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Ridge regression has been widely applied to estimate under collinearity by defining a class of esti-
mators that are dependent on the parameter k. The Variance Inflator Factor (VIF) is applied to
detect the presence of collinearity and also as an objective method to obtain the value of k in ridge
regression. Contrarily to the definition of the variance inflator factor, the expressions traditionally
applied in ridge regression do not necessarily lead to values of VIFs equal to or greater than 1. This
work presents an alternative expression to calculate the variance inflator factor in ridge regression
that satisfies the afore mentioned condition, and also presents other interesting properties.
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1. Introduction

The collinearity problem deals with the existence of linear relationships between two
or more independent variables in the following linear model with n observations and p
independent variables:

Y = Xβ + u, (1)

where it is supposed that it is correctly specified, that is the model has mean zero
(there is no y-intercept parameter β0), homoscedasticity and uncorrelated error. If
the collinearity is perfect, rg(X) < p, there is no unique solution to estimate (1),
while if it is approximate the estimation will be unstable.
Some of the possible solutions to the problem focus on the sample (to improve the sample,
to design information extracting maximum observed variables or to increase the sample
size). Another common solution is simply to dispense with the variable that produces
collinearity. In this case it is possible to remove the relevant variables which can lead to
heteroscedasticity and autocorrelation, etc. Thus, although this solution seems to be the
most widespread, it may well not be the most appropriate.
Alternatively, some authors suggest treating the problem of collinearity mechanically, by
proposing a technique known as ridge regression [16, 17], whose estimators are obtained
as:
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β̂R(k) =
(
X′X+ kI

)−1
X′Y, k ≥ 0. (2)

This technique has been widely studied and some authors have even tried to improve
it with numerous proposals. On the other hand, different authors have presented some
alternative techniques to ridge regression (e.g., the surrogate ridge model Jensen and
Ramirez [21] recently cited by Hadi [12], the raise method Garćıa et al. [9] and the
nested regression Feng-Jeng [6]).
A widely applied measure to analyze the problem of collinearity is the Variance Inflator
Factor (VIF) which is defined in an standardized model as:

VIF
(
β̂i, β̂

S
i

)
=

var
(
β̂i

)
var
(
β̂S
i

) , i = 1, . . . , p. (3)

where β̂ is an estimator of β and β̂
S
is the corresponding estimator under a standard

model (no collinearity). By considering:

var
(
β̂i

)
=

σ2

n∑
j=1

(
Xji −Xi

)2 1

1−R2
i

, i = 1, . . . , p. (4)

If the exogenous variables are orthogonal to the variable Xi then R2
i = 0 and the expres-

sion of the variance of the standard model estimator will be given by:

var
(
β̂S
i

)
=

σ2

n∑
j=1

(
Xji −Xi

)2 , i = 1, . . . , p. (5)

Thus, it is possible to obtain the generally accepted definition of VIF due to Theil [38]:

VIFi =
1

1−R2
i

. (6)

Note that the second factor of expression (4) becomes the VIF and measures the impact
of collinearity of the variable Xi, i = 1, . . . , p, with the rest of variables on the square of
the radius of the confidence interval.
According to Marquardt [29], the elements of the main diagonal of the matrix

(X′X+ kI)−1X′X (X′X+ kI)−1 will be the variance inflation factors. Marquardt [29]
and McDonald [32] recommended the use of the variance inflation factor as a procedure
to select the value for k, by proposing the following expressions, respectively, for two
independent variables in a standardized model:

VIFM (k) =
(1 + k)2 − 2(1 + k)ρ2 + ρ2

[(1 + k)2 − ρ2]2
, (7)
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and

VIFMcD(k) =
λ1 (λ1 + k)−2 + λ2 (λ2 + k)−2

2
, (8)

where λ1 = 1+ρ and λ2 = 1−ρ are the latent roots of X′X. Note that after substitution,
both expressions are equal, that is VIFM (k) = VIFMcD(k). Thus, in what follows we will
refer only to the VIF proposed by Marquardt [29] as VIFM (k).
On the other hand, O’Brien [36] states that the VIF is a measure of the ith independent
variables collinearity with the other independent variables in the analysis and is connected
directly to the variance of the regression coefficient associated with this independent vari-
able. Thus, the unbiased estimate of the variance of the ith regression coefficient is given
by [7, 11, 36]:

