
Abstract

Ridge estimation (RE) is an alternative method to ordinary least squares (OLS) when there exists a collinearity
problem in a linear regression model. The variance inflator factor (VIF) is applied to test if the problem exists
in the original model and is also necessary after applying the ridge estimate to check if the chosen value for
parameter k has mitigated the collinearity problem. This paper shows that the application of the original
data when working with the ridge estimate leads to non-monotone VIF values. Garćıa et al. (2014)
showed some problems with the traditional VIF used in RE. We propose an augmented VIF,
VIFR(j, k), associated with RE, which is obtained by standardizing the data before augmenting
the model. The VIFR(j, k) will coincide with the VIF associated with the OLS estimator when
k = 0. The augmented VIF has the very desirable properties of being continuous, monotone in
the ridge parameter and higher than one.
Key words: Collinearity; linear regression; variance inflator factor; ridge regression; standardization

1 Introduction

One of the basic hypotheses of the ordinary least squares (OLS) method is that the exogenous variables must be
linearly independent. If there exists a perfect linear dependency – complete multicollinearity – the
model has no unique solution, while if the dependency is approximate – near multicollinearity –
the estimation will be unstable. Note that throughout this article, multicollinearity will mean near
dependence. Thus, when multicollinearity exists it is necessary to seek an alternative method to estimate the
model. Ridge estimation (RE) (see e.g. Hoerl & Kennard, 1970a,b) is the most commonly applied method to
analyze data by minimizing the effects of multicollinearity, without having to increase the sample, improve its
quality and/or eliminate some of the variables of the model (options that are not feasible in many cases).
Once the ridge estimator is applied, it is necessary to verify whether the problem has disappeared or at least that
the damage due to multicollineality has been sufficiently mitigated to not be decisive. To do so, it is important
to have a measure to determine the presence of multicollinearity. A widely used measure in the literature is the
variance inflator factor (VIF) (see e.g. Theil, 1971, Marquardt, 1970). If the VIF takes values below a generally
accepted threshold (see O’Brien, 2007), the problem of multicollinearity is considered to have been overcome.
In addition to the VIF, the use of standardization to diagnose and mitigate collinearity of explanatory variables is
another option that is questioned in the scientific literature. Marquardt & Snee (1975) agreed with standardizing
variables to diagnose collinearity when stated that: “The ill conditioning that results from failure to standardize
is all the more insidious because it is not due to any real defect in the data, but only the arbitrary origins of the
scales on which the predictor variables are expressed”. However, this paper received strong criticism from Smith &
Campbell (1980) among others: “The essential problem with the VIF and similar measures (of collinearity) is that
they ignore the parameters while trying to assess the information given by the data. Clearly, an evaluation of the
strength of the data depend on the scale and nature of the parameters”. After noting Smith and Campbell’s
lack of understanding of the problem, Marquardt (1980) responded to their work, concluding with
the following recommendation: “In summary, when faced with the analysis of regression data whose quality may
be good in all respects except the presence of multicollinearity, the statistician should remove the nonessential
multicollinearity by standardizing the predictor variables and then use a biased estimator to reduce the effects of
the remaining multicollinearity”. Marquardt (1980) also added an important consideration: “The least squares
objective function is mathematically independent of the scaling of the predictor variables (while the objective
function in ridge regression is mathematically dependent on the scaling of the predictor variables)”. This will be an
essential issue in the aim of our work.
Several authors have contributed to the controversy surrounding the standardization of data. Belsley et al. (1980)
indicated that: “Mean centering typically masks the role of the constant term in any underlying near dependencies
and produces misreadingly favorable conditioning diagnostics. Especially for a ridge regression model”. Belsley
(1982), among others, criticized the prevailing practice of centering predictor variables (usually followed by scaling
to unit length) prior to assessing the presence and effects of collinearity. On the other hand, Vinod & Ullah (1981)
pointed out that: “The appearance of a ridge trace that does not plot standardized regression coefficients may
be dramatically changed by a simple translation of the origin and scale transformation of the variables. In this
case, there is the danger of naively misinterpreting the meaning of the plot”. Gunst (1984) noted that “one of the
problems of centering data is to carefully consider whether it is important to detect collinearity with the constant
term”. In Marquardt’s comment to the paper presented by Stewart (1987), he stated: “I fully agree with Stewart
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that when there is a constant term in the model, the model should be centered before the important of the remaining
variables is assessed and the centering simple shows the variable for what it is”. Thus, most authors recommend
standardizing the data as we will do, so that X′X is in the form of a correlation matrix (King, 1986 and Stewart,
1987 among others).
On the other hand, Sardy (2008) proposed a new method to rescale the variable based on the diagonal elements of the
covariance matrix of the maximum-likelihood estimator and stated that it has to be applied before ridge regression
as an alternative to traditional standardizing. Dias & Castro (2011) showed that the real impact on variance can
be overestimated by the traditional VIF when the explanatory variables contain no redundant information about
the dependent variable and stated that a corrected version of this multicollinearity indicator becomes necessary. In
their diagnostic of collinearity, Jensen & Ramirez (2013) made a distinction between centered and uncentered VIFs.
Moreover, they pointed out the special relevance of uncentered VIF when the independent term plays an important
role in the interpretation of the model.
In this paper we will provide some new ideas to clarify when it is recommendable to work with standardized or
unstandardized explicative variables. Except in the case of the independent term, the VIFs will be generally equal to
standardized or unstandardized variables. However, we will show a case where the standardization of the variables
plays a key role: when applying the ridge estimator as a solution to collinearity. Remember that the ridge estimator
(Hoerl & Kennard, 1970a,b) is biased, depends on the parameter k and is given by the following expression:

β̂R(k) = (X′X+ kI)
−1

X′Y. (1)

Note that when k = 0, expression (1) coincides with the OLS estimator.
Following the analogy between multicollinearity and illness suggested by Marquardt & Snee (1975), it is necessary
to calculate the VIF to diagnose the disease of the data (multicollinearity) and check whether or not it exceeds the
threshold generally accepted in the literature. If the VIF exceeds the threshold, we can state that the data suffer
from the illness and an adequate treatment will therefore be needed, including RE. The treatment will be more or
less strong depending on the doses : the value of the parameter k.
However, the problem does not end there. After applying the treatment we must check that it was effective, and if
not, increase the dose (increase k). That is, we need to recalculate the value of the VIF that will depend on the
parameter k. This is the reason it is necessary to extend the concept of VIF to the case of RE, denoted by augmented
VIF or VIFR(j, k). To the best of our knowledge, this topic has not yet been addressed in the literature. Even
O’Brien (2007), who pointed out the controversy surrounding the standardization of variables in the first footnote
of his excellent paper and cited the main papers about this issue, did not say anything about the need to correctly
extend the concept of VIF to RE.
As we will see below, this extension presents a problem whose solution leads to the conclusion that data
standardization in RE is not optional but required. The rationale behind this is simple and is based on the following
observation: if the ridge estimator coincides with the OLS estimator when k = 0, then the VIFR(j, k) associated
with RE must coincide with the VIF associated with the OLS estimator when k = 0. If this does not occur, it is
evident that the extension of the VIF to RE is not correct.
Actually, the definition of the VIFs proposed by Marquardt (1970) as the diagonals of the inverse of the correlation
matrix of centered and scaled regressors, does not verify this condition and cannot be applied when extending it
to the RE. However, this definition has been accepted without further considerations by Marquardt & Snee (1975),
Velleman & Welsch (1981), Montgomery & Peck (1982), Anderson (1985), Stewart (1987), Myers (1990) and Fox &
Monette (1992), among others. The same occurs with the definition given by Fox & Monette (1992). We insist that
the problem of these definitions arises when extending them to RE. Recently, Garćıa et al. (2014) established that
the correct extension of the VIF to RE has to be done from the model YR = XRβ + uR. The VIF obtained from
this extension has some similarities to the one from the surrogate ridge regression presented by Jensen & Ramirez
(2010b). Figure 1 summarizes this basic idea and the procedure to correctly extend the concept of VIF to RE.
In this work we explain why Marquardt (1980) was right when he pointed out that “The quality of the predictor
variable (here regressors) structure of a data set can be assessed properly only in terms of a standardized scale. This
applies to both, least squares and ridge estimation”. We also note that two problems may arise if the data are not
adequately standardized when applying the extension of the concept of the VIF in RE:

1. To obtain values of VIF less than 1 after applying the ridge estimator. This will be inconsistent with the
theoretical definition of VIF (see e.g. Jamal & Rind, 2007, Irfan et al., 2013, Salmerón et al., 2013).

2. To consider that the problem of collinearity has been overcome when it has not.
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Figure 1: Diagnostic of multicollinearity in RE

In the core of this paper, we will show that the objective function in RE is not mathematically independent of the
scaling of the data. We analyze how the use of original or standardized data in a linear model affects the calculation
of the VIF, particularly after applying RE. Thus, the main goal of this paper is to show that standardization is not
optional but required when analyzing the existence of multicollinearity in RE. The paper is structured as follows:
in section 2 we include the notation used in the paper, in section 3 we calculate the VIF for standardized and
unstandardized data after applying OLS estimation while in section 4 it is calculated after applying RE. In section 5
we study the effects of several factors on the variance of RE coefficients. Section 6 shows the results of the numerical
example. Finally, section 7 presents the main consequences and conclusions of this work.

2 Notation

Vector and matrices are set in bold type. The transpose and inverse of matrix A are A′ and A−1, respectively.
Matrix A−j is matrix A without column j. The special arrays are the identity matrix, I, and the null vector, 0.
The original model is Y = Xβ + u, where Y is the vector of order n × 1; X = [1n,X2, . . . ,Xp] of dimension
n × p (note that the model contains a constant term) and Xij is the observation i of the variable j; β is
the vector of parameters of order p× 1, u is the vector of random disturbance for n× 1 and R2 is the coefficient of
determination. The number of observations is n and the number of independent variables is p. The OLS estimators
are β̂ = (X′X)

−1
X′Y. The auxiliary regression of Xj on the rest of the independent variables, j = 2, . . . , p, is

Xj = X−jα+ ε. The transformed model is denoted in lowercase.

For the ridge regression we consider the model YR = XRβ + uR where XR =

(
X√
kI

)
and YR =

(
Y
0

)
, since

its OLS estimator is equal to β̂R(k) =
{
(X′X+ kI)

−1
X′Y, k ≥ 0

}
(Marquardt, 1970; Zhang & Ibrahim, 2005)

and R2(k) is the coefficient of determination. The auxiliary model will be denoted by XR
j = XR

−jδ + ν and the

transformed model in lowercase, with j = 2, . . . , p. Note that X−j and XR
−j contain a constant column since

j 6= 1.
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The explained sum of squares (ESS), the total sum of squares (TSS) and the coefficient of determination are denoted
as:

• ESS(j), TSS(j) and R2(j) for the auxiliary regression of the dependent variable Xj ,

• ESST (j), TSST (j) and R2
T (j) for the transformed auxiliary regression of the dependent variable xj ,

• ESS(j, k), TSS(j, k) and R2(j, k) for the auxiliary regression of the dependent variable XR
j ,

• ESST (j, k), TSST (j, k) and R2
T (j, k) for the transformed auxiliary regression of the dependent variable xR

j .

