime with rate 𝜆 = 1.820. In this case
9

𝑝

the state space is simpler than 𝑀1, that is, only two states are
considered for each unit: 0, if the unit is operative, and 𝐹 if the
unit is in failure. Let {𝑋2(𝑡), 𝑡 > 0} be the Markov chain describing
at any time the module state. The set of states can be partitioned
into 𝐸2 = 𝑈21 ∪ 𝑈22 ∪ 𝐷2, where 𝑈21 = {(0, 0, 0)} is the optimal
state; 𝑈22 = {(0, 0, 𝐹 ), (0, 𝐹 , 0), (𝐹 , 0, 0)} are the critical states;
and, 𝐷2 = {(0, 𝐹 , 𝐹 ), (𝐹 , 0, 𝐹 ), (𝐹 , 𝐹 , 0), (𝐹 , 𝐹 , 𝐹 )} are the failure
states. We remind that we do not consider transitions between
the failure states so we actually treat the subset 𝐷2 as a unitary
set. Thus, the model considered has only 5 states in total. Using
the MoMA algorithm, we obtain the module lifetime is Phase-type
with parameters given by

𝐐2 =

⎛

⎜

⎜

⎜

⎜

⎝

−5.46 1.82 1.82 1.82
0.00 −3.64 0.00 0.00
0.00 0.00 −3.64 0.00
0.00 0.00 0.00 −3.64

⎞

⎟

⎟

⎟

⎟

⎠

,

and the initial vector is given by 𝛼2 = (1, 0, 0, 0).
• 𝑀3: Input. This module is a 2-out-of −3 structure. The units have

i.i.d. exponential lifetimes with rate 𝜆𝑖𝑛 = .9798. Let {𝑋3(𝑡), 𝑡 > 0}
be the Markov chain describing the state of the module. The set of
states of the module is equal to 𝑀2 and we can consider a similar
partition. That is, 𝐸3 = 𝑈31 ∪𝑈32 ∪𝐷3, with 𝑈31 the optimal state;
𝑈32, the critical states, and 𝐷3 the failure state of the module. The
lifetime of 𝑀3 has Phase-type distribution with parameters

𝐐3 =

⎛

⎜

⎜

⎜

⎜

⎝

−2.939 0.980 0.980 0.980
0.000 −1.960 0.000 0.000
0.000 0.000 −1.960 0.000
0.000 0.000 0.000 −1.960

⎞

⎟

⎟

⎟

⎟

⎠

,

and 𝛼3 = (1, 0, 0, 0).
• 𝑀4: Output. This module is a 2-out-of −3 structure. The units have

i.i.d. Exponential lifetimes with rate 𝜆𝑜𝑢𝑡 = .9780. Let {𝑋4(𝑡), 𝑡 > 0}
be the Markov chain describing the state of the module. The set of
states of the module is equal to 𝑀2 and we can consider a similar
partition. That is, 𝐸4 = 𝑈41 ∪𝑈42 ∪𝐷4, with 𝑈41 the optimal state;
𝑈42, the critical states, and 𝐷4 the failure state of the module. The
lifetime of 𝑀4 has Phase-type distribution with parameters

𝐐4 =

⎛

⎜

⎜

⎜

⎜

⎝

−2.934 0.978 0.978 0.978
0.000 −1.956 0.000 0.000
0.000 0.000 −1.956 0.000
0.000 0.000 0.000 −1.956

⎞

⎟

⎟

⎟

⎟

⎠

,

and the initial vector is given by 𝛼4 = (1, 0, 0, 0).

6.2. System model without maintenance

Let {𝑋(𝑡); 𝑡 > 0} be the Markov chain describing the system be-
havior through time. A graphical description of the system is given in
Fig. 3. The MoMA algorithm has been run again to assemble 𝑀1, 𝑀2,
𝑀3 and 𝑀4 in a series structure to compose the system. We obtain
the state of the system as a function of the states of the modules,
i.e. 𝑋(𝑡) = 𝛷(𝑋1(𝑡), 𝑋2(𝑡), 𝑋3(𝑡), 𝑋4(𝑡)), with 𝛷 defined in terms of the
series structure of the system.