σ̂2
(
β̂i

)
=

(1−R2
Y )

∑n
j=1(Yj−Ȳ)2

n−p−1

(1−R2
i )
∑n

j=1 x
2
j

, i = 1, . . . , p. (9)

This expression shows that the variance is influenced by different elements (the num-
ber of observations, the determination coefficient, the sample dispersion, the VIF,
etc.). This fact implies that taking the elements of the main diagonal of the matrix

(X′X+ kI)−1X′X (X′X+ kI)−1 as the VIF seems not to be appropriate as the variance
is not only composed by the VIF but also by other elements.
Some recent works have analyzed and proposed some improvements and alternatives for
the VIF as a measure of the existence of collinearity. For example, Dias and Castro [4]
propose new indicators to this problem in the multiple linear regression model. Dias and
Castro [5] show that the real impact on variance can be overestimated by the traditional
VIF when the explanatory variables contain no redundant information about the de-
pendent variable and propose corrected version of this collinearity indicator. Jensen and
Ramirez [24] re-examine the VIFs for models with intercept, with and without centering
regressors, and they suggest other VIFs in rotation of the conventional VIF. Our contri-
bution is also focused on the variance inflation factor but particularly in its application
within the ridge regression.
In this work we show that the expressions proposed by Marquardt [29] and McDonald
[32] for calculating VIF for p = 2 are not true VIFs although they have been applied
as such in ridge regression. Thus, an alternative expression for the VIF is proposed in
this paper. In order not to get into the controversy of the standardization we will work
with standardized data. The structure of the paper is as follows: Section 2 includes
some features of ridge estimatios and the used notation; in Section 3 we explain why
the different expressions commonly applied to calculate the VIF in ridge regression are
not correct justifying the presentation of an alternative expression; Section 4 shows the
ridge regression VIF, VIFR(k, n), as the main contribution of this paper. We show how
to calculate it from the matrix that generates the ridge estimators and explain why
VIFR(k, n) is the true ridge regression VIF; Section 5 analyzes the asymptotic limit of
VIFR(k, n) showing that when n tends to ∞ the VIFR(k, n) coincides with the surrogate
ridge regression VIF presented by Jensen and Ramirez [21] and denoted by VIFSk; Section
6 presents a new expression for the variance deflator factor in the ridge regression. In
Section 7 we present a numerical example to illustrate the contributions of this paper
and, finally, Section 8 summarizes the conclusions and recommends the application of
the VIFR(k, n) or the VIFSk [21] to detect collinearity in ridge regression instead of the
VIFM (k) [29].
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2. Ridge estimator properties. Notation

For convenience, it is assumed that the variables in X are standardized so that X′X has
the form of a correlation matrix. The estimators are:

• β̂L = (X′X)−1X′Y in OLS regression.

• β̂R(k) =
{
(X′X+ kI)−1X′Y, k ≥ 0

}
in ridge regression (see Hoerl [14, 15]).

Some features of the ridge estimator are its coincidence with the Ordinary Least Square
(OLS) estimator for k = 0 and the decrease of the determination coefficient as k increases,
that is, R2 is a decreasing function of k [32]. It is also a biased estimator of β when k > 0
and its covariance matrix is:

var
(
β̂R(k)

)
= σ2

(
X′X+ kI

)−1
X′X

(
X′X+ kI

)−1
. (10)

Remember that Marquardt [29] takes the elements of the main diagonal of the matrix

(X′X+ kI)−1X′X (X′X+ kI)−1 as the variance inflation factors. The different VIFs
expressions will be denoted as follows for k ≥ 0:

• VIFM (k) is the VIF presented by Marquardt [29] in the ridge regression.
• VIFSk is the VIF of the surrogate ridge model presented by Jensen and Ramirez [21].
• VIFR(k, n) is the VIF obtained from the matrix that generates the ridge estimators

from the OLS regression.

Note that as the determination coefficient R2
i varies from 0 to 1, the VIF always has to be

greater than 1. Then, expression (7) seems not to be appropriate because the calculation
of the VIF in ridge regression can present values lower than 1. However, this expression
has been repeatedly applied since Marquardt [29] proposed it. Even Fox and Monette [8]
followed this same idea to obtain the generalized VIF. For this reason it is possible to
find many examples in the existing literature where the VIF presents some values lower
than 1. Since a complete enumeration would be a tedious question and without relevance,
Table 1 serves as an illustration of the presence of VIF lower than 1 in the literature.
However, this does not mean that the VIFs are monotone decreasing as a function of the
ridge parameter k.

