
Collinearity diagnostic applied in ridge
estimation through the VIF

Abstract

The Variance Inflation Factor (VIF) is used to detect the presence of linear relationships
between two or more independent variables (that is, collinearity) in the multiple linear
regression model. However, the traditionally used VIF definitions encounter some problems
when extended to the case of the Ridge Estimation (RE). This paper presents an extension of
the VIF in RE by providing two alternative VIF expressions that overcome these problems in
the general case. Some characteristics of these expressions are also presented and compared
with the traditional expression. The results are illustrated with an economic example in the
case of three independent variables and with a Monte Carlo simulation for the general case.
Keywords: multiple Linear Regression; Collinearity; Ridge Regression; Multivariables

1 Introduction

The collinearity problem is the existence of linear relationships between two or more independent
variables in model

Y = Xβ + u, (1)

where E[u] = 0, E[uu′] = σ2I. It is considered that the variables in (1) are standardized,
therefore X′X is the correlation matrix and X′Y is the vector of correlation coefficients of
the response variable with each of the explanatory variables. Collinearity will be perfect or
approximate depending on the kind of relation. In the first case, the model does not satisfy the
full range condition and has infinite solutions, while, in the second one, although the condition is
fulfilled, the estimation will be unstable and the variance of the estimators may be large
compared to the values of the estimated parameters that can be insignificant or
have the wrong sing. Obviously, the second case is troubling. Remember that the collinearity
is a data problem belonging to numerical analysis research area that can be found in any field.
The Variance Inflation Factor (VIF) (Marquardt, 1970; Theil, 1971; Fox & Monette, 1992) has
been widely applied in scientific literature to diagnose the existence of collinearity, although it
is possible to find other measures such as: the eigenvalues through the Condition Index (CI),
(Belsley et al., 1980; Belsley, 1982), the Condition Number (CN), (Belsley et al., 1980; Besley,
1991), the Variance Decomposition Proportions (VDP) to analyze the correlations between
different vectors and theirs angles, (Wichers, 1975; Rawlings et al., 1998), the Red indicator
(Kovacs et al., 2005), the corrected VIF (Dias & Castro, 2007), or the use of biplot method in
the visualization diagnostic of multicollinearity problems called collinearity biplot, (Friendly &
Kwan, 2009).
Focusing on the VIF, the definition provided by Theil (1971) allows to measure the impact of
collinearity of the variable Xi, i = 1, . . . , p, with the rest of the independent variables:

VIF(i) =
1

1−R2
i

, i = 1, . . . , p. (2)

whereR2
i is the coefficient of determination ofXi on the rest of independent variables. Marquardt

(1970) defined the VIF as the elements of the principal diagonal of the inverse correlation matrix.
Thus, the VIF will be the elements of the diagonal of the inverse of X′X since the correlation
matrix of the independent variables is the matrix X′X when the data are standardized. This
measure has well-known weaknesses that should be noted. Firstly, the controversy about the
use of centered or not centered data that has been recently revised by Garćıa et al. (2015b).
Secondly, the fact that there is no measure to know how closely R2

i must be to 1 to imply
collinearity (Besley, 1991). Furthermore, the VIF is not resistant to the present of high leverage
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points (outliers). Finally, it is generally accepted that values of VIF higher than 10 indicate severe
collinearity (Kennedy, 1992) but this rule of thumb lacks a theoretical basis. Indeed, taking
into account the expression of the estimated variance of the estimated parameters

v̂ar(β̂i) =
σ̂2
u

nvar(Xi)
·VIF(i), i = 1, . . . , p (3)

where n is the number of observations, high values of VIF could not imply high
estimated variance since it can be countered by the ratio of the variance of the
error terms divided by the variation in the respective independent variable. Thus,
the variance of the error is also an important factor to get high variance and, for
this reason, practitioners should apply statistical skills for model modification to
minimise it and thereby the variance of the estimated parameters.
Focusing on the diagnose, and not in the solution of the collinearity, the VIF is widely
applied as can be noted from the paper of O’Brien (2007) with more than 1700 cites in a great
variety of fields. The concept of VIF was generalized in Ordinary Least Squares (OLS) by Fox
& Monette (1992), who defined the Generalized Variance Inflator Factor (GVIF) as the measure
of the impact of collinearity on the square of the length of the joint confidence region (two or
more coefficients)

GVIF =
|R1||R2|

|R| , (4)

where | · | is the matrix determinant, R1 is the correlation matrix of a particular set of regressors,
X1, R2 is the correlation matrix of the rest of the regressors,X2, and R is the correlation matrix
of all the regressors. Note that when the number of variables in X1 is equal to one, the initial
expression is simplified and the GVIF coincides with the VIF (see, for example, Berk, 1977).
On the other hand, the Ridge Estimation (RE) is a widespread method to overcome the problem
of collinearity defining a class of estimators depending on the non-negative scalar parameter λ

β̂(λ) = (X′X+ λI)
−1

X′Y. (5)

Its covariance matrix is

var
(
β̂(λ)

)
= σ2 (X′X+ λI)

−1
X′X (X′X+ λI)

−1
. (6)