We denote the state space 𝐸 = 𝑈 ∪ 𝐷, partitioned in two subsets,
which are up states and down states. After running MoMA, we obtain
512 operative states as the size of set 𝑈 , and 133 down states. Similar
to the module cases, we do not take into account transitions between
the down states, thus we consider the set of down states 𝐷 as a unitary
set. The system has Phase-type distribution with parameters (𝛼𝑠𝑦𝑠,Q𝑠𝑦𝑠),
which we do not specifically write here due to space limitations.
Moreover, we assume that at time 𝑡 = 0 all the units in the system
are in optimal conditions so, all components of vector 𝛼𝑠𝑦𝑠 are equal to
0 except the first one, which is equal to 1.

Similar to the modules we distinguish optimal states and critical

states in the system. That is 𝑈 = 𝑈1 ∪ 𝑈2, where in particular 𝑈1 =
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Fig. 4. Reliability function of SEM system.

(0.0 ∶ 0.0.0 ∶ 0.0.0 ∶ 0.0.0), (0.1 ∶ 0.0.0 ∶ 0.0.0 ∶ 0.0.0), (1.0 ∶ 0.0.0 ∶
0.0.0 ∶ 0.0.0), (1.1 ∶ 0.0.0 ∶ 0.0.0 ∶ 0.0.0)} and the rest of operative states
are critical. We denote a generic state 𝑠̃ of the system as

= (𝑠11, 𝑠12; 𝑠21, 𝑠22, 𝑠23; 𝑠31, 𝑠32, 𝑠33; 𝑠41, 𝑠42, 𝑠43)

where 𝑠𝑗𝑖 denotes the state of the 𝑗th unit in module 𝑖 being 𝑖 = 1, 2, 3, 4
and 𝑗 = 1, 2, 3.

The mean lifetime of the system is 𝜇 = 24000 h. The reliability
function is represented in Fig. 4.

6.3. Maintenance

Maintenance policy is explained in Section 4. The system is assumed
to be inspected regularly at times 𝜏a = a𝜏, with a = 0, 1,… , 𝐴 and 𝜏 > 0.
For a = 0 that is 𝜏0 = 0 we assume that the system is operating in
optimal conditions.

To describe the state of the system (with maintenance) we intro-
duced the stochastic process {𝑋(a, 𝑡)} in Section 4, where 𝑋(a, 𝑡) gives
the state of the system at time 𝑡 + a𝜏, with 0 ≤ 𝑡 ≤ 𝜏. Let us call
(a𝜏, (a + 1)𝜏] the ath operating cycle of the system (ath interval).

Focusing on the first inspection period, the concrete intervention
carried out depends on the state of the system at time 𝜏, and in any case,
consists of restoring the system to a desired performance level. The new
state for the system is chosen according to a pre-specified maintenance
rule (see Section 4). After maintenance a new operating cycle starts,
and the state of the system is described by 𝑋(1, 𝑡), with 0 < 𝑡 ≤ 𝜏.
This policy is used at the end of every 𝜏-cycle. Each maintenance action
involves a particular cost that we specify in Table 4 for our particular
SEM system.

In this particular case we assume that the replacement costs of
the different modules are the same, as well as the costs associated to
restoring each unit to an operational phase. We consider 4 different
cases for the non-operational cost, 𝐶𝑑𝑜𝑤𝑛. See Section 4.

The initial state in a new operating cycle, i.e. 𝑋(1, 0) is selected
according to a probability vector 𝛼(1) which is defined according
to Eq. (5). We provide here a reminder.
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Table 4
Specification of values for parameters of the model for the simulated SEM system,
considering several scenarii, given by 4 different values of parameter 𝐶𝑑𝑜𝑤𝑛.