3. Analysis of the variance inflator factor expressions

By taking the following standardized model:

yj = β1x1j + β2x2j + vj , j = 1, . . . , n, (11)

where the following conditions are assumed:
∑n

j=1 x1j = 0,
∑n

j=1 x
2
1j = 1,

∑n
j=1 x2j = 0,∑n

j=1 x
2
2j = 1, and

∑n
j=1 x1jx2j = ρ. Then:

X′X =

(
1 ρ
ρ 1

)
, (12)

and the covariance matrix will be:
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var
(
β̂L

)
= σ2

(
X′X

)−1
= σ2

(
1

1−ρ2

−ρ
1−ρ2

−ρ
1−ρ2

1
1−ρ2

)
, (13)

where each value of the diagonal presents the variance of the corresponding parame-
ter estimator. Thus, the variance inflator factor could be defined, when p = 2, as the
corresponding element of the main diagonal of the matrix (X′X)−1. That is to say

VIF =
1

1− ρ2
. (14)

If we use this last definition of VIF in the ridge estimator with expression (2) and with

the matrix (X′X+ kI)−1X′X (X′X+ kI)−1, then we obtain the expression (7) for the
VIFM (k) [29]. Since −1 ≤ ρ ≤ 1, we can see that expression (14) will be always equal to
or greater than 1, while expression (7) can take values lower than 1.
It is also evident that the VIF should increases as the correlation coefficient ρ increases.
However, the VIFM (k) does not verify this condition as shown in Figure 1. Note that
the VIFM (k) decreases for values of ρ higher than 0.9 (when collinearity is serious), even
taking values less than one. Then, we can state that the VIFM (k) begins to decrease just
when collinearity problems appear, which could be misleading. This fact contradicts the
universally accepted VIF definition presented in (6).
When we are working with the Ordinary Least Square (OLS) estimator for p = 2, the
expression (13) is verified by the elements in the main diagonal of (X′X)−1 and, in
consequence, the VIF of every variable is the corresponding diagonal element of this
matrix. However, if we apply this same idea, but working with the ridge estimator, we
will obtain a definition of the VIF that does not coincide with its natural definition, see
expression (6). This fact explains why the expression of the VIFM (k) [29, 32] is not a
true VIF and justifies the presentation of an alternative VIF expression in the following
section.
To finish this section we note that when p > 2 the main diagonal of the matrix (X′X)−1

will content in its mean diagonal the usual VIFs expression (6). Thus, for example when
p = 3 it is verified

VIFi =
1

1− ρ2
ij+ρ2

ik−2ρijρikρjk

1−ρ2
jk

=
1− ρ2jk

1− ρ2ij − ρ2ik − ρ2jk + 2ρijρikρjk
. (15)

where ρij is the correlation between Xi and Xj . However, to take the VIFs as the main
diagonal of the matrix (X′X+ kI)−1X′X(X′X+ kI)−1 will continue to be incorrect for
the same reasons that when p = 2. Thus, although the extension to p > 2 has some
similarities with the case p = 2, it exhibits important peculiarities that overcome the
goal of this paper.

4. The ridge regression VIF: VIFR(k, n)

As indicated before, the VIFs presented by Marquardt [29] and McDonald [32] are in-

correctly calculated in the matrix (X′X+ kI)−1X′X (X′X+ kI)−1 leading to a wrong
definition of VIF. Now, we will present an alternative expression of the VIF obtained
from the matrix XA calculated to obtain the ridge estimator by using OLS regression.
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Marquardt [29] and, more explicitly, Zhang and Ibrahim [41] pointed out that the ridge
estimator can be calculated by OLS regression from the matrix XA as:

β̂R(k) =
(
X′X+ kI

)−1
X′Y =

(
X′

AXA

)−1
X′

AYA, k ≥ 0, (16)

where XA =

(
X√
kI

)
and YA =

(
Y
0

)
being I the identity matrix and 0 the null vector

both of order p. Evidently, (X′
AXA)

−1 = (X′X+ kI)−1, but what is really relevant is

that we now know the matrix XA that has generated the matrix (X′X+ kI)−1. Hence,
we can calculate the determination coefficient between the independent variables and the
VIF from its general definition.
By developing the matrix XA with p = 2 we have:

XA =



x11 x21
x12 x22
...