The estimator given in (5) is a biased estimator when λ > 0 and when λ = 0 coincides with
the OLS estimator. Despite earlier usage in numerical analysis (Levenberg, 1944; Riley, 1955),
the ridge estimator is an interesting topic usually labeled in statistic and econometric and with
applications in many different fields such as medicine, physics and chemistry. Indeed, McDonald
(2009) conducted a detailed study of the scientific literature on the ridge estimator since its
presentation in the seminal papers of Hoerl & Kennard (1970a,b) and concluded that more than
240 works have been published (see McDonald, 2009) in prestigious journals.
Once the parameter λ is selected and RE is applied, it is necessary to calculate again the value
of a diagnostic measure to check if collinearity has been mitigated enough. This fact justifies the
extension of the collinearity indicators to be applied after RE. Garćıa et al. (2015a) extended
the VIF for the case p = 2 and the condition number was extended by Garćıa et al. (2015c). The
purpose of this article is to show the deficiencies obtained when applying in RE the definitions
of VIF originally created to OLS estimation and propose an alternative expression for p > 2 that
verifies some desirable properties.
The structure is as follows: Section 2 presents the problems when applying the traditional
VIF definitions in RE by using an example. In Section 3 the VIF of surrogate ridge model
and the VIF expression from the vector that generate the matrix of the ridge estimators for
p = 3 are calculated. Some properties of both VIFs are also shown and is calculated an explicit
expression based on the correlation coefficients for the GVIF when p = 3 in RE. These expressions
are used to analyze the presence of multicollinearity in real economic data in Section 4. The

2



results are compared with the extension of the condition number in RE. Due to the difficulty
of obtaining expressions for these VIFs for p > 3, Section 5 shows how to study the presence of
multicollinearity in a model with p > 3 obtaining the above expressions computationally for any
value of p. It also highlights some limitations of using generalized VIF in RE. Finally, Section 6
resumes the main contributions of the work.

2 VIF extension to ridge estimation

The first extension of the VIF associated with the ridge estimator was given by Marquardt (1970)
who proposed detecting the presence of collinearity by using the diagonal elements of the matrix
(X′X+ λI)

−1
X′X (X′X+ λI)

−1
as the VIF. Note that Marquardt automatically extended the

definition of the VIF in OLS regression to RE. Kutner et al. (2005) proposed a definition of
the VIF in RE that coincides with the extension of the Marquardt’s VIF definition in RE (see
Appendix A). However, the expression obtained for the VIF(λ) (see Marquardt, 1970 for the
case of two variables) does not satisfy the condition of being larger than one (see Salmerón et al.,
2013; Garćıa et al., 2013, 2015c). This is the first problem presented by the expression proposed
by Marquardt. Furthermore, the expression given by Theil (1971) cannot be calculated since
initially we do not know the matrix Z from which to obtain Z′Z = X′X+ λI. The same occurs
to the one proposed by Fox & Monette (1992) although in this case Friendly (2012) provides the
correlation matrix of the data by conveniently transforming the covariance matrix (6). By using
the R statistical environment, the genridge package (see Friendly, 2012) allows us to calculate
the GVIF in RE by using the following expression

GVIF(i) =
|R−i|
|R| , i = 1, . . . , p, (7)

where R denotes the correlation matrix among all the columns of X and R−i is the resulting
matrix by eliminating the ith row and ith column in matrix R. Remember that |R| = 1 for
orthogonal data and |R| = 0 for perfectly collinear data (see R Development Core Team, 2012).
To illustrate all these affirmations, we will use the model previously used by Wissel (2009) relative
to credit in American people with the following variables: the total mortgage dept outstanding,
Y, personal consumption, X1, personal incomes, X2, and consumer credit outstanding, X3.
All variables are measured in billions of dollars. We have enlarged the sample by using data
from 1995 to 2011 obtained from Economic reports of the President (2011). The values shown
in Table 1 are the extension to RE of the VIF definition given by Marquardt (1970), denoted
as REMVIF, and the extension of the general VIF definition given by Fox & Monette (1992),
denoted as REGVIF.

Table 1: Values of VIFs of Marquardt (REMVIF(λ, i)), Fox and Monette (REGVIF(λ, i)) and
Theil (VIF(i)) of the ith variable for λ = 0 and λ = 0.1

REMVIF(0, i) REGVIF(0, i) VIF(i) REMVIF(0.1, i) REGVIF(0.1, i)

i = 1 154.9487 154.9487 154.9487 0.6272 1.724408
i = 2 37.2681 37.2681 37.2681 1.0804 1.699081
i = 3 222.8143 222.8143 222.8143 0.3658 1.254078

Note that all the definitions presented lead to the same result when the OLS estimation is
applied (λ = 0). However, when these definitions are extended and applied in RE (λ > 0)
they provide different results. The source of the problem may be that when we use the OLS
estimator, the matrix of independent variables, X, and the correlation matrix of the regressors,
R, are known. This situation is very different when we work with the ridge estimator: the
data which generate the matrix X′X + λI are initially unknown and consequently we do not
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have the information to obtain the determination coefficient to calculate the corresponding VIFs
(expression proposed by Theil, 1971) or the correlation matrix of the data (expression proposed
by Fox & Monette, 1992). These limitations may be the cause to that numerous authors have
followed the proposal by Marquardt (1970) to extend the concept of VIF to RE. This fact leads
not only to values of VIF lesser than one but also they do not have the desirable property of
being monotonic. Furthermore, as shown in the example, every measure to diagnostic collinearity
leads to a different solution and, in some cases, to a different conclusion. In the next section, we
present an alternative expression for the VIF in RE with p > 2 and analyze its properties. We
will use this same example to illustrate empirically the application of the proposed methodology.

