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Abstract Several methods using different approaches have been developed to remedy the
consequences of collinearity. To the best of our knowledge, only the raise estimator proposed by
Garcia et al (2010) deals with this problem from a geometric perspective. This paper fully develops
the raise estimator for a model with two standardized explanatory variables. Inference in the raise
estimator is examined, showing that it can be obtained from ordinary least squares methodology.
In addition, contrary to what happens in ridge regression, the raise estimator maintains the
coefficient of determination value constant. The expression of the variance inflation factor for the
raise estimator is also presented. Finally, a comparative study of the raise and ridge estimators is
carried out using an example.

Keywords Multicollinearity - Ridge estimator - Raise estimator - Variance Inflator Factor -
Regression

1 Introduction

The Collinearity problem describes the situation where the non-orthogonality exists among
explanatory variables in regression models. The breakdown in orthogonality among explanatory
variables results in imprecisions when using a normal equation in ordinary least squares (OLS)
estimations. In the presence of collinearity, the OLS estimator is unstable and often causes several
problems with the estimator such as inflated variances and covariances, inflated correlations, inflated
prediction variance, and the concomitant difficulties in interpreting the significance values and
confidence regions for parameters, Willan and Watts (1978).

For this reason, a great many techniques have been developed to remedy the consequent symptoms
resulting from data collinearity, such as the Stein estimator (Stein et al, 1956), the ridge estimator
(RE) (Hoerl and Kennard, 1970a,b; McDonald, 2009, 2010) and the contraction estimator (Liu,
1993; Mayer and Willke, 1973). This last one combines the Stein estimator with the ridge estimator
and proposes the following estimator B(d) = (X'X + kI)"1(X'y + d3), where 0 < d < 1 still
depending on OLS estimator which will be unstable. To overcome this situation, Liu (2003) proposed
the Liu-type estimator given by the following expression B*(k,d) = (X'X + k)" (X'y + dB*),
where £ > 0, —co < d < oo and B* can be any estimator of 8. Sakallioglu and Kagiranlar (2008)
presented the k-d class estimator using the ridge estimator and based on the augmented model
provided the following expression B(k,d) = (X'X +kI) ™1 (X'y +dB(k)) where k > 0 —o0 < d < oo
and ﬁ(kz) = (X’X 4 kI)"'X'y. They showed that the k-d class estimator is a general estimator
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which includes the OLS estimator, the RE and the Liu estimator. By combining the RE and the
Liu estimator, Chang and Yang (2012) proposed the two parameter (TP) estimator which includes
the OLS, RE and Liu estimators as special cases. All these estimators are founded on the ridge
estimator (Hoerl and Kennard, 1970a,b) and the Stein estimator (Stein et al, 1956) and all try to
improve the ill-conditioned matrix X’X by adding a constant k as small as possible to reduce the
bias. In this same line, Liu et al (2013) recently proposed the improved ridge estimator (IRE).
Another alternative is the principal component regression (PCR) (Batah et al, 2009; Massy, 1965).
In the line of the PCR estimator and modifying the TP estimator, Chang and Yang (2012)
introduced a new estimator to provide an alternative method for overcoming the multicollinearity
problem in linear regression. A similar procedure is to apply the generalized inverse proposed by
Marquardt (1970).

Alternative methods for deriving the restricted ridge regression (RRR) estimator have been
provided by several authors, Farebrother (1984), Grof (2003), Kaciranlar et al (1998), Ozkale
(2009), Sarkar (1992), Zhong and Yang (2007) among others. Note that the ridge regression can be
obtained by augmenting the equation:

<§>:<¢§I>ﬁ+(3’>’ (1)

to the original equation Y = X3+ u and then using the OLS method. Based on prior information,
Swindel (1976) proposed a modified ridge estimator (MRE). Crouse et al (1995) introduced the
unbiased ridge regression (URR) estimator as a convex combination of prior information with the
RRR estimator.