...
x1n x2n√
k 0

0
√
k


=


z11 z21
z12 z22
...

...
z1n+2 z2n+2

 , (17)

from which we can estimate the model z1j = β1 + β2z2j + wj , with j = 1, . . . , n + 2

(without standardized variables) where
∑n+2

j=1 z1j =
√
k and

∑n+2
j=1 z2j =

√
k, and obtain

the coefficient of determination.
Then, the estimator of the parameter is obtained as:

β̂ =
1

(n+ 2)(1 + k)− k

(√
k + k

√
k − ρ

√
k

−k + (n+ 2)ρ

)
. (18)

To calculate the determination coefficient we will calculate the Total Sum of Squares
(TSS) and the Explained Sum of Squares (ESS):

TSS = 1 + k − (n+ 2)

( √
k

n+ 2

)2

=
(1 + k)(n+ 2)− k

n+ 2
, (19)

and

ESS =
[(n+ 2)ρ− k]2

(n+ 2) [(n+ 2)(1 + k)− k]
. (20)

Then, the determination coefficient will be obtained as:

R2
i =

ESS

TSS
=

[(n+ 2)ρ− k]2

[(n+ 2)(1 + k)− k]2
, i = 1, 2. (21)

The determination coefficient will be 0 when k = (n + 2)ρ and then the VIF will be 1.
When k = (n+ 2)ρ the variables are orthogonal and, from this value, the determination
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coefficient will increase until a limit value equal to 1
(n+1)2 as k tends to infinite. See Figure

2.
And the VIF for the ridge regression will be obtained as:

VIFR(k, n) =
1

1−R2
i

=
[(n+ 2)(1 + k)− k]2

(n+ 2)2 [(1 + k)2 − ρ2]− 2(n+ 2)k(1 + k − ρ)
. (22)

Note that expression (22) depends not only on the parameter k but also on the number
of observations, n, as pointed out by O’Brien [36].

5. The surrogate ridge regression VIF, VIFSk, and its asymptotic
equivalence with VIFR(k, n)

When we use the Ordinary Least Square (OLS) estimation in the model (1), the VIF is
obtained by using the expression (6) and the matrix X of the model (1). On the other
hand, if we are working with the ridge regression the determination coefficient to obtain
the VIF from its traditional definition could be calculated of different way from the
matrix Xk presented by Jensen and Ramirez [21, 22] which verifies X′

kXk = X′X+ kI,
see Table 2. Then, it is possible to show that for p = 2:

M = X′
kXk =

(
m11 . . . m1n

m21 . . . m2n

)m11 m21
...

...
m1n m2n

 = X′X+ kI =

(
1 + k ρ
ρ 1 + k

)
. (23)

In this way, given the moment matrix M, it is obtained the VIF of the surrogate ridge
regression [21] denoted by VIFSk, for the variable i with i = 1, 2:

VIFSk =

(
M−1

)
ii

1
Mii

=
(
M−1

)
ii
Mii =

1 + k

(1 + k)2 − ρ2
(1 + k). (24)

Note that this expression does not coincide with the expression (7) proposed in Mar-
quardt [29] and McDonald [32]. We can prove that expression (24) is always greater
than 1, an increasing function respect to ρ2 and it coincides with the VIF in the OLS
estimator when k is equal to zero. The matrices Xk and XA have different dimensions.
For this reason, the VIFSk and VIFR(k, n) will not be equal. Then, now we will analyze
the asymptotic equivalence between them.
The asymptotic VIF is defined as the limit of the VIFR(k, n) when n tends to infinity.
In the present case of two independent variables, it could be shown that:

VIFR(k,∞) = lim
n→∞

VIFR(k, n) =
(1 + k)2

(1 + k)2 − ρ2
. (25)

When n tends to infinity the asymptotic ridge VIF coincides with the VIFSk presented in
expression (24). Indeed, it can be proved that the VIFR(k, n) practically coincides with
the VIFSk for values of n higher than 30 (see Figure 3).
On the other hand, as k tends to infinity, the limit of VIFR(k, n) is equal to:
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VIFR(∞, n) = lim
k→∞