3 RESVIF, REVIF and REGVIF in models with three
exogenous variables

As mentioned above, the main problem in extending the definitions used in the OLS estimation
to calculate the VIF in RE is that the matrix Z that verifies Z′Z = X′X+λI is initially unknown.
This question was initially solved by Garćıa et al. (2015c) for the case p = 2. In this work we
present the extension to the general case beginning for the case p = 3.
This problem can be solved from the matrix XS , verifying X′

SXS = X′X + λI, which was
provided by Jensen & Ramirez (2010) in the presentation of the surrogate ridge estimation.
Note that the matrix XS keeps the dimension of the matrix X and it is orthonormalized. The
VIF obtained from XS will be named as RESVIF.
Within the ridge estimator methodology, we can use the augmented model proposal of Marquardt

(1970) to obtain by OLS the ridge estimator and use the matrix XZ =

(
X√
λI

)
instead of the

matrix XS . We will call the VIF calculated from this matrix REVIF.
In Appendix B we obtain explicit expressions for the RESVIF and REVIF when p = 3. Both
expressions are obtained from the coefficient of determination of an auxiliary regression. Some
properties of both VIFs are also shown. To finish, we obtain an explicit expression based on the
correlation coefficients for REGVIF when p = 3. Fellow the original expressions to calculate the
RESVIF, REVIF and REGVIF are presented as a major contribution of this paper:

Ridge Estimator Surrogate VIF (RESVIF): for the ith variable is:

RESVIF(λ, i) =
(1 + λ)

[
(1 + λ)2 − ρ2jk

]
(1 + λ)

[
(1 + λ)2 − ρ2ij − ρ2ik − ρ2jk

]
+ 2ρijρjkρik

. (8)

It is verified that RESVIF(λ, i) ≥ 1, lim
λ→∞

RESVIF(λ, i) = 1 and the RESVIF is monotone

decreasing with increasing λ.

Ridge Estimator VIF (REVIF): for the ith variable is:

REVIF(λ, i) =
n+ 3 + λ(n+ 2)

(n+ 3)
[
λ(2ρij+2ρik−(λ+ρjk−n))+(n+3)(ρjk+1)

B +
2ρijρikD−(ρ2

ij+ρ2
ik)C

A

]
+ λ(n+ 2)

.

(9)
It is verified that REVIF(λ, i) ≥ 1, lim

λ→∞
REVIF(λ, i) = 1 and the REVIF is monotone

decreasing with increasing λ.

Ridge Estimator Generalized VIF (REGVIF): for the ith variable is:

REGVIF(i) =
1− ρ2jk

1− ρ2jk − ρ2ij − ρ2ik + 2ρjkρijρik
. (10)
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Note that ρij represents the correlation between the variables X(i) and X(j) with i, j, k ∈
{1, 2, 3}, i �= j, i �= k and j �= k.
It can be easily demonstrated for λ = 0 that:

RESVIF(0, i) = REVIF(0, i) = REGVIF(i) =
1− ρ2jk

1− ρ2jk − ρ2ij − ρ2ik + 2ρjkρijρik
= VIF(i). (11)

4 Obtaining the VIF in economic data

In section 2, we showed the deficiencies obtained when applying in RE the definitions of VIF
originally created to OLS estimation by using the model relative to credit in American people
previously applied by Wissel (2009) but enlarging the sample with data from 1995 to 2011
obtained from Economic reports of the President (2011). Now we will use this same example to
illustrate how to calculate the REVIF and compare it with the RESVIF and the REMVIF.
From this data, the multiple linear estimation of model (1) leads to the following results:

Ŷ = -920.9 - 1.396 ·X1 + 0.8886 ·X2 + 0.00667 ·X3,
(8995) (2.399) (0.6057) (0.00639)

with R2 = 0.9583 and Fexp = 99.65. Note that none parameter is statistically significant but
they are not simultaneously zero (joint significance). We also observe that the coefficient of
determination is very high. These results are typical of models with collinearity. As was noted
in the introduction, a good specification of the model is a first relevant step to solve
these problems. However, the collinearity may persist.
In this case, the correlation matrix shows very high correlations between all independent
variables:

R =

⎛
⎝ 1 0.9795893 0.9966152
0.9795893 1 0.9858508
0.9966152 0.9858508 1

⎞
⎠ . (12)

This high correlation was expected since the independent variables (personal consumption, X1,
personal incomes, X2, and consumer credit outstanding, X3) seem to be very related from an
economic point of view. Indeed, Wissel (2009) recognised that the data were chosen to obtain
multicollinearity. In addition, by calculating the R2

i , i = 1, 2, 3, we obtain the VIF of each
variable which is always over 10 indicating the existence of collinearity (see Table 2).