Value Description

𝜷𝑗,𝑖 (0.5, 0.5)𝑡 Vector of probabilities of restoring
failed unit 𝑗 of module 𝑖 to operational phase

𝐶𝐼 1 Cost of inspection (𝚖𝚞)
𝑐𝐹0 1 Cost of restoring a unit to its optimal

operational phase (𝚖𝚞)
𝑐𝐹1 0.5 Cost of restoring a unit to a

non-optimal operational phase (𝚖𝚞)
𝐶𝑅𝑀 3𝐶𝐹0 Cost of replacement of a module (𝚖𝚞)
𝐶𝑆𝑅 3𝐶𝑅𝑀 Cost of replacement of the system (𝚖𝚞)

Sc. 1: 1e−3
𝐶𝑑𝑜𝑤𝑛 Sc. 2: 1e−2 Cost of non productivity

Sc. 3: 1e−1 per unit time (𝚖𝚞∕𝚑)
Sc. 4: 1

Note: 𝚖𝚞 = monetary unit.

Table 5
Optimal values considering 4 different scenarii.
Scenario 1 2 3 4

𝐶𝑑𝑜𝑤𝑛 0.0010 0.0100 0.1000 1.0000
𝜏 (hours) 8300 4390 2200 980
𝐶𝑜𝑠𝑡 (𝚖𝚞) 17.4791 24.4786 42.0189 87.0051
𝐴 6 11 23 51

Note: 𝚖𝚞 = monetary unit.

ase 1. The system is in optimal conditions

If 𝑋(0, 𝜏) ∈ 𝑈1, the system is not maintained, and then

(𝑋(1, 0) = 𝑠̃) = P(𝑋(0, 𝜏) = 𝑠̃) = P(𝑋(𝜏) = 𝑠̃).

here 𝑠̃ has been defined above. That is, the initial vector for the second
perating cycle 𝛼(1) is given by the occupation probability vector at
ime 𝜏. In this case the only cost involved is the inspection cost (𝐶𝐼 ).

ase 2. The system is in failure

If 𝑋(0, 𝜏) ∈ 𝐷, the full system is replaced. Then 𝛼(1) = 𝛽. In this case
he involved cost is: the inspection cost 𝐶𝐼 , plus the replacement cost
𝑆𝑅 and the expected cost due to non-productivity cost given in Eq. (6).

ase 3. The system is critical

If 𝑋(0, 𝜏) ∈ 𝑈2, the system is maintained. As explained in Section 4,
very module of the system is inspected separately; and depending on
he state of the module an action is undertaken, as explained below.
or 𝑖 = 1, 2, 3, 4, let us denote {𝑋𝑖(a, 𝑡); a = 0, 1,… , 𝐴; 0 < 𝑡 ≤ 𝜏} the
rocess that represents the state of module 𝑀𝑖 when maintenance is
onsidered. In this case to determine the initial probability law we
onsider the state selected for each module after being maintained,
𝑖̃(1), for 𝑖 = 1, 2, 3, 4 and that will be the starting point of the module
or the second 𝜏-period. The initial vector of probabilities at the system
evel is then

̃(1) = 𝛼1(1)⊗ 𝛼2(1)⊗ 𝛼3(1)⊗ 𝛼4(1).

Note that we only focus here on the transitions to the optimal set
f states 𝑈1 given that the rest of the transitions are not possible.

• Module 𝑀1. This is a 2-unit parallel module. The units are
Phase-type with 2 operative phases.

– The module state is critical if one unit has failed (𝑈12). This
unit is then restored to one of the two operative phases
according to a vector of probabilities 𝛽𝑗,1, 𝑗 = 1, 2. The
operative unit remains unchanged.
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𝛼

Fig. 5. Maintenance strategy with 4 different specifications for 𝐶𝑑𝑜𝑤𝑛.

– The module has failed if both units have failed. In this
case, the module is restored to the optimal state class 𝑈11
according to the vector of probabilities 𝛽1,1 ⊗ 𝛽2,1.