VIFR(k, n) =
(n+ 1)2

n(n+ 2)
. (26)

Thus, the VIFR(k, n) will be always greater than 1 and tends to 1 as n and k tend
to infinity. Although the scientific literature suggests that the parameter k varies in
the interval [0,∞), the ridge regression solutions do not improve the OLS solutions
in all cases. The MSE curve for ridge regression crosses the OLS curve from below as k
increases. For this reason, for suitable values of k and under the conditions cited by Jensen
and Ramirez [23], the OLS solutions eventually dominate in MSE the ridge regression
solution.
In order to analyze the difference between the VIFR(k, n) and the VIFSk, it is calculated
as:

VIFSk −VIFR(k, n) =
k
(
−k2 − k + 4ρ+ 3kρ+ 2nρ+ 2nkρ

)
(2 + n) [(1 + k)2 − ρ2] (2 + n+ kn+ 2ρ+ nρ)

. (27)

It can be empirically demonstrated that it is possible to use the VIFSk instead of the
VIFR(k, n) for values of n higher than 30 and so the difference will be inappreciable.
In addition, both expressions present values higher than the traditionally applied VIF
expressions [29] and [32].
It is possible to demonstrate that the VIFSk is equal to the VIFR(k, n) when:

n =
k2 + k − 3kρ− 4ρ

2(1 + k)ρ
. (28)

This expression takes negative values when |ρ| > 0.5 and k belongs to [0, 1]. From this
evidence, we can conclude that the VIFSk and the VIFR(k, n) do not intersect for any
value of n > 0 and |ρ| > 0.5.
Now, we will study from an analytical point of view the expression (27) by supposing
that n is a real number higher or equal than zero. When n = 0 the expression
(27) is:

VIFR(k, 0)−VIFSk =
k2(1 + k)− 3ρk(1 + k)− ρk

[(1 + k)2 − ρ2] 4(1 + ρ)
. (29)

Note that when ρ is negative, the numerator will be positive and the VIFR(k, 0) is higher
than the VIFSk. On the contrary, when ρ is positive the numerator will be negative and
the VIFR(k, 0) is less than the VIFSk since ρ should be higher than k3+k2

3k2+4k to verify k2(1+
k)−3ρk(1+k)−ρk > 0. Figure 4 shows, for k = 0.3, the VIFR(0.3,∞), the VIFR(0.3, n)
for ρ = 0.95, the VIFR(0.3, n) for ρ = −0.95 and the VIFM (0.3). Note that the VIFM (0.3)
presents a constant value less than 1 while the VIFR(0.3,∞) is also constant but higher
than 1. The VIFR(0.3, n) with ρ = −0.95 is always higher than the VIFR(0.3,∞) while
the VIFR(k, n) with ρ = 0.95 is always less. Both of them (VIFR(0.3, n) with ρ = −0.95
and VIFR(0.3, n) with ρ = 0.95) converge to the VIFR(k,∞) with k = 0.3.
It can be shown that
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∂VIFR(k, n)

∂n
=

[(n+ 2)(1 + k)− k] 2k(1 + k − ρ) [(n+ 2)ρ− k]

[(n+ 2)2 [(1 + k)2 − ρ2]− 2(n+ 2)k(1 + k − ρ)]2
. (30)

Then, it is possible to conclude that for values of ρ between −1 and −0.9 the partial
derivative in (30) will be negative, the VIFR(k,n) will be a decreasing function and the
difference between the VIFR(k, n) and the VIFSk (27) will be positive. The opposite case
will be presented for values of ρ between 0.9 and 1. Note that the sign of the expression
(30) depends on the factor (n+ 2)ρ− k. See Table 3.