Table 2: Values of VIF

i = 1 i = 2 i = 3

R2
i 0.9935 0.9731 0.9955

VIF(i) = 1
1−R2

i
154.9487 37.2681 222.8143

According to the interpretation given by Fox (1997) about the VIF, we can state, for example,
that the confidence interval for β1 and β3 is

√
154.9487 = 12.4478 and

√
222.8143 = 14.9269

times greater respectively than if there were no multicollinearity. All this suggests the existence
of collinearity in the proposed model which seems ideal to use the expression obtained in Section
3.
The VIFs of each variable, using the different expressions REMVIF, RESVIF, REVIF, REGVIF
(from standardized variables) and REGVIF (from typified1 variables) are represented in Figure
1 for λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

1Note that a standardized variable is the value of the variable minus its mean, divided by the square root of
the number of observations multiplied by its variance while a typified variable is the value of the variable minus
its mean, divided by its standard deviation.
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Figure 1: REMVIF(red-solid); RESVIF(blue-dashed); REVIF(green-dotted); REGVIF from
standardized variables (brown-dotdash); REGVIF from typified variables (orange-dotdash) join
the line y = 1.

Note that for λ varying between 0.1 and 1, the REMVIF of the variables X1 and X3 are always
less than 1 while for variable X2 only takes values higher than one when λ = 0.1. These results
contradict the consequences obtained from expression (2). On the other hand, the values of
REGVIF are different from the one obtained for the RESVIF and REVIF. This difference is
very significative when variables are standardized.
In subsection B.2, expression (32) shows that the RESVIF and the REVIF coincide when
n → +∞. However, in Figure 1 we can see that both VIFs graphs overlap and in this case
the value of n is only 17. Furthermore, in Figure 2 shows the difference between RESVIF and
REVIF for λ =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Note that the differences are of the
order of 10−2. So a large sample size is not necessary to allow the property to be verified.
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Figure 2: Representing the difference between RESVIF and REVIF for λ =0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1 for each variables.

In Table 3 we study in more detail the results obtained when λ varies between 0 and 0.1. Note
that from λ = 0.02, all values of REMVIF are less than 10 while this does not occur in RESVIF
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Table 4: Values of RESVIF for λ =0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1

λ X1 X2 X3

0 154.948757 37.268158 222.814314
0.01 39.418727 21.965852 49.483674
0.02 24.137728 16.617822 28.474403
0.03 17.743912 13.489267 20.197535
0.04 14.162010 11.407017 15.750795
0.05 11.852657 9.915907 12.969567
0.06 10.233564 8.793964 11.063770
0.07 9.032913 7.918666 9.675491
0.08 8.105895 7.216529 8.618786
0.09 7.367971 6.640709 7.787377
0.1 6.766345 6.159898 7.116079

and REVIF until λ = 0.07 (see Tables 4 and 5). Following REMVIF this fact would imply that,
for λ = 0.02, 0.03, 0.04, 0.05, 0.06, the problem of collinearity has been mitigated when in fact
it has not. Note that when the parameter λ is equal to zero the values of VIFs are equal since
in this situation the original model has been estimated by OLS. Table 6 presents the Condition
Number (CN) extended from OLS to RE without further considerations and the CN(λ) extended
to RE taking into considerations the problems of this issue as shown by Garćıa et al. (2015c).

Table 3: Values of REMVIF for λ =0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1

λ X1 X2 X3

0 154.9487572 37.268158 222.8143143
0.01 12.5436403 14.231998 11.5699764
0.02 5.6365410 8.271826 4.1167910
0.03 3.3836467 5.440672 2.1973748
0.04 2.3043321 3.865205 1.4041879
0.05 1.6909349 2.897617 0.9950503
0.06 1.3055132 2.260648 0.7546938
0.07 1.0463587 1.818998 0.6007831
0.08 0.8632570 1.500161 0.4959592
0.09 0.7288631 1.262416 0.4211669
0.1 0.6271743 1.080372 0.3658185

From these results we can highlight the following comments:

• The concept of VIF in OLS is based on expression (2) and it has to be kept when extending
to RE.

• The REMVIF presents values lesser than one unrespecting the concept of VIF.
Furthermore, the REMVIF goes rapidly down the rules of thumb of VIF and it can lead
to think that the multicollinearity is mitigated when it is not.

• The REVIF coincides asymptotically with the RESVIF, and for values of n equal to 17, as
in the numerical example, the difference is depreciable.
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Table 5: Values of REVIF for λ =0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1

λ X1 X2 X3

0 154.948757 37.268158 222.814314
0.01 39.399287 21.955079 49.459193
0.02 24.114188 16.601705 28.446546
0.03 17.718249 13.469864 20.168229
0.04 14.135007 11.385386 15.720666
0.05 11.824723 9.892666 12.938903
0.06 10.204944 8.769506 11.032729
0.07 9.003767 7.893256 9.644171
0.08 8.076331 7.190354 8.587250
0.09 7.338069 6.613907 7.755671
0.1 6.736164 6.132574 7.084235

Table 6: Values of REVIF and Condition Number for λ=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1

λ REVIF(1) REVIF(2) REVIF(3) CN CN(λ)