From the point of view of the conditioned minimum, Hoerl and Kennard (1970a,b) introduced the
ridge regression, which minimizes RSS subject to the constraint > |3;| < t. Note that the function
(y — XB)'(y — XB) + k@' is the least square criterion function for the augmented model. Frank
and Friedman (1993) introduced bridge regression (BR) subject to the constraint Y |5;|7 < t as
a special family of penalized regressions with two very important members: the ridge regression
(v = 2) and the Lasso regression (y = 1) which was treated by Tibshirani (1996). Jensen and
Ramirez (2008) and Kapat and Goel (2010) presented some anomalies of these estimators.

As regards the solution of the normal equations, Jensen and Ramirez (2010) introduced the
surrogate estimator as a solution to collinearity. In a different line, following works on the least
median of squares (LMS) by Rousseeuw (1984, 1985), Pati et al (2015) proposed a new biased
estimator of the robust ridge regression called the ridge least median squares (RLMS) estimator
to be applied in the presence of multicollinearity and outliers. Other methods, such as continuum
regression, (Stone and Brooks, 1990), least angle regression, (Efron et al, 2004) and generalized
maximum entropy, (Golan et al, 1996; Golan, 2008), are well suited to cope with collinearity
problems.

However, none of the reviewed alternatives focus on the geometric problem expressly stated by Alin
(2010): Multicollinearity refers to the linear relationship among two or more variables, which also
means lack of orthogonality among them. This relation is also called collinearity or ill conditioning
by some authors like Besley (1991) and Chatterjee and Hadi (2006). In more technical terms,
maulticollinearity occurs if k vectors lie in a subspace of dimension less than k. This is the definition
of exact multicollinearity or exact linear dependence. It is not necessary for multicollinearity to be
exact in order to cause a problem. It is enough to have k variables nearly dependent, which occurs
if the angle between one variable and its orthogonal projections onto others is small. This means
that collinearity can be treated from a geometric point of view.

From this geometric point of view, Garcia et al (2010) introduced the raise estimator and now, in
this paper, it is analyzed the effect that the raise estimator has on correcting collinearity and the
behavior of collinearity measures to diagnose collinearity after applying the raise estimator.

The paper is organized as follows: Section 2 presents the notation. Section 3 reviews the two-
variable generalized raise method. Section 4 shows that the raise regression obtained from OLS
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keeps constant the value of the sums of squares and presents the expression for the confidence
intervals and the global and individual significance tests. A Montecarlo simulation is presented to
support the theoretical results. Section 5 presents an expression of the variance inflator factor to
be applied after the raise regression. Section 6 illustrate the results with an empirical application.
Finally, section 7 summarizes the mean conclusions of the paper. We also present an appendix
summarizing the mean characteristics of the ridge estimator.

2 Notation

Vector and matrices are set in bold type. The transpose and inverse of the matrix A are A’ and
A~ respectively. The special array are the identity matrix, I, and the null vector, 0, of order 2.
x 1y indicates that the vectors x and y are orthogonal.

The original model is y = X3 + u, where y is the vector of order n x 1; X = [x1,x2] of dimension
n X 2 and x;; is the observation i of the variable j; 3 is the vector of parameters of order 2 x 1 and
u is the vector of random disturbance for n x 1 where E(u) = 0, F(uu’) = ¢?I. The number of
observations is n. Finally, note that we standardize the variables by subtracting the mean for each
of the variables and dividing by (n)'/? times the standard deviation. In this case, the matrix X'X
will be the correlation matrix and the vector X'y will be the correlation between the explained
variable and every explanatory variable. That is

n
1 T1iT24
XX=| . e :(1 ”),
> a2z 1 pol
i=1

where p is the correlation coefficient between the explanatory variables and X'y is given by

n
xy— &7 (1)

n
>z 2
i=1

where ~;, for i = 1,2, is the correlation coefficient between the explained variable and explanatory
variables. R }
The raise model is y = X8(\) + w where X = [(1 + A\)x1 — Apxz, X2] is the raise matrix and A > 0

and the ridge model is y™* = X8 +v where for k > 0, y" = ("6) X" = (\/éI)andv: (3)

The estimators by OLS for the original model is B = (X'X)_1 X'y; for the raise model
is B(\) = {(X'f{)*lfi’y, A > 0} (Garcia et al, 2010) and for the ridge model is B(k) =
{(X'X +kI)"'X'y, k>0} (Marquardt, 1970; Zhang and Ibrahim, 2005).