In the particular case of the example we take 𝛽1 = 𝛽2 = (0.5, 0.5),
then the maintenance action on this module is ruled by matrix
𝐌1 given in (8).
Each maintenance action involves a particular cost determined by
the corresponding transition of the matrix 𝐌1. If the module state
is such that 𝑋1(0, 𝜏) ∈ 𝑈11, the only cost is due to inspection.
If 𝑋1(0, 𝜏) ∈ 𝑈12, then the failed units are maintained and we
have to consider the cost of restoring these units to an operational
state in addition to the inspection cost. If 𝑋1(0, 𝜏) ∈ 𝐷1, then the
module is restored to 𝑈11, the incurred cost here is the inspection
cost plus the renewal cost which depends on the state of 𝑈11 that
is eventually chosen.
The matrices of maintenance action 𝐌1 and incurred cost 𝐂1 are
obtained as

𝐌1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00
0.50 0.50 0.00 0.00
0.00 0.00 0.50 0.50
0.50 0.00 0.50 0.00
0.00 0.50 0.00 0.50
0.25 0.25 0.25 0.25

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐂1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1
3 4.5 0 0
0 0 3 2.5
3 0 2.5 0
0 3 0 2.5
3 2.5 2.5 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8)

In addition to the costs due to unit repair, unit replacement or
module replacement (whichever intervention has been carried
out) the inspection cost has to be taken into account.

• Modules 𝑀2, 𝑀3, 𝑀4. The rest of modules in the SEM are
similar, each consisting of 2-out-of −3 of exponentially distributed
units, in all cases the optimal set of states is a unitary set where
all three units in the module are functional. In all cases, the
maintenance matrix reduces to a column vector of 1; and the
corresponding cost matrix also reduces to a column vector such
that 𝐜𝑖 = (𝐶𝐼 , 𝐶𝐼 + 𝑐1𝐹0, 𝐶𝐼 + 𝑐2𝐹0, 𝐶𝐼 + 𝑐3𝐹0, 𝐶𝐼 +𝐶𝑅𝑀,𝑖)𝑡. Considering

𝑡
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the values in Table 4, we have 𝐜𝑖 = (1, 2, 2, 2, 4) for all 𝑖 = 2, 3, 4.
At the end of the first cycle, the cost incurred due to maintenance
of 𝐌𝑖 when the system is critical is given by Eq. (7), i.e.

𝐶𝑜𝑠𝑡(1, 𝜏, 𝑖) = 𝛼𝑖(0)𝑒𝑥𝑝(𝐐∗𝑠
𝑖 𝜏)𝐃1,𝑈2

(𝐌𝑖 ⊙ 𝐂𝑖)𝑒, 𝑖 = 1, 2, 3, 4;

and this expression is used to calculate the total cost incurred in the
system maintenance action at time 𝜏 as it is expressed in Section 4.
Finally, the initial distribution of the 𝑖th module for the next period is
given by Eq. (4).

𝑖̃(1) = 𝛼𝑖(0)𝑒𝑥𝑝(𝐐∗𝑠
𝑖 𝜏)𝐌𝑖, 𝑖 = 1, 2, 3, 4.

Let us assume that the useful lifetime of the system (with mainte-
nance) is denoted by T, that is T = 𝐴𝜏, where 𝐴 is the maximum num-
ber of maintenance inspections carried out. The goal is to determine the
optimal length of the operative cycles, i.e. 𝜏, in the sense of minimizing
the total cost incurred by all maintenance actions implemented at the
end of each 𝜏-cycle during the whole period (0,T].

To select the optimal value of 𝜏, and consequently of 𝐴, given that
duration of useful lifetime of the system is prespecified, we consider
the following Montecarlo simulation algorithm.

Fig. 5 displays the results with the specifications of Table 4. The
optimal values are given in Table 5. Left panel of Fig. 6 displays the
trend of total cost increase as the cost per unit time for non productivity
of the system increases. Right panel of Fig. 6 displays the curve of
optimal inspections times that is obtained for each scenario.