0 154.9488 37.2682 222.8143 75.1695 33.1943
0.1 6.7362 6.1326 7.0842 64.5731 18.6334
0.2 3.8902 3.713 3.9924 57.48 14.3649
0.3 2.8876 2.802 2.937 52.3065 12.1218
0.4 2.3768 2.3257 2.4063 48.3183 10.6853
0.5 2.0684 2.034 2.0882 45.1227 9.6652
0.6 1.8626 1.8377 1.8769 42.4876 8.8929
0.7 1.716 1.6971 1.7269 40.2664 8.2823
0.8 1.6067 1.5918 1.6153 38.3609 7.7838
0.9 1.5223 1.5101 1.5293 36.7028 7.3669
1 1.4553 1.4452 1.4611 35.2428 7.0117
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• The values obtained to the REGVIF (with original, typified or standardized data) do not
coincide with the values obtained for the RESVIF or the REVIF.

• From Table 6 we see that the CN and CN(λ) are decreasing. While CN presens all values
higher than 30, the CN(λ) takes values lesser than 10 from λ > 0.4. Thus, the CN(λ)
and the REVIF lead to similar conclusions in the diagnostic of collinearity. However, the
CN extended without further considerations indicates that the collinearity has not been
mitigated even for λ = 1.

Finally, we would like to emphasize that in the case of the ridge estimator, the calculation
of the VIFs proposed by Theil (1971) (see expression (2)), Marquardt (1970) (elements of the
principal diagonal of the inverse correlation matrix) and Fox & Monette (1992) (see expression
(7)) leads us to obtain the same results obtained in the calculation of REVIF. The REVIF is
monotonically decreasing in λ, is higher than 1 and it verifies that lim

λ→∞
REVIF(λ, i) = 1 and

REVIF(0, i) = VIF(i).
Then, we propose to use the REVIF instead of traditionally used REMVIF and REGVIF.
The RESVIF, associated to surrogate ridge model, can be also recommended due to its simple
calculation and its asymptotic equivalence with the REVIF but taking into consideration that
it is associated to OLS surrogate ridge model.

5 A Monte Carlo Simulation

In the last section we have presented an economic example with three exogenous variables and
standardized data obtaining the REMVIF, RESVIF, REVIF and REGVIF with standardized
data finding certain anomalies in the results obtained by the REGVIF since it increases when λ
increases (see Figure 1), which does not make sense. Due to this fact, we calculate the REGVIF
from the original data obtaining different results even for λ = 0. We also calculate the REGVIF
from typified data and we have included this case in the work since the obtained results coincide
with the results provided by the package genridge in R software. In this last case we obtain
values of REGVIF different from the one obtained for RESVIF and REVIF. In this section, we
will studied in more detail this case and use a Monte Carlo simulation to present algorithms to
obtain computationally the different VIFs for models with multiple independent variables.
Following McDonald & Galarneau (1975); Wichern & Churchill (1978); Gibbons (1981) we
generate five independent variables using:

X(i) =
√

1− γ2Z(i) + γZ(5), i = 1, 2, 3, 4, 5, (13)

where Z(i) are independent pseudo-random numbers distributed as N(0, 100) and γ is specified
so that the correlation between two any independent variable is given by γ2. The dependent
variable is generated as:

Y = X(1) +X(2) +X(3) +X(4) +X(5) + u, (14)

where u are independent pseudo-random numbers distributed as N(0, 1). Finally, we used three
sample sizes: 100, 500 and 1000.
Since there are five independent variables it is necessary to use the algorithms proposed in
Appendix C. The results are shown in Figure 3 for λ =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1. It is observed that:

• The REGVIF from standardized variables, as already mentioned, increases when λ
increases.

• The REGVIF from typified variables increases when n increases.

• The REGVIF from typified variables is never lesser than the established limit 10. This
means that the collinearity has not been mitigated.
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Figure 3: VIFs for all variables (first, second and third column corresponds to n = 100, 500, 1000,
respectively). 10



Table 7: Difference between RESVIF and REVIF depending on sample size

Sample size Minimum difference Maximum difference
100 0.0064 0.0074
500 0.0013 0.0015
1000 0.00068 0.00078

• The other VIFs show the same behavior: a) RESVIF and REVIF graphs overlap and b)
REMVIF takes values less than 1.

• The difference between RESVIF and REVIF decreases when n increases (see Table 7).

The first three points leads us to believe that the application of REGVIF (from typified or
standardized data) is not appropriate in RE. This is not a minor issue since the package genridge
in R software calculated the VIF in RE following this definition.

6 Conclusions

If all definitions of VIF (Marquardt, 1970; Theil, 1971; Fox & Monette, 1992; Kutner et al.,
2005) lead to the same results under OLS estimation, its extension to RE should also lead to
the same result. However, we have obtained different results and conclusions up to the point of
considering that the collinearity problem is solved when it still persists.
The problem is that both Marquardt (1970) and Fox & Monette (1992) use the covariance matrix
of RE by extending its initial definition (in the case of Marquardt) or obtaining the correlation
matrix (in the case of Fox and Monette). All extensions lead to the same results if instead of
selecting this matrix as a starting point we choose the ridge regressors matrix (see expressions
in Marquardt, 1970), which establishes the equivalence between RE and an alternative OLS
estimation. Thus, we can conclude that the expression proposed in this paper to calculate the
VIF in RE is the right one. That is, the VIF associated with the ridge estimator should be
calculated by the REVIF expression.
Furthermore, it has been shown that RESVIF (associated to ridge surrogate estimator) is easier
to calculate than the REVIF and it can be its substitute since the differences are small, at least
they are quoted to one hundredth.
When extending the VIF(i) to ridge regression, the VIF(λ, i) should be monotonically decreasing
in λ, higher than one and it has to verify that lim

λ→∞
REVIF(λ, i) = 1 and VIF(0, i) = VIF(i).