Finally, the variance inflator factor (VIF) associated to the original model will be noted as VIF(j) while the VIF
associated to the RE will be noted as VIFR(j, k).

3 Obtaining the Variance Inflator Factor after application of OLS

Consider the following general linear model for p independent variables and n observations:

Y = Xβ + u. (2)

The model is assumed to be correctly specified, that is, the random disturbance is centered, homoscedastic and
uncorrelated. It also verifies that the random disturbance is uncorrelated with the independent variables.
The collinearity problem consists in the existence of linear dependency between the independent variables in a
general linear model similar to (2). Collinearity prevents estimating the model (if the collinearity is perfect) or can
imply unstable estimations (if the collinearity is approximate). Determining the existence of this problem in the
model will be an essential issue.
VIF is the most widely applied measure to detect the existence of collinearity (see e.g. Theil, 1971), which is defined
for Xj with j = 2, . . . , p, as:

VIF(j) =
1

1−R2(j)
, (3)

where R2(j) is the coefficient of determination of the auxiliary regression of Xj on the rest of the independent
variables, j = 2, . . . , p:

Xj = X−jα+ ε. (4)

To calculate the coefficient of determination of this model we will use the following expression:

R2(j) =

n∑
i=1

(
X̂ij −Xj

)2

n∑
i=1

(
Xij −Xj

)2 . (5)

If we consider the transformation (6):

xj =
Xj − aj

bj
, j = 1, . . . , p, (6)

where aj ∈ R and bj > 0, model (4) will be given by:

xj = x−jα+ ε. (7)

We can obtain the coefficient of determination of the transformed model using the following expression:

R2
T (j) =

n∑
i=1

(x̂ij − xj)
2

n∑
i=1

(xij − xj)
2
. (8)
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From transformation (6) it is easy to check that xj =
1
bj

(
Xj − aj

)
and then:

n∑

i=1

(x̂ij − xj)
2 =

1

b2j

n∑

i=1

(
X̂ij −Xj

)2
,

n∑

i=1

(xij − xj)
2

=
1

b2j

n∑

i=1

(
Xij −Xj

)2
.

Thus, we can conclude that ESST (j) =
1
b2j
ESS(j) and TSST (j) =

1
b2j
TSS(j), and it is verified that R2

T (j) = R2(j).

That is, the coefficient of determination of both models (original (4) and transformed (7)) are equal for any values
of aj and bj > 0, j = 2, . . . , p, as expected since standardizing data does not change the correlation.
Therefore, the VIF values obtained by using the auxiliary regressions will also be equal when working with original,
centered and standardized data1.

4 Obtaining the Variance Inflator Factor after application of RE

When the presence of multicollinearity is approximate, the estimations will be unstable. Another problem is
the tendency to not reject the null hypothesis in the individual significance test, since β̂i will have
large standard errors. Problems with the estimator due to the presence of multicollinearity among
the independent variables are inflated variances and covariances, inflated correlations and inflated
prediction variance (Farrar & Glauber, 1967; Silvey, 1969; Marquardt, 1970; Marquardt & Snee,
1975; Gunst & Mason, 1977; Willan & Watts, 1978). Thus, it is interesting to apply an estimation method
to amend the damage caused by multicollinearity. The ridge estimator (see Hoerl & Kennard, 1970a,b) is one of
the best known and most applied methods in this situation. Given model (2), the ridge estimation defines a class
of estimators depending on the parameter k:

β̂R(k) = (X′X+ kI)
−1

X′Y, (9)

where k ≥ 0 and its covariance matrix is:

var
(
β̂R(k)

)
= σ2 (X′X+ kI)

−1
X′X (X′X+ kI)

−1
. (10)

The estimator given in (9) is a biased estimator when k > 0. When k = 0, the estimation is equal to the one
obtained from the OLS estimator of model (2).
Marquardt (1970) and Zhang & Ibrahim (2005) showed that the OLS estimation of the ridge model:

YR = XRβ + uR, (11)

is β̂R(k) since
(
XR
)′
XR = X′X+ kI and

(
XR
)′
YR = X′Y.

To detect the possible existence of multicollinearity in model (11), it is necessary to extend the concept of VIF
(augmented VIF hereafter), which is defined as:

VIFR(j, k) =

{
VIF(j), if k = 0
f(k), if k > 0

, (12)

that is, when k = 0 the VIF of the model (11) will be equal to the VIF of the original model. However, when k > 0

the VIFR(j, k) will depend on k in the form f(k) =
1

1− g(k)
obtained below. In addition, it has to be verified that

the function (12) will be continuous at k = 0:

lim
k→0

VIFR(j, k) = VIF(j), for allj = 2, . . . , p, (13)

monotonically decreasing (see Jensen & Ramirez, 2010b; Hadi, 2011) and higher than one for all k (Garćıa et al.,
2014). An extension of the VIF to RE in which these conditions are not verified will be an incorrect extension in
our opinion.
The relevance of the properties of continuity and monotonicity is that if they are not verified:

1When aj = Xj and bj = 1, for j = 2, . . . , p, data are centered. When aj = Xj and bj =
√

n− 1 · Sn−1 where Sn−1 is the quasi

standard deviation of the independent variable Xj , for j = 2, . . . , p, data are standardized.
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Figure 2: Continuity and monotonicity of VIF with the parameter k

• In scenario (a) of Figure 2A, the VIFR(j, k) obtained will be higher than the values of the augmented VIF
(scenario (b)) and the conclusion will be that the problem of multicollinearity persists when it may actually
have been solved.