The explained sum of squares, the residual sum of squares, the total sum of squares, the coefficient
of determination and the variance inflator factor are ESS, RSS, TSS, R? and VIF for the original
model and ESS()\), RSS(\) TSS()\), R*(A\) and VIF()) for the raise model. The coefficient of
determination and the variance inflator factor for the ridge model are denoted as R?(k) and VIF (k)
respectively.

3 The two-variable generalized raise method. The raise estimators

The common linear model y = X3 + u with n observations and two variables will be expressed as:

y = fi1x1 + Pa2x2 + u. (2)



The collinearity problem arises because the vector x; and the vector xz are very close geometrically,
that is, the angle that determines both vectors, 61, is very small (see Figure 1).

Fig. 1: Representation of raise method

To correct this problem before proceeding to the estimation, we will try to separate them through
the following regression

X1 = aX2 + €, (3)

whose estimation by OLS is & = (xhx2) 'x5x1 so that it is verified that & = p. Thus, we can say
that x1 = px2 + e1 with e;Lxs where e; is the residual obtained from regression (3). Then, the
raise vector is defined as

X1 = X1 + Aeq. (4)

The raise method will be obtained by substituting vector x; for the raise vector X; in the model
(2). That is, the raise method will be the OLS regression with the vectors X1 and x2 instead of x1
and x2. From Figure 1, it is evident that the angle between X; and x2, 2, will be bigger than the
angle 01. Thus, the correlation between both vectors will be smaller and the correlation problem
will diminish. The higher the parameter A (raising factor) the greater the angle between the vectors
and the lower the correlation and, as we will see, the variance inflator factor. Garcia et al (2015b)
proposed a criterion to select the raise parameter \ based on select the value of A that provides
the lowest mean square error, analogously to the method proposed to select k in ridge regression.
Then, the model to estimate will be given by:

y = f1(AN)x1 + f2(N)x2 + w, (5)

where the estimated parameters depending on A will be called raise estimators and denoted as
Bl(A) and Bg()\)

It is possible to obtain the raise estimators taking into account that X1 = x1 + Ae1 = x1 + A(x1 —
px2) = (14 A)x1 — Apx2. Thus, the raise matrix X is defined by X = [(1 4+ A)x1 — Apxa, x2]. Note
that the dimensions of X are maintained as happens in surrogate model (see Jensen and Ramirez,
2010) and unlike the ridge estimation where it increases.

By using OLS estimation in model (5) we can obtain the raise estimators:

B = (X%) " XYy = <<1+S$)5w"2% ) - (@1(”). (6)
RV B2(N)

Some important characteristics are:

— If 41— py2 > 0, then 51 (\) will always be positive and decreasing in A. If p = %, then B1(\) =0
for any value of .
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— ,32()\) will be always positive if the numerator is also possitive, which is equivalent to saying that

v2 > . Since the second member of this condition is decreasing in A, the condition

1+ X1 —p?2)
will be verified if v > pvy1, or equivalently, if vo — py1 > 0.

— ,32()\) is increasing if p and 1 — py2 have the same sign. If they have different signs, it will be
decreasing.

— When A tends to infinity, we obtain that \ lirf B1(X) = 0, similar to ridge estimation. However,
—+o0o
lim fa2(\) = 72 that coincides with the OLS estimation when p = 0.
A— 400
One of the important characteristics of these estimators is that they are obtained by OLS

methodology and therefore, if the classical assumptions are verified, these estimators will maintain
all the properties of the OLS estimator and the common statistical tests will be applicable.

3.1 Relation between Raise and OLS estimators

As mentioned above, the raise estimators are obtained by applying the OLS method to the model
(5). However, they are not identical to the OLS estimators because the information matrix has
changed.