6. The ridge variance deflation factor: VDFR(k)

O’Brien [36] established the concept of variance deflator factor in the context of OLS
regression from expression (9) as:

VDF = 1−R2
Y, (31)

where R2
Y is the determination coefficient of the regression. McDonald [32] provided an

explicit expression of R2
Y for the case p = 2, k = 0, ρ > 0 and standardized variables

given by:

R2
Y =

(γ1 − γ2)
2 + 2(1− ρ)γ1γ2
1− ρ2

, (32)

where γ1 and γ2 are the correlation coefficients of the response variable with each of the
exogenous variables X1 and X2, respectively.
The extension of the VDF established by O’Brien [36] to the ridge regression will make
no sense since R2

Y is decreasing in k [32] and then expression (31) will be increasing in
k contrarily to the expected result.
Now, a new expression for the VDF will be defined in the context of the ridge regression,
called the ridge variance deflator factor and denoted by VDFR(k). This definition will
depend on k contrarily to expression (31).
For this purpose, we start from the equivalence between the VIFR(k,∞) and the VIFSk

for n > 30. Then, we could consider the VIFSk as a measure of the dependence between
the exogenous variables. From expressions (10) and (7) we can obtain:

σ̂2(β̂i) = σ̂2 (1 + k)2 − 2(1 + k)ρ2 + ρ2

[(1 + k)2 − ρ2]2
. (33)

If we multiply and divide this expression by the VIFSk, we will obtain:

σ̂2(β̂i) = σ̂2 (1 + k)2 − 2(1 + k)ρ2 + ρ2

(1 + k)2 [(1 + k)2 − ρ2]
VIFSk = σ̂2 ·VDFR(k) ·VIFSk. (34)

Considering the expression (34), we define the ridge variance deflator factor as:
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VDFR(k) =

{
(1+k)2−2(1+k)ρ2+ρ2

(1+k)2[(1+k)2−ρ2] , for k > 0

1 , for k = 0
. (35)

It can be observed that expressions (31) and (35) are different even when k = 0.
The VDFR(k) will be always less than the VIFSk, since it can be proved that:

VDFR(k)

VIFSk
=

k2 + 2k(1− ρ2) + (1− ρ2)

(1 + k)4
< 1, (36)

when −1 < ρ < 1 and k > 0. Consequently, it is evident that this factor acts as a deflator
of the variance. Furthermore, it could be proved that expression (36) is a decreasing
function of k and ρ2.

7. Empirical application

To illustrate the contribution of this paper, we will reproduce the example previously
presented in [32, 33]. In this example the total mortality rate, Y , is related to the nitrogen
oxide pollution potential, X1, and the hydrocarbon pollution potential, X2, for 60 cities.
From this information, we can obtain the value of n = 60 and ρ = 0.984.
The focus of this article is not to discuss the selection of the ridge parameter, k, but to
see when the problem of collinearity has been solved. Then, we will use Table 4 to directly
present the values of the VIFSk, the VIFR(k, n) and the VIFM (k) for the concrete data
of the afore mentioned example and for values of k varying between 0 and 0.3.
The VIFM (k) presents values lower than 1 for values of k higher than 0.09 while the
values of VIFSk and VIFR(k, n) are always higher than 1. For values of k equal to 0.02
and 0.03 the conclusion will be very different. In these cases the VIFSk will be higher
than 10, suggesting the possible existence of collinearity in the model, while the VIFM (k)
will be lower than 10.
Furthermore, when k is equal to zero, the values of the three VIF expressions are equal.
We can also appreciate that the VIFSk and the VIFR(k, n) are almost similar, since the
difference between them is founded in the third decimal. However, the difference between
the VIFSk and the VIFM (k) is larger, varying between 2 and 7.5.
As stated by O’Brien [36] commonly a VIF of 10 or even one as low as 4 have been used
as rules of thumb to indicate excessive or serious collinearity [13, 25, 29, 31, 34, 35].
By considering these rules of thumb, the conclusion of this empirical application will be
strongly different if we use the VIFR(k, n) instead of VIFM (k). For example, for k equal
to 0.02, the VIFM (k) takes the value of 6.4199 and we could consider that the collinearity
problem is solved. However, if we use the VIFR(k, n), the value of k that presents a VIF
less than 10 will be 0.04. The same occurs if we consider that a VIF higher than 4 denotes
the existence of collinearity problem. By using the VIFM (k), we obtain values of VIFs
less than 4 from values of k ≥ 0.04. However, when working with the proposed expression
VIFR(k, n), we need to increase k until 0.14 to obtain a value of VIF less than 4.
On the other hand, we can appreciate that the VDFR(k) is almost zero from k > 0.09.
Actually, we could state that the decrease of the variance in the ridge regression is
explained by the VDFR(k) and its behavior. Thus, the VDFR(k) could explain why
the variance of the parameter diminishes, even though the VIF (which measures the
correlation between variables) is higher than 10 (see expression (35)). In our example,
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we can see a strong correlation between the variables for k = 0.2 but the variance has
diminished, due to the VDFR(k) which is equal to 0.000012.