• In scenario (c) of Figure 2A, the VIFR(j, k) obtained will be less than the values of the augmented VIF
(scenario (b)) and the conclusion will be that the problem is solved when it actually still persists.

• In Figure 2B, the lack of monotonicity of VIF in RE allows the user to overshoot the “good” values and end
up using a “bad” ridge parameter.

Note that an appropriate collinearity diagnostic will be obtained in scenario (b) of Figure 2A since
the very desirable properties of continuity and monotonicity are verified.

4.1 Extensions of the VIF

To calculate the VIF in RE, we need to describe a new auxiliary regression as:

XR
j = XR

−jδ + ν, (14)

where XR
j =

(
X1j X2j · · · Xnj 0 · · ·

√
k · · · 0

)′
and

√
k is in the position n + j of the vector XR

j , j = 2, . . . , p.

Furthermore, the mean of the vector XR
j is X

R

j =
nXj+

√
k

n+p
.

Then, due to (note that X̂R
j = X̂j for j = 2, . . . , p):

ESS(j, k) =

n+p∑

i=1

(
X̂R

ij −X
R

j

)2
=

n∑

i=1

(
X̂ij −X

R

j

)2
+

n+p∑

i=n+1

(
X̂R

ij −X
R

j

)2
,

TSS(j, k) =

n+p∑

i=1

(
XR

ij −X
R

j

)2
=

n∑

i=1

(
Xij −X

R

j

)2
+ (p− 1)

(
X

R

j

)2
+
(√

k −X
R

j

)2
,

the coefficient of determination of the auxiliary regression (14) is:

R2(j, k) =

n∑
i=1

(
X̂ij −X

R

j

)2
+

n+p∑
i=n+1

(
X̂R

ij −X
R

j

)2

n∑
i=1

(
Xij −X

R

j

)2
+ (p− 1)

(
X

R

j

)2
+
(√

k −X
R

j

)2 . (15)

On the other hand, if we transform the variables of model (14) by means of xR
j =

XR
j − aj

bj
with j = 2, . . . , p; aj ∈ R

and bj > 0, that is

xR
j =

(
X1j − aj

bj

X2j − aj

bj
· · · Xnj − aj

bj
0 · · ·

√
k · · · 0

)′

, (16)
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we will obtain the following transformed model:

xR
j = xR

−jδ + ν. (17)

To calculate the coefficient of determination of the auxiliary regression (17), from

xR
j =

n(Xj − aj) + bj
√
k

bj(n+ p)
, (18)

and (16), we obtain that:

x̂R
ij − xR

j =





1
bj

(
X̂ij − aj − bjx

R
j

)
, i = 1, . . . , n

1
bj

(
bjX̂

R
ij − bjx

R
j

)
, i = n+ 1, . . . , n+ p

,

xR
ij − xR

j =





1
bj

(
Xij − aj − bjx

R
j

)
, i = 1, . . . , n

−xR
j , i = n+ 1, . . . , n+ p, i 6= n+ j√

k − xR
j , i = n+ j

.

Taking into account that

ESST (j, k) =

n+p∑

i=1

(
x̂R
ij − xR

j

)2
=

1

b2j

[
n∑

i=1

(
X̂ij − aj − bjx

R
j

)2
+ b2j

n+p∑

i=n+1

(
X̂R

ij − xR
j

)2
]
,

TSST (j, k) =

n+p∑

i=1

(
xR
ij − xR

j

)2
=

1

b2j

[
n∑

i=1

(
Xij − aj − bjx

R
j

)2
+ (p− 1)b2j

(
xR
j

)2
+
(√

k − bjx
R
j

)2
]
,

we obtain that:

R2
T (j, k) =

n∑
i=1

(
X̂ij − aj − bjx

R
j

)2
+ b2j

n+p∑
i=n+1

(
X̂R

ij − xR
j

)2

n∑
i=1

(
Xij − aj − bjx

R
j

)2
+ (p− 1)b2j

(
xR
j

)2
+
(√

k − bjx
R
j

)2 . (19)

It is evident that expressions (15) and (19) only coincide when aj = 0 and bj = 1, j = 2, . . . , p, that is, when no
transformation is applied. Thus, the coefficient of determination of models (14) and (17) will be different and, by
extension, the VIFs obtained from them will also be different.
The question is which coefficient of determination has to be applied in the definition of (12). We will answer this
topic in the next subsection.

4.2 Selecting the correct extension of VIF

We have just seen that the coefficients of determination of the auxiliary regression in RE for the original and
transformed data do not match. Therefore, the VIFs obtained from them will be different. At this point, we wonder
whether or not it is necessary to standardize the data to calculate the VIF in the ridge estimation or, in another
way, which of the two coefficients of determination is correct.
The RE coincides with the OLS estimation when k = 0. Thus, to determine the need to standardize the data we
must prove which auxiliary regression, (14) or (17), provides a coefficient of determination that is equal to R2

T (j)
and R2(j) when k → 0. Indeed, the selected option should lead to an augmented VIF higher than one
and monotone.
For k = 0, the coefficient of determination of the regression of model (14), that is, expression (15), will be given by:

R2(j, 0) =

n∑
i=1

(
X̂ij − n

n+p
Xj

)2
+

n+p∑
i=n+1

(
X̂R

ij − n
n+p

Xj

)2

n∑
i=1

(
Xij − n

n+p
Xj

)2
+ p

(
n

n+p
Xj

)2 . (20)
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This expression only coincides with the coefficient of determination R2
T (j) and R2(j) when p = 0, that is, when

there are no independent variables in the model, which is not possible.
On the other hand, for k = 0, the coefficient of determination of the regression of the model (17), that is, expression
(19), will be given by:

R2
T (j, 0) =

n∑
i=1

(
X̂ij − aj − n(Xj−aj)

n+p

)2
+

n+p∑
i=n+1

(
bjX̂

R
ij −

n(Xj−aj)
(n+p)

)2

n∑
i=1

(
Xij − aj − n(Xj−aj)

n+p

)2
+ p

(
n(Xj−aj)

n+p

)2 . (21)

Taking into account the particular case when aj = Xj (centered data), j = 2, . . . , p, the expression (21) becomes:

R2
T (j, 0) =

n∑
i=1

(
X̂ij −Xj

)2
+ b2j

n+p∑
i=n+1

(
X̂R

ij

)2

n∑
i=1

(
Xij −Xj

)2 . (22)

We can conclude that R2
T (j, 0) = R2(j) = R2

T (j) since:

lim
k→0

X̂R
ij = 0, i = n+ 1, . . . , n+ p,

due to XR
ij = 0 for i = n+ 1, . . . , n+ p, i 6= n+ j and XR

ij =
√
k for i = n+ j.

That is, for k = 0 the coefficient of determination of the auxiliary regression of the RE with standardized data
(although centered data will be enough) coincides with the one obtained by OLS estimation. Thus, the VIFs
obtained from these coefficients of determination will also be equal.
In consequence, the augmented VIF defined by:

VIFR(j, k) =





VIF(j), if k = 0
1

1−R2
T (j, k)

, if k > 0
(23)

is continuous in k = 0. In addition, VIFR(j, k) will be a decreasing function on k (see Appendix A), and due to:

lim
k→+∞

R2
T (j, k) =

1
n+p

1− 1
n+p

=
1

n+ p− 1
,

it is evident that VIFR(j, k) will always be higher than one since it is verified that:

lim
k→+∞

1

1−R2
T (j, k)

=
n+ p− 1

n+ p− 2
> 1.

We therefore conclude that standardizing the data before augmenting the model leads to a definition
of VIF which verifies the properties of continuity, monotonicity and provides values higher than
one. Hence, we consider that standardizing is not optional but required. This fact explains why the
surrogate ridge estimator obtained from a standardized model performs better than RE.

5 The effects of several factors on the variance of the ridge regression

coefficients

O’Brien (2007) analyzed the effects of several factors on the variance of the regression coefficients in OLS. We will
develop this same analysis in the context of RE taking into account that the correct auxiliary regression to calculate
the VIFR(j, k) is (17).
For this purpose we start from the variance of the jth regression coefficient provided by Greene (1993):

var
(
β̂R(j, k)

)
= σ2

uR

[(
xR
j

)′
M−jx

R
j

]−1

, (24)
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where xR
j is the n× 1 vector representing the values of the n+ p observations on the jth independent variable (see

expression (16)) and:

M−j = I− xR
−j

[(
xR
−j

)′
xR
−j

]−1

xR
−j = I−N−j. (25)

We consider that xR
j is centered around its mean denoted by x̃R

j , (see O’Brien, 2007). Then

(
x̃R
j

)′
M−j x̃

R
j =

(
x̃R
j

)′
x̃R
j −

(
x̃R
)′
N−j x̃

R
j =

(
x̃R
j

)′
x̃R
j

(
1−

(
x̃R
j

)′
N−jx̃

R
j(

x̃R
j

)′
x̃R
j

)
, (26)

where it is verified that

(
x̃R
j

)′
N−j x̃

R
j(

x̃R
j

)′
x̃R
j

is the coefficient of determination of the regression (17), R2
T (j, k).

Following O’Brien (2007), if we consider that aj = Xj and bj = 1:

(
x̃R
j

)′
x̃R
j =

n∑

i=1

(
Xij −Xj

)2
+

(n+ p− 1)2 + p

(n+ p)2
· k, (27)

then expression (24) could be rewritten as:

var
(
β̂R(j, k)

)
=

σ2
uR[

n∑
i=1

(
Xij −Xj

)2
+ (n+p−1)2+p

(n+p)2 · k
] (

1−R2
T (j, k)

) . (28)

On the other hand, an unbiased estimation of σ2
uR can be obtained from:

σ̂2
uR =

(
1−R2(k)

)
TSS(k)

(n+ p)− p
=

(
1−R2(k)

) [ n∑
i=1

Y 2
i − n2

n+p
Y

2
]

n
, (29)

where TSS(k) is the total sum of squares of model (11). Thus, the unbiased estimator of the variance of the jth
ridge regression coefficient is obtained by substituting expression (29) in expression (28):

v̂ar
(
β̂R(j, k)

)
=

(
1−R2(k)

) [
1
n

n∑
i=1

Y 2
i − n

n+p
Y

2
]

[
n∑

i=1

(
Xij −Xj

)2
+ (n+p−1)2+p

(n+p)2 · k
] (

1−R2
T (j, k)

) . (30)

From (30) note that:

• Since R2(k) is a decreasing function on k (see McDonald, 2010), it is evident that 1−R2(k) will be an increasing
function on k. Hence, it is acting as a variance inflator factor.

• Since R2
T (j, k) is a decreasing function on k (see Appendix A), it is evident that 1−R2

T (j, k) is an increasing
function on k. Since it is placed in the denominator it is acting as a variance deflator factor or, what it is the
same, VIFR(j, k) is acting as a variance inflator factor.

• The parameter k associated to the ridge regression appears in the denominator of expression (30) and it will
then be verified that

lim
k→+∞

v̂ar
(
β̂R(j, k)

)
= 0,

since 0 ≤ R2(k), R2
T (j, k) ≤ 1.