Given that X = X - M where

it is clear that

. ) by
,B(A):Ml-ﬁzﬁ 1+§,JA>, (7)
B

where f1 and 32 are OLS estimators of the model (2). Note that if we use a null raising factor
(A =0) in expression (7) we obtain that raise and OLS estimators are equal.
The difference between the OLS estimator and the raise estimator can be obtained by:

B — fr = ®

ol — o = AL Q

From expressions (8) and (9) it is evident that lim B1(A\) — 1 = —fB1 and lim fBa()) — B2 =
A—+oo A—+o00

P(y1—p72)
1—p2

4 Inference in raise model

The raise estimators (6) have been obtained by applying OLS to the raise model (5) and, due to
this fact, it is possible to develop the inference of the raise estimators from the well-known OLS
methodology. In this section we present the estimated, residual and total sum of squares (ESS,
RSS and TSS respectively), the coefficient of determination, the confidence interval and the global
and individual significance test. A Montecarlo simulation is presented to support the theoretical
results.



4.1 ESS, RSS, TSS and coefficient of determination

Since all variables of the raise model (5) are centered ESS(\) = B()\)'X'y. By operating it is
possible to prove that ESS(\) will be equal to ESS:

2 2
R - +~2_9 R R .
BSS() = B Xy = HoE S = fioy + oz = X'y =SS,
Evidently, the explained variable in the raise model (5) will also coincide with the one in model (2)

estimated by OLS, it is to say TSS = TSS(A) = 1. Therefore, the RSS of both models will also be
equal:

1—p2—n2_~219
RSS(\) = RSS = TSS — ESS = — Vi - 322 +2my2
In consequence, the coefficient of determination and the estimated variances will also be similar:

_ ESS(\) _ 4 +15 2072 _ ESS _

R () = TSS(N) 1—p2 = Tes ~ I (10)
o2y = BN _ RS (11)

Note that the raise estimator maintains the value of the determination coefficient, R?, regardless of
the value of the raising parameter, A. Note that this is contrary to what happens in ridge regression
(where it decreases, see McDonald, 2010) and it will be an important characteristic of the raise
estimator.

4.2 Confidence intervals

Since the raise estimators have been obtained by OLS, we can obtain the confidence intervals for
the raise estimators from this well known methodology. Then, we can state that D(8;(\)) = v62a4
where a;; is the element (4,7) in the matrix (X'X) ™. Using the confidence interval concept, we can
say that the parameter 3;(\) will be, with a (1 — £)100% of confidence, in the confidence interval

Bi(A) £ t1—= D(Bi(N)).

7= P2 1 |/ 62 1 4 s

Note that confidence intervals have been associated for the first coefficient models (2) and (5) so
that the first has been reduced by dividing it by (1 4+ A). The larger the parameter A, the smaller
the confidence interval, which becomes zero when A tends to infinity. Analogously, for i = 2

Y2 — pY Ap(71 — py2) o (L4 A)? —p2(2A + A?)
e (525 + ) i“3\/"2 aora-m W

Fori=1

In this second parameter the interval has also been transformed by adding Bg, the bias of the
raise estimator, to the center of the interval. The radio of the interval is smaller than the radio
corresponding to the OLS estimator, since the interval for the OLS estimator will be:

5 /. 1
ﬂg itlfg O'QW, (14)

and by comparing the radio of both intervals, expressions (13) and (14), we can state that:
(14 2% = p2(2A 4+ 2?) 1
< .
T+ 20— p7)  ~1-p2
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4.3 Global and individual significance test

As shown in subsection 4.1 the sums of squares are constant in raise regression. For this reason,
the experimental F' will be also similar in OLS and raise models:

ESS 7473 = 27172
Ferp(A) = moe = (n — 2) = Feup. (15)
emp( 5§§ ( 1— p2 . '7% — '7% T 2P’7172 exrp

Therefore, we can say that the global significance tests in the original model, expression (2), and
the raise model, expression (5), are identical.