8. Conclusions

We have shown that the expressions proposed in [29, 32] to calculate the Variance Infla-
tion Factor (VIF) in ridge regression are not true VIFs. Marquardt [29] took the diagonal

elements of the matrix (X′X+ kI)−1X′X (X′X+ kI)−1 as the variance inflation factor
in the ridge regression ignoring the fact that this matrix is not in ‘correlation form’. This
uncorrected expression has been commonly repeated by several authors in the scientific
existing literature leading to examples with values of VIF lower than 1 which evidently
are not possible according to the definition of VIF. This paper has elucidated this issue.
We have presented the VIFR(k, n) as the VIF calculated from the matrix that generates
the ridge estimators. We have proved that the limit of the VIFR(k, n), as n tends to
infinity, coincides with the surrogate ridge regression VIF, VIFSk.
We have compared the VIFR(k,∞) (or VIFSk) and the VIFR(k, n) with the VIFM (k).
We have concluded that the VIFSk and the VIFR(k, n) are similar when n > 30 and that
both increase when the correlation coefficient increases and the rest of variables keep
constant. However, the VIFM (k) does not verify this logical behavior. On the contrary,
it decreases when the correlation coefficient is close to one and the problems of collinearity
are more serious (see Figure 5).
The contribution of this paper is illustrated with a numerical example previously applied
[32, 33]. In this empirical application we show that the conclusions will vary greatly if we
use the VIFR(k, n) instead of the VIFM (k). By following O’Brien [36] we have considered
a value of VIF equal to 10 (or 4) as indicator of the existence of collinearity. Thus, the
VIFM (k) will consider the problem is solved by providing values of VIF less than 10 (or
4) for values of k equal to 0.02 (or 0.04). However, if we used the proposed VIFR(k, n),
these values of k will show that the collinearity problems still exist. It will be needed
to increase the value of k until 0.04 (or 0.14) to obtain values of VIF less than 10 (or
4). Finally, taking into account that Mansfield and Billy [26] affirmed that the existence
of extreme pairwise correlations may be sufficient for detecting collinearity, we consider
that the VIFR(k, n) or the VIFSk should be applied to detect collinearity, instead of the
VIFM (k).
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Tables

Table 1. Examples of VIF lower than one.

Authors VIFs k

Marquardt and Snee (1975), [30] 45.751, 0.826, 0.694, 0.510, 0.309 0, 0.1, 0.2, 0.4, 0.8
Price (1977), [37] 0.134 0.2
Williams et al. (1979), [40] 0.9 0.1
Timmermans (1981), [39] 0.736 0.5
Bruce and Hann(1981), [2] VIF< 1 k > 0.09
Anderson (1981), [1] 0.75 1
Garg (1984), [10] 0.98, 0.94, 0.91, 0.88, 0.80 0.04, 0.05, 0.05, 0.07, 0.07
Jamal and Rind(2007), [20] 0.946 0.16
Mardikyan and Cetin (2008), [27] 0.993 0.021
Marinoiu (2009), [28] 0.656 0.124
McDonald (2010), [32] 0.823 0.1
Das and Chatterjee (2011), [3] 0.85 0.115
Ijomah and Nwakuya (2011), [18] VIF< 1 k > 0.055
Irfan et al. (2013), [19] 0.994 0.02
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Table 2. Explanation about the existence of a matrix Xk

from which we have obtained X′X+ kI.