• By comparing expression (30) with the expression of O’Brien (2007) for model (2) we can see
that 1 − R2 changes from acting as a variance deflator factor in OLS to 1 − R2(k) acting as a
variance inflator factor in RE. Note that R2(k) is decreasing in k.
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6 Numerical example

We conclude this paper with an example to illustrate the above results. We analyze the data previously used by
Kunugi et al. (1961), Himmelblau (1970) and Marquardt & Snee (1975), among others. They studied the relation
between the conversion of n-heptane to acetylene (%), Y, and the reactor temperature (oC), X1, the ratio of H2 to
n-heptane (mole ratio), X2, and the contact time (sec), X3, with a quadratic model considering standardized and
unstandardized data.
They obtained the VIF from the definition given by Marquardt (1970), who considered that the VIFs are the
diagonal elements of the inverse of the simple correlation matrix. Since the correlation matrix of a data set coincides
with the one of the same -standardized- data, then the VIFs obtained from this definition must be the same in both
cases. Thus, the question is why the VIFs presented in Table 1 are not equal.
The problem is that they do not standardize all the variables but only X1, X2 and X3. From this standardization
they obtain the rest of the variables X4, X5, X6, X7, X8 and X9 that may not be standardized. This causes the
matrix X′X to not coincide with the correlation matrix. In this case, it is not correct to take the diagonal elements
of this matrix as the VIFs (as many authors have done). In addition, the correlation matrix of these new variables
is different from the original one, thus leading to different results for the calculation of the VIFs.
In contrast, as shown in section 3, the VIFs will coincide if all the variables are standardized and we calculate the
VIF from expression (3) or from Marquardt’s proposal. Note that when estimating standardized data by OLS, both
expressions are similar and are presented in the first row of Table 1. From the obtained VIFs, we can clearly conclude
that the model has a serious problem of collinearity. Thus, it will be appropriate to consider the ridge estimation as
the adequate estimation method. Since the estimation of this model will depend on k, it will be necessary to obtain
the value of the VIF associated to each value of k to prove whether the problem of multicollinearity was solved.
Table 2 shows the VIFs associated to the RE, obtained from the original data and its standardization. As shown in
section 4, the VIFs obtained from these standardized data in the ridge estimation when k = 0 will coincide with the
one obtained by using OLS. Thus, these VIFs have to be considered when applying RE. If we represent the values
of Table 2 we will obtain a figure similar to 2A. As an example, in Figure 3 we represent the VIFs obtained from
original and standardized data for variables X2, X4, X6 and X8. In addition, we have highlight the value of VIF
in OLS. It is evident that the VIFs obtained from standardized data verify all the required conditions presented in
section 4.
Table 3 shows that, when using standardized data, all variables have a VIF less than 10 for k ≥ 0.09. Therefore,
they are within the established threshold and we can conclude that the problem of multicollinearity has been solved.
On the other hand, note that when working with original data, the VIF values of the variables X3 and X9 increase
from values of k equal to 0.7 and 0.1, respectively. This means that the VIFs are not monotonically decreasing as a
function of the ridge parameter k when working with original data, contrary to what happens when working with
standardized data. This inconsistency was previously shown by Jensen & Ramirez (2008) and summarized by Hadi

(2011): “they observe that (a) the condition of the variance of ||β̂S(k)|| is monotonically increasing in k and (b) the
maximum variance inflation factor is monotonically decreasing in k. These properties do not hold for the classical
ridge estimator, β̂(k)”. In relation to the first statement, Marquardt (1963, Theorem 2) showed that ||β̂R(k)||2
decreases monotonically to 0 as k → ∞. This is also stated in Jensen & Ramirez (2008). However, their example
seems to contradict this fact. For their example however, Jensen & Ramirez (2008) followed a common rescaling
convention of first transforming the data from their original units into standard “correlation form” units where
the ridge regression was conducted and then transforming from standard units back to the original units. Under
this convention ||β̂S(k)||2 was not monotone. The correct formulation is given in Kapat & Goel (2010)
and acknowledged by Jensen & Ramirez (2010a). As regards the second statement, which is verified in the
surrogate ridge model, it should be noted that if the VIF in RE is a nondecreasing function in k, it is due to an
incorrect extension of the VIF from OLS to RE. This work shows that with a correct extension, the VIF will be
monotonically decreasing in k.
Finally, we have calculated the VIFs from the R statistical environment (see R Development Core Team, 2012)
using the genridge package (see Table 4). Although for k = 0, we obtained the VIFs corresponding to OLS, clearly
they are not monotonically decreasing in k and therefore do not verify one of the conditions required in definition
(12). Thus, this package is not recommended as it presents an incorrect way to calculate the VIF in RE.
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X1 X2 X3 X4 X5 X6 X7 X8 X9

Unstandardized 2856748.93 10956.14 2017162.52 9802.9 1428091.88 240.36 2501944.59 65.73 12667.1
Standardizing only X1, X2 and X3 375.25 1.74 680.28 31.04 6563.35 35.61 1762.58 3.16 1156.77

Table 1: Acetylene data VIF by Marquardt & Snee (1975) (X4 = X1X2, X5 = X1X3, X6 = X2X3, X7 = X2
1, X8 = X2

2, X9 = X2
3)