We should remember that one of the symptoms of multicollinearity is a globally significant model
but with individually insignificant parameters. This situation could be corrected with the raise
method by choosing a right raising parameter, A. Then the raise estimator allows us to match
the global significance test with the individual significance test by choosing a determined raising
parameter. Hence, it could be more interesting to analysis the behavior of the individual significance
test for raise estimators, which can be obtained by:

beap(Bi(N)) = % (16)

In this situation we obtain: -
teap (B1(N)) = % (17)
tenpBa()) = —m D021 P2 (13)

V(= p)[(T+ 32 = 223+ A2)]
We can see that tezp corresponding to the raise variable, tezp(81(A)), does not depend on A. Thus,

it remains constant after the successive raising, while tezp(82(A)), depends on A and it will vary
when A increases. Also:

Hm teap(Bo(N) = 2 = Y21/ (1 = p*)(n —2)

A= oo T V1= -2

4.4 Montecarlo simulation

As indicated above, the model (5) will be globally significant if it was the initial model (2), and the
same for the estimated parameter of the raised variable. However, the individual significance of the
not raised variable will depend on the parameter X\ taking into account the expression (18). This
section analyzes, trough a Montecarlo simulation, the conditions required to obtain an individually
significant estimated parameter of the not raised variable, it is to say |teap (B2(N)) | > tn—k (1 — ).
The simulation is performed under the following considerations:

— k=2and a=0.05.

p € {£0.95,40.96,+0.97,4+0.98,+0.99}, then it is verified that VIF > 10.

A € [0,10] with an interval of 0.1.

— For v1 and 72 it is possible to distinguish three cases:
— Case A: v1,7v2 € {0,£0.1,+£0.2,4£0.3,4+0.4,4+0.5,40.6,+0.7, 0.8, £0.9, £1}.
— Case B: y1,v2 € {£0.6,£0.7,40.8,£0.9, £1}.
— Case C: y1,72 € {0,4£0.1,£0.2,£0.3,£0.4}.

— n = 20,35,40,60,160".

! Taking into account that, keeping the rest of values constant, when n increases 62 decreases, then tezp (82(\))
will increase. Thus, the tendency to reject the null hypothesis will be greater as the number of observations
increases.



From these considerations, it is analyzed how many times it is verified that |tezp (B2(N))| >
tn—k (1 — %). Table 1 resumes the results of the simulation for A = 10.

n thn_g (1 - %) | Case A Case B Case C

20 2.101 54.04% 97.91% 28.70%
35 2.035 64.07% 100% 43.06%
40 2.024 68.52% 100% 48.61%
60 2 74.65% 100% 56.35%
160 1.975 84.67% 100% 74.03%

Table 1: Results of the Montecarlo simulation (A = 10)

Note that:

— As expected, the percentage of cases in which the null hypothesis is rejected increases as the
number of observations increases.

— When the correlation between the independent variables and the dependent variable is higher
(Case B), the percentage of cases in which the null hypothesis is rejected is higher, becoming
100% for n > 35.

Figure 2 is presented to analyze the effect on t-student experimental of using different
values of A\. Note that the number of cases where the variable remains no significant
(under solid line that represents the theoretical value t,_; (1 — %)) decrease as A
increases and for A\ = 10 all cases conclude that the variable is individually significant.

(a) n=20,0 <A< 10 (b) n=40,0 < A < 10

Fig. 2: t-student experimental of raise for B2(\) for different values of A and the theoretical value
(solid line)

On the other hand, the conclusion of this simulation can serve as a criterion to select the variable
to raise. From model (2), the following scenarios are analyzed:

— If the estimated parameter of variable x; is individually significant and the estimated parameter
of variable x2 is not, it is recommendable to raise the variable x; to maintain the characteristics
associated to its individual inference in the raise model.
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— If both estimated parameters are not individually significant, it is recommendable to raise the
variable considered less important since the not raised variable (considered more relevant) can
become individually significant after the application of the raise estimation.

— Finally, it is not considered the case where both estimated parameters are individually significant
since this case is not common in models with collinearity. Anyway, in this case a criterion could
be to raise the variable with the higher VIF (in a general model with more than two variables).