X → X′X → β̂ = (X′X)−1X′Y

Xk → X′X+ kI → β̂R(k) = (X′X+ kI)−1 X′Y
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Table 3. Summary of the behavior of the difference
between the VIFR(k, n) and the VIFSk

ρ ∈ [−1;−0.9] ρ ∈ [0.9; 1]

∂VIFR(k,n)
∂n

- +
VIFR(k, n) Decreasing Increasing
VIFR(k, n)−VIFSk > 0 < 0
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Table 4. Values of VIFSk, VIF(k, 60), VIFM (k) and VDFR(k) in the example proposed in [32].

k VIFSk VIF(k, 60) VIFM (k) VIFSk − VIF(k, 60) VIFSk − VIFM (k) VIF(k, 60) − VIFM (k) VDFR(k)

0 31.5020 31.5020 31.5020 0.0000 0.0000 0.0000 1.000000
0.01 19.6763 19.6732 12.0838 0.0031 7.5925 7.5894 0.614130
0.02 14.4212 14.4167 6.4199 0.0045 8.0013 7.9968 0.445171
0.03 11.4514 11.4461 4.0253 0.0053 7.4261 7.4208 0.351512
0.04 9.5426 9.5369 2.7932 0.0058 6.7495 6.7437 0.292708
0.05 8.2127 8.2066 2.0763 0.0061 6.1363 6.1302 0.252816
0.06 7.2330 7.2266 1.6225 0.0064 5.6105 5.6041 0.224319
0.07 6.4814 6.4748 1.3168 0.0066 5.1646 5.1580 0.203166
0.08 5.8866 5.8799 1.1009 0.0067 4.7857 4.7790 0.187018
0.09 5.4043 5.3975 0.9426 0.0068 4.4617 4.4548 0.000017
0.1 5.0053 4.9984 0.8229 0.0069 4.1824 4.1754 0.000016
0.11 4.6698 4.6628 0.7301 0.0070 3.9397 3.9327 0.000016
0.12 4.3838 4.3767 0.6566 0.0071 3.7272 3.7201 0.000015
0.13 4.1371 4.1300 0.5973 0.0071 3.5399 3.5327 0.000014
0.14 3.9222 3.9150 0.5486 0.0072 3.3736 3.3664 0.000014
0.15 3.7333 3.7261 0.5082 0.0072 3.2252 3.2179 0.000014
0.16 3.5660 3.5587 0.4741 0.0073 3.0919 3.0846 0.000013
0.17 3.4167 3.4094 0.4450 0.0073 2.9717 2.9644 0.000013
0.18 3.2828 3.2755 0.4201 0.0073 2.8628 2.8554 0.000013
0.19 3.1620 3.1547 0.3984 0.0074 2.7636 2.7563 0.000013
0.2 3.0525 3.0451 0.3794 0.0074 2.6731 2.6657 0.000012
0.21 2.9527 2.9453 0.3627 0.0074 2.5900 2.5826 0.000012
0.22 2.8615 2.8541 0.3479 0.0074 2.5137 2.5062 0.000012
0.23 2.7778 2.7703 0.3346 0.0074 2.4432 2.4358 0.000012
0.24 2.7007 2.6932 0.3226 0.0075 2.3780 2.3706 0.000012
0.25 2.6294 2.6219 0.3118 0.0075 2.3176 2.3101 0.000012
0.26 2.5634 2.5559 0.3020 0.0075 2.2613 2.2539 0.000012
0.27 2.5020 2.4945 0.2931 0.0075 2.2089 2.2015 0.000012
0.28 2.4448 2.4373 0.2848 0.0075 2.1600 2.1525 0.000012
0.29 2.3915 2.3840 0.2773 0.0075 2.1142 2.1067 0.000012
0.3 2.3416 2.3340 0.2703 0.0075 2.0713 2.0638 0.000012
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Figure 1. VIFM (k) for k = 0.1 and 0.75 ≤ ρ ≤ 1.
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(a) Evolution of determination coefficient
(21) for ρ = 0.98, n = 30 and 0 ≤ k ≤ 40.
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imum value obtained when k = 31.36.

Figure 2. Representation of the determination coefficient presented in expression (21).
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(a) Expression of the VIFSk (solid) and the
VIFR(k, n) (dashed).
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Figure 3. VIFSk and VIFR(k, n) for n = 20, ρ = 0.98 and 0 ≤ k ≤ 0.05.
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Figure 4. Comparison between the VIFR(k,∞) (solid), the VIFR(k, n) for ρ = 0.95 (dashed), the VIFR(k, n) for
ρ = −0.95 (dotted) and the VIFM (k) (dot-dashed), for k = 0.3.
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Figure 5. Comparison between the VIFSk (solid), the VIFR(k, n) (dashed) and the VIFM (k) (dot-dashed) for

0.75 ≤ ρ ≤ 1, n = 10 and k = 0.1.
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