The computational time of this experiment is not an issue of signifi-
cant concern even when a large number of iterations are considered;
that is for a large value for 𝑅. For instance, a simulation with the
specifications of Table 4 for the first scenario (i.e. 𝑐𝑑𝑜𝑤𝑛 = 0.001, taking
𝑅 = 50000 and 𝑀 = 100) using a 11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80 GHz 2.80 GHz takes approximately 11.66 min.
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Fig. 6. Left panel: Total incurred cost of maintenance (𝐶𝑜𝑠𝑡) for each value of non-operation cost. Right panel: Optimal time of inspection (𝜏) for each value of non-operation cost.
7. Conclusions

In the present paper we propose a maintenance policy for complex
modular systems, where the modules in the system consist of a number
of units. We assume that the system might fail due to the wear-out
of its units or due to external shocks that represent changes in its
environment. Additionally, the units lifetimes follow PH-distributions,
where the phases represent different levels of degradation in the unit.
The modeling of this system is based on MAM and it was addressed in
a previous paper.

Here we focus on the modeling of a maintenance policy for such a
system, as well as the optimization of the cost associated to this policy,
through the lifetime of the system. The proposed maintenance policy
is a hierarchical decision-based policy where the system is inspected
at regular intervals of time. At the time of inspection the system could
be in an optimal, critical or failed state. If it is in an optimal state no
maintenance action takes place. If it is in a failed state, the system is
replaced. Finally, if it is in a critical state its modules are inspected. We
check the individual modules for an optimal, critical or failed state. In
this case, the same policy as for the system is applied, i.e. the module
will be replaced if it is in a failed state. Alternatively, if it is in an
optimal state no intervention will take place. If it is in a critical state,
the state of units will be checked and the failed units will be replaced.

For the proposed maintenance policy, we have defined maintenance
matrices associated to the modules that describe the transition prob-
abilities to an optimal state at inspection times, considering possible
maintenance actions. Related to these matrices we have defined other
matrices that provide the cost associated to the maintenance actions
(described in the maintenance matrices). Additionally, we depict the
stochastic process that describes the evolution of the system in time,
considering performed maintenance actions. We have also provided
the expressions to determine the initial probability vector, after every
inspection, as well as the expected maintenance cost. From this, we can
optimize the cost in terms of the frequency of inspections.

The main contribution of this paper is the use of MAM to design a
maintenance policy for complex modular systems. We have obtained
closed-form expressions related to the proposed maintenance policy.
The methodology here is applicable to other complex systems, based on
layered composition/decomposition method. Finally, we have demon-
strated the use of the methodology on a real use-case. Specifically
we have considered the ECU system presented in [25], where no
maintenance analysis is carried out. This aspect is new in our study of
this system. As we do not have true knowledge about the parameters
involved in the cost analysis (i.e. 𝐶𝐼 , 𝐶𝑅𝑀 , etc.), we have chosen
all the values of Table 4 which represent the different types of cost
12
involved in our maintenance policy, arbitrarily and actually with no
fully real meaning. Had we had expert guidance in this respect we could
have built a meaningful maintenance-cost model, more interpretable
from a practical decision-making sense in real life. Nevertheless, after
running some simulations which are not shown in the paper, we have
noticed that the most important index in our maintenance plan is the
cost of non productivity per unit time, that is 𝐶𝑑𝑜𝑤𝑛. In other words,
the parameter with respect to which the system is most sensitive is
𝐶𝑑𝑜𝑤𝑛, and then we have considered different scenarii according to the
particular value of this parameter.

As future work, we want to incorporate dependency between the
modules that are part of the system, presently our model considers
that the modules fail independently. Additionally, we currently do not
distinguish failure modes for the modules nor for the system. Therefore
we would also consider different failure modes and related mainte-
nance actions. Finally, we aim to use empirical data to demonstrate
the proposed methodology.
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