VIF for original data
k X1 X2 X3 X4 X5 X6 X7 X8 X9

0 46241.194 31155.843 21174.411 26632.669 12092.525 363.281 39045.694 90.128 738.840
0.1 3330.439 2886.990 1.195 2824.681 40.478 26.380 3037.278 52.216 1.094
0.2 2580.023 1755.559 1.112 1823.559 29.539 14.179 2378.925 52.160 1.098
0.3 2298.633 1339.299 1.092 1451.323 25.633 9.860 2130.471 52.112 1.101
0.4 2145.607 1117.430 1.084 1250.385 23.626 7.656 1994.161 52.068 1.103
0.5 2046.476 976.546 1.082 1121.034 22.403 6.322 1904.979 52.027 1.105
0.6 1975.356 877.385 1.081 1028.720 21.579 5.428 1840.343 51.990 1.107
0.7 1920.838 802.712 1.081 958.260 20.987 4.788 1790.302 51.954 1.108
0.8 1877.084 743.752 1.082 901.907 20.540 4.307 1749.762 51.922 1.110
0.9 1840.783 695.550 1.083 855.279 20.190 3.934 1715.831 51.891 1.111
1 1809.902 655.089 1.084 815.702 19.910 3.634 1686.733 51.862 1.112

VIF for standardized data
k X1 X2 X3 X4 X5 X6 X7 X8 X9

0 2856748.930 10956.136 2017162.520 9802.903 1428091.880 240.359 2501944.590 65.734 12667.100
0.1 7.525 7.311 8.638 7.315 8.661 4.065 7.135 6.117 5.941
0.2 4.448 4.111 4.832 4.136 4.858 3.014 4.288 3.722 3.763
0.3 3.359 3.021 3.541 3.046 3.558 2.485 3.267 2.821 2.936
0.4 2.792 2.472 2.888 2.497 2.901 2.166 2.731 2.349 2.489
0.5 2.442 2.143 2.495 2.166 2.504 1.952 2.398 2.058 2.206
0.6 2.204 1.925 2.231 1.946 2.239 1.799 2.170 1.861 2.011
0.7 2.031 1.770 2.043 1.789 2.049 1.685 2.004 1.720 1.867
0.8 1.900 1.654 1.901 1.672 1.906 1.596 1.878 1.614 1.757
0.9 1.798 1.565 1.791 1.582 1.796 1.525 1.779 1.532 1.670
1 1.715 1.494 1.703 1.510 1.707 1.468 1.699 1.466 1.600

Table 2: VIFs values for unstandardized and standardized data in ridge estimation for k = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.
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Figure 3: VIF obtained from original data (solid) and standardized data (dashed) for the variables X2, X3, X6 and
X8.
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VIF for original data
k X1 X2 X3 X4 X5 X6 X7 X8 X9

0 46241.194 31155.843 21174.411 26632.669 12092.525 363.281 39045.694 90.128 738.840
0.01 9824.357 12847.914 3.297 11576.140 139.951 137.681 8726.421 52.323 1.086
0.02 7266.746 8913.011 2.078 8122.192 100.092 93.394 6484.656 52.292 1.086
0.03 5946.033 6884.999 1.690 6341.108 79.882 70.689 5327.651 52.275 1.087
0.04 5138.868 5647.617 1.504 5253.869 67.623 56.891 4620.758 52.263 1.089
0.05 4593.985 4813.607 1.396 4520.704 59.389 47.622 4143.653 52.253 1.090
0.06 4201.079 4213.124 1.326 3992.560 53.476 40.970 3799.650 52.245 1.091
0.07 3904.109 3759.941 1.278 3593.754 49.023 35.966 3539.643 52.237 1.092
0.08 3671.579 3405.631 1.243 3281.777 45.549 32.065 3336.042 52.230 1.092
0.09 3484.428 3120.902 1.216 3030.910 42.762 28.940 3172.152 52.223 1.093
0.1 3330.439 2886.990 1.195 2824.681 40.478 26.380 3037.278 52.216 1.094

VIF for standardized data
k X1 X2 X3 X4 X5 X6 X7 X8 X9

0 2856748.930 10956.136 2017162.520 9802.903 1428091.880 240.359 2501944.590 65.734 12667.100
0.01 57.206 57.586 72.766 56.382 67.312 7.646 52.898 24.459 31.437
0.02 30.099 30.636 37.809 30.233 36.455 6.538 27.841 17.404 19.060
0.03 20.870 21.249 25.834 21.046 25.313 5.936 19.365 13.783 14.114
0.04 16.190 16.412 19.763 16.295 19.530 5.504 15.077 11.512 11.413
0.05 13.348 13.445 16.088 13.374 15.980 5.161 12.475 9.938 9.696
0.06 11.433 11.434 13.622 11.391 13.576 4.877 10.721 8.778 8.501
0.07 10.052 9.978 11.851 9.953 11.838 4.633 9.456 7.885 7.617
0.08 9.007 8.875 10.516 8.863 10.522 4.420 8.497 7.176 6.934
0.09 8.186 8.009 9.475 8.006 9.491 4.233 7.743 6.598 6.388
0.1 7.525 7.311 8.638 7.315 8.661 4.065 7.135 6.117 5.941

Table 3: VIFs values for unstandardized and standardized data in ridge estimation for k = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1.
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k X1 X2 X3 X4 X5 X6 X7 X8 X9

0 2856748.9693 10956.136110 2017162.5388 9802.90279 1428091.896 240.359383 2501944.6311 65.733586 12667.09955
0.1 457.3444 8.570092 457.3636 10.12427 821.516 6.377054 312.2327 18.503457 22.47650
0.2 1098.6515 9.645159 743.6048 10.21393 1265.642 5.821969 891.6320 11.683160 21.68637
0.3 1925.9476 11.981106 1009.6772 12.17705 1589.838 5.521331 1698.2650 8.424357 26.74608
0.4 2904.0413 14.440581 1282.4596 14.46739 1867.126 5.361812 2681.7054 6.516822 33.80814
0.5 4002.1154 16.798451 1567.3391 16.77719 2121.404 5.298490 3803.8289 5.286679 42.03165
0.6 5194.8071 19.015065 1864.4789 19.02933 2362.830 5.305343 5034.5976 4.443063 51.06403
0.7 6461.3244 21.101708 2172.5606 21.21076 2596.428 5.364978 6349.8687 3.838568 60.69493
0.8 7784.6074 23.082649 2489.9029 23.32803 2824.912 5.464927 7730.0531 3.390796 70.77507
0.9 9150.6505 24.983173 2814.8474 25.39295 3049.836 5.595893 9159.1803 3.050399 81.18970
1 10547.9554 26.825937 3145.8946 27.41780 3272.125 5.750775 10624.1975 2.786225 91.84724