5 The VIF in the raise regression

The variance inflator factor (VIF) is usually applied to diagnose the presence of collinearity. Thus,
if the VIF exceeds the threshold generally accepted in the literature, it could be advisable to apply
some procedure, such as the ridge or the raise regression, to mitigate the collinearity. Once we have
applied this procedure, it is necessary to check if it was effective, and this justifies the need to
recalculate the value of the VIF after applying the ridge or raise regression. Salmero6n et al (2015)
presented the expression of the VIF extended to ridge regression and we will now present the VIF
extended to raise regression. Thus, the VIF associated with the raise regression is given by:

1

(19)

where RZ,, is the coefficient of determination of the regression of xa from %1 = (1 + \)x1 — \px2

(or vice versa). That is:
2
2 P
= . 2
Rauz (1 + )\)2 . ()\2 + 2)\)‘02 ( 0)

Therefore: ) ) )
VIF()) = L S UEN A —p) 4+ (21)
Y L (14 2)2(1 - p?)
(T+X)2=(A2+2X)p2

From (21) we have:

For A =0, VIF(0) = ﬁ = VIF matches with the VIF of (2) calculated from OLS.

VIF()) is decreasing in A: if A increases, the R2,.. decreases. In this case 1 — R2,, increases
and therefore VIF()\) decreases.

VIF(}) is always greater or equal to 1 since VIF(A) = 1 < p = 0 and also if VIF(X) < 1 then
(14 N)%(1 = p?) + p% < (14 N)?(1 — p?) then p? < 0, which is impossible.

— When A tends to infinity then the limit of VIF(\) is equal to one.

— An equivalent expression is VIF(A) =1+ m.

Note that VIF()) is always greater or equal to 1, is decreasing in A and continuous at A = 0. That
is, check the desired conditions for all VIF (see Garcia et al, 2015a).

6 Empirical application

To illustrate the contribution of this paper, we will use the empirical application previously applied
by McDonald and Schwing (1973) and McDonald (2010). In this example the total mortality rate,
y, is related to the nitrogen oxide pollution potential, x;, and the hydrocarbon pollution potential,
X2, for 60 cities where p = 0.984, v1 = —0.077 and 2 = —0.177.

Figure? 3 shows the values of the ridge, raise and OLS estimators. Note that when & and X are
equal to zero, the values obtained by the raise method coincide with those obtained by the ridge
estimation® and with those obtained from OLS in model (2). However, when the value is different

2 All figures are represented from a discretization of 1001 points equally distributed in the range [0, 10].

3 Every characteristic shown in this section on ridge estimation has been calculated using the expressions in
the appendix.
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from zero the results are very distant. Since y1 — py2 = 0.0972 > 0, ,31()\) is always positive. In

contrast, as shown in Figure 3, $2()) is always negative and increasing since p and y1 — py2 have the

same sign and the \ lirf B2(A) = 2 < 0. Indeed, the estimation obtained from the ridge regression
—+ 00

is always less (in absolute value) than the estimation obtained from the raise regression. Note that
the ridge estimators converge rapidly, while the raise estimators converge more slowly.

N WD

Fig. 3: OLS estimations (81 thick solid; B2 thin solid), raise estimation (31()) thick dashed; B2())
thin dashed) and ridge estimations (/51(k) thick dotted; S2(k) thin dotted)

Multicollinearity is often manifested in regressions that lead to different results in the global and
individual significance test, i.e. the model is globally significant while one, several or all variables
are not individually significant. The behavior of the ridge estimation in the global significance test
is not adequate since the coefficient of determination is decreasing (remember that it is decreasing
in k when k is increasing, see Figure 4). Therefore, the F.;p, of the global significance test is also
decreasing. Thus, if we choose a sufficiently high value of k, in this case & = 0.33, the Feap(k),
in this case 3.9571, will be less than its critical value, 4.0069 (solid line), and the model will not
be globally significant (see Figure 5). This does not occur with the raise estimation because the
coefficient of determination (equal to 0.3288) remains constant for all values of A. As a result, if
the model was globally significant in the beginning, it will remain as occurs in this example where
Fozp = 28.4071.