These conditions are only verified by the REVIF (associated to ridge estimator) and the RESVIF
(associated to surrogate ridge estimator). Although the RESVIF verifies these conditions and
also presents desirable monotone properties, it is possible to get these same conditions within
RE if the concept of VIF is appropriately extended. Thus, within RE the suitable extension
should be the REVIF.
It was shown that the use of REGVIF in RE should be reviewed: a) from standardized variables
major anomalies are obtained and b) from typified variables (methodology used in R software)
are obtained different values to those obtained by RESVIF and REVIF, and as shown in the
simulation section can lead to erroneous conclusions.
To sum up, the main contribution of this paper is to present the expressions and algorithms
necessary to diagnose correctly the collinearity through the VIF after the application of the
ridge estimation for p independent variables tending to make life simpler for those who come
across collinearity issues in their regression model.
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A Relationship between the definition of the VIF by Kut-
ner et al. (2005) and the extension of the Marquardt’s
VIF definition in RE

Kutner et al. (2005) considered that in RE the VIF is the ith element of the principal diagonal
of the following matrix

V

⎛
⎜⎜⎜⎜⎝

γ1

(γ1+λ)2 0 . . . 0

0 γ2

(γ2+λ)2 . . . 0
...

...
. . .

...
0 0 . . .

γp

(γp+λ)2

⎞
⎟⎟⎟⎟⎠V′, (15)

where V is an orthogonal matrix of order p whose columns are the normalized eigenvectors of
the correlation matrix of the independent variables, R, and γi is the ith eigenvalue of the same
matrix, i = 1, . . . , p. That is to say, R = V · Γ · V′ with V′ · V = V · V′ = I and Γ being
a diagonal matrix whose elements are the eigenvalues of R. Since the data are standardized,
R = X′X, and then this proposal coincides with the one provided by Marquardt since

(X′X+ λI)
−1

X′X (X′X+ λI)
−1

= V(Γ+ λI)−1Γ(Γ+ λI)−1V′, (16)
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where

(Γ+ λI)−1Γ(Γ+ λI)−1 =

⎛
⎜⎜⎜⎜⎝

γ1

(γ1+λ)2 0 . . . 0

0 γ2

(γ2+λ)2 . . . 0
...

...
. . .

...
0 0 . . .

γp

(γp+λ)2

⎞
⎟⎟⎟⎟⎠ . (17)

B VIFs in RE

In this section we obtaining explicit expression for RESVIF, REVIF and REGVIF for p = 3.

B.1 Ridge Estimator Surrogate VIF (RESVIF)

From surrogate ridge estimator presented by Jensen & Ramirez (2010), we can affirm that exists
a matrix XS which verifies X′

SXS = X′X+ kI. In the case of three variables (p=3):

X′
SXS = X′X+ λI =

⎛
⎝ 1 + λ ρ12 ρ13

ρ12 1 + λ ρ23
ρ13 ρ23 1 + λ

⎞
⎠ , (18)

i.e.
n∑

i=1

x2
ij = 1 + λ for j = 1, 2, 3, and

n∑
i=1

xijxik = ρjk for j, k = 1, 2, 3, j �= k.

Through the regression of the standardized variable XS(i) on the standardized variables XS(j)
and XS(k)

XS(i) = βjXS(j) + βkXS(k) + v, (19)

with i, j, k ∈ {1, 2, 3}, i �= j, i �= k and j �= k, the estimator of the parameters by OLS is

β̂S(i) =

(
1 + λ ρjk
ρjk 1 + λ

)−1 (
ρij
ρik

)
=

1

(1 + λ)2 − ρ2jk

(
(1 + λ)ρij − ρjkρik
(1 + λ)ρik − ρjkρij

)
. (20)

In this case the Explained Sum of Squares (ESS) and the Total Sum of Squared (TSS) are

ESSS(i) =
1

(1 + λ)2 − ρ2jk

[
(1 + λ)(ρ2ij + ρ2ik)− 2ρijρjkρik

]
, (21)

TSSS(i) = 1 + λ (by XS definition). (22)

Using the expressions (21) and (22), the determination coefficient of the model (19) is

R2
S(i) =

ESSS(i)

TSSS(i)
=

(1 + λ)
(
ρ2ij + ρ2ik

)− 2ρijρjkρik

(1 + λ)
[
(1 + λ)2 − ρ2jk

] . (23)

As a result, the ith variable RESVIF is

RESVIF(λ, i) =
1

1−R2
S(i)

=
(1 + λ)

[
(1 + λ)2 − ρ2jk

]
(1 + λ)

[
(1 + λ)2 − ρ2ij − ρ2ik − ρ2jk

]
+ 2ρijρjkρik

. (24)

Because of ESSS(i) ≥ 0 and (1 + λ)2 − ρ2jk ≥ 0 then 2ρijρjkρik − (1 + λ)
(
ρ2ij + ρ2ik

) ≤ 0. By

adding (1 + λ)
[
(1 + λ)2 − ρ2jk

]
on both sides we obtain

(1 + λ)
[
(1 + λ)2 − ρ2ij − ρ2ik − ρ2jk

]
+ 2ρijρjkρik ≤ (1 + λ)

[
(1 + λ)2 − ρ2jk

]
.