Table 4: Regression ridge VIF from genridge package
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7 Conclusions

As shown, model (11) has been applied to obtain the VIFs from the matrix XR following Theil (1971). In this paper
we have obtained the following conclusions:

• If we use the original data without standardization, the VIFs will not verify the conditions of continuity and
monotonic decreasing in k, which are required for the classical definition of VIF. Recall the comments of
Hadi (2011) about the surrogate ridge model, which does verify the condition of monotonicity, contrary to
what happens to the ridge estimator applied until now.

• The lack of monotonicity of the VIF makes the selection of the parameter k difficult since we may select a
parameter k when the VIF is increasing, in contrast to what is intended.

• The lack of continuity of VIF for k = 0 can result in a misleading conclusion in multicollinearity diagnostic
since for any value of k > 0 the behavior of VIF is uncontrolled, see Figure 2.

Summarizing, in multicollinearity diagnostic in RE the standardization of data is not optional. For a correct
diagnostic of multicollinearity using the VIF, the data have to be standardized. This is in line with Marquardt
(1980), who stated that “The quality of the predictor variable (here regressors) structure of a data set can be
assessed properly only in terms of a standardized scale”. Although Marquardt (1980) extends this conclusion to
OLS and RE, we humbly think that the standardization is only required in RE.
On the other hand, Jensen & Ramirez (2008, p. 102, Table 8) analyzed the behavior of the VIFs associated to the
surrogate ridge model that verify the condition of continuity and monotonicity, but this is mainly due to the fact
that they use standardized data in addition to other advantages of surrogate ridge regression.
The obligation to standardize data in order to calculate the VIF in RE is also confirmed when extending the
variance proposed by O’Brien (2007) in OLS to RE. The similarity of both expressions only occurs when starting
from standardized data in model (11), thus reinforcing the requirement to standardize data.

A VIFR(j, k) is a decreasing function of k

McDonald (2010) showed that the coefficient of determination in Ridge Estimation and with standardized variables
is a decreasing function in k. When estimating model (11) by OLS, the ridge estimator is obtained. The coefficient
of determination obtained will then also be decreasing in k. We will demonstrate this issue below.
The coefficient of determination of model (17) is obtained from:

R2
T (j, k) =

δ̂(k)′
(
xR
−j

)′
xj − (n+ p)

(
xR
j

)2
(
xR
j

)′
xR
j − (n+ p)

(
xR
j

)2 , (31)

where xj =
n(Xj−aj)+bj

√
k

bj(n+p) . Since it is verified that:

• δ̂(k) =
((

xR
−j

)′
xR
−j

)−1 (
xR
−j

)′
xR
j ⇒

(
xR
−j

)′
xR
j =

(
xR
−j

)′
xR
−j δ̂(k).

•
(
xR
−j

)′
xR
−j = x′

−jx−j + kI,
(
xR
−j

)′
xR
j = x′

−jxj and
(
xR
j

)′
xR
j = x′

jxj + k.

• aj = Xj , ∀j ⇒ xR
j =

√
k

n+p
⇒ (n+ p)

(
xR
j

)2
= k

n+p
.

we obtain that expression (31) for centered data is given by:

R2
T (j, k) =

δ̂(k)′x′
−jx−j δ̂(k) + kδ̂(k)′δ̂(k)− k

n+p

x′
jxj +

n+p−1
n+p

k
, (32)

where δ̂(k) =
(
x′
−jx−j + kI

)−1
x′
−jxj .
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Given that x′
−jx−j is a symmetric and positive defined matrix, we can affirm the existence of a matrix Γ, which is

orthogonal (Γ′ = Γ−1) and a diagonal matrix Dλh
, with h = 1, . . . , p− 1, composed by the latent roots of x′

−jx−j

verifying that x′
−jx−j = ΓDλh

Γ′. In this case, if we note γ = x′
−jxj , we obtain that:

δ̂(k)′x′
−jx−j δ̂(k) = γ ′ΓD λh

(λh+k)2
Γ′γ,

kδ̂(k)′δ̂(k) = γ ′ΓD k

(λh+k)2
Γ′γ.

Noting α′ = γ′Γ it is obtained that expression (32) can be rewritten as::

R2
T (j, k) =

p−1∑
h=1

α2
h

λh+k
− k

n+p

n∑
i=1

x2
ij +

n+p−1
n+p

k

. (33)

Let λ0 = min{λ1, . . . , λn} then for k ∈ (−λ0,∞) this expression is differentiable on (λ0,∞), and in particular for
k = 0. Then:

∂R2
T (j, k)

∂k
=

−
(

p−1∑
h=1

α2
h

(λh+k)2 + 1
n+p

)(
n∑

i=1

x2
ij +

n+p−1
n+p

k

)
− n+p−1

n+p

(
p−1∑
h=1

α2
h

λh+k
− k

n+p

)

(
n∑

i=1

x2
ij +

n+p−1
n+p

k

)2 . (34)

Since the numerator of expression (33) is clearly negative, R2
T (j, k) is a decreasing function on k.

Thus VIFR(j, k) is a decreasing function of k.
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