0.35

0.25

r
n
1l
0.2 4 -
1
1
0.151
1

Coefficient of determinations

0.1 -

0.05- ‘, 4

Fig. 4: Representing the coefficient of determination of raise estimation (dashed) and ridge
estimation (dotted)
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30

T = = = -

-

Fig. 5: Representing the F experimental of raise estimation (dashed) and ridge estimation (dotted)
and theoretical value (solid)

Figure 6a shows the absolute value for the experimental ¢-student test for raise and ridge
estimations. Note that the experimental #-student of the (; raise estimator (5.0695, constant
and equal to the OLS estimator) is always over the theoretical value, 2.0017 (displayed with a
dot-dot.dashed line), and thus the estimator will always be individually significant. This does not
occur with the ridge estimator whose experimental value for £k = 0.28 is 1.965 and less than the
theoretical value. Thus, the coefficient of the first variable is not significantly different from zero.
On the other hand, the ridge experimental ¢-student value for the second variable is also higher
than the theoretical value as A increases. However, in the ridge regression the second coefficient is
not significantly different from zero from k = 2.43 onwards since the experimental value is equal to
2.0013.

Thus, in the ridge regression for k equal or higher than 2.43 none of the coefficients are significantly
different from zero and the model is not globally significant. However, in the raise regression the
model is globally significant, the first coefficient is individually significant and the second coefficient
will also be individually significant except for high values of A (see Figure 6b) since:

. 0.177
AETOO texp (B2(N)) | = 0076 = 116453 < 2.0017.

Figure 6b also shows that if we use the variance of the random perturbation associated with the
ridge estimator, 52 (k) (see expression (28) in Appendix A), to obtain the experimental values of
individual significance test in the ridge regression, we will always obtain smaller values than if we
use 2. Thus, the probability of rejecting the null hypotheses will be lower in the first case.

Figure 7 displays the VIF values for the raise and ridge estimations. Note that for values of k to
0.02, the ridge VIF is equal to 6.4199, less than 10. However, the raise VIF will be less than 10
only from values of A equal or higher than 0.85. Remember that the value 10 is usually applied
as the limit to consider the collinearity problem mitigated. Thus, by using the ridge regression the
collinearity will be solved for values of k equal or higher than 0.02 while values of A equal to or
higher than 0.85 are necessary in the raise regression.

To sum up, when k is equal to 0.09, the value of the VIF obtained by the ridge estimation, 0.9426, is
less than one which is not possible (Garcia et al, 2015a). The VIF obtained from the raise regression
will have a much more gradual decline and will never be less than 1.
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Fig. 6: t-student experimental of: OLS for 31 (thick solid) and 2 (thin solid); Raise for 41 () (thick
dashed) and (2(A) (thin dashed); Ridge with o? for B1(k) (thick dotted) and B2(k) (thin dotted);
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Fig. 7: Representing the VIF of raise estimation (dashed) and ridge estimation (dotted)

Although the goal of this paper is not the selection of the optimal value of A\, we now
present the results for A = 0.85 that was the selected as the optimal value of \ for this
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same example in Garcia et al (2015b). Thus, the following model is obtained from
A =0.85:

¥y = 1.6546% - 1.8051 xa,
(0.3264) (0.3387)
teep 5.0695 -5.3269

with 6 = 0.1076. Note that both coefficients are significantly different to zero and,
consequently, we can state that the nitroxen oxide pollution has a positive influence
on the total mortality rate while the hydrocarbon pollution potential has a negative
influence. On the other hand, the model is globally significant due to the experimental
value, Feyp = 28.4071, is higher than the theoretical one, 4.0069.