Thus, we conclude that RESVIF(λ, i) ≥ 1, lim
λ→∞

RESVIF(λ, i) = 1 and the RESVIF is monotone

decreasing with increasing λ (see Jensen & Ramirez, 2010, Theorem 5, p. 2077).
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B.2 Ridge Estimator VIF (REVIF)

Ridge estimator VIF (REVIF) is the extension of the Theil (1971) definition (see expression (2))
to RE. In this case, it is necessary to know the matrix of regressors Z so that Z′Z = X′X+ λI.
Even though this matrix is unknown Marquardt (1970) showed that

XZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 · · · x1p

x21 · · · x2p

...
. . .

...
xn1 · · · xnp√
λ · · · 0
...

. . .
...

0 · · · √
λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
X√
λI

)
, YZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
...
yn
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
Y
0

)
,

where the bottom p × 1 submatrix of YZ is not to be viewed as a random responses, the top
n× p submatrix of the XZ matrix has to be standardized (see Garćıa et al. (2015b)) and RE in
the model (1) is similar to the OLS regression in the following model:

YZ = XZβ + v. (25)

It is verifying that β̂(λ) = (X′
ZXZ)

−1
X′

ZYZ = (X′X+ λI)X′Y since X′
ZXZ = X′X+ λI and

X′
ZYZ = X′Y. Then the matrix XZ can be used instead of the matrix Z. The case p = 2 is

given in Garćıa et al. (2015a). For p = 3, the regression of the variable XZ(i) on the variables
XZ(j) and XZ(k) is given by

XZ(i) = β0 + βjXZ(j) + βkXZ(k) +w, (26)

with i, j, k ∈ {1, 2, 3}, i �= j, i �= k and j �= k. In that case

ESSZ(i) =
λ [(λ + ρjk + 1)− 2ρij − 2ρik]

B
− 2ρijρikD − (ρ2ij + ρ2ik)C

A
, (27)

TSSZ(i) =
n+ 3 + λ(n+ 2)

n+ 3
, (28)

where

A = λ2(n+ 1) + λ(4 + 2n+ 2ρjk) + (n+ 3)(1− ρ2jk),

B = (n+ 3)(1 + ρjk) + λ(n+ 1),

C = n+ 3 + λ(n+ 2),

D = ρjk(n+ 3)− λ.

With this information, we conclude that the coefficient of determination is

R2
Z(i) =

ESSZ(i)

TSSZ(i)
=

n+ 3

n+ 3 + λ(n+ 2)
ESSZ(i), (29)

and then the ith variable REVIF is

REVIF(λ, i) =
n+ 3 + λ(n+ 2)

(n+ 3)
[
λ(2ρij+2ρik−(λ+ρjk−n))+(n+3)(ρjk+1)

B +
2ρijρikD−(ρ2

ij+ρ2
ik)C

A

]
+ λ(n+ 2)

.

(30)
It can be easily demonstrated for λ = 0 that

RESVIF(0, i) = REVIF(0, i) =
1− ρ2jk

1− ρ2jk − ρ2ij − ρ2ik + 2ρjkρijρik
= VIF(i). (31)
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Thus, we conclude that REVIF(λ, i) ≥ 1, lim
λ→∞

REVIF(λ, i) = 1 and the REVIF is monotone

decreasing with increasing λ since R2
Z(i) is decreasing in λ (see McDonald, 2010, p.696).

On the other hand, with the help of symbolic computation software we can affirm that

lim
n→∞ (REVIF(λ, i)− RESVIF(λ, i)) = 0. (32)

B.3 Generalized VIF for p = 3 (REGVIF)

When p = 3 the correlation matrix among all variables from (6) is

R =

⎛
⎝ 1 ρ12 ρ13

ρ12 1 ρ23
ρ13 ρ23 1

⎞
⎠ . (33)

In this case the expression (7) would be written as

REGVIF(i) =
1− ρ2jk

1− ρ2jk − ρ2ij − ρ2ik + 2ρjkρijρik
, (34)

with i, j, k = 1, 2, 3, i �= j, i �= k, j �= k, since |R| = 1 − ρ2jk − ρ2ij − ρ2ik + 2ρjkρijρik,

R−i =

(
1 ρjk
ρjk 1

)
, and |R−i| = 1− ρ2jk.

Therefore, the expression (34) clearly verifies that RESVIF(0, i) = REVIF(0, i) = REGVIF(i)
(see expression (31)). Also REGVIF(i) ≥ 1, ∀i, since REGVIF(i) = RESVIF(0, i) ≥ 1.
Contrarily to RESVIF and REVIF, the REGVIF will not be decreasing in λ.
For λ = 0 it is clear what R(0) = R is, but the question is how to calculate R(λ) for λ > 0.
Friendly (2012) solves this problem by transforming the covariance matrix (6) of RE into a
correlation matrix considering this last one as R(λ).
Note that if we consider the following matrix

R(λ) =

⎛
⎝ 1 + λ ρ12 ρ13

ρ12 1 + λ ρ23
ρ13 ρ23 1 + λ

⎞
⎠ , (35)

and applying the definition (4) we obtain that

REGVIF(λ, i) =
(1 + λ)

[
(1 + λ)2 − ρ2jk

]
(1 + λ)

[
(1 + λ)2 − ρ2ij − ρ2ik − ρ2jk

]
+ 2ρijρjkρik

.

It is to say, REGVIF(λ, i) = RESVIF(λ, i) for all λ and i. However, in this case the election of
R(λ) will not correspond to a true correlation matrix since its mean diagonal is not constantly
1 for λ > 0.

C Algorithms to obtain the VIFs in Ridge estimation in
the general case

Consider that we have p standardized exogenous variables and an endogenous variable, if we
consider the multiple linear regression model (1), the surrogate and ridge estimator VIFs for any
value of p may be computed as shown in the Algorithms 1 and 2. In both cases, the matrices
XS and XZ are calculated to obtain the regressions (19) and (26), respectively.
Finally, the coefficients of determination of these regressions are used to obtain the VIFs.
Note that these algorithms simply reproduce the steps followed in subsections B.1 and B.2.
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The generalized VIF is obtained from expression (7) as shown in Algorithm 3. We have
also implemented an iterative procedure to calculate the VIF given by Marquardt (1970),
although it is not the aim of the work. In Algorithm 4 the main diagonal elements of matrix
(X′X+ λI)

−1
X′X (X′X+ λI)

−1
are obtained. Upon request, generate codes are available from

the authors.

Algorithm 1 Obtaining surrogate VIF (RESVIF)

Require: Calculate X′X, I and D(δ) (discretization of the interval [0, 1] with δ points)
1: for λ ∈ D(δ) do
2: consider the surrogate matrix XS so that X′

SXS = X′X+ λI
3: for i ∈ {1, 2, . . . , p} do
4: the regression of column i of XS on the other variables
5: obtain the coefficient of determination, R2

S(i), of the regression
6: calculate surrogate VIF of ith variable as RESVIF(λ, i) = 1

1−R2
S(i)

7: end for
8: end for

Algorithm 2 Obtaining ridge estimator VIF (REVIF)

Require: Calculate X′X, I and D(δ) (discretization of the interval [0, 1] with δ points)
1: for λ ∈ D(δ) do
2: calculate the matrix XZ that generates the matrix of the ridge estimators X′

ZXZ =
X′X+ λI

3: for i ∈ {1, 2, . . . , p} do
4: the regression of column i of XZ on the other variables
5: obtain the coefficient of determination, R2

Z(i), of the regression
6: calculate surrogate VIF of ith variable as REVIF(λ, i) = 1

1−R2
Z(i)

7: end for
8: end for

Algorithm 3 Obtaining generalized VIF (REGVIF)

Require: Calculate X′X, I, D(δ) (discretization of the interval [0, 1] with δ points) and σ̂2 (the
estimation of the variance of regression)

1: for λ ∈ D(δ) do

2: calculate var
(
β̂(λ)

)
= σ̂2 (X′X+ λI)

−1
X′X (X′X+ λI)

−1

3: transform var
(
β̂(λ)

)
into a correlation matrix R

4: for i ∈ {1, 2, . . . , p} do

5: calculate generalized VIF of ith variable as REGVIF(i) = |R−i|
|R|

6: end for
7: end for

Algorithm 4 Obtaining Marquardt VIF (REMVIF)

Require: Calculate X′X, I and D(δ) (discretization of the interval [0, 1] with δ points)
1: for λ ∈ D(δ) do

2: calculate M(λ) = (X′X+ λI)
−1

X′X (X′X+ λI)
−1

3: end for
4: consider the diagonal elements of M(λ) as REMVIF
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D Data empirical application

Table 8: Data for empirical application. Source: Economic reports of the President (2011)

year Y X1 X2 X3

1995 4524.80 6076.20 6200.90 1140.74
1996 4792.40 6288.30 6591.60 1253.43
1997 5104.80 6520.40 7000.70 1324.76
1998 5589.50 6862.30 7525.40 1420.99
1999 6195.10 7237.60 7910.80 1531.10
2000 6752.60 7604.60 8559.40 1716.96
2001 7460.40 7810.30 8883.30 1867.85
2002 8361.20 8018.30 9060.10 1972.11
2003 9376.20 8244.50 9378.10 2077.36
2004 10650.70 8515.80 9937.20 2192.24
2005 12097.70 8803.50 10485.90 2290.93
2006 13481.90 9054.50 11268.10 2384.96
2007 14566.00 9262.90 1112.30 2528.77
2008 14661.30 9211.70 12460.20 2548.86
2009 14370.00 9032.60 11867.00 2438.73
2010 13712.30 9196.20 12321.90 2545.28
2011 13383.80 9428.80 12947.30 2631.51

18