7 Conclusions

In econometric practice it is common to find a globally significant model but where one or more
variables are not individually significant. This seems contradictory and a usual explanation is
the presence of collinearity. Ridge regression has been widely applied to estimate models with
collinearity. However, what happens is that the experimental F diminishes and the model becomes
globally insignificant. Thus, although the collinearity is mitigated, the model is neither globally or
individually significant. In this paper we show that the raise estimator has a great advantage in this
regard. The experimental F remains constant, so if the initial model is globally significant it will also
remain significant in the raise regression. Moreover, the experimental ¢ of one of the explanatory
variables remains constant and so its corresponding parameter will be individually significant if it
was already in the initial model. Since the rest of ¢ will be increasing or decreasing, we can obtain
a globally significant model in which the variables will also be individually significant, with only
the value of A varying. To conclude, the raise estimator mitigates collinearity while maintains the
global and individual significance of the initial model.

Appendix

In this appendix the main expressions about the ridge estimator are collected.

A The ridge estimator

The ridge estimator B(k), is given for k > 0 by:

14+ k)y2 —pm

St \ _ () (22)
(A+k)v2—p71 Bak) )

(1+k)2—p2

Blk) = (X'X +kI) " X'y = [(1+ k)% — p?] L ((1 +k)m — P’Yz)

Hoerl and Kennard (1970a,b) showed that the ridge and OLS estimators are related by the following expression:
Blk) =271, (23)
where Z = I+ k (X’X) ™!, Thus, taking into account (7) we obtain that:

B(A) = HB(k), (24)
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where

H=M"'+k(X'XM) '

1 142 (1—p)—p®+k(1+A) —k
= Ap(14+A(1 S kp(14+A ’
14+ A1 = p) —p? P(Jr(*ﬂl);i)* p(14+X) A+AX1=p))(k+1)—p?

A.1 Variance Inflation Factor
Taking into account that the variance-covariance matrix of (22) is:
var(B(k)) = o?[X'X + kI ' X/X[X'X + kI 71, (25)

and by following Marquardt (1970) the element of the principal diagonal of the matrix [X'X + kI 71 X'/X[X'X +
k1)1, it is to say the VIFs, will be:

_ (1+k)? -2 +k)p* +p?

VI = T e

(26)

For k = 0, VIF (k) matches with VIF and with the raise regression VIF for A = 0.
Garcia et al (2015a) showed that expression (26) presents some anomalies that make its application inadvisable.

A.2 Individual significance test

The experimental ¢ values for the individual significance test, texp, for ridge estimators can be obtained, for
4,7 =1,2 and ¢ # j, by:

Bilk) I+ k)vi —pvj

teap(Bi(k)) = VEIVIE(R)  6/(+ k)2 —2(1 1 k)p? + o2

(27)

Also, for i =1,2:
. Yi
1 i = —.
k—?—il texp(ﬁz(k)) P

Note that for i = 2:
lim  tegp(B2(k)) = lm  tezp(B2(N)).
A—+oo

k—+oo
It is evident that the teyp of both ridge estimators depend on k and they can present values less than its critical
value. We can therefore state that the fit may not be individually or globally significant when using the ridge
estimator. However, if the initial model is globally significant and presents an individually significant raise variable,
then we can apply the raise method and maintain these properties.
On the other hand, Halawa and El Bassiouni (2000) proposed to substitute in expression (27) the variance of the
random perturbation given by:
RSS(k)

&Q(k) - n—2

; (28)

where RSS(k) = (y — XB(k))' (y — XB(k)) is the residual mean square of the ridge model. From the relation given
by (23) it is verified that:

RSS(k) = RSS + k2B(k) (X'X) " B(k).

Then, it is verified that RSS(0) = RSS and, since (X’X) ™! is positive defined, RSS(k) > RSS for all k > 0. In

consequence, 62(k) > &2, it is to say, the experimental ¢ values for the individual significance test obtained from

&2 (k) will always be less than the one obtained from &2.
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A.3 Goodness of fit and global significance contrast

McDonald (2010) showed the following expression to calculate the coefficient of determination of the ridge
estimator:

(B X XB(R) + KBk AK))
Bk XX B(k)

which is decreasing in k. From this expression it is possible to obtain the experimental value for the global
significance test:

R*(k) = : (29)

R?(k)
1-R2(k) "’
n—2

Feap(k) = (30)
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